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Abstract

We propose an extension to multiple dimensions of the univariate index of agreement between
PDFs used in climate studié&e also provide a set of high-performance programs targeted both to
single and multi-core processors. They compute multivariate PDFs by means of kernels, the optimal
bandwidth using smoothed bootstrap and the index of agreement between multidimensional PDFs.
Their use is illustrated with two case-studies. The first one assesses the ability of seven global
climate models to reproduce the seasonal cycle of zonally averaged temperature. The second case
study analyzes the ability of an oceanic reanalysis to reproduce global sea surface temperature and
sea surface height. Results show that the proposed methodology is robust to variations in the
optimal bandwidth used. The technique is able to process multivariate datasets corresponding to
different physical dimensions. The methodology is very sensitive to the existence of a bias in the

modelwith respect to observations.
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1 Introduction

Climate models are the best tools that scientistsently have in order to assess the impact of
increasing concentrations of greenhouse gasesthed anthropogenic influences on the observed
climate of the Earth. These tools allow scientistsinderstand climatic changes from a dynamical
point of view and to give quantitative answers t@stions about future climate. They make feasible
the assessment of the characteristics (deternunistsus stochastic) of some climatic variations at
different temporal or spatial scales. Finally, theg fundamental in the attribution phase of the
study of the climate change problem, since theywatb confidently discard competing hypothesis

such as whether the climate change is rooted uraabr anthropogenic causes (Bengtsson, 2013;
Knutti, 2008).

Climate models must be evaluated against diffepeservations (Otto et al., 2013) or paleoclimate
data (Braconnot et al., 2012; Hind et al., 2012pktg, 2013; Sundberg et al., 2012) in order to get
a quantitative indication on the confidence that ea® put into their outputs depending on the
efficacy of the models to reliably represent thenatic processes and feedbacks. Contrary to
operational weather forecast models, there is np wgproperly evaluate models against future
climate, since future climate does not exist yRar(dall et al., 2007; Stocker et al., 2013).
Additionally, since parameterizations of sub-gr@hle processes are not fully independent from
current climate, it is clear that evaluation agaicigrrent climate is the only feasible, albeit not
perfect, solution in terms of evaluating the pragats for future climate (Errasti et al., 2011, 301
Radi and Clarke, 2011; Reichler and Kim, 2008).

The rationale behind this hypothesis is that mot®s are able to better simulate current climate
are the ones that we expect will also be the best o terms of the simulation of future climate. |
is well known that this is not necessarily true dog¢he different behavior of models in terms of
their internal feedback mechanisms (Andrews et?8l12; Dessler, 2013). These feedbacks lead to
differing values of the climate sensitivity of mdsl@nd, hence, future warming is dependent on
these different sensitivities, leading to the guesivhether all the models are equally valid (Knutt
2010).

Particularly for downscaling applications and regib impact analysis, an evaluation of the
adequacy of models is a common step (Brands e2@Gll; Radi and Clarcke, 2011; Walsh et al.,

2008). Considering that numerical downscaling isnpotationally expensive, it cannot be



performed over all the models available from adogeriment such as CMIP3 or CMIP5, and it is
usually only performed on a subset of the modetsaid and Griggs, 2004). Then, the best models
are only used for downscaling in regional climassessment, since they have been proven to be
the most suitable over a particular region. Thrategy of selecting the best subset of all the
available models has been contested by some st(Rligfen and Toumi, 2009) and defended by
others (Macadam et al., 2010), since this resyedds on the removal of the seasonal cycle and

the use of anomalies instead of raw output froenntiodels.

There are several inter-comparison experimentstthae been set-up in order to drive the models
with common boundary conditions so that resultsvbeh model runs can be compared. As an
example of this kind of standard experimental s&ttipat in several cases have their origins in the
nineties, we can cite the Atmospheric Model Interparison Project (Gates et al., 1998), the
Project for Intercomparison of Land Surface Parandtion Schemes (PILPS) (Henderson-Sellers
et al., 1995) or the Palaeoclimate Modelling Inbenparison Project (PMIP) (Kageyama et al.,
1999), the Atmospheric Chemistry and Climate Modiglercomparison Project (ACCMIP),
described by Lamarque et al. (2013), or the onkeishaost relevant for our study, since we use data
from this experiment, the Coupled Model Intercongmar Project (CMIP) (Meehl et al., 2007;
Taylor et al., 2012). These projects have covee@ral phases through the years and for the case
of the CMIP data, CMIP5 can already be used. Inegdn models grouped under a similar
experimental set-up such as CMIP3 or CMIP5 areidensd as an ensemble of opportunity (Annan
and Hargreaves, 2010). There are some limitatiecause even for coordinated experiments such
as CMIP3, there is some freedom in the way thereatdoundary conditions are applied (they are
not 100% equal for all the models), see Table Wang et al. (2007). The number of realizations
from every model in the ensemble of opportunityn@ the same, neither and, therefore, the
influence of each model in the behaviour of theeemse is not the same. Additionally, models are
less independent than they should be, since drdigarithms or components are shared by several
models (Fernandez et al., 2009; Knutti et al., 20&sson and Knutti, 2011; Pennell and Reichler,
2011).

In terms of evaluation of climate models, it is Welown that climate simulations are run, most of
the times, past the limit of deterministic predlity associated with predictability of the firksind,

according to Lorenz's classification. Climate maedsimulate climate change under varying
boundary conditions in terms of the Probability BignFunctions (PDF) of climatic variables. The

varying boundary conditions consist of externatiiogs such as the variability in solar irradiance,
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orbital parameters or anthropogenic greenhouseegassions, amongst other potential driving
factors (Bengtsson, 2013). Some aspects of climateilations are deterministic, such as the
seasonal cycle at extratropical latitudes (Erressal., 2013). On the other side, some properties o
the atmospheric circulation such as the blockingextatropical latitudes can not be precisely
forecast with lead times corresponding to seveagisdvithout the use of ensemble forecast systems
(Marshall et al., 2014) because of the sensititatynitial conditions (Frederiksen et al., 2004an
the model formulation (Pelly and Hoskins, 2003). tbberefore, climate model evaluations that are
run past the limit of deterministic predictabilishould not a priori expect a close consistency
between weather-linked variations of global or oegi temperature or precipitation between
models and observations, except at the longer sicaées responding to external forcings (Gleckler
et al.,, 2008; Santer et al., 2011). These diffezenceflect the well-known difference of the
sensitivity of the results to errors in the init@nditions (predictability of the first kind) do
errors in the evolving boundary conditions (prealittity of the second kind) (Chu, 1999; Lorenz,
2006).

There is not a universally accepted strategy fionatie model evaluation, since it is well known that
climate model evaluation and corresponding skitires fundamentally depend on the target area,
variable or intended application of the model eatibin study (Knutti, 2008). Some studies make a
focus on the deterministic parts of the model sahahs (basically, the seasonal cycle) (Boer and
Lambert, 2001; Taylor, 2001). Other studies (oeento the study of droughts or floods) tend to
focus on extreme percentiles, since they are muate meaningful indicators of climate change
(DeAngelis et al., 2013).

This study by DeAngelis et al (2013) is currentlyportant for us, because it shows that models
sometimes produce accurate values for the averdgsome climatic variable due to error
compensation effects. They can, for instance, mastienate the frequency of high precipitation
events and overestimate the frequency of low pitation events. This points to the need to
evaluate additional characteristics of climate nhosieulations beyond the mean value and
standard deviation. Consequently, a few years agoindex computed from the whole PDF of
climatic variables was developed (Maxino et alQ&0Perkins, 2007). It compares two PDFs and
computes the minimum value of both PDFs at everscigba. The area below this minimum
represents the area below both PDFs. As such, perfact model, its value would be one, if both
PDFs matched perfectly. This PDF-index or indexdistributional agreement is the one that we

will generalize to the multidimensional case instlwontribution. The PDF-index analyses the



correspondence of the whole PDF both from a model @bservations (Maxino et al., 2008;
Perkins et al., 2007). The one-dimensional PDFxnkas very often been used in the literature
through the last years (Brands et al., 2012; Hreasdl., 2011, 2013; Fu et al., 2013; Maxino et al
2008; Perkins et al., 2007; Schwalm et al., 2018aki and Raisanen, 2013 to name a few). In this
contribution we propose its extension to multiplemeéhsions, thus allowing to compare several
features of climate or environmental models aihglsistep. The use of the PDF-index shows some
advantages with respect to other approaches, isethee that it samples the full PDF of the climatic
variables. Therefore, the PDF-index is a very gooéx for the overall evaluation of the agreement
between climate models and observed climate. Hewévere are other shortcomings, such as the
fact that the analysis in terms of PDFs does nosider the time sequence of events, and the
number of frost days or the number of continuoysdethout precipitation are important in terms
of impacts (Brands et al., 2012). The PDF-indexegiless weight to the tails of the distribution

and, itis thus not adequate as the single indethe analysis of extremes (Brands et al., 2012).

