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Abstract

Species of Scedosporium and Lomentospora are considered as emerging opportunists,
affecting immunosuppressed and otherwise debilitated patients, although classically
they are known from causing trauma-associated infections in healthy individuals.
Clinical manifestations range from local infection to pulmonary colonization and severe
invasive disease, in which mortality rates may be over 80%. These unacceptably high
rates are due to the clinical status of patients, diagnostic difficulties, and to intrinsic
antifungal resistance of these fungi. In consequence, several consortia have been
founded to increase research efforts on these orphan fungi. The current review
presents recent findings and summarizes the most relevant points, including the
Scedosporium/Lomentospora taxonomy, environmental distribution, epidemiology,
pathology, virulence factors, immunology, diagnostic methods, and therapeutic

strategies.
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Introduction

Nearly all pathogenic fungi are present in the environment adapted to very
different habitats where they play varying roles in recycling of organic matter. With
some of their causative agents being either opportunistic or primary pathogens, fungal
infections show an increasing incidence worldwide, affecting millions of individuals,
with mortality rates that may be higher than 50% in susceptible patient populations.?

Among pathogenic fungi, Scedosporium species, including Lomentospora
prolificans (formerly Scedosporium prolificans),? can cause infections in both
immunocompetent and immunocompromised hosts, where they can act as primary or
opportunistic pathogens.>* These species cause a broad range of clinical
manifestations, from colonization of the respiratory tract, superficial infections and
allergic reactions, to severe invasive localized or disseminated mycoses. Patients at risk
are particularly those immunocompromised and with hematological
malignancies.>°Individuals suffering from near-drowning events in water polluted with
fungal propagules are also at risk of infections with central nervous system (CNS)
involvement.®

Moreover, Scedosporium/Lomentospora are amongst the most commonly
recovered fungi from respiratory secretions of patients suffering from chronic
pulmonary conditions such as cystic fibrosis (CF).® Although they are mostly
asymptomatic colonizers,”® this may be the first step towards pathology. L. prolificans
typically causes disseminated infections in immunocompromised patients, where it is

3,8-

associated with high mortality.>®1! Scedosporium boydii and S. apiospermum are the

most frequently isolated species, but in some regions S. aurantiacum is more common.
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The high degrees of intrinsic antifungal resistance make these infections difficult to
manage.'?

The high mortality rates of deep and disseminated infections necessitate
focusing resources and efforts to cope with the challenges posed by Scedosporium and
Lomentospora species, such as improving diagnostic methods, or designing new
effective therapies.

Therefore, the members of the Scedosporium working group of the
International Society for Human and Animal Mycology (ISHAM), present at their 5t
Workshop in Bilbao in 2016, decided to prepare a detailed review describing the
taxonomy, environmental distribution, epidemiology, pathology, virulence factors,

immunology, diagnostic methods, and available therapeutic strategies.

Taxonomy, DNA barcoding and new species

The nomenclature of the genus Scedosporium/Pseudallescheria has undergone
numerous changes over the last decade following the introduction of molecular
phylogenetics, which led to an increasing resolution at and below the species level. In
addition, the fundamental change in fungal taxonomy allowing only a single name per
fungal species, effectively abolishing the dual nomenclature based on the anamorph /
teleomorph concept,!? resulted in the adoption of the name Scedosporium at the
expense of Pseudallescheria.?

The first comprehensive revision of the genus conducted in 2005 by Gilgado et
al.** using four genetic loci (B-tubulin (BT2 (=exon 2-4) and TUB (=exon 5-6)),

calmodulin and the internal transcribed spacer regions (ITS1/2) of the rDNA gene
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cluster) recognized S. apiospermum (incl. P. boydii) as a species complex, in addition to
S. aurantiacum and S. minutisporum. Within the S. apiospermum / P. boydii complex,
three existing species were recognized: P. angusta, P. ellipsoidea and P. fusoidea.'* A
second revision further recognised a new species S. dehoogii and maintained S.
apiospermum and P. boydii as distinct species based on TUB sequences together with
morphological and physiological criteria.’> A significant genetic diversity within the S.
apiospermum/P. boydii complex was noted in sequence analysis of the D1/D2 region of
the LSU of rDNA, ITS1/2 and elongation factor 1-alpha;® ITS1/2 and BT2'"*® and the
actin, BT2 and small ribosomal protein 60S L10 (RP60S) sequences in combination with
AFLP analysis.® While the use of some loci, such as BT2, show better discriminatory
resolution, barcoding of the ITS1/2 regions is sufficient for distinction of all relevant
entities in clinical practice.'® Rainer and Kaltseis (2010) described a new species S.
deficiens,?® closely related to S. dehoogii based on ITS1/2 and BT2 corresponding with
growth differences on polyvinyl alcohol agar supplemented with diesel and rapeseed
oil, and growth at 41°C, but no reference sequences were submitted to any public
database, and insufficient proof of novelty was provided. Recently another new
species phylogenetically related to S. aurantiacum was described, based on ITS, BT2
and calmodulin, named S. cereisporum.?! In summary, after the One Fungus = One
Name movement?? and sequencing studies, the genus Scedosporium now contains the
following ten species: S. aurantiacum, S. minutisporum, S. desertorum, S. cereisporum,
and S. dehoogii, in addition to the S. apiospermum complex that comprises S.

angustum, S. apiospermum, S. boydii, S. ellipsoideum and S. fusoideum (Figure 1).
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A phylogenetic analysis of 104 TUB sequences (Figure 1), representative of all
subgroups found amongst 407 analysed TUB sequences, as well as an analysis of the
intra-species variation of all ten currently accepted Scedosporium species revealed
high genetic variation within S. dehoogii, S. boydii and S. apiospermum (Figure 2),
indicating that those should be treated as species complexes, and the identified
subclades may indicate cryptic species. This was also confirmed by DNA barcoding gap
analysis carried out on 538 ITS (Figure 3 A) and 407 TUB sequences (Figure 3 B),
showing that there is no barcoding gap within the genus Scedosporium if all current
ten species are included. The loss of the barcoding gap is due to the high genetic
variation found within S. dehoogii, S. boydii and S. apiospermum. However, the
description of those subclades as separate species needs further study, including
molecular data in association with morphological, physiological and clinical relevant
data. There are clear barcoding gaps between S. minutisporum, S. desertorum, S.
aurantiacum and S. cereisporum (Figure 3 C) indicating that they are well-defined
species. The separation of S. angustum and S. fusoideum needs to be further
investigated taking into account the low genetic diversity within and between those
two species, when compared to the genetic variation found in S. dehoogii, S. boydii
and S. apiospermum (Figure 1 and 2). Finally, L. prolificans was shown to be unrelated
to Scedosporium and therefore was reclassified as Lomentospora prolificans?® and the

genus Lomentospora was reinstated for this species.?

