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A methodology for integrating the rigid body dynamics for the analysis of multibody systems is presented.  
The novelty lies in the fact that the equations system is solved directly by means of central differences as  
second  order  integration  method,  whilst  to  obtain  the  best  approximation  each  time  instant  the  
equilibrium is solved iteratively applying the exact Newton method. Thus, it is possible to achieve the  
system solution directly without having to reduce the differential order. This decreases the number of  
unknowns. In return, it  is necessary to set out a linearization of the equations. The rotation of each  
element is described by parametrization under unit quaternion. In this paper the necessary developments  
for the modelization of the spherical and rotational joints are included. The imposed constraints by these  
joints, as well as by the quaternions norm, are introduced in the model through the null space matrix. The  
reactions produced by these constraints are eliminated from the system by the null space, too. Several  
examples have been analysed through the implementation of the methodology in Octave. This allowed to  
verify  the  accuracy  of  the  method  comparing  with  results  from different  commercial  software.  The  
examples also include benchmark problems.
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1. Introduction

There are several possible approaches for the resolution of the multibody systems dynamics, depending on 
the variables employed, the parametrization of the orientation of every solid used, the formulation of the 
dynamical equilibrium followed to achieve the equations to integrate, the method applied for the integration  
of the equations, and the methodology chosen for the treatment of the constraints. [1–4]. The Principles of 
mechanics such as Lagrange's equations, Newton's laws, Hamilton's canonical equations or virtual powers 
constitute the basis for formulating the multibody systems dynamics and lead to the final form of the motion  
equations. These equations together with the constraints imposed by the joints form a system of differential  
algebraic equations (DAE's) [5,6].

A common way to  solve  the  problem is  to  transform it  in  a  system of  ordinary  differential  equations  
(ODE’s),  for  which there  are  several  options  [7].  In  the  stabilized Lagrange formulation the  constraint 
equations are derived twice. Afterwards the Baumgarte stabilization  [8] is applied to avoid the breaking 
down of the system, due to constraint drift. Another solution method for constraint optimization problems is 
the well known augmented Lagrange method, Bayo applied it to the dynamics of constrained mechanical 
systems [9]. In this paper is described the use of penalty factors as a technique to enforce the satisfaction of 
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kinematic  constraints  with  a  Lagrangian  formulation.  A wide  definition  of  both  formulations  and  their 
implementation in commercial codes is included in [10], by Cuadrado. In [11], Blajer exhibits in its work a 
geometric representation of the formulation of the augmented Lagrange, as well as the application in systems 
with singularities. Another interesting approach can be found in González [12], who uses the penalty factors 
present in the augmented Lagrange formulation with the aim to determine the reaction forces in redundant  
constrained dynamic systems, in order to introduce the physical properties of the system in the model. On 
this point it is worth noting the work of Pappalardo  [13], who examines different computational methods 
including augmented formulation and,  demonstrates  that  the algorithm based on the combination of  the  
natural absolute coordinate formulation [14] with the Udwadia-Kalaba equations is the most effective. In the 
vast majority of works the Lagrange equations are taken as starting point but it is also possible to employ the 
canonical equation of Hamilton which leads to the formulation of augmented Hamilton as in [15]. Another 
formulation to reduce the system to the minimum variables number and reach to an ODE is through the null  
space of the constraints Jacobian, as can be found in [16]. In this respect, an excellent revision about the null 
space formulation can be found in  [17] by Laulusa.  Furthermore,  Jalón in  [18],  it  is  contributed to the 
resolution and clarification of the multiplicity of solutions for the constraint equations and it is focused on  
three method mainly with each other the null space. The advantage of the null space formulation is that the 
Lagrange multipliers are eliminated, however, it has a disadvantage against the augmented Lagrange method  
and it is the need to solve the position and velocity problems of the mechanism in every instant. In the same  
way, other formulations can be mentioned such as the Kane method [19], which also leads to a system with 
the minimum set  of coordinates.  Once the DAE’s system is transformed to get  an ODE’s system, It  is  
frequent to reduce it to an order 1 system in exchange for increasing its dimension, afterwards solving it with 
the numerical tools existing for the purpose; these can be explicit methods such as Runge-Kutta or Adams-
Bashforth, or implicit methods including the Trapezoidal Rule or Adams-Moulton.

Another alternative is to solve the DAE's through methods of direct integration. Traditionally, it has been 
employed methodologies based on backward differentiation formulas (BDF) [20–22]. The implementation of 
BDF in general purpose solvers presents serious numerical difficulties and these are more severe for index 
three problems such as constrained multibody systems. Furthermore, it  is also possible to find works in  
which BDF have been replaced by another type of formulation. In [23] for example, unlike approaches based 
on the resolution of order 2 systems such as [24,25] or stabilization as in [26,27], an algorithm is presented 
that uses the implicit method of Newmark [28], to discretize the order 3 DAE’s directly; as a consequence 
this requires that the constraints be fulfilled in every time interval, resulting in a non-linear algebraic system  
that is solved by some method of the quasi Newton type. In [29],  the implementation of the method of 
Hilber-Hughes-Taylor [30],  is presented, which is suitable for the solution of DAE's in the simulation of  
mechanical systems with contacts and flexible bodies. In addition to BDF, it is also used the implicit method  
of Runge-Kutta  [31,32], being the trapezoidal method one of the best known. On the one hand, the main 
advantages are that implicit Runge-Kutta does not suffer from system discontinuities or changes in the order  
or time step as BDF. On the other hand, the resulting set of equations is quite large and involved.

The  vast  majority  of  these  method  reduce  the  differential  order  of  the  equations  system  to  apply  the  
integration method at the expense of increasing the size of the system. One of the target of this work is to 
integrate directly the second order differential equation system. Obviously, the integration method has to be 
able to accurately integrate up to second order. Normally, the model is defined with dependant coordinates,  
hence, another target is to obtain a system with a minimum set of variables but without having to solve the 
position  or  velocity  problem to  calculate  all  of  coordinates  of  the  system.  The equations  of  movement 
presents  one  nonlinearity  on  account  of  the  product  of  the  velocities.  It  is  common  to  approach  the 
integration algorithm in terms of the acceleration and solve the system avoiding the linearization of the  
nonlinear equations. The third target is to improve the accuracy of the solution by linearizing the equations in  
an exact manner without using an approximate form.

In this work to be able to accomplish the targets and evaluate the methodology in a more diverse set of  
systems, the Cartesian coordinates are used by locating the centre of the reference system in the centre of  
mass  of  the  body.  Due  to  reasons  of  algebraic  simplicity  and  computational  efficiency,  the  unit 
representation of the quaternion is a convenient choice to define the orientation of each element  [33]. The 
system of  equations  obtained through the  equations  of  Newton-Euler  is  solved directly  by a  numerical  



integrator. The method employed is central differences, being a fast and easy to implement method. The 
benefit is to avoid having to duplicate the dimension of the system to reduce the differential order of the  
equations, as is usually done. In order to find the best approximation at each instant of time the system is  
solved  analytically  by  means  of exact  Newton  method  [34–36].  Not  only  the  nonlinear  Newton-Euler 
equations  are  linearized  but  also  the  constraint  equations.  As  it  is  known,  this  iterative  process  finds 
successively better approximation to the roots by means of the exact derivative of the function. Therefore, in 
this work, it will denominate exact Newton to differentiate it from other procedures that use approximate  
derivatives such as quasi Newton. On that account, the difference between the well-known direct application 
of the trapezoidal method (TM) to the index-three form lies in the use of exact Newton method apart from  
TM is an implicit method. A similar case of TM application can be found in Gavrea  [23]. The algebraic 
constraints equation are introduced in the system by using the null space and hence, reducing the model 
dimension and eliminating the Lagrange multipliers. This fact allows to obtain a less demanding integration 
compared to augmented Lagrange or penalty formulation and it is possible to implement an explicit method. 
On account of having applied a second order numerical integrator, it is not necessary to resolved the position 
and velocity problem of the complete mechanism in every instant of time so that the calculation time is 
improved. This provides an important advantage compared with the classical null space formulation. The 
validity of the method is demonstrated by the resolution of several mechanical systems included in the study  
carried out by González  [37], for the standardization of multibody problems and for the evaluation of the 
error. The methodology has been implemented with a preliminary programming in Octave [38]. Finally, the 
results obtained are compared to commercial software such as Msc Adams. Due to the size of problems and 
the type of programming language used, the comparison is focused only on the accuracy.

