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Abstract 

We propose an extension to multiple dimensions of the univariate index of agreement between 

PDFs used in climate studies. We also provide a set of high-performance programs targeted both to 

single and multi-core processors. They compute multivariate PDFs by means of kernels, the optimal 

bandwidth using smoothed bootstrap and the index of agreement between multidimensional PDFs. 

Their use is illustrated with two case-studies. The first one assesses the ability of seven global 

climate models to reproduce the seasonal cycle of zonally averaged temperature. The second case 

study analyzes the ability of an oceanic reanalysis to reproduce global sea surface temperature and 

sea surface height. Results show that the proposed methodology is robust to variations in the 

optimal bandwidth used. The technique is able to process multivariate datasets corresponding to 

different physical dimensions. The methodology is very sensitive to the existence of a bias in the 

model with respect to observations. 
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1 Introduction  

 

Climate models are the best tools that scientists currently have in order to assess the impact of 

increasing concentrations of greenhouse gases and other anthropogenic influences on the observed 

climate of the Earth. These tools allow scientists to understand climatic changes from a dynamical 

point of view and to give quantitative answers to questions about future climate. They make feasible 

the assessment of the characteristics (deterministic versus stochastic) of some climatic variations at 

different temporal or spatial scales. Finally, they are fundamental in the attribution phase of the 

study of the climate change problem, since they allow to confidently discard competing hypothesis 

such as whether the climate change is rooted in natural or anthropogenic causes (Bengtsson, 2013; 

Knutti, 2008). 

 

Climate models must be evaluated against different observations (Otto et al., 2013) or paleoclimate 

data (Braconnot et al., 2012; Hind et al., 2012; Moberg, 2013; Sundberg et al., 2012) in order to get 

a quantitative indication on the confidence that we can put into their outputs depending on the 

efficacy of the models to reliably represent the climatic processes and feedbacks. Contrary to 

operational weather forecast models, there is no way to properly evaluate models against future 

climate, since future climate does not  exist yet (Randall et al., 2007; Stocker et al., 2013). 

Additionally, since parameterizations of sub-grid scale processes are not fully independent from 

current climate, it is clear that evaluation against current climate is the only feasible, albeit not 

perfect, solution in terms of evaluating the projections for future climate (Errasti et al., 2011, 2013; 

Radić and Clarke, 2011; Reichler and Kim, 2008).  

 

The rationale behind this hypothesis is that models that are able to better simulate current climate 

are the ones that we expect will also be the best ones in terms of the simulation of future climate. It 

is well known that this is not necessarily true due to the different behavior of models in terms of 

their internal feedback mechanisms (Andrews et al., 2012; Dessler, 2013). These feedbacks lead to 

differing values of the climate sensitivity of models and, hence, future warming is dependent on 

these different sensitivities, leading to the question whether all the models are equally valid (Knutti,  

2010).  

 

Particularly for downscaling applications and regional impact analysis, an evaluation  of the 

adequacy of models is a common step (Brands et al., 2011; Radić and Clarcke, 2011; Walsh et al., 

2008). Considering that numerical downscaling is computationally expensive, it cannot be 
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performed over all the models available from a big experiment such as CMIP3 or CMIP5,  and it is 

usually only performed on a subset of the models (Hewitt and Griggs, 2004). Then, the best models 

are only used for downscaling  in regional climate assessment, since they have been proven to be 

the  most suitable over a particular region. This strategy of selecting the best subset of all the 

available models has been contested by some studies (Reifen and Toumi, 2009) and defended by 

others (Macadam et al., 2010), since this result depends on the removal of the seasonal cycle and 

the use of anomalies instead  of raw output from the models.  

 

There are several inter-comparison experiments that have been set-up in order to drive the models 

with common boundary conditions so that results between model runs can be compared. As an 

example of this kind of standard experimental setups, that in several cases have their origins in the 

nineties, we can cite the Atmospheric Model Intercomparison Project (Gates et al., 1998), the 

Project for Intercomparison of Land Surface Parameterization Schemes (PILPS) (Henderson-Sellers 

et al., 1995) or the Palaeoclimate Modelling Intercomparison Project (PMIP) (Kageyama et al., 

1999), the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), 

described by Lamarque et al. (2013), or the one that is most relevant for our study, since we use data 

from this experiment, the Coupled Model Intercomparison Project (CMIP) (Meehl et al., 2007; 

Taylor et al., 2012). These projects have covered several phases through the years and for the case 

of the CMIP data, CMIP5 can already be used. In general, models grouped under a similar 

experimental set-up such as CMIP3 or CMIP5 are considered as an ensemble of opportunity (Annan 

and Hargreaves, 2010). There are some limitations because even for  coordinated experiments such 

as CMIP3, there is some freedom in the way the external boundary conditions are applied (they are 

not 100% equal for all the models), see Table 1 in Wang et al. (2007). The number of realizations 

from every model in the ensemble of opportunity is not the same, neither and, therefore, the 

influence of each model in the behaviour of the ensemble is not the same. Additionally, models are 

less independent than they should be, since critical algorithms or components are shared by several 

models (Fernández et al., 2009; Knutti et al., 2013; Masson and Knutti, 2011; Pennell and Reichler, 

2011). 

 

In terms of evaluation of climate models, it is well known that climate simulations are run, most of 

the times, past the limit of deterministic predictability associated with predictability of the first kind, 

according to Lorenz's classification. Climate models simulate climate change under varying 

boundary conditions in terms of the Probability Density Functions (PDF) of climatic variables. The 

varying boundary conditions consist of external forcings such as the variability in solar irradiance, 
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orbital parameters or anthropogenic greenhouse gas emissions, amongst other potential driving 

factors (Bengtsson, 2013). Some aspects of climate simulations are deterministic, such as the 

seasonal cycle at extratropical latitudes (Errasti et al., 2013). On the other side, some properties of 

the atmospheric circulation such as the blocking at extratropical latitudes can not be precisely 

forecast with lead times corresponding to several days without the use of ensemble forecast systems 

(Marshall et al., 2014) because of the sensitivity to initial conditions (Frederiksen et al., 2004) and 

the model formulation (Pelly and Hoskins, 2003) too. Therefore, climate model evaluations that are 

run past the limit of deterministic predictability should not a priori expect a close consistency 

between weather-linked variations of global or regional temperature or precipitation between 

models and observations, except at the longer time-scales responding to external forcings (Gleckler 

et al., 2008; Santer et al., 2011). These differences reflect the well-known difference of the 

sensitivity of the results to errors in the initial conditions (predictability of the first kind)  or to 

errors in the evolving boundary conditions (predictability of the second kind) (Chu, 1999; Lorenz, 

2006). 

 

There is not a universally accepted strategy for climate model evaluation, since it is well known that 

climate model evaluation and corresponding skill scores fundamentally depend on the target area, 

variable or intended application of the model evaluation study (Knutti, 2008). Some studies make a 

focus on the deterministic parts of the model simulations (basically, the seasonal cycle) (Boer and 

Lambert, 2001; Taylor, 2001). Other studies (oriented to the study of droughts or floods) tend to 

focus on extreme percentiles, since they are much more meaningful indicators of climate change 

(DeAngelis et al., 2013).  

 

This study by DeAngelis et al (2013) is currently important for us, because it shows that models 

sometimes produce accurate values for the average of some climatic variable due to error 

compensation effects. They can, for instance,  underestimate the frequency of high precipitation 

events and  overestimate the frequency of low precipitation events. This points to the need to 

evaluate additional characteristics of climate model simulations beyond the mean value and 

standard deviation. Consequently, a few years ago, an index computed from the whole PDF of 

climatic variables was developed (Maxino et al., 2008; Perkins, 2007). It compares two PDFs and 

computes the minimum value of both PDFs at every abscissa. The area below this minimum 

represents the area below both PDFs. As such, for a perfect model, its value would be one, if both 

PDFs matched perfectly. This PDF-index or index of distributional agreement is the one that we 

will generalize to the multidimensional case in this contribution. The PDF-index analyses the 
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correspondence of the whole PDF both from a model and observations (Maxino et al., 2008; 

Perkins et al., 2007). The one-dimensional PDF-index has very often been used in the literature 

through the last years (Brands et al., 2012; Errasti et al., 2011, 2013; Fu et al., 2013; Maxino et al., 

2008; Perkins et al., 2007; Schwalm et al., 2013; Ylhaïsi and Räisänen, 2013 to name a few). In this 

contribution we propose its extension to multiple dimensions, thus allowing to compare several 

features of climate or environmental models at a single step. The use of the PDF-index shows some 

advantages with respect to other approaches, in the sense that it samples the full PDF of the climatic 

variables. Therefore, the PDF-index is a very good index for the overall evaluation of the agreement 

between climate models and observed climate.  However, there are other shortcomings, such as the 

fact that the analysis in terms of PDFs does not consider the time sequence of events, and the 

number of frost days or the number of continuous days without precipitation are important  in terms 

of impacts (Brands et al., 2012). The PDF-index gives less weight to the tails of the distribution 

and,  it is thus not adequate as the single index for the analysis of extremes (Brands et al., 2012). 