Environmental distribution and epidemiology
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Knowledge of the ecological niches of Scedosporium/Lomentospora species is essential
for a better understanding of the dispersal of these fungi and for the potential

identification of a source of an infection.

Ecological aspects

Scedosporium and Lomentospora species have been isolated from a wide range of
environments, including anthropogenic influenced habitats,?*2?° oil-soaked soils, cattle
dung and sewage.?® In addition, polluted waters have been described as reservoirs
specific for these fungi, and these were identified as sources of infection after near-
drowning events.?” However, adjacent agricultural soils were found to be colonized in
a greater magnitude than water or sediment, suggesting the former is a main habitat
of these fungi.

Subsequent investigations concerning the ecology of Scedosporium species
confirmed the correlation between their abundance and human impact on
environments.?>2831 Agricultural areas®® as well as playgrounds and soils in urban
surroundings?>32 were consistently found to be heavily colonized. Scedosporium spp.
are described to degrade alkanes?%2® and therefore it is not surprising that they are
responsible for 10% of the fungi found in leachate from soil remediation.3! The impact
of alkanes and elevated temperature on the soil mycobiota was studied in laboratory
models. It was shown that the abundance of Scedosporium spp. (mainly S.
apiospermum and S. dehoogii) correlates with diesel fuel concentration and elevated
temperatures (10% w/v and 25°C were tested respectively). The number of Aspergillus

and Penicillium isolates decreased in the same system [Eggertsberger M, unpublished
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results]. In this context it should be mentioned that the temperature in urban soils, i. e.
in traffic islands can reach more than 30°C even in temperate climates.33
The occurrence of Scedosporium spp. is also influenced by the pH of the

substrate, with an optimum of 6-8. Only few colonies were recovered from acidic (like
most of the forest soils) or basic (as French seashores) soils. Another slight but positive
correlation was postulated by Kaltseis et al.?> concerning fungal density and nitrate
concentration in soil. In industrially fertilized crop-fields less Scedosporium colonies
were isolated than in biologically managed fields without mineral fertilizing regimes
[Mall B, unpublished results]. Concerning nitrogen usage, it should be pointed out that
Scedosporium spp. can use complement compounds of the innate immune system in
liguor as nitrogen source.** As additional ecophysiological feature which helps to
survive in the human host, the siderophore production of Scedosporium spp. in slightly
acidic substrates could be of interest.3> Furthermore, S. apiospermum, S. aurantiacum
and L. prolificans were identified by molecular analyses in mesophilic bagasse
composts in 3.8%, but it seems to be unclear whether the identification method
excluded S. boydii.3®

Distribution patterns of the Scedosporium species show regional differences.?>2830
In Australia, S. aurantiacum accounted for more than 50% of all environmental isolates
studied, whereas S. apiospermum and S. dehoogii are predominant in Austria and
France, respectively. Ecological preferences were observed e.g. in the abundance of S.
dehoogii in the presence of high levels of human activity.?>3° For its part, S.

aurantiacum is characteristic of agricultural areas in the west of France.3°
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Clinical epidemiology

Species-specific patterns, host risk groups, organ-specific predilection, and in
vitro antifungal susceptibilities,®1%1837-39 ynderline that understanding of the
epidemiology is essential to clinical management. Scedosporium apiospermum and S.
boydii have a worldwide distribution; by contrast, L. prolificans is rarely encountered in
environmental samples and appears more commonly in the arid climates of Australia
and Spain.%®3%40 More recently, L. prolificans has been recognized in other European
countries, the USA and Korea.'*3841743 Many S. aurantiacum infections have been
reported from Australia,®° the Netherlands* and Japan.*> The epidemiological
features between the three main groups of pathogens within Scedosporium and

Lomentospora are summarized in Table 1.

Immunocompromised hosts

Solid organ transplant (SOT) and hematopoietic stem cell transplant (HSCT)
patients account for a large proportion of patients at high risk for invasive
Scedosporium/Lomentospora infections. However, individuals with cancer and other
immunodeficiencies are also at risk for these mycoses. For SOT and HSCT patients, the
risk of dissemination varies with the type of transplant and immunosuppressive
regimen, degree and duration of neutropenia, environmental exposure, and type of
antifungal prophylaxis.®38424647 Comparison of infection incidence in these patients
across studies is difficult due to the use of different denominators. In a population-
based survey, Heath et al. & reported an incidence of 1/100,000 population, of which

two-thirds of cases occurred in SOT patients.

10
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Regarding two studies in the USA series, Scedosporium/Lomentospora
infections accounted for 25% of all non-Aspergillus mold infections in transplant
recipients (SOT, 29%; HSCT 71%),38 while in another study of a HSCT cohort a
frequency of 1.11 cases/100,000 patient-inpatient days was reported.*® In the first
report, Husain et al.3 found that disseminated disease occurred more often in HSCT
(69%) than in SOT recipients (53%), particularly by L. prolificans (39% vs. 17%; p=0.05),
with infections in HSCT recipients having an earlier median onset (1.3 months vs. 4
months, p=0.007), being more fungaemic (33 vs 11%, p=0.04), and strongly related to
neutropenia (67 vs. 9%, p<0.001). Additionally, HSCT recipients were more likely to
have received prior antifungal prophylaxis (64% vs. 17%) and those that received
antifungal prophylaxis tended to have later onset of Scedosporium/Lomentospora
infections compared to those who did not (median time to onset, 4 vs. 2.3 months).38
The earlier occurrence of disease after HSCT, generally during the pre-engraftment
period has been noted.>*°

According to this, predictors of invasive disease have included HSCT and
leukaemia, with acute leukaemia and L. prolificans infection predicting death.®
Doligalski et al.*° describe Scedosporium infections in 3.5% of the patients after lung
transplantation, and the three month all-cause mortality was 21.7%. In a single center,
16 out of 27 SOT patients were considered colonized with Scedosporium, colonization
being relatively common in lung transplant recipients (73%).#? Invasive disease
occurred in 11 patients (41%) with L. prolificans and S. apiospermum species complex
causing 41% and 55% of cases, respectively. The 6-month mortality was 55%, similar to

other studies.®38 Over two—thirds of patients who developed Scedosporium infections
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had received immunosuppression with alemtuzumab or anti-thymocyte globulin,
which may account for the higher mortality given their profound immunosuppression.
Regarding clinical manifestations of Scedosporium/Lomentospora infections in SOT and
HSCT patients, they may range from sinopulmonary disease and brain abscess to
disseminated infection and aneurysms, which are often fatal.>1>4

