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Summary 21 

1. As herbivory can modulate climate-induced shifts in species distribution, 22 

disentangling the relative importance of herbivory and climate on plant growth can 23 

help to predict and manage future changes in vegetation, such as those occurring at 24 

treeline areas.  25 

2. An individual-based hierarchical Bayesian time-series model (Individual-Based 26 

Model; IBM) was developed to estimate the time-varying impact of climate and 27 

herbivory on individual pine-sapling height growth in woodland and treeline 28 

ecosystems of Southern Europe during a 16-year period. The performance of the 29 

IBM was compared to a Linear Mixed-Effects (LME) model to test for potential 30 

inferential effects when individual variability is marginalized. Time-varying models 31 

were also compared to constant parameter approaches. 32 

3. Model fitting and posterior predictive checking suggests a better statistical 33 

performance of individual-scale, time-varying inference. LME modeling 34 

overestimated herbivory effects and underestimated environmental stochastic 35 

effects, and model validation indeed suggested severe overfitting in the LME model 36 

relative to the IBM strategy. These results reveal a potential failure of common 37 

aggregation strategies to correctly resolve the effects of climate and herbivory 38 

variability at the individual scale. Moreover, ignoring the time-varying nature of the 39 

effects may preclude the correct estimation of the temporal scale of climate and 40 

herbivory impacts. 41 

4. In general, we found stronger individual- and time-averaged effects of summer 42 

precipitation relative to the effects of herbivory, particularly at the treelines. Also, 43 

individual pines responses showed effects of the same sign more consistently in the 44 

case of precipitation. This suggests that precipitation is more pervasive at the 45 



3 
 

population level, while herbivory act as a spatially aggregating force through 46 

individual-level damage.  47 

5. Synthesis. Our results suggest that accounting for individual and temporal variability 48 

in ecological inference greatly improve the assessment of the relative importance of 49 

climate and herbivory on species distribution shifts. Strong effects of precipitation 50 

at the treeline could allow tree upward expansion, although increasing ungulate 51 

populations and associated browsing damages might limit positive climatic 52 

responses of pine-saplings in the near future. In this context, the spatially 53 

heterogeneous effect exerted by herbivory could result in diverse vegetation 54 

structures in ecotones, adding a new dimension to the predictions on climate-driven 55 

vegetation shifts. 56 

 57 

 58 
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 64 

Introduction 65 

Climate and herbivory, as bottom-up and top-down forces, respectively, are among the 66 

main factors influencing the distribution, performance, and abundance of plant species 67 

(Davidson 1993; Archibold 1994; Speed et al. 2010). Under the current climate change 68 

scenario, fast distributional shifts of species are expected in response to increasing warmer 69 

conditions (Parmesan & Yohe 2003; Harsch et al. 2009; Matías & Jump 2015). Herbivory 70 
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can modulate such changes, inhibiting or exacerbating plant responses to climate. Lower 71 

herbivory pressure could favor upward expansions of woody plant species associated with 72 

climate (Sanz-Elorza et al. 2003; Cairns & Moen 2004). However, the role of herbivores in 73 

changing tree and shrub distributions generally opposes that of climate warming; whereas 74 

warmer temperatures facilitate the spread of trees and shrubs to higher latitudes and 75 

altitudes, high densities of herbivores can constrain upward and northward movements 76 

(Post & Pedersen 2008; Olofsson et al. 2009; Speed et al. 2010; Kaarlejärvi, Hoset & 77 

Olofsson 2015). Changes in herbivore density are thus likely to contribute to shifts in 78 

community composition in addition to, and possibly in interaction with, the better-studied 79 

climatic drivers. Therefore, disentangling the relative importance of climate and herbivory 80 

on plant performance can help to forecast species distributional changes and improve our 81 

understanding of the complex interplay between climate and biotic interactions. In addition, 82 

insights into the interactions between herbivores and climate, as drivers of shifts in 83 

community composition, have the potential for facilitating the management of herbivore 84 

populations to buffer the effect of global warming on distribution shifts in alpine plant 85 

communities. 86 

 Traditionally, the effects of climate and herbivory have been analyzed at the 87 

population or landscape level through the aggregation of individual-level data. However, 88 

aggregation over the individual scale to higher scales can degrade information and hide 89 

individual characteristics not apparent from group-level attributes (Clark 2010; Clark et al. 90 