This work is organized as follows: the calculation of the basic magnitudes is included in the section 2. The 
rotation of the body is express by unit quaternion, therefore, it  is convenient to define previously some  
properties. Section 3 presents the approach of the dynamic equations. The linearization of the Newton-Euler  
equations by exact Newton method provides an adequate and accurate expression to apply the integration 
method. In section 4, the central different method is used to solve the equation of movement and the in the 
section 5 the constraint equation is introduced by null space method. This leads to the final expression where 
the constraint reactions force have been wiped out and the independent coordinates are the only unknown 
variables. Section 5 also details the constraint equations of the quaternion norm as well as the spherical and 
rotation joint. The discussion of numerical application is shown in section 6. Three benchmarking examples 
have  been  developed  including  spatial  redundantly  constrained  systems  and  mechanism  with  singular  
positions. 

2. Calculation of basic magnitudes

In this section the basic magnitudes needed to raise the equations of the movement will be calculated, and 
after that, the constraint equations will be established.

2.1. Quaternion

A unit  quaternion  defines  the  orientation  of  a  body respect  to  the  global  reference  frame and may be 
represented in matrix form by 4-dimensional column matrix:

q={q0 q1 q2 q3}
T (1)

Applying the Rodrigues equation [39] to the unit quaternion, it can be obtained the rotation matrix:

R(q)=[ q0
2+q1

2−q2
2−q3

2 2(q1 q2−q0 q3) 2 (q1 q3+q0 q2)
2(q1 q2+q0 q3) q0

2−q1
2+q2

2−q3
2 2 (q2 q3−q0 q1)

2 (q1 q3−q0 q2) 2(q2 q3+q0 q1) q0
2−q1

2−q2
2+q3

2 ] (2)

At the same time, the angular velocity and acceleration matrices are defined in world-fixed frame as follows:



Ω= Ṙ(q)R (q)T=2[ 0 −q1q̇ 2+q2 q̇1+q3 q̇0−q0 q̇3 −q1 q̇3+q3 q̇1+q0q̇ 2−q2 q̇0

−q2 q̇1+q1 q̇2+q0 q̇3−q3 q̇0 0 −q2 q̇3+q3 q̇2+q1 q̇0−q0 q̇1

−q3 q̇1+q1 q̇3+q2 q̇0−q0 q̇ 2 −q3 q̇2+q2 q̇3+q0 q̇1−q1 q̇0 0 ] (3)

And

Ω̇=2[ 0 −q1 q̈2+q2 q̈1+q3 q̈0−q0 q̈3 −q1 q̈3+q3 q̈1+q0 q̈2−q2 q̈0

−q2 q̈1+q1 q̈2+q0 q̈3−q3 q̈0 0 −q2 q̈3+q3 q̈2+q1 q̈0−q0 q̈1

−q3 q̈1+q1 q̈3+q2 q̈0−q0 q̈2 −q3 q̈2+q2 q̈3+q0 q̈1−q1 q̈0 0 ] (4)

Hence, the vectors corresponding to angular velocity and acceleration are:

ω={ω x

ω y

ω z
}=2{−q3 q̇2+q2 q̇3+q0 q̇1−q1 q̇0

−q1 q̇3+q3 q̇1+q0 q̇2−q2 q̇0

−q2 q̇1+q1 q̇2+q0 q̇3−q3 q̇0
} (5)

And

ω̇={ω̇ x

ω̇ y

ω̇ z
}=2{−q3 q̈2+q2 q̈3+q0 q̈1−q1 q̈0

−q1 q̈3+q3 q̈1+q0 q̈2−q2 q̈0

−q2 q̈1+q1 q̈2+q0 q̈3−q3 q̈0
} (6)

An additional advantage of this quaternion approach is that to be used with central differences, no first-
derivative products appear, which happens when using Euler’s angles. This advantage is relative, because in 
the second term of Euler's equations, this problem still appears. In the other hand the disadvantage is to have 
to work with four variables and the non-linear constraint:

∑
i=0

3

qi
2=1 (7)

2.2. Global coordinates of a point starting from local ones

The idea is to get the global coordinates of a point c of the element p when knowing the local coordinates.

Figure 1: Point c  in global coordinates.

If the overline means that it is expressed in the local body reference frame. The local coordinates of point c, 
referred to the local system of element k are:

r̄ ck={ x̄ck ȳck z̄ ck }T
(8)

Y

Z

y
x

zk

r c
r k

¯r ck
c

X



And r k the global coordinates of the centre of mass (CoM) of element k:

rk={ x k y k z k }T
(9)

The position of the point c  in the global system is:

r c=rk+R(qk ) r̄ ck (10)

Let it be  q k the quaternion that defines the orientation of element  k and  R(qk ) its rotation matrix. If one 
wants to carry out a linear approximation, it is necessary to develop the expression (10) under Taylor series. 
This is necessary to impose constraints in the like of the spherical joint or similar. If q k

0 is the quaternion in 
the position where the series development is carried out:

r c=R(qk
0) r̄ ck−S p (qk

0 , r̄ ck)q k
0+r k+S p(qk

0 , r̄ ck)qk (11)

Where S p(qk
0 , r̄ ck) is a matrix resulting from the linearization, and all the terms are known:

S p (qk
0 , r̄ck )=

[ (2qk 0
0 x̄ck−2qk3

0 ȳ ck+2qk 2
0 z̄ck ) (2 qk1

0 x̄ ck+2qk 2
0 ȳck+2qk 3

0 z̄ ck)

(2qk 3
0 x̄ck +2 qk0

0 ȳ ck−2qk 1
0 z̄ck) (2qk 2

0 x̄ ck−2qk 1
0 ȳ ck−2qk 0

0 z̄ ck)

(−2 qk 2
0 x̄ck+2qk 1

0 ȳck+2qk 0
0 z̄ ck) (2 qk 3

0 x̄ ck+2qk 0
0 ȳ ck−2qk 1

0 z̄ ck)

(−2 qk2
0 x̄ck+2qk 1

0 ȳck+2qk 0
0 z̄ ck) (−2qk 3

0 x̄ck−2qk 0
0 ȳ ck+2qk 1

0 z̄ck )

(2qk 1
0 x̄ck+2qk 2

0 ȳck +2qk3
0 z̄ ck) (2 qk0

0 x̄ck−2qk 3
0 ȳck+2qk 2

0 z̄ ck)

(−2qk 0
0 x̄ ck+2qk 3

0 ȳ ck−2qk 2
0 z̄ ck) (2qk1

0 x̄ck+2qk 2
0 ȳck +2 qk3

0 z̄ ck)
]

Equation (11) allows to write in a compact way:

r c=R(qk
0) r ck

L −S v(q k
0, r̄ ck)x k

0+S s(qk
0, r̄ck )x k (12)

Naming:

S s(qk
0, r̄ck )=[ I 3 x3 S p (qk

0 , r̄ ck) ] (13)

S v (qk
0 , r̄ck )=[ 03 x 3 S p (qk

0 , r̄ck )] (14)

x k={r k qk }T (15)

2.3. Global coordinates of a vector from the local ones

 Let it be v̄ k the local coordinates of a vector belonging to a solid k:

v̄ k={v̄ kx v̄ ky v̄kz }
T (16)

It can be expressed in global coordinates as follows:

v k=R(qk ) v̄k (17)



By linearizing equation (17)  through the Taylor  series,  one can obtain an expression similar  to  that  of 
equation (11):

v k=R(qk
0 ) v̄k−S p (qk

0 , v̄k )qk
0+S p(qk

0, v̄k )qk (18)

If the expression is compact, it can be written as:

v k=R(qk
0 ) v̄k−S v(qk

0, v̄k )x k
0+S v(qk

0 , v̄k )x k (19)

With:

S v (qk
0 , v̄ k)=[ 03 x 3 S p(qk

0 , v̄ k) ] (20)

3. Approach of the equations

Considering that they are rigid bodies, each element can be defined by the position of one point in the space  
and the orientation of a  local reference system attached to the body. Additionally, if the local reference 
system centre coincides with the centre of gravity, and its axis are in the inertia main directions, the inertia  
tensor will become a diagonal matrix.