Infections caused by Scedosporium/Lomentospora uncommonly occur in
patients with hematological malignancy,*>>>°¢ advanced HIV infection,>” and primary
immunodeficiency disorders.>®°° These mycoses have attributable mortality of up to
77% in patients with acute leukaemia.>> As with HSCT recipients, patients with
hematological malignancy are more likely to be neutropenic at the time of diagnosis of
Scedosporium/Lomentospora infections and to have disseminated disease.®*%°¢ On the
other hand, Tammer et al.>’ reviewed 22 HIV-infected patients with detection of
Scedosporium species in clinical specimens; invasive scedosporiosis was proven in
54.5% of patients, among them dissemination occurred in 66.7% with a mortality rate
of 75%. Patients with invasive scedosporiosis were more likely to have CD4 cell counts
<100/ul. Cases of Scedosporium/Lomentospora infections in patients with chronic
granulomatous disease (CGD) have been described.”®®° Most of these infections
involved the lung or soft tissue although disseminated infection has been reported,
with S. apiospermum accounting for most of them. Moreover, breakthrough infections
have been described in patients who were on long term antifungal treatment or

prophylaxis.>®

Non-immunosuppressed hosts

12
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Scedosporium species are classically known from traumatic infections, leading
to arthritis of eumycetoma, and from pulmonary colonization, often in preformed
cavities, eventually leading to allergic bronchopulmonary mycosis.

Colonization of lungs of patients with CF by Scedosporium/Lomentospora
species is well established and the rate ranges between 0 and 21%°%* being the
second most frequent species after A. fumigatus.” Species prevalence in these patients
varies within the region studied: S. boydii was the most frequent species (62%) in a
French cohort, followed by S. apiospermum (24%), S. aurantiacum (10%) and S.
minutisporum (4%).%° In a study performed in German CF patients, S. apiospermum
was the most frequent species (49%) followed by S. boydii (29%), L. prolificans (12%),
S. aurantiacum (5%) and S. minutisporum (5%).%° In contrast, L. prolificans was the
most frequent species isolated in patients with CF in Northern Spain.®” In Australia, the
most frequent species seems to be S. aurantiacum followed by L. prolificans and S.
apiospermum.®® Scedosporium dehoogii has rarely been isolated in human infections
and up to our knowledge never causing colonization in the airways of CF patients.

Numerous cases of S. apiospermum eumycetoma have been described in the
literature, mostly affecting the lower limbs. These infections are found worldwide
including temperate regions. Case reports on eumycetoma from Europe, US and Brazil
were ascribed to S. apiospermum/S. boydii,*®*~’? but mostly identified with classical
methods so that it cannot be ascertained whether S. aurantiacum or S. dehoogii were
involved in any of these cases.

A special category is formed by cerebral infection after near-drowning. The

etiologic agents are reportedly members of the S. apiospermum complex, but most
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data were published prior to molecular species distinction. Tintelnot et al.”® re-
identified 11 isolates and showed that most of the isolates belong to S. apiospermum
sensu stricto, although S. boydii and S. aurantiacum were also identified. 7374
Furthermore, S. aurantiacum has been reported from a survivor of a tsunami in

Japan.* To date, L. prolificans has not been reported in this clinical context.

Human pathology

The patients’ immune status and fungal portal of entry seem to play an
important role in the clinical course of Scedosporium / Lomentospora infections.
Patients with fully competent immune systems may be asymptomatically colonized or
locally infected. On the other hand, in patients with trauma involving major vessels,
with severe injuries in the vicinity of the CNS, or with immune dysfunction, invasive

infections are frequently found.

Colonization

Scedosporium colonization of the airways in patients with CF usually starts
during adolescence, becoming chronic in up to 54% of patients having Scedosporium
positive cultures (unpublished data), with one predominant strain that can be
identified over several years.®”7>7¢ Bronchial colonization may lead to chronic
inflammation or even to life-threatening invasive disease in cases of severe
immunosuppression, such as lung transplant or hematological malignancies.>77.78

Of interest, Scedosporium conidia are rarely found in the air’® so that the exact

mechanism leading to airway colonization remains to be ascertained. Moreover, the
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presence of Scedosporium/Lomentospora in respiratory secretions of patients suffering
from non-CF bronchiectasis is scant and tends to be associated with pre-existing
cavities, leading to eumycetomas and pulmonary fungus balls.”® ABPA and mucoid
Pseudomonas aeruginosa colonization are positively correlated with
Scedosporium/Lomentospora colonization.® In this sense, it is worth highlighting that a
recent study has shown that P. aeruginosa is able to inhibit S. aurantiacum and L.
prolificans growth, with this inhibition being associated but not limited to the non-
mucoid phenotype of the bacterium.®!

Revealing the epidemiology of human colonization by
Scedosporium/Lomentospora is further hampered by the fact that they are slow
growing molds. Molecular strategies of detection have been proposed,®?# revealing
rates of colonization higher than those assessed by culture. Unfortunately, there are
no molecular techniqgues commercially available for this purpose, making the general

implementation of this approach into the clinical laboratories difficult.

Allergic bronchopulmonary mycoses

Scedosporium, but not Lomentospora, has been linked to clinical cases of
allergic bronchopulmonary mycoses (ABPM),” with 3% of the ABPM cases reported in
the literature being related to Scedosporium species. While it is not clear to what
extent colonization drives long-term decline of pulmonary function, cases of
Scedosporium-related ABPM have been linked to a clear respiratory deterioration of
patients.®* The clinical picture of ABPM caused by non-Aspergillus species tends to

differ from classical allergic bronchopulmonary aspergillosis (ABPA), with asthma being
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less frequent and with higher IgE levels. Promising serological methods aimed at the
specific detection of antibodies against Scedosporium are under development?®® but still

not available.

Localized infections
Localized infections by Scedosporium/Lomentospora species include different
organs and clinical manifestations: 1) cutaneous infections; 2) eumycetoma; 3) muscle,

joint and bone infections; and 4) ocular infections.