 

In the case of the papers mentioned previously, the PDF-index is computed by means of 

unidimensional PDFs. However, in several cases, studies using the PDF-index or other scores 

(Dessai et al., 2005; Reichler and Kim, 2008) evaluate the skill of climate models according to 

several variables that may be of interest for the impact community. The most obvious instances 

might be precipitation and temperature, but if the scientists are interested in downscaling strategies, 

other variables such as geopotential height or sea level pressure appear very often (Brands et al., 

2011; Errasti et al., 2011, 2013; Fu et al., 2013; Maxino et al., 2008; Radic and Clarke, 2011). In 

these previous references, the skill of the models is computed on a per-variable basis by means of 

univariate diagnostics. Their final skill score is computed by aggregating individual per-variable 

evaluations either by simple averaging or ranking of skill scores. However, there is currently a lack 

of universally accepted way of performing this combination of scores for different variables and the 

methodology that we propose in this contribution is aimed to fill this void, since a single index of 

distributional agreement is returned from the multidimensional PDF. 

 

The main objective of this contribution is, therefore, to develop a methodology that can be applied 

to get a multidimensional score that allows to evaluate in a single step different variables from 

climate simulations against observations.  In order to explain the advantages derived from using a 

multidimensional approach, we show a simple example derived from a synthetic dataset. We have 

created three synthetic datasets, G1, G2 and G3, derived from two-dimensional gaussian 
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distributions. For each case, the gaussians are centered µ i= 0  but the corresponding covariance 

matrices used to create them are given by 
S1= S2=( 1

0.75
0.75

1 )
for G1 and G2, whilst for G3, the 

third gaussian, the covariance matrix is given by 
S3= ( 1

− 0.75
− 0.75

1 )
.  It can be seen that, despite 

the difference in the structure of the distributions of points (Figure 1, left), the univariate PDFs and 

corresponding indices show a good agreement (Figure 1, middle and right and Table 1), even 

though the distributions are different. This is quite an artificial example, but it illustrates the point 

that some parts of the PDFs close to the diagonals can be projected onto similar areas over the axis 

when using unidimensional indexes of agreement, masking the differences between the PDFs of the 

model and the observations. Therefore, it is interesting to analyse the full structure of the 

multidimensional PDF, since it yields a realistic difference between the score corresponding to G1 

versus G2 (good agreement) and G1 versus G3 (bad agreement). 

 

 

Figure 1. Points created from G1 (red) and G3 (green) distributions (left), univariate probability 

distributions corresponding to the X variables (middle) from G1 (red) and G3 (green) and univariate 

probability distributions corresponding to the Y variable from G1 (red) and G3 (green). 

 

Table 1. Indices of distributional agreements for points derived from known gaussians using 

univariate scores for X and Y variables or two-dimensional scores. 

 Univariate score  2D score 

 G1-X G1-Y G1 

G2 X 0.998  0.999 

 Y  0.999  

G3 X 0.998  0.463 

 Y  0.997  
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To fill in the gap illustrated by the example, we generalize the PDF-index by Perkins et al. (2007) to 

n-dimensional phase spaces with the final aim of allowing an easy multi-criteria evaluation of 

models. That way, a single PDF-based index can group the performance of the models according to 

the multidimensional phase-space spanned by all the variables  chosen for the evaluation of the 

model. In order to make it easier for other researchers to use this methodology, we present an 

implementation of this multidimensional extension by means of a set of tools that can properly 

address the computational problems that appear when making kernel-based estimations of PDFs 

with massive datasets. In the case studies that we show in this paper, we compute several 

realizations of the PDF-index using one to four dimensional phase spaces with up to 13 000 points 

for every particular model/realization. This is very intensive computationally, and for this reason we 

feel that an efficient implementation of the estimation of multidimensional PDFs could be of great 

help for researchers in this area. Thus, we have developed a general-purpose tool to compute 

kernel-based multidimensional PDF estimations that runs on state-of-the-art multi-core processors. 

Our proposal has two main characteristics: (1) a fine-tuned algorithm to calculate the PDF that 

minimizes the number of computations and (2) a parallel implementation of this algorithm that 

allows it to efficiently run in multi-core processors.  

 

The method is applied to two different case-studies. The first case study corresponds to a realistic 

application of climate model evaluation (Errasti et al., 2013). Their  results are re-analyzed using 

this new methodology. Additionally, a sensitivity of the results to the selection of the bandwidth 

parameter is carried out. Finally, the robustness of the results provided by the method to the 

existence of biases in the models is also studied. The second case study corresponds to the analysis 

of the performance of  a coupled atmosphere-ocean reanalysis in reproducing the global scale Sea 

Surface Temperature and Sea Surface Height  and it corresponds to a higher-dimensional problem. 

This second case study will be used to stress two of the merits attributed to the proposed 

methodology. On the one hand, this example in the context of the physical oceanography will 

demonstrate the wide range of the applicability of the methodology. On the other, the combination 

of variables with different physical dimensions will illustrate the ability of the method to process 

multivariate data and its ability to be applied to a large family of environmental models.  

 

The remaining of this paper is structured as follows. Section 2 presents the materials and methods 

used in the paper. Results are shown in section 3. The discussion is presented in section 4, and the 

paper finishes with conclusions in section 5. 
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2 Material and methods 

2.1 Data representing the daily seasonal cycle of zonally averaged temperature from global 

climate models and reanalysis. 

For the first case study shown in this paper, we select a reduced dimensionality representation of the 

daily seasonal cycle of temperature that we already analyzed in Errasti et al. (2013). We analyze 

temperature of the air at the surface (TAS) daily data from seven models (20C3M simulations) of 

the CMIP3 experiment (Meehl et al., 2007) that were used by the Fourth Assessment Report of the 

IPCC (Randall et al., 2007). The models used are the BCCR-BCM2.0, GFDL-CM2.0, GFDL-

CM2.1, MIROC3.2-HR, MIROC3.2-MR, MPI-ECHAM5 and MRI-CGCM2.3, and the basis for the 

selection of this subset of models and their characteristics can be found in Errasti et al. (2013). The 

same procedure is used for TAS data from ERA40 (Uppala et al., 2005) and NCEP/NCAR 

Reanalysis 1 (Kalnay et al., 2996), referred to as NCEP onwards. The TAS data from models and 

reanalyses were re-gridded to the same 2.5º x 2.5º grid by means of bilinear interpolation, since this 

was the coarsest grid used by any of the reanalysis used (the one used by NCEP). To reduce the 

dimensionality of such a gridded dataset, the TAS data were zonally averaged and projected onto 

Legendre polynomials that constitute an adequate basis over the sphere. Those have very often been 

used as a basis in one-dimensional energy balance models (North et al., 1981) and are the basis used 

for the meridional components of spherical harmonics used in spectral decompositions of the 

equations of motion (Washington and Parkinson, 2005). The Legendre polynomials are orthonormal 

in the set of functions over the continuous interval [-1, 1], but their corresponding discrete-grid 

counterparts are not orthogonal. For this reason, we applied the Gram-Schmidt orthogonalization 

procedure to obtain the leading discrete orthogonal 
P̃0(µ)

,
P̃1(µ )

and 
P̃2(µ)

Legendre 

polynomials. In the previous equations, µ= sin(θ ) refers to the sine of latitude. The zonally 

averaged TAS profiles have been projected onto the orthogonal discrete 
P̃0(µ)

,
P̃1(µ )

and 

P̃2(µ)
Legendre polynomials and this has provided us with the corresponding time-varying 

coefficients 
c0(t ) , 

c1(t )and 
c2(t )

. Due to the meridional shape of the orthogonal discrete 

polynomials shown in Figure 1 in Errasti et al., (2013), the physical meaning of the temporal 

expansion coefficients can be easily understood. The coefficient 
c0(t )  describes the seasonal 

evolution of global-mean temperature linked to the different distances from the earth to the Sun 

corresponding to the apogee or the perigee positions, 
c1(t )describes the seasonal evolution of 

summer-winter from one Hemisphere to the other and 
c2(t )

 describes the TAS differences between 
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the Equator and the poles. These 
c0(t ) , 

c1(t )  and 
c2(t )

 coefficients represent the daily TAS 

seasonal cycle with a root-mean square error of the daily values ranging from 6.3 K (GFDL-CM2.0) 

to 8 K (MIROC3.2-HR) for the whole dataset. They represent 5%, 76% and 3.72% of the total 

variance of the zonally averaged TAS data for the case of ERA40 and similar values for the climate 

models and NCEP reanalysis, as extensively discussed by Errasti et al. (2013). 