In the case of the papers mentioned previously, RIbd--index is computed by means of
unidimensional PDFs. However, in several caseglietuusing the PDF-index or other scores
(Dessai et al., 2005; Reichler and Kim, 2008) eatuhe skill of climate models according to
several variables that may be of interest for thpact community. The most obvious instances
might be precipitation and temperature, but if sheentists are interested in downscaling strategies
other variables such as geopotential height orlesesl pressure appear very often (Brands et al.,
2011; Errasti et al., 2011, 2013; Fu et al., 20d3axino et al., 2008; Radic and Clarke, 2011). In
these previous references, the skill of the moetomputed on a per-variable basis by means of
univariate diagnostics. Their final skill scoredsmputed by aggregating individual per-variable
evaluations either by simple averaging or rankihgkill scores. However, there is currently a lack
of universally accepted way of performing this camation of scores for different variables and the
methodology that we propose in this contributiomirmed to fill this void, since a single index of
distributional agreement is returned from the ndirttiensional PDF.

The main objective of this contribution is, themefoto develop a methodology that can be applied
to get a multidimensional score that allows to estd in a single step different variables from

climate simulations against observations. In otdegxplain the advantages derived from using a
multidimensional approach, we show a simple exardpleved from a synthetic dataset. We have

created three synthetic datasets, G1, G2 and GByedefrom two-dimensional gaussian
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third gaussian, the covariance matrix is giver 83, (0'75 1 5) It can be seen that, despite
the difference in the structure of the distribusaf points (Figure 1, left), the univariate PDIsl a
corresponding indices show a good agreement (Figummiddle and right and Table 1), even
though the distributions are different. This istgquan artificial example, but it illustrates theirgo
that some parts of the PDFs close to the diagar@ide projected onto similar areas over the axis
when using unidimensional indexes of agreementkimgdhe differences between the PDFs of the
model and the observations. Therefore, it is istang to analyse the full structure of the
multidimensional PDF, since it yields a realistiffedence between the score corresponding to G1

versus G2 (good agreement) and G1 versus G3 (lvadragnt).
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Figure 1. Points created from G1 (red) and G3 @rekstributions (left), univariate probability

distributions corresponding to the X variables (@) from G1 (red) and G3 (green) and univariate

probability distributions corresponding to the Yiable from G1 (red) and G3 (green).

Table 1. Indices of distributional agreements faings derived from known gaussians using

univariate scores for X and Y variables or two-disienal scores.

Univariate score 2D score
G1-X G1l-Y G1
G2 X 0.998 0.999
Y 0.999
G3 X 0.998 0.463
Y 0.997




To fill in the gap illustrated by the example, wengralize the PDF-index by Perkins et al. (2007) to
n-dimensional phase spaces with the final aim afvahg an easy multi-criteria evaluation of
models. That way, a single PDF-based index canpgtioel performance of the models according to
the multidimensional phase-space spanned by alv#éin@bles chosen for the evaluation of the
model. In order to make it easier for other redeans to use this methodology, we present an
implementation of this multidimensional extension lheans of a set of tools that can properly
address the computational problems that appear whaking kernel-based estimations of PDFs
with massive datasets. In the case studies thathesv in this paper, we compute several
realizations of the PDF-index using one to four elisional phase spaces with up to 13 000 points
for every particular model/realization. This is y@ntensive computationally, and for this reason we
feel that an efficient implementation of the estiima of multidimensional PDFs could be of great
help for researchers in this area. Thus, we haweldeed a general-purpose tool to compute
kernel-based multidimensional PDF estimations thas on state-of-the-art multi-core processors.
Our proposal has two main characteristics: (1)na-tuned algorithm to calculate the PDF that
minimizes the number of computations and (2) a lfgramplementation of this algorithm that

allows it to efficiently run in multi-core processo

The method is applied to two different case-studiée first case study corresponds to a realistic
application of climate model evaluation (Errastiakt 2013). Their results are re-analyzed using
this new methodology. Additionally, a sensitivity the results to the selection of the bandwidth
parameter is carried out. Finally, the robustnelsshe results provided by the method to the
existence of biases in the models is also studibd.second case study corresponds to the analysis
of the performance of a coupled atmosphere-oceamatysis in reproducing the global scale Sea
Surface Temperature and Sea Surface Height aurgsponds to a higher-dimensional problem.
This second case study will be used to stress tivoh® merits attributed to the proposed
methodology. On the one hand, this example in thaext of the physical oceanography will
demonstrate the wide range of the applicabilitghef methodology. On the other, the combination
of variables with different physical dimensions Ililustrate the ability of the method to process

multivariate data and its ability to be appliedattarge family of environmental models.

The remaining of this paper is structured as faflo®ection 2 presents the materials and methods
used in the paper. Results are shown in sectidin@.discussion is presented in section 4, and the

paper finishes with conclusions in section 5.



2 Material and methods

2.1 Data representing the daily seasonal cycle obrally averaged temperature from global
climate models and reanalysis.

For the first case study shown in this paper, iecs@a reduced dimensionality representation of the
daily seasonal cycle of temperature that we alremthlyzed in Errasti et al. (2013). We analyze
temperature of the air at the surface (TAS) dadyadrom seven models (20C3M simulations) of
the CMIP3 experiment (Meehl et al., 2007) that wesed by the Fourth Assessment Report of the
IPCC (Randall et al.,, 2007). The models used aeeBECR-BCM2.0, GFDL-CM2.0, GFDL-
CM2.1, MIROC3.2-HR, MIROC3.2-MR, MPI-ECHAMS5 and MRIGCMZ2.3, and the basis for the
selection of this subset of models and their charestics can be found in Errasti et al. (2013)eTh
same procedure is used for TAS data from ERA40 élpet al., 2005) and NCEP/NCAR
Reanalysis 1 (Kalnay et al., 2996), referred toN&EP onwards. The TAS data from models and
reanalyses were re-gridded to the same 2.5° xg@dbby means of bilinear interpolation, since this
was the coarsest grid used by any of the reanalgsd (the one used by NCEP). To reduce the
dimensionality of such a gridded dataset, the TA& dvere zonally averaged and projected onto
Legendre polynomials that constitute an adequetes lover the sphere. Those have very often been
used as a basis in one-dimensional energy balandels(North et al., 1981) and are the basis used
for the meridional components of spherical harm®nised in spectral decompositions of the
equations of motion (Washington and Parkinson, 200f%e Legendre polynomials are orthonormal
in the set of functions over the continuous intéfva, 1], but their corresponding discrete-grid

counterparts are not orthogonal. For this reasa@applied the Gram-Schmidt orthogonalization

procedure to obtain the leading discrete orthogo,?ﬁ?m),Plcu)and P20 Legendre

polynomials. In the previous equatior #= sin(@®) refers to the sine of latitude. The zonally

averaged TAS profiles have been projected onto dftbogonal discrete Po('“), Pl(“)and

P20 Legendre polynomials and this has provided us wita corresponding time-varying

Cot) c, )

coefficients and Cz(t). Due to the meridional shape of the orthogonatrdie

polynomials shown in Figure 1 in Errasti et al.013), the physical meaning of the temporal

expansion coefficients can be easily understood dbefficient Co®) describes the seasonal

evolution of global-mean temperature linked to thierent distances from the earth to the Sun
corresponding to the apogee or the perigee posit,,c,l,(t)describes the seasonal evolution of

summer-winter from one Hemisphere to the other (,:%(t,,) describes the TAS differences between



the Equator and the poles. The Co(t), ¢ O and c.®)

coefficients represent the daily TAS
seasonal cycle with a root-mean square error odi#lg values ranging from 6.3 K (GFDL-CM2.0)
to 8 K (MIROC3.2-HR) for the whole dataset. Thepresent 5%, 76% and 3.72% of the total
variance of the zonally averaged TAS data for tmecf ERA40 and similar values for the climate

models and NCEP reanalysis, as extensively disdusg&rrasti et al. (2013).