Cutaneous infections

Skin manifestations may be the initial presentation of a subcutaneous
scedosporiosis after traumatic inoculation, or a sign of hematogenous dissemination
(Figure 4 A). They can mimic those caused by other fungi, such as species of Aspergillus
or Fusarium with ecchymosis, necrotic papules, and hemorrhagic bullae, but they may
also present solitary ulcers, infiltrative erythematous plaques and nodules, or
suppurative nodules and ulcers. Both S. apiospermum and L. prolificans have been
reported to cause soft tissue infections in immunocompromised hosts, including
patients receiving chronic steroid therapy for chronic obstructive pulmonary disease or

receiving immunosuppressive therapy for rheumatoid arthritis.>8687

Eumycetoma
This is a chronic progressive granulomatous infection of the subcutaneous

tissue. It may affect muscles, bones, cartilage and joints, most often involving the
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lower extremities, usually the foot. Like other subcutaneous mycoses, the fungi enter
through a penetrating trauma. The lesion is painless and grows slowly with well-
defined margins, remaining localized for long periods. Multiple nodules can appear and
spontaneously drain purulent material mixed with soft, < 2 mm size, and white to
yellowish, grains resembling fig seeds. Interconnected sinus tracts are usually present
by the end of the first year and may close and heal completely, while new ones may
open. Involvement of ligaments, joint cartilage, and even bone may occur with time.
Eumycetoma can produce profound disability and deformity but constitutional
symptoms rarely appear. Clinically and radiologically, eumycetomata caused by S.
apiospermum species complex or L. prolificans are similar to those caused by other

fungi.>”*

Muscle, joint and bone infections

Wound infections, arthritis and osteomyelitis usually occur when anatomic
barriers are ruptured by trauma or surgery. Osteomyelitis is described in lung
transplanted recipients®8? as a severe complication of immunosuppression. Joint or
bone infection by S. apiospermum or L. prolificans results in acute septic arthritis and
acute or subacute osteomyelitis, respectively. Plain radiography may be normal in
earlier stages, but magnetic resonance imaging helps to confirm clinical diagnosis.
However, the etiological organism cannot be identified without culture or molecular

detection from articular fluid or a bone biopsy.3*°

Ocular infections
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Scedosporium species can cause keratitis among immunocompetent hosts and
usually following a corneal trauma. Clinical presentation resembles other types of
keratitis (local pain, photophobia, decrease visual acuity, lacrimation) and the cornea
examination reveals gray to white lesions with irregular margins and elevated borders,
ring infiltrate, hypopyon and keratitic precipitates. Endophthalmitis in
immunocompetent individuals may be caused by S. apiospermum. S. boydii or L.
prolificans are secondary to surgery, traumatic inoculation, intravenous drug addiction,
and contiguous spread from an adjacent site. However, in immunocompromised
patients, endophthalmitis is usually part of disease dissemination, secondary to
parenteral nutrition or chemotherapy. Endophthalmitis curses with ocular pain,
photophobia and blurred vision, these symptoms not being specific for scedosporiosis.
Fundoscopic examination shows creamy-white, well-circumscribed lesions of the

choroids and retina, vitreous infiltrates and hypopyon.3°1°2

Disseminated Infections

Scedosporium/Lomentospora disseminated infection (SDI) usually takes place in
severely immunocompromised hosts, such as patients with cancer and hematological
malignancies, hematopoietic stem cells or solid organ transplant recipients, patients
with immunodeficiency, and those receiving immunosuppressive therapy.3>°0:93-95 |t
happens following hematogenous spread from lungs, skin or any source of localized
infection. Recently, a disseminated infection in three patients after transplantation of a

nearly-drowned donor has been reported.®® As well as in other invasive fungal
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infections, SDI may result in a wide spectrum of syndromes, depending on the primary

focus, patient’s immune status, and time of evolution of the disease.

Central nervous system (CNS) infections

This is a severe manifestation of disseminated infection (Figure 4 B). In the
literature, neurotropism of Scedosporium/Lomentospora is often mentioned. In
immunocompromised patients, CNS infection may appear as a manifestation of
systemic disease in the absence of a clear spreading focus,*®! while in
immunocompetent hosts it mostly results from a near-drowning episode with
aspiration of conidia from contaminated water and further hematogenous
dissemination from lungs.?”°® CNS infection has been occasionally reported following
trauma and iatrogenic procedures, and after contiguous spread from infected
paranasal sinuses.®®1% Clinical manifestations include single or multiple brain

abscesses, meningitis and ventriculitis.®%°

Endocarditis and other intravascular infections

These uncommon manifestations of disseminated Scedosporium infections are
associated with high mortality rates. Mycotic aneurysms, especially those involving the
aorta and vertebrobasilar circulatory system, have been described in both
immunocompromised and immunocompetent hosts.”® Endocarditis evolves in severely
immunocompromised patients and in those enduring risk factors, such a valve
replacement or an intravascular or intracavitary device insertion.? Twelve cases of L.

prolificans endocarditis were reported in the literature.1°%192 Most patients were
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immunocompromised and developed left-side infections with large vegetations and
systemic embolism. S. apiospermum complex endocarditis has been frequently
associated with cardioverter-defibrillators or pacemaker insertion. In this setting,
patients often tend to suffer from right-side endocarditis and large artery

thromboembolism.103,104

Systemic infection

This is the most catastrophic expression of disseminated infection (Figure 4 C),
fostered by the ability of Scedosporium species to invade blood vessels and to
sporulate in tissue. In patients with acute leukemia or with allogeneic hematopoietic
stem cell transplant Scedosporium produces fatal massive infections in the context of
aplasia or severe neutropenia. Many reports of systemic infection due to L. prolificans
in this group of patients have been published, with a higher incidence in Australia and
Spain,%>1% and nosocomial outbreaks during hospital reconstruction have been also
reported.”®!%7 Clinical features include fever, dyspnea, lung infiltrates, signs and
symptoms of meningoencephalitis, skin lesions and other manifestations resulting
from multiple organ involvement. In this setting, L. prolificans and S. apiospermum
complex are isolated from blood cultures in a high percentage of patients.>11:3848106 |
solid organ transplant recipients, systemic infection is favored by immunosuppression
in the setting of graft versus host disease®! and previous colonization by
Scedosporium.>*1% Other risk groups for developing disseminated infection with
multiple organ involvement are HIV patients with CD4 < 50/ul>” and those receiving

immunosuppressive therapy.1%®
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455
456  Host-pathogen interactions: immune response and fungal virulence

457  factors

458 The host immune response is a complex network of cellular and molecular

459 mechanisms that can determine patient survival but, on the other hand, fungal cells
460  have also developed strategies to evade immune responses and to overcome stressful
461  conditions encountered inside the host.!'° (see Figure 5).

462

463  Host immune response

464 As the infectious propagules of Scedosporium/Lomentospora species are able to
465 invade the host through a range of different sites (including: airways, puncture

466  wounds, etc), the immune responses also vary, with different immune cells and

467  pathways being challenged to clear them.3 Thus, general barriers as epithelia with the
468  mucociliary system, tissue-resident immune cells, and the secretion of defense

469  molecules play essential roles in the immune response to these infections.!112 |n
470 these first stages of fungal invasion, recognition of fungal cells is mediated by pattern
471  recognition receptors (PRRs), 1*31 but only dectin-1 and TLRs have been studied and
472  proved to be determinant in the recognition of Scedosporium cells.!*>"117 Although
473  there are structural and compositional differences among species of the S.