I g=[ I x 0 0
0 I y 0
0 0 I z

] (21)

Under these conditions and applying the principle of the kinetic moment, one can obtain Euler’s equations:

T e= I g ω̇ +ω×I gω (22)

Where  T e is the vector of external torques, and had already defined  ω and  ω̇ in equations (5) and (6), 
respectively. For a solid k this equations is:

{T ekx

T eky

T ekz
}=[ I kx 0 0

0 I ky 0
0 0 I kz

] { ˙ω kx

˙ω ky

ω̇ kz
}+[ 0 ω kz I kz −ω ky I ky

−ω kz I kz 0 ω kx I kx

ω ky I ky −ω kx I kx 0 ] {ω kx
ω ky
ω kz

} (23)

However, one problem with this equation is that the angular velocity cannot be approached as the derivative  
of the rotation angles with respect to x, y or z. Therefore, it cannot be integrated directly in this way. To do 
so, it is necessary to set one expression out of the angular velocity under function of some parameters which 
define the orientation; these can be Euler’s angles, quaternions, or even directly the elements of the rotation 
matrix.

According  to  Euler’s  equation,  a  differential  problem  with  nonlinear  equations  must  be  addressed.  In 
optimization, among all of the linearization methods, exact Newton method will be apply. As it is known, it  
is a quadratic converge method and provides higher level of accurate than quasi Newton method. This is 
because the exact derivative is used to find the best approximation at each instant of time. The algorithm is 
obtained from the truncated Taylor series development for the term of grade 2.

f (x)≃f (x0)+ f ' (x0)(x−x0)+
f ' '(ξ)
2 (ξ)2 (24)

Returning to Euler’s equations of dynamics (equation (22)), expressed in a local system attached to the solid 
k: 



{ ¯T ekx

¯T eky

¯T ekz
}={ I kx

˙̄ω kx

I ky
˙̄ω ky

I kz ˙̄ω kz
}+{ω̄ kyω̄ kz (I kz− I ky)

ω̄ kxω̄ kz (I kx−I kz)
ω̄ kxω̄ ky(I ky−I kx)

} (25)

If the expressions for the acceleration is added to equation (25):

{ ¯T ekx

¯T eky

¯T ekz
}={2 I kx(−q̄k 3

¨̄qk 2+ q̄k 2
¨̄qk 3+q̄k 0

¨̄qk 1−q̄k1
¨̄qk0)

2 I ky(−q̄k 1 ¨̄qk 3+q̄k 3 ¨̄qk 1+ q̄k 0 ¨̄qk 2− q̄k2 ¨̄qk0)
2 I kz (−q̄k 2

¨̄qk 1+q̄k 1
¨̄qk 2+ q̄k 0

¨̄qk 3− q̄k3
¨̄q k0)

}+{ω̄ kyω̄ kz ( I kz−I ky)
ω̄ kxω̄ kz ( I kx−I kz )
ω̄ kx ω̄ ky( I ky−I kx)

} (26)

The problem with this expression are the cross products of ω̄ j ω̄ i, which would result in a representation of 
cross products in the shape ˙̄q j

˙̄qi. To solve this, a development in Taylor series of the cross products is carried 
out:

ω̄ yω̄ z≃ω̄ y
0 ω̄ z

0+ω̄ y
0 (ω̄ z−ω̄ z

0 )+ω̄ z
0(ω̄ y−ω̄ y

0 )=−ω̄ y
0 ω̄ z

0+ω̄ y
0 ω̄ z+ω̄ z

0 ω̄ y (27)

Due to the fact that central differences are going to be used, the only variation that can happen in the angular  
velocity is owing to the derivatives of the quaternions. Thus, the expression (27) can be written as:

{T̄ ekx

T̄ eky

T̄ ekz
}+{ω̄ ky

0 ω̄ kz
0 (I kz−I ky)

ω̄ kz
0 ω̄ kx

0 (I kx−I kz)

ω̄ kx
0 ω̄ ky

0 (I ky−I kx)
}=

{2 I kx(−q̄k 3 ¨̄qk 2+ q̄k 2 ¨̄qk 3+q̄ k0 ¨̄qk1−q̄k 1 ¨̄qk 0)

2 I ky(−q̄k 1 ¨̄qk 3+ q̄k3 ¨̄qk1+ q̄k 0 ¨̄qk 2− q̄k 2 ¨̄qk 0)

2 I kz(−q̄k 2
¨̄qk 1+ q̄k1

¨̄qk 2+ q̄k 0
¨̄qk 3−q̄k3

¨̄qk0)
}+{ω̄ ky

0 ω̄ kz ( I kz−I ky)

ω̄ kz
0 ω̄ kx( I kx−I kz )

ω̄ kx
0 ω̄ ky( I ky−I kx)

}+{ω̄ ky ω̄ kz
0 (I kz− I ky)

ω̄ kzω̄ kx
0 (I kx−I kz)

ω̄ kxω̄ ky
0 (I ky−I kx)

}
(28)

Adding the expression of the angular velocity in the equation (28), one can write the next by expressing the 
quaternion in local coordinates:

T̄ ek+ ¯T CRk(q̄k , ˙̄qk
0)=M̄ Rk (qk ) ¨̄qk+C̄ Rk (q̄k , ˙̄qk

0) ˙̄qk (29)

It is worth pointing out the Euler’s Rotation Theorem, which states that a rigid body or coordinate frame can  
be brought from an arbitrary initial orientation to an arbitrary final orientation by a single angle rigid rotation 
through a principal angle  θ  about the principal axis  e={e1 e 2 e 3}T ; the principal axis fixed in both the 
initial and final orientation. Thus, taking into account the Euler’s Theorem it can be noted that q̄=q since as 
it is known quaternion is defined as:

q={
q0

q1

q2

q3

}={
cos( θ2 )

e1sin ( θ2 )
e 2 sin( θ2 )
e3 sin( θ2 )

} (30)

Thus, the equation (29) can be written:



T̄ ek+ ¯T CRk(qk , ˙̄qk
0)=M̄ Rk (qk ) ¨̄qk+C̄ Rk (qk , ˙̄qk

0) ˙̄qk (31)

With:

M̄ Rk (qk )=[−2 I kx qk 1 2 I kx qk 0 −2 I kx qk 3 2 I kx qk 2

−2 I ky qk 2 2 I ky qk 3 2 I ky qk0 −2 I ky qk 1

−2 I kz qk3 −2 I kz qk 2 2 I kz qk1 2 I kz qk 0
] (32)

C̄Rk (qk , ˙̄qk
0 )=

[−2(ω̄ ky
0 qk 3+ω̄ kz

0 qk 2)(I kz− I ky) 2(ω̄ kz
0 qk 3−ω̄ ky

0 qk 2)( I kz−I ky)

−2 (ω̄ kx
0 qk 3+ω̄ kz

0 qk1)( I kx−I kz) 2(ω̄ kz
0 qk 0−ω̄ kx

0 qk 2)(I kx−I kz)

−2(ω̄ kx
0 qk 2+ω̄ ky

0 qk1)(I ky−I kx) 2(ω̄ ky
0 qk 0+ω̄ kx

0 qk 3)( I ky−I kx)

2(ω̄ kz
0 qk 0+ω̄ ky

0 qk 1)( I kz−I ky) 2(ω̄ ky
0 qk0−ω̄ kz

0 qk1)(I kz−I ky)

2(ω̄ kx
0 qk1−ω̄ kz

0 qk 3)( I kx−I kz) 2(ω̄ kx
0 qk 0+ω̄ kz

0 qk 2)(I kx−I kz)

2(ω̄ kx
0 qk 0−ω̄ ky

0 qk 3)(I ky−I kx) 2(ω̄ ky
0 qk 2−ω̄ kx

0 qk1)(I ky−I kx)
]

(33)

¯T CRk (qk , ˙̄qk
0 )={ω̄ ky

0 ω̄ kz
0 ( I kz−I ky)

ω̄ kz
0 ω̄ kx

0 ( I kx−I kz )

ω̄ kx
0 ω̄ ky

0 ( I ky−I kx)
} (34)

Where M̄ RK (qk ) is the mass matrix,  ¯T CRk is the indirect forces vector resulting from the linearization, C̄ Rk 
gathers the linearized components proportional to the velocity, and T̄ ek is the vector of the external torques.