2011a). Recent studies using disaggregated individual data have shown the importance of 91 

individual-level variation. In fact, this variation allows species to differ in their distributions 92 

of responses to the environment, although populations might not differ on average, playing 93 

an important role in species coexistence in forest ecosystems (Clark et al. 2007; Clark 94 

2010). The individual scale has also been considered in studies assessing vulnerability of 95 
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tree species to climate change, demonstrating its importance in plant performance (Clark et 96 

al. 2012). These approaches can be framed within the ecological (or aggregate) inference 97 

problem, which aims at drawing conclusions about individual-level behavior from 98 

aggregate-level data (Schuessler 1999). It is well known that the marginalization of 99 

individual-level data on statistical summaries or aggregates degrades statistical inference by 100 

biasing the estimates of ecological regression parameters to the group average (see 101 

Robinson 1950; Hammond 1973; Gelman et al. 2001). Thus, the analysis of climate and 102 

herbivory impact at the individual level could provide new insights into the understanding 103 

of the interplay between climate and biotic interactions.	104 

The goal of the present study is to analyze tree-sapling height-growth response to 105 

climate and herbivory in Mediterranean pinewoods at the individual and population levels. 106 

Height growth is related to reproductive age in pine saplings, which represent the near 107 

future of the forest (Zamora et al. 2001; Herrero et al. 2012). This is especially relevant at 108 

species distribution leading edge such treelines, where climate-driven range expansions can 109 

occur and populations are composed mainly of young individuals (Matías & Jump 2012; 110 

2015). The study was performed at the southernmost distribution limit of two widespread 111 

species (Pinus sylvestris L. and P. nigra Arnold), considering woodland as well as treeline 112 

areas in order to test whether pine saplings respond differently to climate and herbivory at 113 

their altitudinal margin and to detect the potential for upward migration. Both climate and 114 

herbivory can severely constrain height growth in Mediterranean areas, especially at 115 

species southern distribution limits (Hampe & Petit 2005; Herrero et al. 2012), hampering 116 

upward migrations at the treeline. Thus, disentangling the relative effects of climate and 117 

herbivory in height growth can help to detect species range shifts and to assess future 118 

viability of tree populations under the current climate change scenario.  119 
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Climate fluctuations, saplings height growth, herbivory damage, and the number of 120 

ungulates were monitored for 16 years. This period of time is sufficient to properly analyze 121 

demographic dynamics of a sapling cohort, as both P. sylvestris and P nigra are able to 122 

reach maturity in 12-15 years (Debain et al. 2007; Boulant et al. 2008). Thus, plant 123 

performance was analyzed over the entire lifespan of target saplings, prior to adult 124 

reproductive phase, the sapling phase being a key ontogenetic stage for forest expansion. 125 

We use an individual-based hierarchical Bayesian time-series model (hereafter Individual-126 

Based Model; IBM) to estimate the effects of climate and herbivory on the temporal 127 

dynamics of pine-sapling height growth at the individual level. Bayesian hierarchical 128 

modeling allows the optimal structuring of different sources of uncertainty and 129 

heterogeneity arising from the process, parameters, and data levels of ecological models 130 

(Cressie et al. 2009). Given that we are dealing with an ontogenetic process, our IBM 131 

approach explicitly incorporate a time-varying modeling scheme for estimating the possibly 132 

shifting effects of herbivory and precipitation on tree sapling growth across time (see Carrer 133 

2011 for a similar approach). In addition, the effects of climate and herbivory on plant 134 

growth were also modeled using a standard Linear Mixed-Effects (hereafter LME) model, 135 

where individual-level data were aggregated at the population level (e.g., Speed et al. 136 

2011a; Martínez-Vilalta et al. 2012). This will allow us to test for the potential inferential 137 

effects of aggregation at the individual scale (Clark et al. 2011a). Finally, time-varying 138 

approaches were also compared to constant parameter approaches for both IBM and LME 139 

models to assess the influence of temporal variability in the estimated effects.   140 

In summary, the aims of this study are: 1) to test for the relative importance of 141 

climate and herbivory in pine-sapling height-growth trends at the individual (IBM) and 142 

population level (LME); and 2) to compare the effect of climate and herbivory in treeline 143 

and woodland areas. 144 
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Materials and Methods 145 

Study site  146 

The study was conducted at Sierra de Baza Natural Park (SE Spain, 2º51’48’’W, 147 