 

The use of two different reanalysis (ERA40 and NCEP) allows us to quantify the sensitivity of the 

results to the uncertainty of the temperature field. We consider that this uncertainty is given by the 

different values that we get from two reanalysis. Two different state-of-the-art evaluations of the 

TAS fields by two different reanalysis systems provide realistic representations of the surface 

temperature field, but the differences between them reflect the uncertainty in our knowledge of the 

detailed characteristics of the problem at hand. Both the 20C3M simulations and the reanalysis data 

cover the period 1961-1998 on a daily basis. The idea of using these data is to be able to compare 

the results of our multidimensional PDF index with already published results (Errasti et al., 2013) 

that used alternative techniques in terms of the skill score of the models. In Errasti et al. (2013) the 

PDF indices computed were one-dimensional and some diagnostics also involved the root mean 

square error. In this paper, we revisit the topic from a multidimensional point of view. For every i-th 

model, we have a three-dimensional vector of points 
ci (t )= (c0i(t ),c1i(t ),c2i (t ))  that describes a 

trajectory in the phase space of the truncated daily zonally averaged air temperature at the surface.  

These data provide us with an interesting case study of the application of the new algorithm to a 

previous problem of evaluation of models where the multidimensional evaluation tool was not 

applied. 

 

2.2 Multivariate oceanographic data. 

Two datasets containing joint values for the Sea Surface Temperature (SST) and Sea Surface Height 

(SSH, relative to the geoid) are also analyzed as a second case study. These datasets are used in the 

second part of the Results section to illustrate the potential application of the proposed methodology 

in a multivariate application that not only combines variables with different physical dimensions 

(e.g. SST and SSH), but also different variables resulting from different truncations of the same 

physical field with the same physical dimensions (e.g. different projections of the SST field). 

Additionally, the interest of this second case study is that it also shows the potential application of 

the methodology in the case of other environmental applications not restricted to climatology.  
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Gridded global coverage data for the SST and SSH variables over the 1993-2012 period are used. 

The two datasets include: a reprocessed Level 4 (gridded, gap-free) product based on the merging 

by means of optimal interpolation of satellite and in-situ data called ARMOR-3D (Guinehut et al., 

2004; Guinehut et al., 2012) and the coupled atmosphere-ocean CFSR reanalysis (Saha eta al., 

2010). CFSR data covers the 1993-2010 part of the period considered here. For the 2011-2012 

period CFSR is completed with data from the CFSv2 (Saha et al., 2014) analogue product. In the 

following the CFSR and CFSv2 product will be referred simply as CFSR. 

 

To allow inter-comparison of the datasets they are averaged to weekly data and re-gridded to a 

common 0.5º x 0.5º resolution grid with an identical land-sea mask (following the minimal weekly 

time-frequency of the ARMOR-3D dataset and the minimal 0.5º x 0.5º spatial resolution of the 

CFSR dataset). Like in the case of the TAS, it is necessary to reduce the dimensionality of the SST 

and SSH variables in the datasets because a global dataset at a 0.5º x 0.5º horizontal resolution 

yields more than 2.0 x 105 grid-points, i.e. variables in the phase-space. This makes impossible to 

apply the proposed methodology to the raw data. In the case of the first case study (TAS) the 

dimensionality reduction is conducted by means of Legendre polynomials of zonally averaged 

values. In this case, the truncation is conducted by means of a Principal Component Analysis (PCA) 

(von Storch and Zwiers, 1999; Wilks, 2006) that extracts the Empirical Orthogonal Functions 

(EOFs) and the Principal Components (PCs) from the gridded anomalies (obtained after subtracting 

the time-mean). The gridded anomalies have been weighted to take into account the reduction of the 

grid-area with increasing latitude of a regular latitude-longitude grid. Therefore, the values at each 

grid point have been multiplied by the square root of the cosine of latitude (von Storch and Zwiers, 

1999; Wilks, 2006). During this truncation process, orthonormal EOFs are used and, therefore, the 

units and the variances are retained by the new variables or PCs. For the sake of simplicity, the first 

two PCs will be retained for the SST (T1, T2) and SSH (H1, H2), making a total of 4 variables 

when all of them are combined. The percentage of total variances accounted for by those PCs are 

83% (SST) and 19% (SSH) for the ARMOUR-3D dataset and 85% (SST) and 34% (SSH) in the 

case of CFSR. 

 

2.3 Evaluation of the multidimensional PDFs, optimal bandwidth and evaluation of the 

multidimensional indices of PDF agreement. 

The methodology suggested in this paper follows three steps that we describe in this order: 

1. Compute a PDF by means of kernel estimates for the multidimensional case. 

2. Identify the optimal bandwidth to be used by the estimation of the multidimensional PDF. 
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3. Find the amount of space common to the multidimensional PDFs of every model and 

observations. 

From the point of view of the application, the first step would be to compute the optimal bandwidth, 

next, compute the multidimensional PDFs and, finally, compute the scores of the models' and 

observations' multidimensional PDFs. However, from the point of view of the description of the 

algorithm it is better described using the previous order because, in order to fully understand the 

way the optimal bandwidth is computed, the way the PDF is computed must be considered at the 

beginning. 

A different program has been implemented for each step, which will be described next. Finally, note 

that the main contribution of this paper is not the use of these steps, but in the extension to multiple 

dimensions of the PDF-score. This extension required completely new programs, or important 

modifications to previously available codes. To the best of our knowledge, no other tool set is 

available to provide equivalent functionality with similar computational performance. 

 

2.3.1 Multidimensional kernel density estimation 

The first program (mpdfestimator) performs an estimation of the multidimensional PDF in a 

multidimensional space. It takes as input a file containing all the observed points and optionally, a 

bandwidth value and the parameters defining the evaluation space (minimum, maximum and 

increments for every dimension). If the bandwidth value is not provided, the default corresponding 

to a multidimensional gaussian distribution with the same sample size is applied (Silverman, 1986). 

Program mpdfestimator computes the PDF as 
̂f (x,h)= 1

nhd∑ K(x− xi

h )
where n is the number of 

observations, K is the kernel function, d is the number of dimensions of the dataset, h the bandwidth 

value, xi  is a vector containing each observed point, and x  is a point of the space where the PDF 

is being evaluated (evaluation point onwards). The PDF is estimated in a user-defined space called 

evaluation space. 

According to Silverman (1986), asymptotically, there are no differences between the different 

kernels at hand (Gaussian, triangular, Epanechnikov, etc.). Moreover, he states that it is desirable to 

base the choice of the kernel on other considerations, such as the degree of differentiability required 

or the computational effort involved. Other references also support the fact that the sensitivity of the 

results to the kernel chosen is small (Ahamada and Flachaire, 2010) and that the Epanechnikov 

kernel is very efficient (Scott, 1992). In our program, since the Epanechnikov kernel is bounded, we 

will take advantage of this boundedness to design a computationally efficient proposal. 
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The Epanechnikov kernel function is defined as:
K (∆x)=

(d+ 2)
2cd

(1− ∆xT ·∆x)
 where cd represents 

the volume of the d-dimensional sphere of unit radius and ∆x=x− xi  is the vectorial difference 

between an observed xi  and an evaluation x  point. The use of a simple euclidean norm would be 

misleading in case the variables used to define the phase space were characterized by very different 

variances. In order to avoid this, the algorithm computes the spherically symmetric principal 

components yi  that can be derived from the xi  observed points. Note that the data are also 

initially centered to be able to compute principal components. There is no filtering of the main 

principal components in this step. If a reduction of dimensionality is required by the user, it must be 

performed by the user before calling this program. We, therefore, assume that the covariance matrix 

of the input data is of full rank. The fact that we use spherically symmetric principal components 

means that variables expressing more variance of the input data are given more importance in the 

computation of the kernel and, as such, the same bandwidth (h) can be used for all the dimensions. 