These expressions are only valid when the terms are uttered in the coordinates system of the rigid body along 
its  principal  axes.  However,  it  is  desired  to  have  them referred  to  the  global  system.  So,  under  these  
conditions the rotation matrix has to be included. If one considers:

R4
T (qk)=[ 1 0T

0 RT (qk)] (35)

One can have:

q̄k=R4
T (q k)qk=qk (36)

˙̄qk=R4
T (q k)q̇k (37)

¨̄qk=R4
T (q k)q̈k (38)

Under these circumstances, it can be suggested:

T̄ ek+T̄ CRk (qk , ˙̄qk
0)=M̄ Rk (qk)R4

T (qk)q̈k +C̄ Rk (qk , ˙̄qk
0 )R4

T (qk) q̇k (39)

Therefore, taking into account:



˙̄qk
0={ ˙̄qk 0

0

˙̄qk 1
0

˙̄qk 2
0

˙̄qk 3
0 }=R4

T (qk) q̇k
0 (40)

And premultiplying the expression (39) by the rotation matrix, it is obtained:

R(qk)T̄ ek +R(qk)T̄ CRk (qk , ˙̄qk)=R(qk) M̄ Rk (qk )R4
T (qk) q̈k+ R(qk)C̄ Rk (qk , ˙̄qk )R4

T (qk) q̇k (41)

This allows to rewrite the equilibrium equation as follows:

T ek (t )+TCRk (qk (t) , q̇k (t ))=M Rk (qk (t)) q̈k (t )+C Rk (qk (t) , q̇k (t )) q̇k (t ) (42)

Where:

T ek (t)=R(qk (t))T̄ ek(t )

T CRk (qk(t ) , q̇k (t))=R(qk (t)) ¯T CRk (qk (t) , ˙̄qk(t ))

M Rk (qk (t ))=R(q k(t ))M̄ Rk (qk (t))R4
T (qk (t ))

C Rk (qk (t ) , q̇k (t ))=R (qk (t ))C̄ Rk (qk(t ) , ˙̄qk (t))R4
T (qk (t ))

The forces and lineal displacements have still to be included by means of Newton equation:

F ek=m k r̈ k (43)

Where  F ek  is the vector of the external force,  m k is the mass of body  k and,  r̈ k  is the acceleration of the 
centre of mass. Thus, the equilibrium equation can be written:

M k(x k (t )) ẍ k (t )+C k (xk (t ) , ˙̇x k (t )) ẋ k(t )=F Ek (t )+FCRk (xk (t ), ẋ k(t )) (44)

Being:

M k=[ mk I 3 x3 03 x 4

03 x3 M Rk
] (45)

C k=[ 03 x3 03 x 4

03 x3 C Rk
] (46)

F Ek={F ek

T ek
} (47)

F CRk={ 03 x 1

T CRk
} (48)

x k={ xk yk z k qk0 qk 1 qk 2 qk 3 }T (49)

In spite of applying an explicit method, the matrix C k and the vector F C R k depend on the velocity and it will 
be necessary to solve the equation iteratively.



4. Numeric integration by central differences

As it  is  known,  the  method  of  Central  Differences  is  B-stable  and  the  maximum time  increment  that  
guarantees the stability is limited by the value of the highest frequency representative of the system, equation  
(50).  Normally,  this  should  not  condition the  calculation since  in  a  system formed by rigid  bodies  the 
frequency is related to the stiffness of the springs and is not as high as it can be in systems formed by 
deformable solids. Nonetheless, if frequency of the system were too high, it would be possible to continue 
using central differences together with some modal truncation techniques but this assumption is not included  
in this work. 

Δ tmax=
2

ωmax
(50)

The system of equations (44) defines the behaviour of one body alone, but if one has a system composed by 
n  bodies, the solution vector will be made up of:

x (t )={ x1(t)
x 2(t )

..
x n(t )} (51)

Considering the equilibrium equation for several bodies, through expansion and assembly it can be laid out 
the subsequent set of equations:

M (x (t )) ẍ (t )+C (x (t) , ẋ (t)) ẋ (t )=F E (t )+FCR (x (t ) , ẋ (t ))+F R(x (t )) (52)

Where:

M : is the Mass matrix. It is obtained from the assembly of the M k of each body.

C : is the Damping matrix. It is obtained from the assembly of the C k  of each body and it is composed of 
the linearized components proportional to the velocity.

F E: is the External forces and torques vector applied on the system.

FCR: is the Indirect forces vector coming from linearizations.

F R: is the constraint Reaction forces vector; those generated by the joints between elements.

It is desired to solve equation (52) by means of central differences, as it has been formulated. The terms 
dependent on x (t ) are already calculated, because of being an explicit method. Those dependent on ẋ (t ), 
though, are not. Thus, each iteration will have to be solved in an iterative way. As it can be seen in Avilés’s 
book [40], applying the central differences approach:

( M (x (t )) 1

(Δ t )2
+C (x (t ) , ẋ(t)) 1

2 Δt ) x(t+Δ t )=

=F E (t )+FCR( x(t ) , ẋ (t))+FR( x (t ))+(−M ( x(t)) 1
(Δ t)2

+C ( x(t) , ẋ(t )) 1
2 Δt ) x (t−Δ t)+( M (x (t )) 2

(Δ t )2) x(t)
(53)

The constraint imposed by the quaternion norm can be directly introduced in the equations system, but it is  
preferable to include it into the constraints. In a more compact way equation (53) can be written as follows:

A(x (t) , ẋ (t)) x (t+Δ t )=E (x (t ) , ẋ (t ))+F R(x (t ))+B (x (t ) , ẋ (t ))x (t−Δ t)+ D (x (t)) x (t) (54)



Where:

A(x (t) , ẋ (t))=( M (x (t)) 1
(Δ t )2

+C (x (t ) , ẋ (t )) 1
2 Δt ) (55)

B(x (t ), ẋ (t))=( −M (x (t )) 1

(Δ t)2
+C (x (t) , ẋ (t)) 1

2Δ t
) (56)

D(x (t))=( M (x (t)) 2
(Δ t )2 ) (57)

E (x (t ) , ẋ (t ))=F E (t )+F CR(x (t ) , ẋ (t )) (58)

It must be taken into account that, when introducing relationships between elements such as joints, it is  
necessary to solve the equilibrium equation for all the elements at the same time. The constraint reaction  
forces vector is not included because it will be removed by means of the null space of the restriction matrix.

Equation (54) is nonlinear, because in A, B and E  appears ẋ (t ) which, in its turn, depends on x (t+Δ t ). It is 
necessary to solve each equilibrium step iteratively. The sequence of the iterative proccess for an instant t  
will be:

1) Beginning from x (t ), x (t−Δ t ), ẋ (t−Δ t ) and F E (t ).

2) With x (t ) one can get D(x (t )). This is valid for all calculation in this instant.

3) Find  one  initial  value  for  the  derivative,  which  can  be  the  one  corresponding  to  the  previous 
iteration:

ẋ(t )j= ẋ (t)0≃ ẋ (t−Δ t)= 1
2Δ t

( x(t)−x(t−2Δ t))

4) With this ẋ (t ) j one can calculate A ( x (t) , ẋ (t) j) , B ( x (t) , ẋ (t) j ) and E ( x (t ) , ẋ (t ) j ) .