474  apiospermum complex, peptidorhamnomannans, rhamnomannans, and a-glucans
475  from the fungal cell wall seem to be relevant pathogen associated molecular

476 pattern5_116,118—120
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After recognition by PRRs, phagocytes, including macrophages, neutrophils, and
dendritic cells (DC),*?* and other cells with phagocytic capacity promote fungal death,
growth delay or inhibition and recruit polymorphonuclear leukocytes (PMNs) by
synthesis of pro-inflammatory cytokines.'?2123 Conidia of L. prolificans seem to be
phagocytized in a manner comparable to Aspergillus, at least by monocyte-derived
macrophages,'?* despite the larger size of its conidia.'% In contrast, germination of L.
prolificans conidia is inhibited less efficiently than that of A. fumigatus conidia.'?*

Although the cytokines locally expressed during Scedosporium infection have
been poorly studied, IFN-y and GM-CSF have been described to enhance the activity of

1257127 1t is also known that IL-15 increases IL-

phagocytes against Scedosporium species.
8 release from PMNs and enhances PMN-induced hyphal damage and oxidative burst
against L. prolificans.**® Additionally, compared to Aspergillus species, L. prolificans has
been shown in vitro to induce higher synthesis of TNF-a and IL-6 by human

129 in relation with differences in the cell wall composition. In general,

monocytes,
these cytokines are important to resist invasive infections by promoting respiratory
burst and monocyte and neutrophil migration.'3%13! Some cytokines thus have an
immunomodulatory function against Scedosporium species. This, together with
susceptibility of Scedosporium/Lomentospora species to phagocytosis, 24132133 may
explain their low incidence in the immunocompetent population. In case ingested
Scedosporium/Lomentospora conidia achieve germination and growth out of the
alveolar macrophages, neutrophils and circulating monocytes attracted to the

infection site become essential.'?* Although primary macrophages are able to damage

hyphae, the major part of this role falls upon neutrophils via degranulation, release of
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large amounts of reactive oxygen species (ROS), and formation of neutrophil
extracellular traps (NET), which trap fungal cells in a matrix mainly composed by DNA
and proteins with antimicrobial activity.1?1124132,133

Antigen-presenting cells, mainly DCs, internalize and present potential antigens
to T cells, which differentiate into T helper (Tu), T cytotoxic (T¢), or regulatory T cells
(Treg), depending on the stimulus and PRR involved.!** In this way, “innate” is
connected with “adaptive” or long-term immunity in which mainly Ty1, Tu2, and Tyl7
cells14134135 conform the best known antifungal response, but little is known about
their specific role against Scedosporium/Lomentospora species. On the other hand, B
cells are usually activated through Ty cells to produce antibodies whose role in
immunity has long time remained unclear.'3® Many antigenic proteins have been

138-140 and some of the antibodies

recently identified in S. boydii®>*37 and L. prolificans,
recognizing them might be protective.'*! Interestingly, L. prolificans conidia are more
strongly recognized by salivary IgA than hyphae, while sera recognize both forms

similarly. This observation is consistent with a fungal airway invasion in which conidia

rather than hyphae are inhaled by the host.

Virulence factors

The ability of Scedosporium/Lomentospora species to germinate is remarkable,
which in the case of S. boydii has been described to be enhanced by contact with
human cells.}®2 L. prolificans is capable of conidiation in host tissue, which promotes

dissemination and explains the rapid progression of the disease.?*3
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Among the specific molecules, some peptidopolysaccharides are
immunologically active, able to regulate pathogenesis and host immune response.**
Of these, peptidorhamnomannan (PRM), which is expressed on both conidia and
hyphal cell walls and has been related to fungal adhesion and endocytosis by epithelial
cells and macrophages, deserves special attention.14214>-147 pRM may facilitate
colonization, virulence and dissemination by the fungus as consequence of an
exacerbation of the infection process that reduces the inflammatory response.4®
Moreover, PRM is recognized by antibodies, which is useful for development of
diagnostics.?*® S. boydii-derived rhamnomannans require TLR-4 signaling for cytokine
release by macrophages, as well as MAPKs phosphorylation and IkBa degradation.*?°

Glucans have widely been reported as ligands for TLRs and activators of the
immune response. S. boydii surface a-glucan, a glycogen-like polysaccharide consisting
of linear 4-linked a-D-Glcp residues substituted at position 6 with a-D-Glcp branches, is
essential to phagocytosis of conidia and induces cytokine secretion by cells of the
innate immune system involving TLR2, CD14 and MyD88.11 B-glucans are used as a
diagnostic strategy for several fungal infections, but Scedosporium species release low
levels of this polysaccharide.'*°

Glucosylceramides (GlcCer) or CMHs are the main neutral glycosphingolipids
expressed by almost all fungal species studied so far, including species of the S.
apiospermum species complex.’>11>2 These molecules are associated with fungal

growth and differentiation and consequently play a role in the infectivity of fungal

cells.1>3-155 Structural differences between fungal and mammalian (or plant) CMHs
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make these molecules potential targets for the development of new antifungal drugs,
to be used alone or in conjunction with conventional antifungals.>®

Host invasion-related enzymes are further virulence factors of strategic
relevance for Scedosporium species.’** Among these are proteolytic enzymes, which
are key components to invade tissues, eliminate defense mechanisms and assist in
nutrient acquisition. A serine protease able to degrade fibrinogen was described in S.
apiospermum, which might act as mediator of severe chronic inflammation in patients
suffering from cystic fibrosis.*>” Moreover, some metalloproteases with ability to
hydrolyze different substrates as IgG, laminin, fibronectin, or mucin have been
described in S. boydii and S. apiospermum >80 Scedosporium species are also able to
degrade complement system compounds of the innate immune system.3*

Acid and alkaline ecto-phosphatase activities were also in mycelia of S.
boydii.'%* In Candida spp. these have been related to adhesion and endocytosis, %163
but limited information is available on their relevance to pathogenesis in

164 and a

Scedosporium. Enzymes such as Cu/Zn cytosolic superoxide dismutase
monofunctional catalase!®® from S. boydii have been described to be important for
evasion of the fungus to the host immune response, the latter being also useful for
diagnostic purposes.®> Two siderophores, dimerumic acid and N®-methyl coprogen B,
were identified In S. boydii and the latter was used as a marker of the airway
colonization by this species.3>16®

The pigment melanin might contribute to virulence since it is a general

protective component UV radiation and other kind of environmental stress.