This is equivalent to using a Fukunaga-like estimator (Silverman, 1986). The same linear mapping 

that is used onto the observed xi  points to compute the corresponding spherically symmetric 

principal components yi is applied to the centered evaluation points x yielding a set of scaled 

evaluation points y . The difference vector and the kernel function are computed by using 

∆y=y− yi . Therefore, the PDF is actually defined in a set of coordinates y  and, after the PDF has 

been evaluated, it is transformed back to the original evaluation grid x . This means that it is 

divided by the Jacobian of the transformation (square root of the determinant of the covariance 

matrix) from the original evaluation space x  to the new evaluation space y in order to recover the 

proper normalization of the PDF (Menke and Menke, 2012). If the data have been centered when 

the PDF was being computed, the axes defining the PDF are again translated at this point according 

to the original mean that has been computed before storing the results in the output netCDF files. At 

this point, it is convenient to stress that the resulting netCDF files are stored around the original 

average of the input dataset using the physical variables corresponding to the original phase space. 

As will be explained below, the internal use of principal components will also be a critical part in 

the development of the bootstrap for the multidimensional case. Additionally, it has to be mentioned 

that in multivariate cases, such as the comparison between SST (K) and SSH (m) that we present in 

the second case study, the metric that we use to evaluate the kernel using radially symmetric 

principal components allows us to use a non dimensional h, thus properly combining multivariate 

datasets. Thus, on the following pages, when h is mentioned, it refers to a non dimensional 
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parameter. 

 

A common approach to compute the estimate of the PDF, valid for any kind of kernel, is to make a 

loop that traverses all the evaluation points of the space, and calculates the kernel function for each 

<observation point, evaluation point> pair. This approach, evaluation point-based (EPB onwards), is 

shown in Listing 1.a. Its complexity is O(kd·m·n), being kd a constant related to the dimensionality 

of the dataset, m the number of evaluation points and n the number of observed points.  

 

a) Evaluation point-based    b) Observed point-based  

 estimation (EPB)     estimation (OPB) 

for each EvaluationPoint x {   for each EvaluationPoint x {  

 den_x = 0      den_x = 0    

       }     

 for each ObservedPoint xi {  compute Observation Influence Area A 

  den_x += density(x,xi)  for each ObservedPoint xi { 

 }       for each EvaluationPoint x in A { 

}         den_x += density(x,xi) 

        }     

       }      

Listing 1. Approaches to computing PDF estimation expressed as pseudo-code. 

 

In some cases, the kernel that defines the density of each sample is bounded and it affects only a 

small subset of the evaluation points in the evaluation space. In these cases, using the EPB approach 

is inefficient, as most of the evaluation points lie outside the area of influence of the kernel (but a 

calculation is required), being thus the corresponding density zero. Thus, as we have chosen a 

bounded kernel (the Epanechnikov kernel), we have defined a way to estimate the PDF that reduces 

the computational complexity of the previous approach, aiming to minimize the execution time of 

mpdfestimator. 

 

Our approach, observation point-based (OPB onwards), performs a loop traversing the observation 

points, computing for each, the density over the evaluation points affected by the influence area of 

the kernel. This method requires to identify the set of evaluation points inside that influence area, 

which can be done by means of geometrical equations. As a visual example, we depict in Figure 2 

the influence area of a kernel as a grey ellipse. In our program, we calculate a square shaped 

bounding box around each observation point, which includes some evaluation points outside the 

area of influence, but it is easier to process by the program. 
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A simplified OPB is described in Listing 1.b and its computational complexity is O(kd·m·a), being 

kd a constant related to the dimensionality of the dataset, m the number of observed points, and a the 

number of evaluation points inside a bounding box (generally much smaller than n).  

 

 

Figure 2. Example of the influence area around an observed point in a 2D space, identifying all the 

grid points affected. The ellipse represents the actual influence area in the physical space, while the 

dashed rectangle shows the prismatic bounding box around it. 

 

mpdfestimator (as well as the remainder programs) has been implemented using the C programming 

language. All the linear algebra routines used are implemented through calls to the publicly 

available MESCHACH library (Stewart and Leyk, 1994). The PDF is written to a netCDF file in the 

physical evaluation space x  requested by the user with the PDF centered and scaled according to 

the original data. This means that the user is free to evaluate PDFs from models and observations 

that are (are not) centered at the same n-dimensional average points (biased or unbiased datasets). 

We recommend, as shown below, that datasets are always bias-corrected before performing this 

analysis, but the system does not enforce the user to do so, althought it warns the user about this 

condition.  
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In the first case study used in this paper the phase-space is tridimensional, but the implemented 

program allows the user to go up to any dimension (starting from one), as shown by the second case 

study used in this paper. The one-dimensional case is also covered by our program even though 

there are other implementations that can cover the one dimensional case. The novelty of our 

contribution lays on the generalization of the one-dimensional score to higher dimensions. 

 

In addition, standard OpenMP programming directives (Dagum and Menon, 1998) have been also 

included with the aim of exploiting the multi-core capability of present computers. The set of 

observed points will be equally distributed amongst the processors for their computation in parallel. 

This way, the workload is split among the available processors, reducing the execution time 

(almost) linearly to the number of cores used. 

 

2.3.2 Selection of the optimal bandwidth 

The second step that we describe (although it should be the first step in the application of the 

programs) is to find the optimal bandwidth value for the PDF computed in the first step. It is well 

known that the computation of the optimal bandwidth to be used in PDF estimations using kernels 

is a critical step in obtaining reliable PDFs. There are two major strategies for the determination of 

the optimal bandwidth (Scott, 1992; Slverman, 1986): cross-validation (Duong and Hazelton, 2005) 

and smoothed bootstrap (Faraway and Jhun, 1990).  

 

The cross-validation approach leads to the convolution of the kernel with itself, a very tough 

mathematical problem for the Epanechnikov kernel with an open number of dimensions. It is 

usually solved by means of gaussian multiplicative kernels (Duong and Hazelton, 2005), but this 

wouldn't allow us to use the OPB approach explained in section 2.3.1 above. In our case, we have 

selected the use of smoothed bootstrap estimates of the optimal bandwidth, since it simplifies the 

generalization of the solution to an open number of dimensions in the multidimensional case for the 

non-multiplicative Epanechnikov kernel we are using. In order to produce the new estimations in 

the multidimensional case we take advantage of the fact that the kernel is spherically symmetric in 

the space corresponding to the spherically symmetric principal components. Thus, the same strategy 

used by univariate kernel estimations is used for every direction in the space spanned by the 

spherically symmetric principal components (Silverman, 1986). Surrogate samples are created in 

this space, and this procedure guarantees that the structure of the covariance matrix is properly 

preserved.  
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Following Faraway and Jhun (1990), we use a smoothed bootstrap procedure to estimate the 

squared error between two estimates of the PDF. The smoothed estimate starts from a reference  

evaluation of the PDF 
̂f (x,h0) computed using a reference bandwidth h0 . Then, several 

estimations 
̂f n(x,h)

 of the PDF are performed at varying values of the bandwidth parameter h and 

a number of n= 1…N  realizations for every h.  The bootstrap program checks the error between 

the “reference” PDF used in the smoothed bootstrap procedure and the actual bootstrap samples by 

evaluating the squared error 
εn(h)= ∫ (̂f (x,h0)− ̂f n(x,h))2 dx

. Then, the bootstrap-derived 

distribution of the squared errors is used to infer minimum, maximum, median, P0.025  (2.5%) and 

P0.975  (97.5%) percentiles of squared error for every value of h. This information is reported to the 

user at every h value. The h value producing the lowest values of the error estimates (we use the 

median of 
εn(h)

 in the case studies in this paper) is the one selected as the optimum bandwidth. 