5) Apply the method of the null space to introduce the constraints. The term F R(x (t)) is cancelled in 
this step.

6) Solve the system (54), including the null space matrices of the constraints, to find x (t+Δ t) j.

7) With this x (t+Δ t) j one calculates again ẋ (t ) j +1 through:

ẋ(t )j+1≃
1

2Δ t
( x(t +Δ t) j−x( t−Δ t))

The stopping criterion can be based on the velocity or on the displacement. If  ẋ (t ) j +1− ẋ (t ) j<ε , then one 
continues with the next  time instant;  if  not,  go back to  (4))  with the new  ẋ (t ) j +1.  The other  option is
x (t+Δ t) j+1− x (t+Δ t ) j<ε .  The latter requires finding a first  approximation that  could be  x (t ) which is 
known.

For the initial step, things are different. As ẋ (t 0) is known, it not necessary to iterate and it can be done:

1) One has x (t0), ẋ (t0) and F E (t0 ).



2) Matrices are expanded and assembled to obtain M (x (t0 )), C (x (t0) , ẋ (t0)) and FCR(x (t0) , ẋ (t 0)).

3) x (t1) is calculated by solving the following equations system:

ẋ (t0)≃
x (t1)− x (t−1)

2Δ t
 

ẍ (t0)≃
x (t1)− x (t 0)+ x (t−1)

Δ t2

M (x (t0)) ẍ (t 0)+C (x (t0) , ẋ (t 0)) ẋ (t0)=FE (t0)+FCR(x (t0) , ẋ (t 0))+F R(x (t0))

Hence, it is a system formed by three equations and three unknowns: ẍ (t 0), x (t−1) and x (t 1). It is important 
to keep in mind that to this equations should be added the constraints equations by means of null space.

5. Constraints

5.1. Implementation of the constraints

In multibody systems, the vast majority of constraint equations are nonlinear and to apply the null space  
method adequately, restrictions must be linearized. This can be realized by means of the development in 
Taylor series. Thus, the constraint equations can be expressed with the following form:

H x=b (59)

Where the matrix H  is formed by the coefficient of the variables; x  are the coordinates of the system; and b 
is the vector of the independent terms. It is important to point out that matrix H  is not the Jacobian matrix. 

The system (59) is indefinite which implies that there are infinite solutions and, as it is known, it is possible  
to express all of them as:

x=x p+N Hα (60)

Where x p is a particular solution, N H is the null space of the matrix H  and, α  is the vector of independent 
coordinates of the system. Within all these infinite solutions obtained, only those fulfilling the equilibrium 
equation will be part of the solution. Posing equation (60) for a time instant t+Δ t , one reaches to:

x (t+Δ t )=x p(t+Δ t)+ N H α (t+Δ t ) (61)

If substituted in the equilibrium equation (54), an equation system in the following way is achieved:

A(x (t ) , ẋ (t ))( x p (t+Δ t)+N Hα (t+Δ t)) =
=E (x (t ) , ẋ (t ))+F R(x (t ))+B (x (t ) , ẋ (t ))x (t−Δ t)+D(x (t)) x (t)

(62)

It should be noted that x (t ) and x (t−Δ t ) are known, ẋ (t ) however not, since it depends on x (t+Δ t ). For 
this reason the system must be solved iteratively. 

According to it is proposed, the equation (62) can not be solved. The the constraint joints are express in term 
of  quaternions  meanwhile  the  Newton-Euler  equations  uses  rotations.  This  fact  provides  that  the  force 
generated by the restrictions are not cancelled when the equilibrium is raised. In finite elements, under the  
supposition of small displacements, this situation can be resolved premultiplying by the transpose of the null  
space N H. Nonetheless, this is not possible due to the matrix H  does not correspond with the transpose of 



the directions of the constraint efforts in terms of rotations, as it has been mentioned. As a consequence, in  
order to find a solution, the constraints have to be posed under function of the angles. Taking into account  
any restriction equation system defined as f (x )=0, it can be done: 

∑
i=1

j

d f i (x )=∑
i=1

j

( ∂ f i(x )
∂ x

dx+
∂ f i (x )

∂ y
dy+

∂ f i (x)
∂ z

dz+
∂ f i (x)
∂θ x

d θ x+
∂ f i (x)

∂θ y
d θ y+

∂ f i (x )
∂θ z

d θ z)
Generating a system in the following way:

[
∂ f 1(x )

∂ x
⋯

∂ f 1(x )
∂θ z

⋮ ⋱ ⋮

∂ f j (x )
∂ x

⋯
∂ f j (x)

∂θ z

] {
dx

dy

dz
d θ x

d θ y

dθ z

}=0

G (x (t ))Δx=0 (63)

The matrix  G (x (t )) represents the constraint efforts formulated in displacement and rotations. Therefore, 
solutions of this system are the possible infinitesimal movements of the set, approached under the rotations,  
not the quaternions. The null space of  G(x(t )) ,  NG , allows then to cancel the equilibrium equations in 
which constraint efforts appear:

N G
T F R(x (t ))=0 (64)

Consequently, constraints must not only be developed for the coordinates but also for the efforts.  Now, 
equation (62) can be written as:

NG
T A(x (t) , ẋ (t ))N Hα (t+Δ t)=

N G
T ( E(x (t ) , ẋ (t ))+B (x (t ) , ẋ (t ))x (t−Δ t)+D(x (t))x (t)−A(x (t ) , ẋ (t ))x pt(t+Δ t ))

(65)

From here on, a differentiation will be made between coordinates constraints matrix to refer to matrix H  and 
efforts constraints matrix to matrix G. An important detail lays in the fact that if  N H  varies each iteration 
inside the resolution of one  t+Δ t ,  N G  does not. On one hand, the coordinates constraints are applied to 
x (t+Δ t ),  thus,  within  a  same  instant  of  time,  matrix  H  and  obviously  N H vary  with  each  new 
approximation of x (t+Δ t) j. On that account,  the particular solution x p (t+Δ t ) also has to be recalculated 
using the following expression, being known H (x (t+Δ t ) j ) and b (x (t+Δ t ) j):

H (x (t+Δ t ) j )x p(t+Δ t ) j=b (x (t+Δ t ) j ) (66)

On the other hand, as explicit method is applied, the equilibrium is posed at the instant t  and consequently 
the forces do not vary with each iteration. Therefore, matrix G is valid for all the instant t .

In addition, it is essential to underline that now the efforts originated by the joints are under function of the 
independent coordinates, so when approaching the equilibrium of the complete system, they will be wiped  
out. Thus, the system (65) has the dimension of the number of independent coordinates and provides the 
value of those coordinates, α(t+Δ t ). To obtain all the coordinates of the system, one only has to apply the  
equation (61).

In the classical null space formulation [17,18], due to only the independent accelerations are unknown, the 
integration method just provides the independent velocities and positions. Nevertheless, in order to built the 



system of equations for the null space approach it is necessary to know all the positions and velocities of the  
model. Consequently, it will must be solved the position and velocity problem at each instant of time. In 
contrast, applying the methodology presented in this article, since it is using an integration method of order  
2, velocity and acceleration is calculates directly with equation (67) and (68), respectively:

ẋ (t )= x (t+Δ t)−x (t−Δ t )
2Δ t (67)

ẍ (t )= x (t+Δ t)−x (t)+x (t−Δ t )
Δ t2

(68)

Another important issue is how to obtain the constraints reaction forces. Once calculated displacements,  
velocities and accelerations, the equilibrium equation (54) is completely known except the reaction efforts. 
Hence, it can be easily modified in the following way:

F R (x (t))=A(x (t ) , ẋ (t))x (t+Δ t )−E (x (t ) , ẋ (t ))−B(x (t) , ẋ (t ))x (t−Δ t )−D (x (t ))x (t ) (69)

At the initial step, as  ẋ (t 0) is known, the constraint forces could be calculated directly with the following 
expression:

F R (x (t 0))=

M (x (t0))[ 2( x (t1)−Δ t ẋ (t 0))−x (t0)
Δ t 2 ]+C (x (t 0), ẋ (t0)) ẋ (t 0)−F E (x (t0))−F C R (x (t0), ẋ (t0))

(70)

Although apparently, equations (69) and (70) seem costly, it is simply multiplication of known matrix and 
vector with a cost of n 2. Remember that this constraint forces are the equivalent forces of the restrictions at  
the centre of mass.