The use of two different reanalysis (ERA40 and NLC&Rws us to quantify the sensitivity of the
results to the uncertainty of the temperature figlld consider that this uncertainty is given by the
different values that we get from two reanalysiwoTdifferent state-of-the-art evaluations of the
TAS fields by two different reanalysis systems jevrealistic representations of the surface
temperature field, but the differences between thefflect the uncertainty in our knowledge of the
detailed characteristics of the problem at handhBoe 20C3M simulations and the reanalysis data
cover the period 1961-1998 on a daily basis. Tlkea iof using these data is to be able to compare
the results of our multidimensional PDF index wailheady published results (Errasti et al., 2013)
that used alternative techniques in terms of tlilé store of the models. In Errasti et al. (201133 t
PDF indices computed were one-dimensional and sdiagnostics also involved the root mean

square error. In this paper, we revisit the topoerf a multidimensional point of view. For everth

,(F): Ca®rcO.c2 O) that describes a

trajectory in the phase space of the truncated daihally averaged air temperature at the surface.

. . C.
model, we have a three-dimensional vector of pc

These data provide us with an interesting caseystfidhe application of the new algorithm to a
previous problem of evaluation of models where tigtidimensional evaluation tool was not

applied.

2.2 Multivariate oceanographic data.

Two datasets containing joint values for the Sedia8a Temperature (SST) and Sea Surface Height
(SSH, relative to the geoid) are also analyzed secand case study. These datasets are used in the
second part of the Results section to illustragepbtential application of the proposed methodology
in a multivariate application that not only comtsneariables with different physical dimensions
(e.g. SST and SSH), but also different variableslting from different truncations of the same
physical field with the same physical dimensiongy.(alifferent projections of the SST field).
Additionally, the interest of this second case gtigdthat it also shows the potential applicatién o

the methodology in the case of other environmeayalications not restricted to climatology.
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Gridded global coverage data for the SST and SSHhblas over the 1993-2012 period are used.
The two datasets include: a reprocessed Levelidden, gap-free) product based on the merging
by means of optimal interpolation of satellite anesitu data called ARMOR-3D (Guinehut et al.,
2004; Guinehut et al., 2012) and the coupled atimargpocean CFSR reanalysis (Saha eta al.,
2010). CFSR data covers the 1993-2010 part of #r@g considered here. For the 2011-2012
period CFSR is completed with data from the CFS3@h@ et al., 2014) analogue product. In the
following the CFSR and CFSv2 product will be redersimply as CFSR.

To allow inter-comparison of the datasets they areraged to weekly data and re-gridded to a
common 0.5° x 0.5° resolution grid with an idertlead-sea mask (following the minimal weekly
time-frequency of the ARMOR-3D dataset and the maili 0.5° x 0.5° spatial resolution of the
CFSR dataset). Like in the case of the TAS, itdsassary to reduce the dimensionality of the SST
and SSH variables in the datasets because a glabadet at a 0.5° x 0.5° horizontal resolution
yields more than 2.0 x f@rid-points, i.e. variables in the phase-spacés Tifakes impossible to
apply the proposed methodology to the raw datahéncase of the first case study (TAS) the
dimensionality reduction is conducted by means efdndre polynomials of zonally averaged
values. In this case, the truncation is conductethbans of a Principal Component Analysis (PCA)
(von Storch and Zwiers, 1999; Wilks, 2006) thatrasts the Empirical Orthogonal Functions
(EOFs) and the Principal Components (PCs) frongtideled anomalies (obtained after subtracting
the time-mean). The gridded anomalies have beeghtes to take into account the reduction of the
grid-area with increasing latitude of a regulartlate-longitude grid. Therefore, the values at each
grid point have been multiplied by the square wfdhe cosine of latitude (von Storch and Zwiers,
1999; Wilks, 2006). During this truncation procesghonormal EOFs are used and, therefore, the
units and the variances are retained by the neiablas or PCs. For the sake of simplicity, thetfirs
two PCs will be retained for the SST (T1, T2) ar8HS(H1, H2), making a total of 4 variables
when all of them are combined. The percentage taf t@riances accounted for by those PCs are
83% (SST) and 19% (SSH) for the ARMOUR-3D dataset 85% (SST) and 34% (SSH) in the
case of CFSR.

2.3 Evaluation of the multidimensional PDFs, optimk bandwidth and evaluation of the
multidimensional indices of PDF agreement.
The methodology suggested in this paper followsdtsteps that we describe in this order:

1. Compute a PDF by means of kernel estimates fomtliédimensional case.

2. ldentify the optimal bandwidth to be used by thiénegtion of the multidimensional PDF.
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3. Find the amount of space common to the multidinmradi PDFs of every model and
observations.

From the point of view of the application, the ffissep would be to compute the optimal bandwidth,
next, compute the multidimensional PDFs and, fipatompute the scores of the models' and
observations' multidimensional PDFs. However, fribra point of view of the description of the
algorithm it is better described using the previouder because, in order to fully understand the
way the optimal bandwidth is computed, the way Ri¥ is computed must be considered at the
beginning.
A different program has been implemented for eaep, svhich will be described next. Finally, note
that the main contribution of this paper is not tise of these steps, but in the extension to nheiltip
dimensions of the PDF-score. This extension requaempletely new programs, or important
modifications to previously available codes. To thest of our knowledge, no other tool set is

available to provide equivalent functionality wighmilar computational performance.

2.3.1 Multidimensional kernel density estimation

The first program (mpdfestimator) performs an eation of the multidimensional PDF in a
multidimensional space. It takes as input a filataming all the observed points and optionally, a
bandwidth value and the parameters defining thduatian space (minimum, maximum and
increments for every dimension). If the bandwid#tue is not provided, the default corresponding

to a multidimensional gaussian distribution witk 8ame sample size is applied (Silverman, 1986).

N - X
foohE ==Y K (X—)
Programmpdfestimatocomputes the PDF ¢ nh h J\wheren is the number of

observationsK is the kernel functiord is the number of dimensions of the datasehe bandwidth

value, X is a vector containing each observed point, * 1is a point of the space where the PDF
is being evaluated (evaluation point onwards). PBé- is estimated in a user-defined space called
evaluation space

According to Silverman (1986), asymptotically, #nesre no differences between the different
kernels at hand (Gaussian, triangular, Epanechnitoy). Moreover, he states that it is desirable t
base the choice of the kernel on other considersitisuch as the degree of differentiability recplire
or the computational effort involved. Other referes also support the fact that the sensitivityhef t
results to the kernel chosen is small (AhamadaFladhaire, 2010) and that the Epanechnikov
kernel is very efficient (Scott, 1992). In our pram, since the Epanechnikov kernel is bounded, we

will take advantage of this boundedness to desigmnaputationally efficient proposal.
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K (4x)= (dsz)(l— AXT -AX)
The Epanechnikov kernel function is defined G where g represents

the volume of the d-dimensional sphere of unitwadand AX=X=X s the vectorial difference

between an observe ' and an evaluatio * point. The use of a simple euclidean norm would be
misleading in case the variables used to defin@hti@se space were characterized by very different

variances. In order to avoid this, the algorithmmpaotes the spherically symmetric principal

components Yi' that can be derived from tt* observed points. Note that the data are also
initially centered to be able to compute principamponents. There is no filtering of the main
principal components in this step. If a reductidmionensionality is required by the user, it must b
performed by the user before calling this progréve, therefore, assume that the covariance matrix
of the input data is of full rank. The fact that wee spherically symmetric principal components
means that variables expressing more varianceeoinfput data are given more importance in the
computation of the kernel and, as such, the saméwidth () can be used for all the dimensions.