 

This procedure has been implemented in the mpdfestimator_bootstrap program. It takes as input all 

the observed points and optionally (1) a reference bandwidth value, (2) a range of bandwidth values 

to be evaluated, (3) the boundaries of the evaluation space, and (4) the number of repetitions for the 

random sampling. If (1) is missing, the default corresponding to a multidimensional gaussian 

distribution with the same sample size is applied. If (2) is missing a range (+/- 20% around (1), with 

a step such that the maximum bandwidth interval is divided in 10 subintervals) is defined. In case 

(3) is missing, mpdfestimator_bootstrap defines a range that ensures a space that surrounds all the 

observed points. Finally, if (4) is missing, 500 realizations are performed. The program generates as 

output squared errors for each of the provided bandwidth values. The pseudo-code is shown in 

Listing 2. 

 

 Compute the PDF for the reference bandwidth h0 

 for each h in the range [hmin,hmax]{ 

  for iter=1 to max_repetitions{ 

   generate a random sub-sample S 

   compute PDF for S 

   compute squared error 

  } 

  generate statistics of squared error 

 } 

 return statistics 
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Listing 2. Pseudo-code for the mpdfestimator_bootstrap program. 

 

2.3.3 Computation of the PDF score 

The final step of the methodology is to compute the PDF score. Once the user has computed the  

PDFs (by means of the mpdfestimator program) corresponding both to the model and the 

observations using the optimal bandwidth value reported by mpdfestimator_bootstrap, program 

mpdf_score has to be executed to get the PDF score against the reference model. 

The program mpdf_score takes as input two n-dimensional PDFs stored as netCDF files, generated 

for the same domain by the first program mpdfestimator, and provides as output a PDF-index S by 

means of the following equation (adapted in this case for a three-dimensional example): 

S=∑ min(Zijk
o ,Z ijk

m )dxi dx j dxk , whereZijk
o

and Zijk
m

 refer to the evaluation of the PDF from 

observations and the model, respectively. Please note that for higher dimensions, the extension is 

straightforward.  

 

The equation closely follows the one used by Perkins et al. (2007) or Maxino et al. (2008), but has 

been extended in this case for its use with a PDF defined in a multi-dimensional (n-dimensional) 

space. Additionally, when working in several dimensions, the volume of the n-dimensional interval 

where the PDF is being computed must be taken into account for normalization purposes, and so, 

the dxi , dx j  and dxk  terms account for the fact that the range of the different variables can be 

very different (the average standard deviations of the coefficients in our first case study are 1.9 K, 

9.7 K and 2.1 K).  The program warns the user in case the bias for any of the dimensions is greater 

than 5% of the standard deviation of that variate. 

 

2.4 Representation of marginalized PDFs for the interpretation of results. 

Finally, even though it is not part of the methodology we propose, in order to be able to identify the 

differences in the index corresponding to individual models and for illustration purposes of the 

results corresponding to the first case study, we have computed marginalized 

̂f 2D(ci ,c j ,h)= ∫ ̂f (x,h)dck ,i≠ j≠ k
 two-dimensional PDFs and projected them onto the i-j  C0-

C1, C0-C2 and C1-C2 planes, after marginalizing k axes C2, C1 and C0, respectively. This will 

allow us to show that using a single multidimensional score is better than using a set of 

unidimensional scores. We only present marginalized PDFs for the first case study in the paper and, 

for the second case study we just collect the aggregated values of the score in a table. 
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3 Results 

3.1 Application to climate model simulation of the daily cycle of surface temperature 

Figure 3 shows the evolution of the median of the squared errors and the 95% confidence interval 

computed from the bootstrap analysis corresponding to the ERA40 data when the reference PDF is 

computed with two conservative estimates of bandwidth (h0=0.8 and h0'=0.67) against the 

bandwidth that would correspond to the same sample size for a gaussian PDF, 0.637. It can be seen 

that the bootstrap estimate suggests a slightly lower value (0.55-0.60) of the bandwidth parameter 

than the one that would correspond to a gaussian multidimensional PDF. As will be identified in the 

marginalized PDFs later, this is to be expected, since the zonally averaged surface temperature is 

very non-normal and periodic, so that several fine scale features of the PDF must be resolved, and 

they can only be properly resolved if the bandwidth is not very high. Therefore, in the following 

steps an optimum bandwidth of h=0.6 will be used unless otherwise explicitly stated. 

 

In order to test the sensitivity of the classification to different values of the bandwidth used, Table 2 

presents the results of the multidimensional PDF scores for different values of the bandwidth 

parameter (every model is centered and checked against ERA40). For the optimum bandwidth 

(h=0.6), the best model available is the alternative reanalysis that is used in this study (the NCEP). 

This is something that we expected from the beginning, since both reanalyses are based on 

observations. This result supports the use of the method, since the method yields better results for 

alternative observation-based reanalyses. MIROC3.2-MR and HADGEM1 are the models that 

follow. Some of the model runs differ only on the initial conditions and most of them are grouped 

together, with the exception of HADGEM1. The interpretation of this result is that the variability of 

the index to the use of different initial conditions is very low, as should be expected. MIROC3.2-

HR, GFDL, ECHAM5 and BCM2 follow the previous models. The ranking finishes (for the subset 

of models and diagnostic variable used in this study) by the five random runs corresponding to the 

MRI model. All the runs corresponding to MRI are grouped, with low values of the score that do 

not mix with values corresponding to the rest of the models. It seems, therefore, that the intra-

ensemble variance is in general (without the exception of MIROC3.2-MR and HADGEM1) smaller 

than the inter-model variance of the score. In general, the main characteristics of these results are 

robust even with changes in the bandwidth that span a -33% to a +33% interval from the optimum 

value found by means of bootstrap. The models that show the highest (lowest) performances with 

the optimum value of the bandwidth continue showing a similar performance for higher or lower 

values of the bandwidth. There are occasional excursions of a model to at most one alternative 

position up/down of the ranking, but, on the whole, models tend to maintain their relative ranks 
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even when the bandwidth is changed by a +/-33% relative change around the optimum value. 

 

Figure 3. Squared errors (median and 95% confidence interval as derived from the bootstrap 

estimates) between the randomly generated PDFs and the reference PDF (left, h0=0.8 and right, 

h0=0.67) used for the generation of the smoothed bootstrap. 

 

Figures 4, 5 and 6 show the plots of the marginalized PDFs for the case of the NCEP (contours) 

versus ERA40 (shaded), a model showing a high value of the score, MIROC-3.2-MR (contours) 

versus ERA40 (shaded) and a  model with a lower score, such as MRI (contours) versus ERA40 

(shaded). In order to show simple numbers in the plots and scales, values of the marginalized PDFs 

are multiplied by one thousand before plotting. Before computing the PDFs, the biases between 

every model and ERA40 have been removed by centering all the series. 

 

Table 2. Values of the multidimensional S score corresponding to different values of the bandwidth 

parameter and associated rankings that would correspond to the models, when compared with 

ERA40 reanalysis data. 
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Figure 4. Marginal PDFs of NCEP (contour) and ERA40 (shaded) projected onto the planes defined 

by the C0-C1 coefficients (left), C0-C2 coefficients (middle) and C1-C2 coefficients (right). Values 

of the PDF have been multiplied by 1000 in order to improve the representation of numbers. 

 

Figure 4, left, shows that on the C0-C1 plane, the PDF is clearly bimodal, as should be expected 

from a periodic deterministic signal such as the seasonal cycle of temperature. C0 represents the 

global average of surface temperature and C1 represents the difference in temperature between the 

Northern and Southern Hemispheres. The main clusters of the C0-C1 PDF appear aggregated 

around each Hemisphere's summer. NCEP values show a slightly warmer global temperature (C0) 

during Southern Hemisphere summer than the values shown by ERA40. Figure 4 (middle) shows 

that the amplitudes and phases of the mean global temperature (C0) and the equatorial bulge (C2) 

are similar in both reanalyses. On the C1-C2 plane, the marginalized PDF shows that the main 

difference between both reanalyses appears as a slightly higher difference of temperature between 

hemispheres (C1) in NCEP when the coefficient representing the equatorial bell (C2) is positive 
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(summer in the Northern Hemisphere). However, the PDFs generated by both reanalysis are 

extremely similar, as reflected in the high value of the S index between NCEP and ERA40 (0.82). 

This is something that we expected from the beginning, since they correspond to observational 

datasets. 

 

Figure 5. Marginal PDFs of MIROC3.2-MR (run 2, contours) and ERA40 (shaded) projected onto 

the planes defined by the C0-C1 coefficients (left), C0-C2 coefficients (middle) and C1-C2 

coefficients (right). Values of the PDF have been multiplied by 1000 in order to improve the 

representation of numbers. 