5.2. Spherical joint

The spherical joint is obtained by imposing the position of a point of the element, see figure (2). For further 
study of the spherical joint for flexible bodies it is advisable to consult the work of Tian [41]. Let it be c  
one point common from element k  and element m.

Figure 2: Spherical joint between two bodies.

Then, the constraint of spherical joint between both bodies establishes that:

f s (xk , xm)=rk+R(q k) r̄ck−rm−R(qm) ¯rmc=0 (71)

To obtain the spherical joint equations for coordinates, if expression (71) is linearized, like in equation (11), 
one can get:
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S s(qk
j , r̄ ck) x p

j+1−S s (qm
j , ¯rcm)xm

j +1=−R(qk
j )r ck

L +S p(qk
j , r̄ ck)qk

j+ R(qm
j ) ¯r cm−S p (qm

j , ¯r cm)qm
j (72)

Expanding equations for a system of n elements and disposing in matrix form:

[ 03 x7 ⋯ S s (qk
j , r̄ ck) 03 x7 ⋯ −S s (qm

j , ¯r cm) 03 x 7 ⋯] 3x 7n{
x1

j+1

⋮
xk

j+1

⋮
xm

j+1

⋮
xn

j+1

}
7nx 1

=bs(q k
j ,qm

j )

H s (qk
j ,qm

j )x j +1=bs (qk
j , qm

j ) (73)

With:

b s(qk
j , qm

j )=−R (qk
j ) r̄ ck+S p (qk

j , r̄ck )qk
j+R(qm

j ) ¯r cm−S p(qm
j , ¯r cm)qm

j

In the other hand, for the spherical joint equations for displacement, if equation (10) is particularized for an 
instant t , the position in global coordinates of a point c of element k is achieved. If a displacement and some 
infinitesimal rotations happen, the differential displacement will be as follows:

d r c=
d r c
dx k

dx k+
d r c
dyk

dy k+
d r c
dzk

dzk+
d r c

d θ xk

dθ xk+
d r c
dθ yk

d θ yk+
d r c
dθ zk

d θ zk (74)

Which can be expressed for the case of displacements as:

d r c
dx k

={1
0
0} ;

d r c
dy k

={0
1
0} ;

d r c
dzk

={0
0
1}

Furthermore, for the case of the rotations, these will modify the term R(qk ) r̄ ck:

d r c
dθ xk

={ 0
−(R(qk) r̄ ck)z

(R(qk ) r̄ ck)y
};

d r c
dθ yk

={ (R(qk ) r̄ ck)z

0
−(R(qk ) r̄ ck )x

};
d rc

d θ zk

={−(R(qk ) r̄ ck)y

(R(qk) r̄ ck)x

0 }
Then it can be written:

d r c=[ 1 0 0 0 (R(qk) r̄ ck)z −(R(qk ) r̄ ck )y

0 1 0 −(R(qk ) r̄ ck )z 0 (R(qk ) r̄ ck)x

0 0 1 (R(qk ) r̄ ck )y −(R(qk ) r̄ ck)x 0 ] {
dx k

dy k

dzk

dθ xk

dθ yk

d θ zk

}
d r c=Qs (qk , r̄ ck)Δ xk (75)

Where:



R (qk ) r̄ ck={(R (qk ) r̄ ck)x
(R (qk ) r̄ ck)y
(R (qk) r̄ ck)z}

For the case where c is a point with known position:

Q s(qk , r̄ ck)Δ xk=0 (76)

In the other hand, if it is a joint between two elements, then:

Q s(q p , r̄ cp)Δ x p−Q s(qm , ¯r cm)Δ xm=0 (77)

These constraints have to be expanded to the total model size:

[ 03x 6 ⋯ Q s (qk
j , r̄ ck) 03 x 6 ⋯ −Qs (qm

j , ¯r cm) 03 x 6 ⋯] 3 x6n{
Δ x 1

⋮
Δ x k

⋮
Δ xm

⋮
Δ x n

}
6nx 1

=0

G s(qk ,qm)Δ x=0 (78)

5.3. Revolute joint

This is a joint of class I, where the movement is limited to a rotation around one axis, defined by its director  
vector v  as in the figure (3).

Figure 3: Revolute joint in point c  between body k  and body m. 

Therefore, the rotation joint between two elements k  and m is imposed by a common point and a common 
director vector, being its equations the following:

f s (xk , xm)=rk+R(q k) r̄ck−rm−R(qm) ¯rmc=0

f v(qk ,qm)=R (qk) v̄ k−R(qm) v̄m=0 (79)

These equations are referred to the common point. Next, equation (79) will be developed.
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To find the equations for the revolute joint for coordinates, taking into account equation (19), one can write 
equation (79) for a time instant t j+1 as:

S v (qk
j , v̄ k) xk

j+1−S v(qm
j , v̄m)xm

j +1=−R(qk
j ) v̄ k+S p (qk

j , v̄k )q p
j+R(qm

j ) v̄m−S p (qm
j , v̄m)qm

j (80)

By expanding the equations for a system of n elements and disposing in matrix form:

[ 03 x7 ⋯ S v(qk
j , v̄k) 03 x7 n ⋯ −S v(qm

j , v̄m) 03 x7 n ⋯] {
x1

j+1

⋮
xk

j+1

⋮
xm

j+1

⋮
xn

j+1

}
7nx 1

=bv(qk
j , qm

j )

H v(qk
j , qm

j ) x j+1=bv(qk
j , qm

j ) (81)

Where:

bv (k p
j , qm

j )=−R(qk
j ) vk

L+ S̄ s(qk
j ,v k

L)qk
j+ R(qm

j )vm
L− S̄ s (qm

j ,vm
L )qm

j

To  completely  build  the  revolute  joint  link,  one  must  include  the  equations  concerning  the  point.  
Subsequently, the equations remain as follows:

[ H s(q k
j ,qm

j )
H v (qk

j , qm
j )] 6 x7n

x j+1={bs (qkj , qmj )bv(qk
j ,qm

j )}6 x1

(82)

In the case of the equations of revolute joint for displacements, returning to equation (17) that defines the 
position of a vector v k  in the global system from its components in a local system v̄ k , if it is particularized 
for an instant t  and is subjected to a displacement and an infinitesimal rotation, the differential remains as:

d v k=
d vk
dxk

dx k +
d vk
dy k

dy k +
d vk
dzk

dzk+
d v k
d θ xk

dθ xk+
d v k
dθ yk

d θ yk+
d v k
dθ zk

d θ zk (83)

It can be written:

d v k=[ 0 0 0 0 (R(qk) v̄k )z −(R(qk) v̄k )y

0 0 0 −(R (qk) v̄ k )z 0 (R (qk) v̄ k )x

0 0 0 (R (qk) v̄ k )y −(R(qk ) v̄k )x 0 ] {
dx k

dy k

dzk

d θ xk

dθ yk

d θ zk

}
d v=Q v(qk , v̄ k)Δ xk (84)

Naming:



R (qk )v̄ k={(R (qk )v̄ k)x
(R (qk )v̄ k)y
(R (qk )v̄ k )z}

In the case where v k is a known vector:

Qv (qk , v̄ k)Δ xk=0 (85)

For the case of a vector belonging to two elements k and m, the system would be as follows:

Qv (qk , v̄ k)Δ xk−Q v(qm , v̄m)Δ xm=0 (86)

Thus, expanding for the total dimension of the model:

[ 03 x 6 ⋯ Qv (qk , v̄ k) 03 x6 ⋯ −Q v(qm , v̄m) 03 x6 ⋯]3 x6 n{
Δ x1

⋮
Δ xk

⋮
Δ xm

⋮
Δ xn

}
6 nx1

=0

Gv (qk , qm)Δ x=0 (87)