This is equivalent to using a Fukunaga-like estomé®ilverman, 1986). The same linear mapping
that is used onto the observ ™ points to compute the corresponding sphericallyragtric

principal component: Yiis applied to the centered evaluation poi* yielding a set of scaled

evaluation points Y . The difference vector and the kernel function acenputed by using

A=Y= Y Therefore, the PDF is actually defined in a $etomrdinates ¥ and, after the PDF has

been evaluated, it is transformed back to the malgevaluation gric* . This means that it is

divided by the Jacobian of the transformation (sguaot of the determinant of the covariance

matrix) from the original evaluation spa* to the new evaluation spa Y in order to recover the
proper normalization of the PDF (Menke and Menk&l 2. If the data have been centered when
the PDF was being computed, the axes defining bie &e again translated at this point according
to the original mean that has been computed bstoreng the results in the output netCDF files. At
this point, it is convenient to stress that theultesg netCDF files are stored around the original
average of the input dataset using the physicahabiss corresponding to the original phase space.
As will be explained below, the internal use ofnpipal components will also be a critical part in
the development of the bootstrap for the multidisienal case. Additionally, it has to be mentioned
that in multivariate cases, such as the compatigtween SST (K) and SSH (m) that we present in
the second case study, the metric that we use atuae the kernel using radially symmetric
principal components allows us to use a non dinoeah, thus properly combining multivariate

datasets. Thus, on the following pages, winers mentioned, it refers to a non dimensional

13



parameter.

A common approach to compute the estimate of thig, R&lid for any kind of kernel, is to make a

loop that traverses all the evaluation points ef$pace, and calculates the kernel function fon eac
<observation point, evaluation point> pair. Thipegach, evaluation point-based (EPB onwards), is
shown in Listing 1.a. Its complexity is Qfkn-r), being k a constant related to the dimensionality

of the datasetn the number of evaluation points amthe number of observed points.

a) Eval uation point-based b) Observed poi nt-based

estinmation (EPB) estinmation (OPB)
for each Eval uationPoint x { for each Eval uationPoint x {

den x = 0 den x = 0

}
for each ObservedPoint x; { conpute Qbservation Influence Area A
den_x += density(Xx, Xx;) for each ObservedPoint x; {

} for each EvaluationPoint x in A {

} den_x += density(Xx, Xx;)
}

}
Listing 1.Approaches to computingDF estimation expressed as pseudo-code.

In some cases, the kernel that defines the deaSidach sample is bounded and it affects only a
small subset of the evaluation points in the euauaspace. In these cases, using the EPB approach
is inefficient, as most of the evaluation points dutside the area of influence of the kernel ¢éut
calculation is required), being thus the corresponalensity zero. Thus, as we have chosen a
bounded kernel (the Epanechnikov kernel), we hafmeld a way to estimate the PDF that reduces
the computational complexity of the previous apphpaiming to minimize the execution time of

mpdfestimatar

Our approach, observation point-based (OPB onwapdsjorms a loop traversing the observation
points, computing for each, the density over thalwation points affected by the influence area of
the kernel. This method requires to identify the (feevaluation points inside that influence area,
which can be done by means of geometrical equatima visual example, we depict in Figure 2
the influence area of a kernel as a grey ellipgeour program, we calculate a square shaped
bounding boxaround each observation point, which includes senauation points outside the

area of influence, but it is easier to processhieyprogram.
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A simplified OPB is described in Listing 1.b and @¢omputational complexity is Qfkn-g, being
kqa constant related to the dimensionality of thaskttm the number of observed points, anthe

number of evaluation points inside a bounding lgenérally much smaller tham).

Figure 2. Example of the influence area aroundl@served point in a 2D space, identifying all the
grid points affected. The ellipse represents theahanfluence area in the physical space, whike th

dashed rectangle shows the prismatic bounding tmxnd it.

mpdfestimatofas well as the remainder programs) has been mgsieed using the C programming
language. All the linear algebra routines used iarplemented through calls to the publicly
available MESCHACH library (Stewart and Leyk, 1998he PDF is written to a netCDF file in the
physical evaluation spac* requested by the user with the PDF centered aaldds@according to
the original data. This means that the user is toeevaluate PDFs from models and observations
that are (are not) centered at the samtgmensional average points (biased or unbiaseakdts).
We recommend, as shown below, that datasets am@ysibas-corrected before performing this
analysis, but the system does not enforce thetoseéo so, althought it warns the user about this

condition.
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In the first case study used in this paper the @ispsice is tridimensional, but the implemented
program allows the user to go up to any dimensstarting from one), as shown by the second case
study used in this paper. The one-dimensional aséso covered by our program even though
there are other implementations that can coveroiie dimensional case. The novelty of our

contribution lays on the generalization of the aimaensional score to higher dimensions.

In addition, standard OpenMP programming directi{fi2zagum and Menon, 1998) have been also
included with the aim of exploiting the multi-cooapability of present computers. The set of
observed points will be equally distributed amortgstprocessors for their computation in parallel.
This way, the workload is split among the availapl®cessors, reducing the execution time

(almost) linearly to the number of cores used.

2.3.2 Selection of the optimal bandwidth

The second step that we describe (although it shbal the first step in the application of the

programs) is to find the optimal bandwidth value ttoee PDF computed in the first step. It is well

known that the computation of the optimal bandwitdtibe used in PDF estimations using kernels
is a critical step in obtaining reliable PDFs. Tehare two major strategies for the determination of
the optimal bandwidth (Scott, 1992; Slverman, 1986)ss-validation (Duong and Hazelton, 2005)

and smoothed bootstrap (Faraway and Jhun, 1990).

The cross-validation approach leads to the conmwlubf the kernel with itself, a very tough
mathematical problem for the Epanechnikov kernghvan open number of dimensions. It is
usually solved by means of gaussian multiplicakeenels (Duong and Hazelton, 2005), but this
wouldn't allow us to use the OPB approach explaineskction 2.3.1 above. In our case, we have
selected the use of smoothed bootstrap estimatdeeadptimal bandwidth, since it simplifies the
generalization of the solution to an open numbeatimiensions in the multidimensional case for the
non-multiplicative Epanechnikov kernel we are usilmgorder to produce the new estimations in
the multidimensional case we take advantage ofatiethat the kernel is spherically symmetric in
the space corresponding to the spherically symmeptincipal components. Thus, the same strategy
used by univariate kernel estimations is used farye direction in the space spanned by the
spherically symmetric principal components (Silvann1986). Surrogate samples are created in
this space, and this procedure guarantees thasttbheture of the covariance matrix is properly

preserved.
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Following Faraway and Jhun (1990), we use a smdotimotstrap procedure to estimate the
squared error between two estimates of the PDF.shi@othed estimate starts from a reference

evaluation of the PDFf(X’hb) computed using a reference bandwic,h‘?. Then, several

f _(x,h)

estimations " " of the PDF are performed at varying values oflthedwidth parametdr and

n=1...N

a number o realizations for everir. The bootstrap program checks the error between

the “reference” PDF used in the smoothed bootgirapedure and the actual bootstrap samples by

evaluating the squared errcgn(h):j (f(x’rb)_ f”(x’h))zdx. Then, the bootstrap-derived

distribution of the squared errors is used to imi@mimum, maximum, mediat ,',30-025 (2.5%) and

Po o7 (97.5%) percentiles of squared error for everyeaifh. This information is reported to the

user at every value. Theh value producing the lowest values of the erromeastes (we use the

median o “n™

in the case studies in this paper) is the one®sas the optimum bandwidth.

This procedure has been implemented inntipelfestimator_bootstraprogram. It takes as input all
the observed points and optionally (1) a referdvaredwidth value, (2) a range of bandwidth values
to be evaluated, (3) the boundaries of the evalnapace, and (4) the number of repetitions for the
random sampling. If (1) is missing, the defaultresponding to a multidimensional gaussian
distribution with the same sample size is applie(R) is missing a range (+/- 20% around (1), with

a step such that the maximum bandwidth intervalivgled in 10 subintervals) is defined. In case
(3) is missingmpdfestimator_bootstragefines a range that ensures a space that sus@linithe
observed points. Finally, if (4) is missing, 50@liezations are performed. The program generates as
output squared errors for each of the provided Wwadth values. The pseudo-code is shown in

Listing 2.

Conpute the PDF for the reference bandwi dth hg
for each h in the range [hm n, hmax] {
for iter=1 to max_repetitions{
generate a random sub-sample S
conpute PDF for S
conput e squared error
}

generate statistics of squared error

}

return statistics
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Listing 2. Pseudo-code for timepdfestimator_bootstraprogram.

2.3.3 Computation of the PDF score

The final step of the methodology is to compute P score. Once the user has computed the
PDFs (by means of thenpdfestimatorprogram) corresponding both to the model and the
observations using the optimal bandwidth value el by mpdfestimator_bootstragprogram
mpdf_scordnas to be executed to get the PDF score againstfigrence model.