Lomentospora prolificans and S. boydii produce melanin through the
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dihydroxynaphthalene (DHN) biosynthetic pathway.¢”168 While melanin plays a
protective role in the survival of the opportunist to oxidative killing, it does not

contribute to resistance to amphotericin B.1%°

Diagnostics

Timely recognition of Scedosporium/Lomentospora infections remains
challenging, particularly in patients with CF where airway infections still are a major
cause of mortality.1’%"172 Distinction of colonization from infection can be crucial for
adequate patient management. The definition of pulmonary infection in CF includes
the following criteria: (1) increased sputum production (2) repeated isolation of the
same species from sputum or BAL (= 2x in 6 months), (3) pulmonary infiltrate(s) on
chest CT-scan or X-ray, (4) treatment failure with antibiotic therapy, (5) unclear lung
function decline, (6) exclusion of new/other bacteria (e.g. non tuberculous
mycobacteria), and (7) exclusion of ABPA.

Diagnosis classically relies on the detection of fungi from clinical samples by
direct microscopic examination of the clinical specimen, or histological analysis, and
culture on appropriate culture media (Figure 4 B-D). Histopathological examination of
biopsies can be performed to diagnose these mycoses, e.g. using KOH treatment.
Unfortunately, it is difficult to distinguish Scedosporium/Lomentospora-infected tissues
from those infected by Aspergillus or Fusarium, as all of them present hyaline hyphae
(excluding L. prolificans that may exhibit highly melanised hyphae), regular hyphal
septation, and dichotomous branching. However, several unique features may help
pathologists to diagnose Scedosporium/Lomentospora mycoses, such as irregular
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branching patterns or intravascular and intratissue conidiation 173

For isolation, semi-selective culture media are useful for the detection of
Scedosporium and Lomentospora amidst competing and more rapidly growing
microbes, particularly A. fumigatus. Sce-Sel+ media,containing dichloran and benomyl,
174 greatly facilitate recovery of Scedosporium species (N.B. benomyl inhibits growth of
L. prolificans) from polymicrobial clinical samples.®®17>176 Direct detection and
identification from clinical samples by molecular-based techniques may also constitute
a valuable alternative. In this way, a species-specific multiplex PCR assay has been
developed to detect the clinically most important Scedosporium/Lomentospora species
from respiratory secretions.?’”

Morphologically and physiologically L. prolificans is easily differentiated from
Scedosporium species based on its susceptibility to cycloheximide, the black color of its
colonies, and its characteristic flask-shaped and annellated conidiogenous cells.
However, species distinction within the S. apiospermum species complex is often
impossible. Growth characteristics and utilization of carbohydrates or enzymatic
activities, assist in main species differentiation but are inadequate for separation of
lineages within the S. apiospermum complex, as demonstrated using the Taxa Profile
Micronaut™ (Merlin Diagnostika GmbH, Germany) system, which analyses 570
physiological reactions.'’® In S. aurantiacum, Biolog Phenotype analysis using GEN Il
MicroPlate™ (Biolog Inc., USA) containing 94 assorted substrates, reveals metabolic
differences between high and low virulence strains, suggesting a link between
179

virulence and ability to utilize D-turanose.

Nucleotide sequence-based analysis is the current gold-standard for fungal
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identification.!” rDNA ITS sequencing appropriately identifies the main species in
Scedosporium/Lomentospora,*®° but the partial B-tubulin gene (BT2) is needed to
differentiate closely related species. Of note, the status of some species like S.
ellipsoidea, which is very close to S. boydii is still debated (see above).? Likewise,
reversed line blot hybridization has been successfully applied in sputum samples from
patients with CF.%2 Multi-locus sequence typing (MLST) was used to analyze isolates
from with patients CF, with three MLST schemes for S. apiospermum, S. boydii and S.
aurantiacum are now online at http://mlst.mycologylab.org.”® Recently the analysis of
some repetitive DNA sequences using the semi-automated Diversilab™ system from
bioMérieux allowed the identification and genotyping within pathogenic Scedosporium
species.’®1

Matrix-laser desorption/ionization mass spectrometry (MALDI-TOF/MS) has
become available for the first-line identification. It is more economical and its
identification accuracy is comparable to that of DNA sequencing.'82-18 The quality of
the reference spectra is decisive for reliable identification (Figure 6 A). The current
commercially available MALDI-TOF/MS identification solutions are inadequate for
Scedosporium/Lomentospora and it would be necessary the development of an online
reference MALDI-TOF mass spectra library database, specialized in fungal
identification, and curated by expert mycologists.

Among the novel assays is PCR-ElectroSpray lonization-Time Of Flight/Mass
Spectrometry (ESI-TOF/MS), which involves 16 singleplex PCR assays using broad-range
primers targeting nuclear or mitochondrial genes, and T2 magnetic resonance (T2MR).

PCR-ESI-TOF/MS allows rapid determination of molecular weight and base composition
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in the amplicons after electrospray ionization and chromatographic separation, and
resulting profiles are compared with a database provided by the manufacturer,186:187188
This technique has been used to determine the distribution of fungal communities
directly from bronchoalveolar lavage fluid specimens.’®® T2MR technology rapidly and
accurately detects the presence of molecular targets within a sample without the need
for purification or extraction,9%9 but designing primers is challenging.!°?

Specific monoclonal antibodies (MAbs) have been developed allowing for
species distinction.®”1°3 Two MAbs targeting respectively an immunodominant
carbohydrate epitope on an extracellular 120-kDa antigen present in the spore and
hyphal cell walls of S. apiospermum and S. boydii or the tetrahydroxynaphtalene
reductase of the dihydroxynaphtalene-melanin pathway in L. prolificans, may be used
in immunofluorescence assay to differentiate these fungi from other septate fungal
pathogens on histological sections.