37º22’57’’N). P. sylvestris and P. nigra populations at Sierra de Baza are among the 148 

southernmost populations of the two species (Barbéro et al. 1998). The climate is 149 

Mediterranean, characterized by cold winters and hot summers, with pronounced summer 150 

drought. Precipitation is concentrated mainly in autumn and spring, with an annual rainfall 151 

of 495 ± 33 mm (mean ± SE for 1991-2006 period), and summer rainfall (months of June, 152 

July and August) of 31 ± 9 (mean ± SE for 1991-2006 period; Cortijo Narváez 153 

meteorological station, 1360 m a.s.l.). The main herbivore affecting height growth of the 154 

target species is the regional red deer (Cervus elaphus L.), with an approximate population 155 

of 2600 individuals in 2007 (5.04 ind/km2; CMA 2009).  156 

 157 

Sampling design, ungulate population, browsing damages and plant 158 

performance 159 

This study was conducted in two native forests (1700-2100 m a.s.l.) from 1993 to 2008. In 160 

each forest, we selected two plots (approximately 1 ha each), one in the woodland and the 161 

other at the treeline. The first forest, Boleta hereafter, is a mixed forest of P. sylvestris and 162 

P. nigra growing intermingled with an understorey composed mainly of Juniperus 163 

communis L., J. sabina L., Berberis hispanica L., Astragalus granatensis Lange, and 164 

Hormatophylla spinosa (L.) P. Küpfer. P. sylvestris sapling density was 142 ± 24.3 and 72 165 

± 12.7 ind/ha in woodland and treeline, respectively; and P. nigra density was 88 ± 34.3 166 

and 2 ± 2 ind/ha. Pine-sapling density was measured with 10 transects of 50 m length and 167 

10 m wide at each plot in 2008. The second forest, Fonfría hereafter, is composed 168 

exclusively of P. sylvestris with an understorey composed mainly by J. communis and J. 169 
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sabina. Sapling density was 576 ± 91.8 and 142 ± 35.1 ind/ha for woodland and treeline, 170 

respectively. Overall, we sampled 234 pine saplings of P. sylvestris and P. nigra:  90 P. 171 

sylvestris and 55 P. nigra in Boleta woodland, 32 P. sylvestris in Boleta treeline, 31 P. 172 

sylvestris in Fonfría woodland, and 26 P. sylvestris in Fonfría treeline. Monitored 173 

individuals were established non-reproductive saplings (older than 3 years old) at the 174 

beginning of the study. 175 

We use red deer density data from 1993 to 2008. The data from 1993 to 2000 were 176 

extracted from Granados et al. (2001) and data from 2005 to 2007 from CMA (2009). Both 177 

studies used lineal transects and analyzed data using DISTANCE software (Laake et al. 178 

1993) and Fourier series to produce red deer density estimations. Data from 2001 to 2004 179 

and 2008 were estimated through a state-space model (see Model Construction section).  180 

Height and browsing damage data for pine saplings were obtained in samplings 181 

performed in 1995, 1998, 2004, 2006 and 2008. All the measured saplings were tagged and 182 

mapped in the beginning of the study to enable individual identification over the study 183 

years. Tags were renewed when necessary to assure correct identification. Age was 184 

estimated as number of whorls (Edenius, Danell & Nyquist 1995) for each sapling in 1995. 185 

Beyond the measurement of height, annual internode growth (trunk elongation) and leader 186 

browsing were measured for the current year and the previous years (two previous years for 187 

the first sampling and the years needed until reach the internode measured in the previous 188 

sampling for the following samplings). Annual internode growth was measured following 189 

yearly whorls and bud scars, as both P. sylvestris and P. nigra showed one flush per year in 190 

the study area. Saplings height corresponding to previous years was estimated based on 191 

measurements of annual internode growth. Then, annual height over the period 1993-2008 192 

was used to calculate annual Relative Height Growth (hereafter RHG), defined as the ln-193 

ratio between current year height and previous year height. Following Speed et al. (2011a) 194 
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we subtracted the biological trend due to the aging of pines with the regression model 195 

ln(xi,k,t+1 /xi,k,t) = ak + bk×loge(agei,k,t), where xi,k,t is the height of each pine i in each plot k at 196 

time t; ln(xi,k,t+1/ xi,k,t) is thus the RHG measurement for each pine i in each plot k and time t, 197 

and agei,k,t is the age of each individual pine i in each plot k and time t. Parameters ak and bk 198 