The programmpdf_scordakes as input two-dimensional PDFs stored as netCDF files, generated
for the same domain by the first programpdfestimatgrand provides as output a PDF-indgRy

means of the following equation (adapted in thisecdor a three-dimensional example):

S=) min(z% ,Z7} -dx. dx o m )
Z ( ik ”")d)g 177k where Zige and Zije refer to the evaluation of the PDF from

observations and the model, respectively. Please that for higher dimensions, the extension is

straightforward.

The equation closely follows the one used by Parkinal. (2007) or Maxino et al. (2008), but has
been extended in this case for its use with a P&fihed in a multi-dimensionah{dimensional)
space. Additionally, when working in several dimens, the volume of the-dimensional interval

where the PDF is being computed must be takenaatount for normalization purposes, and so,

the dx : dx and o terms account for the fact that the range of tifferént variables can be

very different (the average standard deviationthefcoefficients in our first case study are 1.9 K,
9.7 K and 2.1 K). The program warns the user sedae bias for any of the dimensions is greater

than 5% of the standard deviation of that variate.

2.4 Representation of marginalized PDFs for the imtrpretation of results.

Finally, even though it is not part of the methapyl we propose, in order to be able to identify the
differences in the index corresponding to individoedels and for illustration purposes of the
results corresponding to the first case study, waveh computed marginalized

T, .c..hyE| T xhdc ,i# j#k _ _ : :
20 (i .¢) ):J (x.mde,.i# ] two-dimensional PDFs and projected them ontoith€0-

C1, C0-C2 and C1-C2 planes, after marginalizingxes C2, C1 and CO, respectively. This will
allow us to show that using a single multidimenaioscore is better than using a set of
unidimensional scores. We only present marginalRB#&s for the first case study in the paper and,

for the second case study we just collect the agdeel values of the score in a table.
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3 Results

3.1 Application to climate model simulation of thedaily cycle of surface temperature

Figure 3 shows the evolution of the median of tip@ased errors and the 95% confidence interval
computed from the bootstrap analysis corresponttirtpe ERA40 data when the reference PDF is
computed with two conservative estimates of bantiwi(hy=0.8 and §=0.67) against the
bandwidth that would correspond to the same sasip&for a gaussian PDF, 0.637. It can be seen
that the bootstrap estimate suggests a slightleldoxalue (0.55-0.60) of the bandwidth parameter
than the one that would correspond to a gaussididimensional PDF. As will be identified in the
marginalized PDFs later, this is to be expectew;esihe zonally averaged surface temperature is
very non-normal and periodic, so that several ficale features of the PDF must be resolved, and
they can only be properly resolved if the bandwidtmot very high. Therefore, in the following

steps an optimum bandwidth of h=0.6 will be usel@ssotherwise explicitly stated.

In order to test the sensitivity of the classifioatto different values of the bandwidth used, &abl
presents the results of the multidimensional PDéresc for different values of the bandwidth
parameter (every model is centered and checkedhsiggRA40). For the optimum bandwidth
(h=0.6), the best model available is the altermateanalysis that is used in this study (the NCEP).
This is something that we expected from the begmnisince both reanalyses are based on
observations. This result supports the use of tethod, since the method yields better results for
alternative observation-based reanalyses. MIRO®BR2and HADGEM1 are the models that
follow. Some of the model runs differ only on tmétial conditions and most of them are grouped
together, with the exception of HADGEM1. The intetation of this result is that the variability of
the index to the use of different initial condit®is very low, as should be expected. MIROC3.2-
HR, GFDL, ECHAMS5 and BCM2 follow the previous mosleThe ranking finishes (for the subset
of models and diagnostic variable used in thisgtlny the five random runs corresponding to the
MRI model. All the runs corresponding to MRI aregped, with low values of the score that do
not mix with values corresponding to the rest af thodels. It seems, therefore, that the intra-
ensemble variance is in general (without the excemif MIROC3.2-MR and HADGEM1) smaller
than the inter-model variance of the score. In ganéhe main characteristics of these results are
robust even with changes in the bandwidth that spe88% to a +33% interval from the optimum
value found by means of bootstrap. The modelsghatv the highest (lowest) performances with
the optimum value of the bandwidth continue showangimilar performance for higher or lower
values of the bandwidth. There are occasional exzos of a model to at most one alternative

position up/down of the ranking, but, on the whategdels tend to maintain their relative ranks
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even when the bandwidth is changed by a +/-33%ivelahange around the optimum value.
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Figure 3. Squared errors (median and 95% confideimterval as derived from the bootstrap
estimates) between the randomly generated PDFstladeference PDF (left,0h0.8 and right,
hy=0.67) used for the generation of the smoothed dicayh.

Figures 4, 5 and 6 show the plots of the margiedliPDFs for the case of the NCEP (contours)
versus ERA40 (shaded), a model showing a high vafute score, MIROC-3.2-MR (contours)
versus ERA40 (shaded) and a model with a loweresuch as MRI (contours) versus ERA40
(shaded). In order to show simple numbers in tbés@nd scales, values of the marginalized PDFs
are multiplied by one thousand before plotting. @efcomputing the PDFs, the biases between

every model and ERA40 have been removed by cegtalirthe series.
Table 2. Values of the multidimensiortakcore corresponding to different values of thedvadth

parameter and associated rankings that would @unesto the models, when compared with

ERA40 reanalysis data.
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h=0.4 h=0.5 h=0.6 h=0.7 h=0.8
Model S score rank S score rank S score rank S score rank S score rank
BCM2.0 0.45 10 0.48 9 0.51 9 0.53 9 0.56 9
ECHAM5 0.45 9 0.47 10 0.48 10 0.50 10 0.51 10
GFDL-CM2.0 0.55 8 0.58 8 0.60 8 0.61 8 0.63 8
GFDL-CM2.1 0.58 7 0.60 7 0.62 7 0.64 7 0.65 7
HADGEM1 0.66 5 0.69 4 0.71 4 0.72 4 0.73 4
MIROC3.2-HR 0.62 6 0.65 6 0.67 6 0.70 6 0.71 6
MIROC3.2-MR-RUNO1 0.66 4 0.68 5 0.70 5 0.72 5 0.73 5
MIROC3.2-MR-RUNO2 0.69 2 0.72 2 0.74 2 0.75 2 0.77 2
MIROC3.2-MR-RUNO3 0.69 3 0.71 3 0.73 3 0.74 3 0.75 3
MRI-RUNO1 0.25 13 0.27 13 0.29 13 0.31 13 0.33 14
MRI-RUNO2 0.25 14 0.27 14 0.29 14 0.31 14 0.33 13
MRI-RUNO3 0.25 11 0.28 11 0.30 11 0.32 11 0.34 11
MRI-RUNO4 0.25 12 0.27 12 0.29 12 0.32 12 0.34 12
MRI-RUNO5 0.23 15 0.25 15 0.28 15 0.30 15 0.32 15
NCEP 0.80 1 0.81 1 0.82 1 0.83 1 0.84 1
NCEP / ERA40
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Figure 4. Marginal PDFs of NCEP (contour) and ERAgltaded) projected onto the planes defined
by the CO-C1 coefficients (left), CO-C2 coefficisrftniddle) and C1-C2 coefficients (right). Values
of the PDF have been multiplied by 1000 in ordamntprove the representation of numbers.

Figure 4, left, shows that on the CO-C1 plane,Rb¥- is clearly bimodal, as should be expected
from a periodic deterministic signal such as thaseeal cycle of temperature. CO represents the
global average of surface temperature and C1 repi®she difference in temperature between the
Northern and Southern Hemispheres. The main chisiérthe C0-C1 PDF appear aggregated
around each Hemisphere's summer. NCEP values ststighly warmer global temperature (CO)
during Southern Hemisphere summer than the valesrs by ERA40. Figure 4 (middle) shows
that the amplitudes and phases of the mean glebgbdrature (C0O) and the equatorial bulge (C2)
are similar in both reanalyses. On the C1-C2 pléme,marginalized PDF shows that the main
difference between both reanalyses appears agtdlglhigher difference of temperature between

hemispheres (C1) in NCEP when the coefficient gameng the equatorial bell (C2) is positive
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(summer in the Northern Hemisphere). However, tid-4° generated by both reanalysis are
extremely similar, as reflected in the high valdeéhe S index between NCEP and ERA40 (0.82).
This is something that we expected from the begmnsince they correspond to observational

datasets.