Recently some Scedosporium proteins, including a monofunctional cytosolic
catalase, proved to be interesting markers of a Scedosporium infection, and works are
currently being performed in order to develop standardized serological tests.?8>

In addition to proteomic approaches with MALDI-TOF or LC-MS/MS
identification of Scedosporium/Lomentospora ribosomal equipment,39182 mass
spectrometry can be used in metabolomics to gain access to specific low-molecular
weight biomarkers. Melanin and its degradation products represent the first target in
L. prolificans. Diverse lipids were also detected on intact spores of L. prolificans and S.

apiospermum.*®* The metabolite AS-183 was detected in fermentation broth of

Scedosporium spp. SPC-15549,1%>
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Siderophores have gained attention as disease biomarkers as well as virulence

factors.9%197 Two siderophore representatives have been rigorously described in

Scedosporium genus, dimerumic acid and N@-methylcoprogen B,3> the former possibly
being a degradation product of the latter. Siderophores may occur in various ionic
forms in mass spectra. Generally, they are observed as ferri- or desferri-forms, but
combinations with sodium or potassium ions are possible depending on the sample
type.r®” For example, in host tissue the generation of [M+Na]*, [M+K]*, [M+Fe-2H]* or
[M+Fe+Na-3H]*ions is quite common. Recently a new dereplication tool called
Cyclobranch has been developed for the re-discovery of above described

compounds.198

It is based on an integrated library of hundreds of microbial
siderophores and secondary metabolites including toxins and non-ribosomal peptides.
Dereplication (the process of classifying already known compounds) can be performed
on conventional mass spectra generated by any ionization technique as well as on
liquid chromatography/mass spectrometry or imaging mass spectrometry datasets.
These data formats are batch-processed and incorporation of important biometals
(including iron) can be supported in calculations and data presentations. An example
of a siderophore annotated in a sample of S. boydii by matrix-assisted laser
desorption/ionization with Fourier transform ion cyclotron resonance (MALDI-FTICR)
mass spectrum is illustrated in Figure 6 B. It is worth mentioning that Cyclobranch is a
free tool (available at http://ms.biomed.cas.cz/cyclobranch/) dedicated to exact mass
data. In addition to dereplication, the de novo sequencing of new microbial structures

is also possible. The calculator works with approximately 520 non-isobaric building

blocks arising from ribosomal, non-ribosomal or polyketide syntheses making the

30



682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

198

characterization of new siderophores~° or cyclic, branched, or branched cyclic

peptides!®® feasible.

Therapeutic strategies

Treatment of deep-seated Scedosporium or Lomentospora infections still
remains challenging because of the limited susceptibility of these fungi to all current
antifungal drugs. Scedosporium species are resistant to 5-flucytosine and amphotericin
B, as well as to the first generation triazole drugs, fluconazole and itraconazole. In
addition, they have a reduced susceptibility to echinocandins, particularly caspofungin
and anidulafungin, and exhibit resistance to the most recent triazole drug,
isavuconazole, S. aurantiacum being the least susceptible to antifungal drugs.1266:200
Likewise, L. prolificans is a pan-antifungal resistant species.>%2%! |n this connection, it
is also relevant to highlight that the available antifungal spectrum is quite limited, and
as such more efforts need to focus on the development of novel effective drugs.20%203

For treatment of Scedosporium/Lomentospora infections, the European
guidelines recommend voriconazole as first-line treatment?® together with surgical
debridement when possible. Although favorable results have been observed following
such recommendations, the outcome remains poor with mortality rates of > 65% and
nearly 100% when CNS affectation or dissemination occurs.2%42%> A minimum inhibitory
concentration (MIC) of less than 2 ug/ml could be predictive of a favorable outcome
for Scedosporium species.?% Despite the differences on in vitro susceptibility among

genera, the outcome remains similar especially when dissemination occurs. For this
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reason, it is of crucial interest to find therapeutic alternatives for these challenging and
difficult-to-treat infections.

Antifungal combination therapy has emerged as a promising strategy since
therapeutic effect can be achieved at lower concentrations and thus reducing toxic
side effects, improving safety and tolerability, shortening the therapeutic effect and
preventing treatment failure when antimicrobial resistance is suspected. Few studies
have evaluated the in vitro activity of double combinations against Scedosporium spp.
and L. prolificans. Among them, combined voriconazole and amphotericin B or
echinocandins have shown synergistic effects against both S. apiospermum and L.

207209 [Martin-Vicente et al. unpublished results] as well as terbinafine plus

prolificans,
itraconazole, miconazole or voriconazole against L. prolificans.>?%?'1 However, the
combination of voriconazole plus terbinafine or liposomal amphotericin B has
demonstrated variable outcome in the treatment of these infections.?'2-221 Limited
data are available on combinations of more than two antifungals. Two triple
combinations (amphotericin B plus voriconazole plus anidulafungin or micafungin)
have been tested against L. prolificans and showed synergy??? [Martin-Vicente et al.
unpublished results].

The in vitro activity of combinations of antifungals with miltefosine,
antipsychotic drugs or cysteine derivatives is being investigated as a potential
treatment alternative.?2372% |t is also highlighting the capacity of inhibitors of Heat

shock proteins, calcineurin and deacetylases against fungal species.??7232 However,

their effect on Scedosporium/Lomentospora species should be further researched.
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Murine studies have also shown promising results for combinations of
antifungals with granulocyte-colony stimulating factor,?33-23> and clinical experience
suggests that reversion of neutropenia is a key factor in the outcome of a fungal
infection.?18.236

Reviewing recent clinical cases reported in the literature, four CF patients
treated with antifungal drugs because of a suspected pulmonary
Scedosporium/Lomentospora infection have been reported since 2013-237:80,238,239
Moreover, in Germany 36 cases of antifungal treatment of
Scedosporium/Lomentospora infections in patients with CF were analyzed [Schwarz C
et al. unpublished results]. In 20/36 antifungal courses a therapeutic response was
achieved (regress in radiology or symptoms, or increase in FEV1). These results
demonstrated a significant superiority of the use of a combination of three drugs
versus two and two drugs versus one drug. Among the antifungal drugs, voriconazole

200

remains the first therapeutic choice,?* potentially combined with an echinocandin for

Scedosporium infections or with terbinafine for Lomentospora infections.

Prospects in susceptibility to antifungals and resistance mechanisms

Among the drugs that are currently in the pipelines, one might be promising for
treatment of Scedosporium/Lomentospora infections. The Japanese company Eisai Co.
discovered E1210, a new first-in-class broad spectrum antifungal drug acting in vitro
against clinically important yeasts and molds,?*° and in vivo in experimental models of
candidiasis, aspergillosis, and fusariosis?*'. This drug targets the inositol acylation step

in the biosynthesis pathway of the glycosyl phosphatidyl inositol (GPI) anchor. GPI-
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anchored cell wall proteins play a key role in fungal biology and virulence, and
blockage of this metabolic pathway results in defects in cell wall biosynthesis, hyphal
elongation and adherence of fungal cells to biological substrates. In vitro susceptibility
testing using a large set of S. apiospermum (n=28), S. aurantiacum (n=7) and L.
prolificans (n=28) isolates revealed that MICs using E1210 were at least 10 fold lower
than found in currently used drugs, including voriconazole.?*?> This compound, which is
licensed since 2015 by Amplyx (San Diego, USA — APX001) was approved on June 2016
by the FDA for treatment of candidiasis, invasive aspergillosis and coccidioidomycosis.
Mutations in the “hot spot” regions of the Fks1 gene, encoding the catalytic
subunit of the B-1,3-glucan synthase (the target of echinocandins), have been
described which may explain the reduced susceptibility of Scedosporium species and L.
prolificans to echinocandins?*3. The low in vitro susceptibility (or primary resistance) of
Scedosporium/Lomentospora species to azole drugs may result from resistance

244248 gch as point

mechanisms similar to those extensively studied for A. fumigatus
mutations in the coding sequence of CYP51A orthologues leading to a reduced affinity
of azole drugs for their target, or constitutive overexpression of some efflux pumps.
Specifically L. prolificans showed alterations in of shorter and wider hyphae and

structural and compositional changes in the CW, possibly mediating L. prolificans

resistance to VRC.2%?