Finally, including the effort equations of the spherical joint:

[ Gs (qk , qm)
G v(qk ,qm)]6 x 6 n

Δ x={0
0} (88)

5.4. Constraint imposed by the quaternion norm

This norm could be possible to include in the equilibrium equation but it is more convenient to add as a 
restriction. The constraint imposed by the quaternion norm presents a non linearity so it will be necessary to  
pose a linearization in the following way:

Let it be the norm function:

f (q)=q0
2+q1

2+q2
2+q3

2−1=0 (89)

By linearizing the function by means of a Taylor series in a value of q j+1  in the nearness of q j :

f (q j +1)≃−1−q0
j−q1

j−q2
j−q3

j+2{q0
j q1

j q2
j q3

j}T {q0
j+1

q1
j+1

q2
j+1

q3
j+1}=0 (90)

If one organizes equation (90) for an element k :

{0 0 0 2q0 k
j 2q1 k

j 2q2 k
j 2q3 k

j }T x k
j +1=1+q0 k

j +q1k
j +q2 k

j +q3 k
j



In a compact way:

S q (qk
j ) xk

j+1=b(qk
j ) (91)

Expanding for the complete system of n elements:

[ 01 x7 ⋯ S q(qk
j ) ⋯ 01 x7 ]1 x7 n{

x1

⋮
x k
j+1

⋮
xn

}=bq(qk
j )

H q(qk
j )x j+1=bq (qk

j ) (92)

It is worth pointing out that the quaternion norm does not make any force so the restriction matrix for effort 
is not contemplated.

6. Numeric application

The  methodology  exposed  has  been  implemented  with  a  preliminary  programming  in  the  calculation  
software GNU Octave 4.4.0  [38]. Three mechanical systems are represented with the aim to compare the 
responses with different integrators present in the simulation software named MSC Adams 17.2 Student 
Edition such as GSTIFF, WSTIFF and HHT. The comparison will be centred mainly in the accuracy of the 
results. Simulations have been run in a computer equipped with Windows 10, CPU Intel Xenon, and 32 Gb 
of RAM. The examples include a Spinning Top, a planar Double Four-Bar mechanism and a spatial Bricard  
mechanism. In this context, several drawback have to be addressed by the formulation such as: external 
perturbations, singular configurations or over-constrained systems.

According to validation of the result, GNU Octave is an interpreted language a different from MSC Adams 
which use compiled language. The interpreted languages are usually more slower due to the need to translate 
the programme while it is executing. Even though the problem proposed are adequate for measuring the 
accuracy of the method, they have few elements. This implies that most of the computational cost is invested 
in this task. Therefore, although other formulations can be implemented in GNU Octave, the validity of the 
results could not be assured as far as a calculation time is concerned.

6.1. Measurements

Taking advantage of the fact that both the Double Bar and Bricard mechanisms are benchmark problems, it  
is easy to obtain results with sufficient accuracy from iftomm-multibody website. These results can be used  
to establish a total error by computing different variables and therefore measuring the accuracy. In each case, 
it will be mentioned under what circumstances these references results have been chosen.

The accuracy is a function of the error admitted for each iteration step, the increment of time and the type of  
integrator.  Therefore, accuracy is measured as the maximum error between the solution and a reference 
value. In general, results are a function of time such as the position, the velocity, the force, etc.; it will be 
stated which of these variables are part of the solution to be evaluated. If the next is defined:

x j (t i) as the solution in the instant t i  of the variable j .

x j
ref (t i) as the solution of the reference variable j for the instant t i .



The error for a variable is obtained through equation (93), whereas the accumulated error for  n  variables 
during a simulation of m  intervals is calculated through equation (94). The value of threshold is introduced 
to avoid singularities when the reference value tends to zero, and its value has been fixed to 1e-3.

e j (t i)=
| x j (t i )−x j

ref (t i )|
max{| x j

ref (t i )| , x j
threshold }

(93)

eTotal=√ 1
m∑

i=1

m
1
n ∑

j=1

n

(e j(t i ))
2 (94)

The variables of each problem taking part in the solution are gathered in table 1.

Table 1:Problems, duration and monitored variables
Problem Duration Variables 

Double Bar Mechanism 10 Displacement in x, and velocity in x of point 1

Bricard Mechanism 10 Displacement in x, y, z of point 2

In relation to this aspect, there are some issues that are worth clarifying. Table 3 and 4 show the ERROR 
magnitude, this means the integration tolerance for each iteration step. Therefore, the same quantity has been 
agreed for all integration methods and obviously, the solutions will be affected for this value. Besides, the 
integrators of MSC Adams normally uses variable time step. It is possible to impose the maximum time step, 
however, the minimum is left free for assuring the converge of the results. On this sense, in spite of the 
variable step, MSC Adams allows obtaining the results in fixed steps and if the solutions are known in those 
instant of time, it is feasible to calculate the total error. In addition, constraint violation at the position level  
will  be displayed. In tables this value is calculated using root mean square of the norm of the position  
violation vector. The algorithm of the method is formulated in function of the displacements, hence, the  
violation of velocity constraints will not be obtained.

6.2. Spinning top

This is a system formed by a single rigid body that starts with a velocity of rotation in the longitudinal axis,  
and to which a perturbation is applied in the centre of gravity in a given moment. The 3D model consists of a  
spherical joint in the contact between the spinning top and the ground.

Figure 4: Spinning top and ground

In figure 5, the displacement in axis x of the spinning top’s mass centre is shown when applying the Direct  
Integration Method with Central Difference  (DIMCD) with different integration steps in GNU Octave. It  
can be observed that a good convergence exists with a calculation step of 0.5 ms even with 1 ms.



Figure 5: Displacement of the mass centre in direction x of the Spinning Top.

To evaluate the response, the results obtained with DIMCD with a constant step of 0.5 ms are compared to 
different integrators. Due to the fact that the GSTIFF is a multistep integrator, a maximum step of 0.5 ms and 
an ERROR of 1e-6 have been established, while the step diminishes to 0.2 ms in several periods of the  
simulation. In addition, the integrator WSTIFF is initiated with the same criteria and it is observed that the  
step diminishes to 0.1 ms in the moment of application of the perturbation. In figure can be shown the results 
of the displacement and velocity in the x axis of the CoM.

Figure 6: Displacement of the CoM in x axis of the Spinning Top for different integrators.
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Figure 7: Velocity of the CoM in x axis of the Spinning Top for different integrators.

The discretization of the perturbation is fundamental in the correct modelling of the problem. It is observed 
that in the integrators GSTIFF and WSTIFF a good precision is achieved when decreasing the step and 
increasing the order of integration, whereas in the DIMCD method even maintaining a constant step and with  
an order of integration of 2 quite good results are obtained. This is mainly due to the fact that the exact 
Newton method is used to calculate the equilibrium at each instant of integration.

Table 2: Comparative of the different integrators
Method Type of step Δt (ms) Order ERROR CPU time (s) Violation 

of const.

DIMCD Fixed 0.5 2 1e-6 59 1,59e-16

GSTIFF I3 Variable 0.2-0.5 6 1e-6 3 6,01e-15

WSTIFF I3 Variable 0.1-0.5 6 1e-6 5 2,43e-11

The constraint equations at the position level are achieved in the order of 1e-16, as can be observed in figure 
8.

Figure 8:Violation of the constraint position equations of the Spinning Top.

6.3. Double Four-Bar

The particularity is  that  when the mechanism reaches the horizontal  position,  the first  order number of  
degrees of  freedom of the model  increase from 1 to 3,  which causes that  not  a  few formulations have  
problems to overcome this situation. This problem was proposed by Bayo and Avello in [42].
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Figure 9: Double Four-Bar Mechanism

This is a problem where only the gravity force intervenes, therefore, the conservation of the mechanical  
energy  of  the  system can  be  a  good  indicator  of  the  quality  of  the  simulation.  Simulations  where  the 
deviation does not exceed 0,1 J are taken as acceptable. In figure  10 the result of the conservation of the 
energy is shown using DIMCD for different time steps with GNU Octave. According to the quality criterion,  
it  can be considered that  the simulation with time step of 10 ms is adequate.  For these conditions,  the  
violations of the equations of restrictions have been computed whose results are shown in figure 11. It can be 
observed that the positions of least conservation coincide with places where the greatest violations of the  
constraint equation is committed.