are the regression intercept and slope, respectively, for each plot. The residuals were 199 

subtracted from this regression to obtain a standardized series of residual RHGs, hereafter 200 

rRHG. Leader browsing occurs when the terminal leader shoot of the sapling was lost to 201 

herbivory, causing a loss in the apical dominance of the pine sapling, which generally 202 

implies a reduction in height growth (as the browsed sapling need to grow in height by a 203 

lateral branch). Leader browsing of the previous years were detected by clear bifurcation or 204 

strong changes of the direction in the main stem (therefore a conservative measurement). In 205 

this context, is important to note that browsing causes more than 98 % of the losses of 206 

apical dominance in P. sylvestris in the study area (Zamora et al. 2001). Measurements 207 

were made in autumn, when annual internode growth was resumed and after the main 208 

browsing period in the study area (i.e. summer). We have not detected any sapling 209 

mortality related to herbivory during the study. 210 

 211 

Modeling individual-level responses to climate and herbivory  212 

Model construction 213 

We constructed an IBM to estimate the joint time-varying effects of precipitation and 214 

herbivory on the temporal dynamics of rRHG at the individual-pine level (e.g. Clark et al. 215 

2010). Our approach is based on the simultaneous estimation of three linked models (see 216 

Fig. 1): a stochastic dynamics model for the red deer population at the landscape level; a 217 

model relating herbivory intensity to precipitation variability and red deer density at the 218 
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plot level; and a third one modeling the individual level response of rRHG to precipitation 219 

and herbivory intensity at the plot level. 220 

At the upper level, the dynamics of the red deer population was modeled with a 221 

state-space approach. In a state-space model, the time series of observed population 222 

estimates is linked to the true (latent) abundances through a measurement equation, while 223 

the time series of the latent values is modeled through an ecological-process model. We 224 

used a Gompertz kernel (Dennis & Taper 1994) to model the evolution of the true 225 

population of red deer throughout the landscape, 226 

 227 

        eqn. 1 228 

 229 

where nt is the loge-transformed true population size at time t, r is the intrinsic rate of 230 

increase, K the carrying capacity at the landscape level and εt is the stochastic term for the 231 

environmental and demographic process error. The term εt is sequentially independent and 232 

identically distributed noise aving a normal distribution with mean 0 and variance , εt ~ 233 

N(0, ). The matrix  is decomposed into an environmental ( ) and a demographic 234 

component (Dt),  = + Dt, where stand for the impact of environmental noise, and 235 

Dt for the impact of demographic stochasticity. The diagonal matrix Dt = [δ2/exp(n1),…, 236 

δ2/exp(nS)]T reflects the demographic variance affecting the dynamics of the red deer from 237 

time t-1 to t, which scales inversely with population size (e.g. Engen, Bakke & Islam 1998). 238 

Finally, the population estimates are linked to the true abundances through a Gaussian 239 

observation model, 240 

 241 
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where yt is the observed red deer abundance at time t. The observation variance was 243 

modeled with a uniform prior distribution on the standard deviation, with a range of 244 

biologically plausible values for the red deer,  (Daniels 2006). 245 

At a second level, a linear regression model was fitted to estimate the effects of 246 

precipitation and red deer density on the percentage of saplings suffering leader browsing at 247 

the plot level (hereafter, herbivory intensity, denoted by hk,t). During dry years higher 248 

browsing damages by ungulates were recorded in the study area due to low pasture 249 

production (Zamora et al. 2001), indicating the potential effect of summer precipitation on 250 

leader browsing. In previous model fits we estimated the effects of precipitation and red 251 

deer density on individual-level herbivory (that is, a binomial variable expressing whether 252 

an individual was browsed or not in a given year and plot), rather than estimating these 253 

effects on herbivory intensity at the plot level. However, the convergence of parameters to a 254 

posterior distribution was unreliable in this case because many individuals in most plots 255 

never suffered an herbivory event across time, which caused an overabundance of 0’s.  256 