MIROC3.2-MR-RUNO2 / ERA40
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Figure 5. Marginal PDFs of MIROC3.2-MR (run 2, comts) and ERA40 (shaded) projected onto
the planes defined by the CO-C1 coefficients (le@D-C2 coefficients (middle) and C1-C2
coefficients (right). Values of the PDF have beealtiplied by 1000 in order to improve the

representation of numbers.

Figure 5 corresponds to the marginal PDFs for MIBQEMR model (second run), one of the best
CMIP3 models according to the metric selected is study. Over the CO-C1 plane (left), there is
guite a good agreement between both PDFs, sintediearly represent the bimodal structure of
the PDF. However, the differences between MIRO®3R-and ERA40 are higher than in the
previous case, both in terms of the location of Mwthern Hemisphere summer and also in
transitions between seasons that appear in the betaeen the maxima in the marginal PDF. In the
case of the C0-C2 plane (middle), the highest desagent appears at the precise location of the
maxima of the marginal PDFs, particularly during rtdern Hemisphere summer. A similar
diagnostic can be derived from the marginal PDFrdlie C1-C2 plane. Despite both marginal
PDFs are clearly bimodal, slight differences eaisthe placing of the PDF maxima. The equatorial
bell (C2) in MIROC3.2-MR is stronger than the oneERA40 during negative phases (Northern

Hemisphere winter) of inter-hemispheric temperatiifferences (C1).
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MRI-RUNO1 / ERA40
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Figure 6. Marginal PDFs of MRI (run 1, contourspddBRA40 (shaded) projected onto the planes
defined by the CO-C1 coefficients (left), CO-C2 #ficeents (middle) and C1-C2 coefficients (right).
Values of the PDF have been multiplied by 1000rgreoto improve the representation of numbers.

Figure 6 corresponds to MRI (run 1) model. The ettoh of the daily seasonal cycle of
temperature in terms of CO (global T) and C1 (kmemispheric temperature contrast, left) does not
present a bimodal structure with the PDF maximeacquaat the same points shown by the
reanalysis. The transitions between summer andewnegimes happen through routes that do not
correspond to the ones in the ERA40 Reanalysis.stiueture of the marginal PDF for the C0-C2
plane is markedly different between MRI and ERA4h the cold maximum in the PDF during
summer in the Southern Hemisphere quite misplatéloe case of MRI. This is also apparent in the
marginal PDF corresponding to the C1-C2 plane, e/nesxima of the PDFs do not appear neither

on the same places nor even with the same phases.

Finally, Figure 7 shows that the index is very #@resto the existence of a bias between the models
and reference observations. In this case, the RPEgomputed without previously removing the
bias between the surrogate model (NCEP data) andlibervations (ERA40) and the S score index
that we get between ERA40 and NCEP reanalysedrisneely low (S=0.075). The marginal PDFs
show that in general there is a very good agreemethie structure of the 3D PDFs, but the center
of masses of both PDFs are not located at the pawes. The biases for every coefficient are not
very high, considering their variances. The biathefCO component is 0.7 K (0.2% relative error),
the bias in C1 is 0.4 K (7.5% relative error) ahd bias in C2 is -0.34 K (-1.33% relative error).
However, even such low values of the bias lead $oage index that could be interpreted as poor
performance of the surrogate model (NCEP reanalysisus ERA40 due to the complex structure

of the 3D PDF. However, this is a false impressiat can not be defended if the spatial patterns of
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the marginal PDFs are analyzed in detail. This rmehat the index should not be applied to model
results that are biased against the reference \@ig®rs. The existence of biases in the models
leads to greater observational uncertainty when ntfoglel and observational datasets are not
centered. The code does not force the centerirtheotlatasets and, therefore, the user must take
care of this when the dimensionality reduction stafjthe data analysis is done. In particulaiis it
interesting to stress that, internally, when cormguthe n-dimensional PDFs, all the datasets are
centered (each one using itsdimensional average) before computing the cormedipg
spherically symmetric principal components. Whea dlutput netCDF files holding the PDFs are
saved, the original units in the phase space dii ataset (model or observations) are recovered
and the average is added to the anomalies denmged the PDF in the principal component space
stored in the memory of the computer. Therefore, kiey point here is that if there exists a cortstan
bias between the model and the reference obsemgaffost and second netCDF files passed to
program mpdf_score), it could lead to very low eawf the score despite the model representing
properly the variability (anomalies). This meanattthe evaluation of the models in terms of a
constant bias and timedimensional PDFs should be carried out as diffestaps.

NCEP / ERA40 (no centered)
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Figure 7. Marginal PDFs of non-centered NCEP (cargpand ERA40 (shaded) projected onto the
planes defined by the C0O-C1 coefficients (left);CD coefficients (middle) and C1-C2 coefficients
(right). Values of the PDF have been multiplied 1900 in order to improve the representation of

numbers. The bias between both reanalysis hasrb&gned.
From the point of view of performance, we have measd the execution time needed by each
version of the program to complete the bootstragguiure. On average, the serial OPB approach is

140 times faster than the serial GPB approach ammteover, the parallel OPB program scales
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linearly with the number of cores, being 4.3 tiniaster than its serial counterpart when using 4
cores. This means that an evaluation of a singldeinthat takes approximately 22 days with the
serial GPB program, can be executed in less thanhoor using the most efficient and parallel
implementation presented in this contribution. Ehesperiments have been conducted in a desktop
computer with an Intel i7 3820 processor (four epf6GHz, Hyperthreading enabled) with 8GB
of RAM. Therefore, the use of this technique is limatted to the availability of specialized cluster

or hardware that would limit its practical use.

3.2 Evaluation of Sea Surface Temperature and Seai$ace Height

The first two PCs of the global coverage weeklyetistale SST (T1, T2) and SSH (H1, H2)
variables belonging to the ARMOR-3D (Guinehut et aD04; Guinehut et al., 2012) and CFSR
(Saha et al., 2010; Saha et al., 2014) datasetdbeviised in the following to evaluate the second
with respect to the former. This means that the ARNR-3D product (blended satellite and in-situ
observation product) is the reference to evalubée GFSR product (coupled atmosphere-ocean
modelling product). Considering the first two PGsach variable in the evaluation (T1, T2, H1,
H2), the global-scale main variability modes of lea@riable are being take into account at a
glance. As the seasonal cycle was not explicittpaeed from the anomalies used to deduce the
PCs, the four considered variables are almost cetelglrelated to the global-scale seasonal cycle
(H2 contains some longer time-scale variabilityhu$ comparing combinations of different
variables from CFSR with those of ARMOR-3D the aapaof the modelling product to jointly
characterize different main global-scale variapiltodes (their seasonal cycles) is evaluated. For
example, if T1 and H1 are considered at the same (case T1H1) the capacity of CFSR to
simulate the main global-scale components of tlas@®al cycle of the SST and SSH variables is

being evaluated in a single and multivariate score.

Table 3 shows the optimdél and the score obtained with the 6 analyzed casex)drom the
univariate T1 and H1 cases, the multi-dimensiomaariate T1T2 and H1H2 (reserving the term
multivariate to the cases with variables with difiet physical dimensions, i.e. Kelvins and meters)
and the multivariate TIH1 and T1T2H1H2 cases. Alliables have zero mean so no bias related
issues will be observed in this case. Like in thevjpus case study on the TAS, the same three-step
methodology was applied in this case: for a givem m Table 3, the optimdl using the bootstrap
procedure is initially estimated. Next, the PDFngsthe optimalh is computed and, finally, the
score (one dimensional, multidimensional or mutist®) is computed from the PDFs obtained
from the CFSR and the ARMOR-3D variables.
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The very high scores of T1 (0.98) and T1T2 (0.%&8es indicate that the model is reproducing well
the global-scale SST seasonal cycle. The samesstandhe SSH, as slightly lower but still high
values are observed in the analogue H1 (0.84) drtd?H0.79) cases. This difference between the
SST and SSH is not strange as it is only showiegfélet that the modelling of the SSH involves
many more processes (dynamic anomalies, steric @resn..) compared to that of the SST (mixed
layer heat-budget and currents). The multivariaes T1H1 (0.67) and T1T2H1H2 (0.42) indicate
a loss of performance with growing number of th@etisions of the multivariate PDF, or in other
words, with increasing complexity. Any error in anf the tested dimensions leads to a smaller
value of the score. It can be seen that, althougivauate scores point to good modelling
performances, the multivariate approaches combitiiagsame variables yield worse results. In this
application a single model is being evaluated, tasults show that differences appear when
considering multivariate scores that discriminagéngen errors that appear through all the phase

space.