 

Figure 5 corresponds to the marginal PDFs for MIROC3.2-MR model (second run), one of the best 

CMIP3 models according to the metric selected in this study. Over the C0-C1 plane (left), there is 

quite a good agreement between both PDFs, since both clearly represent the bimodal structure of 

the PDF. However, the differences between MIROC3.2-MR and ERA40 are higher than in the 

previous case, both in terms of the location of the Northern Hemisphere summer and also in 

transitions between seasons that appear in the areas between the maxima in the marginal PDF. In the 

case of the C0-C2 plane (middle), the highest disagreement appears at the precise location of the 

maxima of the marginal PDFs, particularly during Northern Hemisphere summer. A similar 

diagnostic can be derived from the marginal PDF over the C1-C2 plane. Despite both marginal 

PDFs are clearly bimodal, slight differences exist at the placing of the PDF maxima. The equatorial 

bell (C2) in MIROC3.2-MR is stronger than the one in ERA40 during negative phases (Northern 

Hemisphere winter) of inter-hemispheric temperature differences (C1).  
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Figure 6. Marginal PDFs of MRI (run 1, contours) and ERA40 (shaded) projected onto the planes 

defined by the C0-C1 coefficients (left), C0-C2 coefficients (middle) and C1-C2 coefficients (right). 

Values of the PDF have been multiplied by 1000 in order to improve the representation of numbers. 

 

Figure 6 corresponds to MRI (run 1) model. The evolution of the daily seasonal cycle of 

temperature in terms of C0 (global T) and C1 (inter-hemispheric temperature contrast, left) does not 

present a bimodal structure with the PDF maxima placed at the same points shown by the 

reanalysis. The transitions between summer and winter regimes happen through routes that do not 

correspond to the ones in the ERA40 Reanalysis. The structure of the marginal PDF for the C0-C2 

plane is markedly different between MRI and ERA40, with the cold maximum in the PDF during 

summer in the Southern Hemisphere quite misplaced in the case of MRI. This is also apparent in the 

marginal PDF corresponding to the C1-C2 plane, where maxima of the PDFs do not appear neither 

on the same places nor even with the same phases. 

 

Finally, Figure 7 shows that the index is very sensitive to the existence of a bias between the models 

and reference observations. In this case, the PDFs are computed without previously removing the 

bias between the surrogate model (NCEP data) and the observations (ERA40) and the S score index 

that  we get between ERA40 and NCEP reanalyses is extremely low (S=0.075). The marginal PDFs 

show that in general there is a very good agreement in the structure of the 3D PDFs, but the center 

of masses of both PDFs are not located at the same places. The biases for every coefficient are not 

very high, considering their variances. The bias of the C0 component is 0.7 K (0.2% relative error), 

the bias in C1 is 0.4 K (7.5% relative error) and the bias in C2 is -0.34 K (-1.33% relative error). 

However, even such low values of the bias lead to a score index that could be interpreted as poor 

performance of the surrogate model (NCEP reanalysis) versus ERA40 due to the complex structure 

of the 3D PDF. However, this is a false impression that can not be defended if the spatial patterns of 
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the marginal PDFs are analyzed in detail. This means that the index should not be applied to model 

results that are biased against the reference observations. The existence of biases in the models 

leads to greater observational uncertainty when the model and observational datasets are not 

centered. The code does not force the centering of the datasets and, therefore, the user must take 

care of this when the dimensionality reduction stage of the data analysis is done. In particular,  it is 

interesting to stress that, internally, when computing the n-dimensional PDFs, all the datasets are 

centered (each one using its n-dimensional average) before computing the corresponding 

spherically symmetric principal components. When the output netCDF files holding the PDFs are 

saved, the original units in the phase space of each dataset (model or observations) are recovered 

and the average is added to the anomalies derived from the PDF in the principal component space 

stored in the memory of the computer. Therefore, the  key point here is that if there exists a constant 

bias between the model and the reference observations (first and second netCDF files passed to 

program mpdf_score), it could lead to very low values of the score despite the model representing 

properly the variability (anomalies). This means that the evaluation of the models in terms of a 

constant bias and the n-dimensional PDFs should be carried out as different steps. 

 

 

Figure 7. Marginal PDFs of non-centered NCEP (contours) and ERA40 (shaded) projected onto the 

planes defined by the C0-C1 coefficients (left), C0-C2 coefficients (middle) and C1-C2 coefficients 

(right). Values of the PDF have been multiplied by 1000 in order to improve the representation of 

numbers. The bias between both reanalysis has been retained. 

 

From the point of view of performance, we have measured the execution time needed by each 

version of the program to complete the bootstrap procedure. On average, the serial OPB approach is 

140 times faster than the serial GPB approach and, moreover, the parallel OPB program scales 
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linearly with the number of cores, being 4.3 times faster than its serial counterpart when using 4 

cores. This means that an evaluation of a single model that takes approximately 22 days with the 

serial GPB program, can be executed in less than one hour using the most efficient and parallel 

implementation presented in this contribution. These experiments have been conducted in a desktop 

computer with an Intel i7 3820 processor (four cores, 3.6GHz, Hyperthreading enabled) with 8GB 

of RAM. Therefore, the use of this technique is not limited to the availability of specialized clusters 

or hardware that would limit its practical use. 

 

3.2 Evaluation of Sea Surface Temperature and Sea Surface Height 

The first two PCs of the global coverage weekly time-scale SST (T1, T2) and SSH (H1, H2) 

variables belonging to the ARMOR-3D (Guinehut et al., 2004; Guinehut et al., 2012) and CFSR 

(Saha et al., 2010; Saha et al., 2014) datasets will be used in the following to evaluate the second 

with respect to the former. This means that the ARMOUR-3D product (blended satellite and in-situ 

observation product) is the reference to evaluate the CFSR product (coupled atmosphere-ocean 

modelling product). Considering the first two PCs of each variable in the evaluation  (T1, T2, H1, 

H2), the global-scale main variability modes of each variable are being take into account at a 

glance. As the seasonal cycle was not explicitly removed from the anomalies used to deduce the 

PCs, the four considered variables are almost completely related to the global-scale seasonal cycle 

(H2 contains some longer time-scale variability). Thus comparing combinations of different 

variables from CFSR with those of ARMOR-3D the capacity of the modelling product to jointly 

characterize different main global-scale variability modes (their seasonal cycles) is evaluated. For 

example, if T1 and H1 are considered at the same time (case T1H1) the capacity of CFSR to 

simulate the main global-scale components of the seasonal cycle of the SST and SSH variables is 

being evaluated in a single and multivariate score. 

 

Table 3 shows the optimal h and the score obtained with the 6 analyzed cases going from the 

univariate T1 and H1 cases, the multi-dimensional univariate T1T2 and H1H2 (reserving the term 

multivariate to the cases with variables with different physical dimensions, i.e. Kelvins and meters) 

and the multivariate T1H1 and T1T2H1H2 cases. All variables have zero mean so no bias related 

issues will be observed in this case. Like in the previous case study on the TAS, the same three-step 

methodology was applied in this case: for a given row in Table 3, the optimal h using the bootstrap 

procedure is initially estimated. Next, the PDF using the optimal h is computed and, finally, the 

score (one dimensional, multidimensional or multivariate) is computed from the PDFs obtained 

from the CFSR and the ARMOR-3D variables.  
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The very high scores of T1 (0.98) and T1T2 (0.97) cases indicate that the model is reproducing well 

the global-scale SST seasonal cycle. The same stands for the SSH, as slightly lower but still high 

values are observed in the analogue H1 (0.84) and H1H2 (0.79) cases. This difference between the 

SST and SSH is not strange as it is only showing the fact that the modelling of the SSH involves 

many more processes (dynamic anomalies, steric anomalies,...) compared to that of the SST (mixed 

layer heat-budget and currents). The multivariate cases T1H1 (0.67) and T1T2H1H2 (0.42) indicate 

a loss of performance with growing number of the dimensions of the multivariate PDF, or in other 

words, with increasing complexity. Any error in any of the tested dimensions leads to a smaller 

value of the score. It can be seen that, although univariate scores point to good modelling 

performances, the multivariate approaches combining the same variables yield worse results. In this 

application a single model is being evaluated, but results show that differences appear when 

considering multivariate scores that discriminate between errors that appear through all the phase 

space. 