Figure 10: Conservation of the energy for different time step of the Double Four-Bar.

Figure 11: Violation of constraint position equation for Double Four-Bar mechanism.

As it has been commented, it is possible to obtain a solution as a reference. Hence, it is considered as the  
most  accurate  solutions  those  with  greatest  energy  conservation.  The  reference  simulation  preserve  the 

0 1 2 3 4 5 6 7 8 9 10
0

1E-14

2E-14

3E-14

4E-14

5E-14

6E-14

7E-14

8E-14

9E-14

DIMCD with ∆t = 0.01 s

Time (sec)

V
io

la
tio

n
 o

f c
o

n
st

ra
in

t

0 1 2 3 4 5 6 7 8 9 10
-1

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

Δt =  0,1 ms
Δt =  0,05 ms
Δt =  0,01 ms
Δt =  0,005 ms

Time (sec)

D
ri
ft
 M

e
c
h

a
n

ic
a

l E
n

e
rg

y
 (

J
)



mechanical energy of the system up to 3.2e-7 J. These mention results can be used to calculate the total error  
by means variables for the x displacement and x velocity of the point 1. Fifty numerical results are sampled 
at the same instant of time of the three different integrator of MSC Adams and DIMCD. The figure 12 and 
13 show the result of the simulations and a total error is included in table 3.

Figure 12: Displacement of the point 1 in x direction for different integrators of the Double Four-Bar.

Figure 13: Velocity of point 1 in x direction for different integrators of the Double Four-Bar.

Table 3: Comparison between different simulations for the double fourbar mechanism

Method Type of step Δt  (ms) Order ERROR CPU time (s) Total Error Violation 
of const.

DIMCD Fixed 10 2 1e-6 98 0.48 1,42e-14

GSTIFF I3 Variable 5-10 5 1e-6 1 0.57

WSTIFF I3 Variable 5-10 6 1e-6 1 0.58

HHT Variable 3-10 2 1e-6 1 1,12

In figure 14 is shown the level of energy conservation of the integrators. The first thing that is observed is 
that the HHT method does not comply with the minimum quality required, which is reflected in the accuracy 
of the results. Probably, the ERROR should be more stringent to keep the drift energy below 0,1 J. However,  
since HHT is a method of order 2 as is the DIMCD, then it is a good indicator to estimate the degree of  
accuracy  of  the  method  described  in  this  document.  The  integrators  GSTIFF  and  WSTIFF,  when  the 
mechanism is close to the singularity, they increase the order of integration and decrease the step, thus  
achieving the best  response in terms of energy conservation. Despite,  the total  error is  fairly similar to  
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DIMDC. These three integrators are far away from limitation of drift  energy and obviously,  their  error  
parameter could be relaxed to improve the efficiency of the simulation.

Figure 14: Energy conservation of the different integrators in Double Four-Bar.

6.4. Bricard mechanism

As it is known, it is typical example of an overrestricted system that, when the pairs are placed in a certain  
position, acquires 1 degree of freedom. Starting from the configuration of figure 15 it is released under the 
action of gravity.

Figure 15: Bricard mechanism

In figure 16, the drift of the mechanical energy is shown for different time step using DIMCD. The authors  
of the benchmark example propose that the deviation of the total energy of the system should not exceed 
0.001  J.  Thus,  simulation  with  a  calculation  time  of  10  ms  meet  with  this  requirement.  Under  these 
conditions, the violation of the position restriction equations is approximately 1e-14, as can be seen in the 
figure  17.
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Figure 16: Energy conservation for different time step with DIMCD in Bricard mechanism.

Figure 17: Violation of the position constraint equations of the Bricard mechanism.

As a consequence, in order to validate the solution, a comparison will be made following the same criterion 
of minimum drift energy. The reference value to obtain the total error has been acquired from a simulation  
with a deviation in the mechanical energy conservation of 9.6e-7 J.  In figure  18 and  17 are shown the 
displacement of the point 2 in  x  and  z direction, respectively. It  can be appreciated how, as simulation 
progresses, the solutions are dispersed between MSC Adams and DIMCD. The parameters of the simulations 
are collected in table 4 where total error is also included. In figure 20, the conservation of the mechanical 
energy is shown.
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Figure 18: Displacement of point 2 in x  direction of the Bricard mechanism.

Figure 19: Displacement of point 2 in z direction of the Bricard mechanism.

Table 4: Comparative between different integrators for the Bricard mechanism
Method Type of step Δt (ms) Order ERROR CPU time (s) Total Error Violation 

of const.

DIMCD Fixed 10 2 1e-8 101 0,01 1,2e-14

GSTIFF I3 Variable 5-10 6 1e-8 2 0.98

WSTIFF I3 Variable 10 6 1e-8 2 0.98

HHT Variable 1.7-10 2 1e-8 3 0.99

It can be observed that the error achieved in the energy conservation committed by GSTIFF, WSTIFF and 
HHT is high compared to that obtained by the DIMCD and, of course, the total error is in accordance with  
this value. Therefore, the ERROR parameter should be adjusted to the quality requirement. In any case, the  
difference  in  accuracy  that  has  been  achieved  with  the  DIMCD  method  is  very  significant.  As  a 
consequence, this makes it clear the influence of using exact Newton and not a quasi-Newton method to 
calculate the equilibrium.

Figure 20: Conservations of the energy of the Bricard mechanism.

7. Conclusions

A new methodology  was  developed  for  the  multibody  analysis  with  rigid  bodies  where  the  system of 
equations is solved directly by the application of the method of central differences of order 2. In addition, in 
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order to improve the accuracy, the equilibrium equations are solved in each instant of time in an analytical  
way, using the exact Newton method. When applying a method of order 2 it is not necessary to solve the  
problem of position and velocity at each moment apart from avoiding to duplicate the size of the problem,  
thus  saving  calculation  time.  The  constraint  equations  are  included  through  the  null  space,  having  to 
eliminate  the  equations  incompatible  with  the  infinitesimal  movements  of  the  system approached  as  a  
function of the rotations, obtaining a system of equal dimension to the degrees of freedom of the model.  
Therefore, it is demonstrated that the targets stated in the introduction have been accomplished.

With the aim of verifying the methodology, three different problems were solved including systems with  
external  perturbation,  singular  positions  and  redundant  constraint.  The  method  was  implemented  in  a  
preliminary form in GNU Octave, and the results were compared with those obtained through MSC Adams  
Student Edition for different integrators. According to the results, in examples with external forces and high 
rotation velocities, where the discretization is an essential issues, the method provides great level of precision 
even  comparable  to  integrations  with  variable  time  step.  Moreover,  the  method  converges  towards  the 
solution with high accuracy and this fact is reflected in the conservation of the mechanical energy of the 
system. This degree of accuracy is largely due to the employ of exact derivatives to linearize the nonlinear  
equation of motion. Indeed, using the same admitted error for each iteration step in every integrator, the  
methodology affords remarkable results since it approaches the solution with a quadratic convergence.

As it was declared, the aim of this work was focused on verifying the accuracy of the method and, thus, the  
implementation is far from being optimized. In addition, making a comparison in terms of computational  
efficient  would  be  inappropriate  due  to  the  size  of  the  proposed  problems  and  the  use  of  interpreted 
language. In fact, the percentage of computational cost of the integration algorithm and the translation and  
execution process would be difficult to discern. Even though, a rough estimation suggests that the method 
could be quite efficient, taking into account the reduction in the among of degrees of freedom to solve for 
each iteration.

Future developments should include an optimized version of implementation and the inclusion of more types 
of joints and phenomena such as cams or contact problems.
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