Table 3: Optimah and resulting scores obtained from the evaluaifdc@FSR (model) with respect
to ARMOR-3D (observations) based on the first PChe SST (T1, T2) and SSH (H1, H2) from
each of the products. Univariate unidimensional &htl T2), univariate multidimensional (T1T2
and H1H2), multivariate unidimensional (T1H1) andltivariate multidimensional (T1T2H1H2)
cases are shown to illustrate the number of patentmbinations that can be considered in the

framework of the proposed methodology.

CASE NAME h (optimal) SCORE
T1 0.36 0.98
H1 0.54 0.84
T1T2 0.52 0.97
H1H2 0.69 0.79
T1H1 0.58 0.67
T1T2H1H2 1.04 0.42
4 Discussion

4.1 Comparison with the results of the evaluationfanodels using previous techniques.
The results presented in this contribution extémddrevious analysis by Errasti et al. (2013) with

new methodology. Therefore, the obvious first pathe discussion is a comparison of the rankings
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obtained by this methodology and the final rankaot#d in the previous study. It can be seen that,
for the most part, the aggregated rankings behiavdady in the current and previous studies (see
Table 4). In general, the best models (NCEP, MIRQ@2R and MIROC3.2-MR) keep a good
ranking also under the new metric proposed heretli®worst case (MRI-CGCMZ2.3), the same
result holds, too. However, some changes appetireimelative rankings of models in the middle
part of the classification. It must be kept in mitincht the rankings in Errasti et al. (2013) also
considered the root mean square errors betweesettsmnal cycles, so that the rankings can not be
completely the same. Anyway, as a result of the temlinique, we find a similar classification of
models albeit with a single objective index withdlw need of a posterior averaging of individual
scores or ranks. Therefore, we think that this w@dlogy makes it easier and more objective to
classify the models according to their performamnben simulating several variables.

Table 4. Global rankings for the models accordiagtheir representation of the daily zonally
averaged temperature in Errasti et al. (2013) awdrding to the methodology proposed in this
contribution (3D-PDF).

Errasti et al. 2013 rank 3D-PDF rank
BCM2.0 5 6
GFDL-CM2.0 7 5
GFDL-CM2.1 6 4
MIROC3.2-HR 2 3
MIROC3.2-MR 3 2
ECHAMS 4 7
MRI-CGCM2.3 8 8
NCEP 1 1

The technique presented in this contribution ighdly different of those carried out in other model
inter-comparison studies found in the climate &tare. In some studies estimates of simple or
derived climate variables simulated by the models the observations are computed, but a final
single performance rank is not presented (e.g.,ilta&t al, 2008; Nieto S. and Rodriguez-Puebla
C., 2006; Russell et al , 2006; Vera et al, 2006yith et al, 2008). Other studies propose a single
final rank but based on the averaging of skill sspranks with or without different relative weight
(e.g. Fu et al., 2013, Errasti et al, 2011; 20T8E use of this new single multidimensional indax o
PDFs would avoid the need to establish a final steprder to combine and weight the different
climate variables analyzed, since the multidimemslidistributional agreement index S already

considers the characteristics of the PDF at theidmmlensional space covered by the PDF.
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An advantage of our technique is the interpreitghilf the rankings if the marginal PDFs are used
the same way as in Figures 4 to 7. The marginalsPéa be very easily computed from the 3D
PDF (in general the-dimensional PDF) that has been computed to prodiueeS score. The

geometrical structure of the marginal PDFs thragistlin terms of the differences between models
even when temporal position of every point in tH2FPspace is lost, since geometrical relations
between variables allow us to interpret them. This not be achieved when using one-dimensional
PDFs, since in that case, the relationship of tbmtp between different variables can not be

resolved.

4.2 Multivariate kernel density estimators in the ontext of model performance evaluation
methods

In this subsection we consider the methodology feodel evaluation based on multidimensional
kernel density estimators proposed in this contiwiouin the general context of the model
performance evaluation. Bearing in mind only the tase studies analyzed in the Results section,
we could restrict this section to the frameworktlod modeling of geophysical fluids. There's no
reason, however, to restrict the discussion in suoianner. On the contrary, and as already stated,
the framework will be that of the evaluation of ferformance of environmental models in general.
To put the proposed technique in context, we wilér to a recent position paper by Bennett et al.
(2013) in this journal on the characterization lo¢ fperformance of environmental models. The
paper by Bennet et al. (2013) describes a seriesettiods and procedures for both qualitative and
guantitative model performance characterizatioaldd proposes a general purpose five-step recipe
for model skill evaluation. Direct references wile made to the classification of evaluation
methodologies and the five-step recipe proposdgemmett at al. (2013), avoiding the inclusion of
redundant information or descriptions here. Therefthe reader is referred to that contribution for

a complete understanding of the forthcoming disonss

In the case of the classification categories a@gitative measures of model performances found in
Bennett et al. (2013), the method based on muledsional kernel density estimators would fall in
more than a category at the same time. First, astahg direct value comparison methods that
compare all model and observation values as a wleskn for multidimensional and multivariate
cases) to give a single value metric, the multidisi@nal score that is the result in our case. Note,
however, that this classification is valid only fidre final step of the technique when the

multivariate (multidimensional) PDFs belonging tee tobservation and the model are compared.
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Note also that this PDF to PDF comparison couldubéerstood as a high precision (number of
categories) multidimensional contigency table, siROFs are actually evaluated on a discrete grid.
According to this, the last comparison step wouall dmongst concurrent comparison methods. In
addition, and paying attention to to the step ithatrried before the PDFs are compared, it is clea
that the method must also be considered within ¢a¢a transformation method class

(transformation to PDF space). Summarizing and ralecg to the classification of quantitative

model performance evaluation tools described innBéret al. (2013) the proposed technique can
be considered as a direct comparison method takenvehole, but also as a data transformation

method and a concurrent comparison method if tweriisteps are considered separately.

Although they are not part of the proposed methaglpl additional verification techniques

considered in Bennet et al. (2013) have also beesidered in this contribution, and it is worth

mentioning those here. For instance, 2D margindlRBFs (Figures 4 to 7) were used in the first
case study to understand by means of a visuakeatigm the reasons that drove the relative
differences in the scores shown in Table 2. Ona@nagot part of the proposed technique, but
mentioned in Bennett et al (2013) and used in @secstudies, were the data transformation
methods: the Lengendre polynomials or the zonalgraged values in the first case study, and the

global-scale PCA analysis of the variables in #nesd one.

In the case of the five-step general recipe for ehpérformance evaluation proposed by Bennett et
al (2013), our procedure should be taken into actauthe fifth step of refinements due to its
complexity. This does not mean that previous std@schecking the data before any additional
step, performing some visual checks and deducingedmasic metrics are to be left aside. In fact,
they are more than convenient as part of any gaadtipes procedure for model performance

evaluation and were also applied in both case esusghown in Results section.

4.3 Additional capabilities and potential applicatons of the methodology

The case study described in section 3.2 shows Waduaion of a single model with two
multidimensional variables. The objective was rtritake a thorough verification of the selected
CFSR model, but to illustrate some concepts of dagaplicability like possibility of using and also
combining very different variables (TAS, SST andHS8 the presented case studies), the potential
of the use of techniques to reduce the dimensignaflithe dataset to whom the verification is to be
applied (Legrendre Polinomial of zonally averagedues in the first case study, global-scale

principal components in the second case), or tlhetive score changes of the univariate and
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multivariate cases, to mention some.

With regard to the results shown in Table 3, thestmemarkable fact is the reduction of the scores
in the multivariate case compared to the considgiaditer scores obtained in the univariate cases.
This could be expected, however, as the growingptexity of the PDF with growing number of
dimensions/variables will tend to enhance the dbffiees in the model/observation PDFs. This
example, although simple, has other potential useaddition to the one discussed here. For
instance, one may want to evaluate the evoluticin@fperformance of a model to see the impacts
of developing stages in the model. Then a compatike the one in case study two will be useful,
specially if the improvement can be identified bynaltivariate verification. Another application
could include the joint evaluation of several modaliables, like the one in the first case study. |
addition, other variables could be added with seleccriteria to the analysis (like the surface
currents, the depth of the thermocline or the dtarezation of ENSO, to mention some) without
increasing too much the number of variables, butsitering many aspects of the physics
accounted by the modelling.