Prior to the analysis, summer precipitation was detrended with a linear regression of 257 

precipitation on year. Be detrended summer precipitation at year t denoted by pt. The basic 258 

formulation of the model, for a given plot k is, then: 259 

 260 

       eqn. 3 261 

 262 

where ηk is the intercept, φk and ζk are the effects of red deer abundance and detrended 263 

summer precipitation on herbivory intensity (hk,t), respectively; and is sequentially 264 

independent noise distributed according to a normal distribution with mean 0 and variance 265 
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At a third level, the IBM estimates the time-varying effects of precipitation and 267 

herbivory on the temporal dynamics of rRHG. We constructed separate models for each 268 

plot and species. The dynamics of the rRHG for each pine can be modeled as: 269 

 270 

      eqn. 4 271 

 272 

where the column vector ck contains the individual constant-level parameters of pine i at 273 

plot k, ci,k; βk,t is a T × m matrix including the time-varying individual-level parameters, βi,t, 274 

estimating the temporal effect of herbivory on m individual pines i during T time steps, for 275 

each plot k; γk,t is a T × m matrix including the time-varying individual-level parameters, 276 

γi,t, which estimate the temporal tracking of detrended summer precipitation, pt-1, by m 277 

individual pines i during T time steps, for each plot k. We used summer precipitation data 278 

because the effect size during these months was greater than the effect of annual 279 

precipitation, or any combinations of monthly temperatures (not shown). As conditions 280 

during bud formation strongly affect following year shoot growth in pine species such P. 281 

sylvestris and P. nigra (Isik 1990; Dobbertin et al. 2010), a lagged term was used. Finally, 282 

is the T × m matrix including the terms for individual-level environmental stochasticity 283 

impacting on rRHG of each pine, distributed according to a normal distribution with 0 284 

mean and a time-varying standard deviation . The temporal changes in the effects of 285 

herbivory intensity, summer precipitation and environmental stochasticity on individual 286 

rRHG were modelled through the specification of a time varying scheme on parameters βk,t, 287 

γk,t, and σk,t according to a random walk (e.g., Zeng et al. 1998): 288 

 289 
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         eqn. 5 290 

 291 

where , and  stand for the independent and identically distributed 292 

(random) noise on the red deer abundance, summer precipitation and environmental 293 

stochastic time-varying effects on individual pines, following normal distributions with 0 294 

means and non-zero process variances , and .  295 

We decomposed the effects of summer precipitation and red deer abundance on 296 

rRHG through both direct effects of these variables and indirect effects considering the 297 

response of leader browsing to precipitation and red deer abundance (Fig. 1). Hence, a 298 

composite parameter for the downscaled effect of red deer abundance at the landscape level 299 

on individual rRHG will be denoted by Hk,i,t; this parameter is simply the product of the 300 

effect of red deer abundance (landscape level) on herbivory intensity (plot level) and the 301 

effect of herbivory intensity on individual-level rRHG: Hk,i,t = φk × βi,k,t. In the same 302 

manner, a composite parameter for the effect of summer precipitation on rRHG (Rk,i,t) can 303 

be obtained by summing the direct effect of summer precipitation on rRHG and the product 304 

of the effect of summer precipitation on herbivory intensity: Rk,i,t = γk + (ζk × βi,k,t). Then, 305 

we derived population-level summary statistics to describe the collective response of the 306 

rRHG of individual pines to precipitation and herbivory at each plot studied, as well as the 307 

average environmental stochasticity at the plot level (Fig. 1). In particular, for each plot we 308 

estimated the posterior averaged modeled effect across time within individuals, and an 309 

average per plot over time and individuals (e.g. Clark et al. 2010). Let θt stand for the 310 

averaged individual-level response to a given effect (composite herbivory or summer 311 

precipitation) at time t, or the averaged individual-level impact of environmental 312 
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stochasticity. The time-varying posterior estimate for these parameters, calculated over m 313 

individuals, is derived for each plot k as: 314 

         eqn. 6 315 

where is a parameter of interest, . A posterior estimate of a given 316 

quantity averaged over T time steps and m individuals for each plot k is obtained as: 317 

 318 

        eqn. 7 319 

 320 

 321 

Prior specification, parameter estimation and model validation 322 

We fitted the IBM using Markov Chain Monte Carlo (MCMC) integration through Gibbs 323 

sampling. To let the likelihood dominate the prior, we placed weakly informative prior 324 

distributions on the unknown quantities. Uniform distributions were placed on the standard 325 

deviations of the environmental and demographic noise terms in the Gompertz state-space 326 

model, and in the terms for environmental and process parameter noise in eqns. 3-5: 327 

; see Gelman 2006). Note that these parameters 328 

are non-exchangeable between individuals. The location parameters, the constant level 329 

terms and the initial values for the time-varying parameters were given flat prior normal 330 

distributions: . Note that parameters r and K 331 

were truncated at a lower level of 0 to omit biologically implausible values. We 332 

programmed the IBM in the BUGS language using the R package BRugs (R Development 333 