Future trends in antifungal drugs
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There are nowadays some very promising novel antifungal compounds, such as
F901318 [Chen S, unpublished results] and N-chlorotaurine (NCT). The F901318
compound represents a novel class of antifungal drug that inhibits dihydroorotate
dehydrogenase, a key enzyme in pyrimidine biosynthesis 2°°. The compound has been
recently investigated for 50 clinical Scedosporium and Lomentospora isolates [Biswas
et al. In vitro susceptibility testing of the novel orotomide antifungal agent F901318
against Australian Scedosporium and Lomentospora pathogens, ECCMID, Viena,
Austria, 22-25 April 2017, P1704] and it was active against all isolates of L. prolificans
as well as S. apiospermum, S. boydii and S. aurantiacum, with MICs falling ranging from
0.125-0.5 mg/L. Similar results have been found in another study [Alastruey-lzquierdo
et al. unpublished data] testing 123 clinical isolates of S. apiospermum, S. boydii, S.
aurantiacum, S. dehoogii, S. ellipsoideus and L. prolificans with MIC range for all
isolates of 0.007-0.5, and by Wiederhold and co-workers against S. apiospermum, S.
aurantiacum, S. dehoogii, S. boydii, and L. prolificans, with MIC raging from <0.008 to
0.25, with the last species being the most resistant ones. 2°!

The N-chloro derivative of the amino acid taurine is a long-lived oxidant
generated by activated granulocytes and monocytes during inflammation and
oxidative burst in phagolysosomes.?>> Moreover, it is more stable and much less toxic
in vivo than HOCI.%3

In the 90’s, the chemical synthesis of NCT as a crystalline sodium salt (CI-HN-
CH,-CH»-SO3Na) could be established, demonstrating broad-spectrum killing activity
against microbes. 2°* 25> Due to its unspecific mechanism of action, development of

resistance is extremely improbable. Three key features of NCT contribute to its
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successful clinical application: (1) transhalogenation:>>® which makes the net
microbicidal activity of NCT markedly enhanced in vivo, above all against fungi. (2)

chlorine cover:%>’

which avoids regrowth (postantifungal effect) and induces loss of
virulence. (3) inactivation of virulence factors of pathogens.?>®

Clinical phase | and Il studies demonstrated very good tolerability of topical 1%
(55 mM) NCT in aqueous solution for skin ulcers, conjunctivitis, external otitis, and oral
infections. 2> Recently, inhaled 1% NCT was well tolerated in pigs, mice, and humans
(pilot tests and a phase | study), respectively.?>8-260

At this concentration, NCT was able to kill all Scedosporium species tested, i.e.
both hyphae and conidia of S. apiospermum, S. boydii, and L. prolificans, within several
hours at pH 7.1 and 37°C.25! As expected, addition of ammonium chloride (NH4Cl)
reduced the killing times to approximately 5 min because of transhalogenation.
Indeed, LIVE/DEAD staining of conidia disclosed increased permeability of the cell
membrane and wall, which is decisive for killing. However, short, sublethal incubation
times of 10-60 min in plain NCT significantly increased germination time and decreased
germination rate of conidia. Moreover, such sublethally treated conidia lost their
virulence in vivo after injection into larvae of G. mellonella, so that the larvae survived
similar to mock-injected controls.?%?

A second study was done to investigate NCT on its microbicidal activity in vitro
in artificial sputum medium (ASM) mimicking the composition of cystic fibrosis mucus
at 37°C and pH 6.9.2%2 Under these conditions, 1% NCT killed bacteria and spores

already within 10 min and 15 min, respectively, to the detection limit of 102 CFU/ml

reduction by 5-6 log1o). A reduction by 2 logio was still achieved by 0.1% (bacteria) and
( y g y 2 log y
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0.3% (fungi) NCT largely within 10-30 min. This markedly more rapid killing (particularly

of fungi) in ASM compared to phosphate buffer can be explained by transhalogenation.

Summary and conclusions

In this review, the state-of-the-art of the emerging opportunistic fungal
pathogens Scedosporium/Lomentospora is discussed, mainly focusing on the scientific
knowledge acquired in the last decade. Summarizing, in taxonomy the genus
Lomentospora is clearly independent from Scedosporium, which currently contains ten
species. These fungi are found in environments of high human activity, polluted waters
and soils/composts, whilst their prevalence varies with geography, environmental pH
and chemical content, especially aliphatic hydrocarbons. They infect
immunosuppressed and immunocompetent individuals where near-drowning events
pose a special risk. Furthermore, colonization of the respiratory tract is common in
patients with chronic lung diseases such as CF.

The main virulence factors described are PRM and other cell-wall
peptidopolysaccharides, proteolytic enzymes, superoxide dismutase, catalase,
siderophores and melanin. The immune status of the patient seems vital to control
infections, being TLRs and Dectin-1 crucial for fungal recognition and phagocytosis.
Specific response, including humoral, might also be of importance. The difficulty to
detect and identify these fungi from non-sterile samples results in the fact that the real
epidemiology remains to be undetermined, warranting future efforts on the
improvement of conventional methods, molecular tools, detection of serological
markers and secondary metabolites. A rapid and specific detection of the etiologic
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agent remains to be very important for the initiation of appropriate treatment.
Regarding therapy, although several new strategies are being tested with promising
results, nowadays a combination of two or even three anti-fungal drugs is
recommended. Amongst the future perspectives, in addition to immunotherapy, NCT
deserves to be mentioned because its broad-spectrum microbicidal activity,
tolerability, and anti-inflammatory properties.

In conclusion, although great advances in Scedosporium/Lomentospora have
been made, much remains to be ascertained, including 1) the identification of
definitive markers for the definition of species in Scedosporium that allow a better
knowledge of its distribution and impact in human pathology, 2) a deeper
understanding of its survival strategies and interaction with hosts, 3) the development
of faster, accurate and easy-to-implement clinical tools for diagnosis, and 4) the finding
of in vivo active compounds to treat the wide range of infections, many of the life-

threatening, caused by these fungi.
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