4.4 Limitations of the methodology

As with any other model evaluation index, this des limitations too. First, it is probably not
adequate to detect the probability of very infrequevents, since multidimensional PDF
estimations tend to be unreliable on those areasemte value of the PDF is already low. It has
been shown in this contribution that its relialilis very low if there exists a bias between models
and observations. Secondly, the sample size musigheenough for a modest dimensionality to be
analyzed. It is well known that, when analyzing tdinensional datasets, the phase space is too
empty when the dimensionality of the space growalfigan, 1961). This might also happen with
environmental models in general if some kind oti@hidimensionality reduction step was not
applied to direct model output at the grid pointele Therefore, working with daily data for
climatic applications is almost a must. For otherdkof environmental models, fast time scales

should in any case be used.

Anyway, it has to be considered that multivariagngity estimation is always computationally
expensive, so that the dimensionality of the datamest be kept modest. When the dimensionality
of the problem increases, the CPU needed increasasesult of the increase of grid points and the
complexity of the linear algebra operations perfedmAdditionally, for high dimensionality, the

size of the netCDF files and the memory neededatuate them scale too fast and the user is faced
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with limitations in the hardware of computers (meynand disk). As a result, we must conclude
that it is always necessary to perform an inittapsof data dimensionality reduction that allows to
work in a fundamental set of low-dimensionality iahtes that reproduce the behaviour of the
system. In the two case studies presented in tmdribution, the initial step of dimensionality

reduction has been performed by projections ontgehdre polynomials or by means of principal

component analysis.

Brands et al. (2012) showed that, in some circuncsts, particularly when there exists a clustering
of data near zero (such as it happens for spduifinidity), the Kolmogorov-Smirnov test can be
better applied than the univariate similarity indsguivalent to the multidimensional one used in
this paper. In addition, the existence of a wellown distribution corresponding to the
Kolmogorov-Smirnov test allows the researcher tkenase of statistical hypothesis testing. This
can not be done unless Monte Carlo techniques see for the univariate similarity index.
However, when working in multiple dimensions, thavariate Kolmogorov-Smirnov test can not
be extended to several dimensions above two or #wee (Fasano and Franceschini, 1987; Justel
et al., 1997; Lopes et al., 2008; Peacock, 198Bi)ceSthe methodology that we propose in this
study can work in multiple dimensions, we find tliais methodology will, hopefully, allow to

perform an easier evaluation of models accordirggt@ral criteria, as was originally intended.

5 Conclusions

The index based on the common area between PDEFEsstlisequently used in the univariate
evaluation of climate models, and that is compuéesd the common area under the PDFs
corresponding to models and observations, has betamded to multidimensional problems. In
addition, tools that allow its use have been deyedoand made freely available as open source
software. The tools compute the kernel-based m@dsional PDF, identify the optimum value of
the bandwidth by means of smoothed bootstrap antpote the common volume under twe
dimensional PDFs.

The use of multidimensional PDFs is very intensivéerms of CPU time, and it is particularly so
for the case of the bootstrap estimation of thedadth, since several realizations of the PDF must
be computed for every bandwidth value tested. Ma@lability of a parallel version of the tool for
higher dimensionality and for the bootstrap alldewscarry out those computations in short times

(less than one hour in our case, using standachiaae).
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The use of a multidimensional analysis producesglesindex corresponding to every model even
after analyzing several variables, and this residkes it easy to perform evaluation of the models
under several target variables. In the contribupcesented here, we have explored one case such as
three Legendre coefficients that expand the dajitfecof zonally averaged temperature. However,
the same approach could be applied to the jointysisaof temperature, outgoing longwave
radiation or cloud cover (to name a few) such that structure of the multidimensional PDFs
(probably properly marginalized as in this conttibo) could shed light over the behaviour of

models according to known physical mechanisms.

Even though a tool of the set described in thigrdaution allows to make an objective selection of
the optimal bandwidth to be used in the generadiothe PDFs by means of smoothed bootstrap,
the case study in this paper shows that the raniirige models is quite robust even under severe
(+/- 30% of the optimal bandwidth) changes in ttendwidth used for the generation of the
multidimensional PDFs. Thus, the results obtaifedugh the use of the tools presented in this

contribution are reliable.

However, the index is extremely sensitive to thistexce of a constant bias between models and it
should not be used without previously centering daéa, a finding in agreement with previous
studies using univariate PDFs (Brands et al., 2@raAnds et al.,, 2012). The programs do not
request that the datasets are centered, but sacbtsas between the model and observations could
lead to unphysical diagnostics in several dimerssioh potential solution is to perform the
evaluation onton-dimensional centered data, so that the bias i®naatically removed.
Alternatively, the analysis can be performed remguhe bias from the model results with respect
to observations. Therefore, the analysis of the hast still be kept independent from the analysis
of the shape of the PDF presented in this coniohutThe current implementation of the
mpdf_score program provides a warning if the btaang of the dimensions is greater than 5% of
the standard deviation of the correspoding variate.

The second case study demonstrated the appligabilihe proposed methodology to multivariate
and multidimensional data using data from oceanpgcaSST and SSH variables too. In addition,
and although it is not part of the proposed teamaidhis case study also demonstrated the potential
of the use of a preprocessing step for the reduaifothe dimensionality of the data, based on a
PCA analysis of the original dataset in this cadd@s shows that the method can potentially be

applied to a large family of environmental problems
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The overall evaluation of environmental models mplex task and different performance scores
detect different weak or strong points of the ald# global models. We hope that the addition of a
new methodology and tools that allow its easy apgilbn by other researchers make it easier the

identification in future experiments of areas ofdals that can be improved.
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Table 2. Vaues of the multidimensional S score corresponding to different values of the
bandwidth parameter and associated rankings that would correspond to the models,
when compared with ERA40 reanaysis data

h=04 h=05 h=0.6 h=0.7 h=0.8
Model Sscore rank S score rank Sscore rank S score rank S score rank
BCM2.0 0.45 10 0.48 9 0.51 9 0.53 9 0.56 9
ECHAMS5 0.45 9 0.47 10 0.48 10 0.50 10 0.51 10
GFDL- 0.55 8 0.58 8 0.60 8 0.61 8 0.63 8
CM2.0
GFDL- 0.58 7 0.60 7 0.62 7 0.64 7 0.65 7
CM2.1
HADGEM1 0.66 5 0.69 4 0.71 4 0.72 4 0.73 4
MIROCS3.2- 0.62 6 0.65 6 0.67 6 0.70 6 0.71 6
HR
MIROCS3.2- 0.66 4 0.68 5 0.70 5 0.72 5 0.73 5
MR-RUNO1
MIROCS3.2- 0.69 2 0.72 2 0.74 2 0.75 2 0.77 2
MR-RUNQ2
MIROCS3.2- 0.69 3 0.71 3 0.73 3 0.74 3 0.75 3
MR-RUNO3
MRI-RUNO1 0.25 13 0.27 13 0.29 13 0.31 13 0.33 14
MRI-RUNO2 0.25 14 0.27 14 0.29 14 0.31 14 0.33 13
MRI-RUNO3 0.25 11 0.28 11 0.30 11 0.32 11 0.34 11
MRI-RUNO4 0.25 12 0.27 12 0.29 12 0.32 12 0.34 12
MRI-RUNO5 0.23 15 0.25 15 0.28 15 0.30 15 0.32 15
NCEP 0.80 1 0.81 1 0.82 1 0.83 1 0.84 1

Table 4. Global rankings for the models according to their representation of the daily
zonally averaged temperature in Errasti et al. (2013) and according to the methodology
proposed in this contribution (3D-PDF).

Errasti et al. 2013 rank 3D-PDF rank
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Multi-objective environmental model evaluation by means of multidimensional
kernel density estimators:. efficient and multi-cor e implementations

Highlights:

The performance index based on the area under two PDFs is extended to severd
dimensions.

The evaluation of the performance of models can be done for severa variables,
resulting in asingle skill score.

A fast and parallel implementation that allows to apply the method with highly
dimensional problemsis presented.

The method isillustrated with two case-studies.

The sensitivity of the results to the bias between models and observations or the

bandwidth is presented.