 

Table 3: Optimal h and resulting scores obtained from the evaluation of CFSR (model) with respect 

to ARMOR-3D (observations) based on the first PCs of the SST (T1, T2) and SSH (H1, H2) from 

each of the products. Univariate unidimensional (T1 and T2), univariate multidimensional (T1T2 

and H1H2), multivariate unidimensional (T1H1) and multivariate multidimensional (T1T2H1H2) 

cases are shown to illustrate the number of potential combinations that can be considered in the 

framework  of the proposed methodology. 

CASE NAME h (optimal) SCORE 

T1 0.36 0.98 

H1 0.54 0.84 

T1T2 0.52 0.97 

H1H2 0.69 0.79 

T1H1 0.58 0.67 

T1T2H1H2 1.04 0.42 

 

 

4 Discussion 

4.1 Comparison with the results of the evaluation of models using previous techniques. 

The results presented in this contribution extend the previous analysis by Errasti et al. (2013) with a 

new methodology. Therefore, the obvious first part of the discussion is a comparison of the rankings 
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obtained by this methodology and the final rank obtained in the previous study. It can be seen that, 

for the most part, the aggregated rankings behave similarly in the current and previous studies (see 

Table 4). In general, the best models (NCEP, MIROC3.2-MR and MIROC3.2-MR) keep a good 

ranking also under the new metric proposed here. For the worst case (MRI-CGCM2.3), the same 

result holds, too. However, some changes appear in the relative rankings of models in the middle 

part of the classification. It must be kept in mind that the rankings in Errasti et al. (2013) also 

considered the root mean square errors between the seasonal cycles, so that the rankings can not be 

completely the same. Anyway, as a result of the new technique, we find a similar classification of 

models albeit with a single objective index without the need of a posterior averaging of individual 

scores or ranks. Therefore, we think that this methodology makes it easier and more objective to 

classify the models according to their performance when simulating several variables. 

 

 

Table 4. Global rankings for the models according to their representation of the daily zonally 

averaged temperature in Errasti et al. (2013) and according to the methodology proposed in this 

contribution (3D-PDF).  

 

 

The technique presented in this contribution is slightly different of those carried out in other model 

inter-comparison studies found in the climate literature. In some studies estimates of simple or 

derived climate variables simulated by the models and the observations are computed, but a final 

single performance rank is not presented (e.g., Maxino et al, 2008; Nieto S. and Rodríguez-Puebla 

C., 2006; Russell et al , 2006; Vera et al, 2006, Ulbrich et al, 2008). Other studies propose a single 

final rank but based on the averaging of skill scores, ranks with or without different relative weight 

(e.g. Fu et al., 2013, Errasti et al, 2011; 2013). The use of this new single multidimensional index on 

PDFs would avoid the need to establish a final step in order to combine and weight the different 

climate variables analyzed, since the multidimensional distributional agreement index S already 

considers the characteristics of the PDF at the multidimensional space covered by the PDF. 
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An  advantage of our technique is the interpretability of the rankings if the marginal PDFs are used 

the same way as in Figures 4 to 7. The marginal PDFs can be very easily computed from the 3D 

PDF (in general the n-dimensional PDF) that has been computed to produce the S score. The 

geometrical structure of the marginal PDFs throws light in terms of the differences between models 

even when temporal position of every point in the PDF space is lost, since geometrical relations 

between variables allow us to interpret them. This can not be achieved when using one-dimensional 

PDFs, since in that case, the relationship of the points between different variables can not be 

resolved. 

 

4.2 Multivariate kernel density estimators in the context of model performance evaluation 

methods 

 

In this subsection we consider the methodology for  model evaluation based on multidimensional 

kernel density estimators proposed in this contribution in the general context of the model 

performance evaluation. Bearing in mind only the two case studies analyzed in the Results section, 

we could restrict this section to the framework of the modeling of geophysical fluids. There's no 

reason, however, to restrict the discussion in such a manner. On the contrary, and as already stated, 

the framework will be that of the evaluation of the performance of environmental models in general. 

To put the proposed technique in context, we will refer to a recent position paper by Bennett et al. 

(2013) in this journal on the characterization of the performance of environmental models. The  

paper by Bennet et al. (2013) describes a series of methods and procedures for both qualitative and 

quantitative model performance characterization. It also proposes a general purpose five-step recipe 

for model skill evaluation. Direct references will be made to the classification of evaluation 

methodologies and the five-step recipe proposed in Bennett at al. (2013), avoiding the inclusion of 

redundant information or descriptions here. Therefore, the reader is referred to that contribution for 

a complete understanding of the forthcoming discussion. 

 

In the case of the classification categories  of quantitative measures of model performances found in 

Bennett et al. (2013), the method based on multidimensional kernel density estimators would fall in 

more than a category at the same time. First, amongst the direct value comparison methods that 

compare all model and observation values as a whole (even for multidimensional and multivariate 

cases) to give a single value metric, the multidimensional score that is the result in our case. Note, 

however, that this classification is valid only for the  final step of the technique when the 

multivariate (multidimensional) PDFs belonging to the observation and the model are compared. 
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Note also that this PDF to PDF comparison could be understood as a high precision (number of 

categories) multidimensional contigency table, since PDFs are actually evaluated on a discrete grid. 

According to this, the last comparison step would fall amongst concurrent comparison methods. In 

addition, and paying attention to to the step that is carried before the PDFs are compared, it is clear 

that the method must also be considered within the data transformation method class 

(transformation to PDF space). Summarizing and according to the classification of quantitative 

model performance evaluation tools described in Bennett et al. (2013) the proposed technique can 

be considered as a direct comparison method taken as a whole, but also as a data transformation 

method and a concurrent comparison method if two inner steps are considered separately. 

 

Although they are not part of the proposed methodology, additional verification techniques 

considered in Bennet et al. (2013) have also been considered in this contribution, and it is worth 

mentioning those here. For instance, 2D marginalized PDFs (Figures 4 to 7)  were used in the first 

case study  to understand by means of a visual inspection the reasons that drove the relative 

differences in the scores shown in Table 2. Once again not part of the proposed technique, but 

mentioned in Bennett et al (2013) and used in our case studies, were the data transformation 

methods: the Lengendre polynomials or the zonally averaged values in the first case study, and the 

global-scale PCA analysis of the variables in the second one. 

 

In the case of the five-step general recipe for model performance evaluation proposed by Bennett et 

al (2013), our procedure should be taken into account in the fifth step of refinements due to its 

complexity. This does not mean that previous steps like checking the data before any additional 

step, performing some visual checks and deducing some basic metrics are to be left aside. In fact, 

they are more than convenient as part of any good practices procedure for model performance 

evaluation and were also applied in both case studies shown in Results section. 

 

4.3 Additional capabilities and potential applications of the methodology 

The case study described in section 3.2 shows the evaluation of a single model with two 

multidimensional variables. The objective was not to make a thorough verification of the selected 

CFSR model, but to illustrate some concepts of broad applicability like possibility of using and also 

combining very different variables (TAS, SST and SSH in the presented case studies), the potential 

of the use of techniques to reduce the dimensionality of the dataset to whom the verification is to be 

applied (Legrendre Polinomial of zonally averaged values in the first case study, global-scale 

principal components in the second case), or the relative score changes of the univariate and 
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multivariate cases, to mention some. 

 

With regard to the results shown in Table 3, the most remarkable fact is the reduction of the scores 

in the multivariate case compared to the considerably better scores obtained in the univariate cases. 

This could be expected, however, as the growing complexity of the PDF with growing number of 

dimensions/variables will tend to enhance the differences in the model/observation PDFs. This 

example, although simple, has other potential uses in addition to the one discussed here. For 

instance, one may want to evaluate the evolution of the performance of a model to see the impacts 

of developing stages in the model. Then a comparison like the one in case study two will be useful, 

specially if the improvement can be identified by a multivariate verification. Another application 

could include the joint evaluation of several model variables, like the one in the first case study. In 

addition, other variables could be added with selective criteria to the analysis (like the surface 

currents, the depth of the thermocline or the characterization of ENSO, to mention some) without 

increasing too much the number of variables, but considering many aspects of the physics 

accounted by the modelling. 

 

4.4 Limitations of the methodology 

As with any other model evaluation index, this index has limitations too. First, it is probably not 

adequate to detect the probability of very infrequent events, since multidimensional PDF 

estimations tend to be unreliable on those areas where the value of the PDF is already low. It has 

been shown in this contribution that its reliability is very low if there exists a bias between models 

and observations. Secondly, the sample size must be high enough for a modest dimensionality to be 

analyzed. It is well known that, when analyzing multidimensional datasets, the phase space is too 

empty when the dimensionality of the space grows (Bellman, 1961). This might also happen with 

environmental models in general if some kind of initial dimensionality reduction step was not 

applied to direct model output at the grid point level. Therefore, working with daily data for 

climatic applications is almost a must. For other kind of environmental models, fast time scales 

should in any case be used.  

 

Anyway, it has to be considered that multivariate density estimation is always computationally 

expensive, so that the dimensionality of the dataset must be kept modest. When the dimensionality 

of the problem increases, the CPU needed increases as a result of the increase of grid points and the 

complexity of the linear algebra operations performed. Additionally, for high dimensionality, the 

size of the netCDF files and the memory needed to evaluate them scale too fast and the user is faced 
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with limitations in the hardware of computers (memory and disk). As a result, we must conclude 

that it is always necessary to perform an initial step of data dimensionality reduction that allows to 

work in a fundamental set of low-dimensionality variables that reproduce the behaviour of the 

system. In the two case studies presented in this contribution, the initial step of dimensionality 

reduction has been performed by projections onto Legendre polynomials or by means of principal 

component analysis. 

 

Brands et al. (2012) showed that, in some circumstances, particularly when there exists a clustering 

of data near zero (such as it happens for specific humidity), the Kolmogorov-Smirnov test can be 

better applied than the univariate similarity index equivalent to the multidimensional one used in 

this paper. In addition, the existence of a well known distribution corresponding to the 

Kolmogorov-Smirnov test allows the researcher to make use of statistical hypothesis testing. This 

can not be done unless Monte Carlo techniques are used for the univariate similarity index. 

However, when working in multiple dimensions, the univariate Kolmogorov-Smirnov test can not 

be extended to several dimensions above two or even three (Fasano and Franceschini, 1987; Justel 

et al., 1997; Lopes et al., 2008; Peacock, 1983). Since the methodology that we propose in this 

study can work in multiple dimensions, we find that this methodology will, hopefully, allow to 

perform an easier evaluation of models according to several criteria, as was originally intended.  

 

5 Conclusions 

The index based on the common area between PDFs that is frequently used in the univariate 

evaluation of climate models, and that is computed as the common area under the PDFs 

corresponding to models and observations, has been extended to multidimensional problems. In 

addition, tools that allow its use have been developed and made freely available as open source 

software. The tools compute the kernel-based multidimensional PDF, identify the optimum value of 

the bandwidth by means of smoothed bootstrap and compute the common volume under two n-

dimensional PDFs. 

 

The use of multidimensional PDFs is very intensive in terms of CPU time, and it is particularly so 

for the case of the bootstrap estimation of the bandwidth, since several realizations of the PDF must 

be computed for every bandwidth value tested. The availability of a parallel version of the tool for 

higher dimensionality and for the bootstrap allows to carry out those computations in short times 

(less than one hour in our case, using standard hardware). 
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The use of a multidimensional analysis produces a single index corresponding to every model even 

after analyzing several variables, and this result makes it easy to perform evaluation of the models 

under several target variables. In the contribution presented here, we have explored one case such as 

three Legendre coefficients that expand the daily cycle of zonally averaged temperature. However, 

the same approach could be applied to the joint analysis of temperature, outgoing longwave 

radiation or cloud cover (to name a few) such that the structure of the multidimensional PDFs 

(probably properly marginalized as in this contribution) could shed light over the behaviour of 

models according to known physical mechanisms. 

 

Even though a tool of the set described in this contribution allows to make an objective selection of 

the optimal bandwidth to be used in the generation of the PDFs by means of smoothed bootstrap, 

the case study in this paper shows that the ranking of the models is quite robust even under severe 

(+/- 30% of the optimal bandwidth) changes in the bandwidth used for the generation of the 

multidimensional PDFs. Thus, the results obtained through the use of the tools presented in this 

contribution are reliable. 

 

However, the index is extremely sensitive to the existence of a constant bias between models and it 

should not be used without previously centering the data, a finding in agreement with previous 

studies using univariate PDFs (Brands et al., 2011; Brands et al., 2012). The programs do not 

request that the datasets are centered, but a constant bias between the model and observations could 

lead to unphysical diagnostics in several dimensions. A potential solution is to perform the 

evaluation onto n-dimensional centered data, so that the bias is automatically removed. 

Alternatively, the analysis can be performed removing the bias from the model results with respect 

to observations. Therefore, the analysis of the bias must still be kept independent from the analysis 

of the shape of the PDF presented in this contribution. The current implementation of the 

mpdf_score program provides a warning if the bias at any of the dimensions is greater than 5% of 

the standard deviation of the correspoding variate. 

 

The second case study demonstrated the applicability of the proposed methodology to multivariate 

and multidimensional data using data from oceanographic SST and SSH variables too. In addition, 

and although it is not part of the proposed technique, this case study also demonstrated the potential 

of the use of a preprocessing step for the reduction of the dimensionality of the data, based on a 

PCA analysis of the original dataset in this case. This shows that the method can potentially be 

applied to a large family of environmental problems. 
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The overall evaluation of environmental models is a complex task and different performance scores 

detect different weak or strong points of the available global models. We hope that the addition of a 

new methodology and tools that allow its easy application by other researchers make it easier the 

identification in future experiments of areas of models that can be improved. 
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Table 2. Values of the multidimensional S score corresponding to different values of the 
bandwidth parameter and associated rankings that would correspond to the models, 
when compared with ERA40 reanalysis data. 
 
 h = 0.4 h = 0.5 h = 0.6 h = 0.7 h = 0.8 
Model S score rank S score rank S score rank S score rank S score rank 
BCM2.0 0.45 10 0.48 9 0.51 9 0.53 9 0.56 9 
ECHAM5 0.45 9 0.47 10 0.48 10 0.50 10 0.51 10 
GFDL-
CM2.0 

0.55 8 0.58 8 0.60 8 0.61 8 0.63 8 

GFDL-
CM2.1 

0.58 7 0.60 7 0.62 7 0.64 7 0.65 7 

HADGEM1 0.66 5 0.69 4 0.71 4 0.72 4 0.73 4 
MIROCS3.2-
HR 

0.62 6 0.65 6 0.67 6 0.70 6 0.71 6 

MIROCS3.2-
MR-RUN01 

0.66 4 0.68 5 0.70 5 0.72 5 0.73 5 

MIROCS3.2-
MR-RUN02 

0.69 2 0.72 2 0.74 2 0.75 2 0.77 2 

MIROCS3.2-
MR-RUN03 

0.69 3 0.71 3 0.73 3 0.74 3 0.75 3 

MRI-RUN01 0.25 13 0.27 13 0.29 13 0.31 13 0.33 14 
MRI-RUN02 0.25 14 0.27 14 0.29 14 0.31 14 0.33 13 
MRI-RUN03 0.25 11 0.28 11 0.30 11 0.32 11 0.34 11 
MRI-RUN04 0.25 12 0.27 12 0.29 12 0.32 12 0.34 12 
MRI-RUN05 0.23 15 0.25 15 0.28 15 0.30 15 0.32 15 
NCEP 0.80 1 0.81 1 0.82 1 0.83 1 0.84 1 

 

Table 4. Global rankings for the models according to their representation of the daily 
zonally averaged temperature in Errasti et al. (2013) and according to the methodology 
proposed in this contribution (3D-PDF). 
 
 Errasti et al. 2013 rank 3D-PDF rank 
BCM2.0 5 6 
GFDL-CM2.0 7 5 
GFDL-CM2.1 6 4 
MIROCS3.2-HR 2 3 
MIROCS3.2-MR 3 2 
ECHAM5 4 7 
MRI-CGCM2.3 8 8 
NCEP 1 1 

 



Multi-objective environmental model evaluation by means of multidimensional 
kernel density estimators: efficient and multi-core implementations 
 
 
Highlights: 
 

• The performance index based on the area under two PDFs is extended to several 

dimensions. 

• The evaluation of the performance of models can be done for several variables, 

resulting in a single skill score.  

• A fast and parallel implementation that allows to apply the method with highly 

dimensional problems is presented. 

• The method is illustrated with two case-studies.  

• The sensitivity of the results to the bias between models and observations or the 

bandwidth is presented. 