Core Team 2011). We ran three independent Markov chains with dispersed initial values 334 
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for 23,000 iterations, and discarded the first 20,000 as a burn-in period. To increase the 335 

precision of Bayesian estimates, we merged the unthinned chains (Link & Eaton 2012). We 336 

used the R package BOA to derive the posterior estimates of parameters and latent states, 337 

and to check the convergence of the chains using standard diagnostic tests (see Gelman et 338 

al. 2004). 339 

We used posterior predictive checking (Gelman et al. 2004) to assess the predictive 340 

ability of the fitted IBM. This is a convenient strategy for checking model adequacy (see 341 

also Clark et al. 2010). We used the fitted model to randomly derive through simulation 342 

1000 synthetic time series of rRHG for each individual pine. We then plotted the average of 343 

these synthetic (posterior predicted) time series against the true value used to fit the model. 344 

The closer the synthetic datasets are to the true observations, the better the model adequacy 345 

to the focal dataset (Gelman et al. 2004). We also used posterior predictive checks to 346 

compare the IBM in eqn. 4 to the standard LME model (Speed et al. 2011a, Martínez-347 

Vilalta et al. 2012), in which individuals are modelled as random factors and herbivory and 348 

climate variables are treated as fixed effects. This model, in which the growth of 349 

individuals is an aggregate quantity (e.g., Clark 2010) can be written as: 350 

 351 

      eqn. 8 352 

 353 

The time-varying parameters in the LME model are defined as unique parameters at the 354 

plot level:  355 

 356 
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Note that in this model inter-individual variability is indeed allowed in the constant terms 358 

(intercepts) ci. Again, the location parameters and the constant level terms were given flat 359 

prior normal distributions, while uniform distributions were placed on the standard 360 

deviations of the environmental and process parameter noise (see above and see BUGS 361 

code in Appendix S2 in Supporting Information). A critical, usually untested assumption of 362 

this modeling scheme is that individual responses are treated as stochastic realizations of a 363 

common underlying process, so that climate and herbivory are assumed to affect all 364 

individuals in a similar way. To test this assumption, posterior predicted datasets for the 365 

LME in eqn. 8 were compared directly to the predictions from the IBM in eqn 4. We also 366 

used posterior predictive checking to compare the relative performance of the time-varying 367 

parameter scheme to the standard constant parameter models (e.g., Speed et al. 2011a; 368 

Fisichelli, Frelich & Reich 2012); in this case, the IBM with constant parameters was 369 

specified as 370 

  371 

       eqn. 10 372 

 373 

and the LME models with constant parameters were specified as:  374 

 375 

       376 

 eqn. 11 377 

 378 

Overall, we fitted 4 models (IBM or LME, constant or time-varying) for each of the 4 379 

plots and two species (20 models). For each model, we computed the proportion of variance 380 

in rRHG explained by each model (R2) and the Predicted Mean Squared Error (PMSE) 381 

between the posterior predicted data and the true observations in both the IBM and the 382 

, 1 ,rRHG
kt k k k t k t x th p -= + + +c b g e

, 1rRHGt k k k t k t th pb g e-= + + +c
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LME model. Finally, we calculated the Deviance Information Criterion (DIC) for each 383 

model to compare their relative performance in terms of model complexity and fit 384 

(Spiegelhalter et al. 2014). The most parsimonious model will minimize this quantity. We 385 

compared model adequacy by jointly interpreting the values for R2, PMSE and DIC. 386 

 387 

Results 388 

Population dynamics of red deer and trends in precipitation and herbivory 389 

Figure 2c showed population dynamics of red deer during the study period. The carrying 390 

capacity of the red deer population at the landscape level (parameter K in eqn. 1) was 391 

estimated at 3093.319 individuals, and the intrinsic growth rate (r) at 1.125 ± 0.516. 392 

According to the fitting of the state-space Gompertz population-dynamics model, 71.271% 393 

of the temporal variability in red deer abundance was driven by environmental stochastic 394 

effects, while intra-specific interactions (density dependence) accounted only for the 395 

28.684% of this variance. Finally, the relative impact of demographic stochasticity was 396 

negligible (0.045%).  397 

The amount of precipitation during summer declined significantly throughout the 398 

study period (Fig. 2b; r = -0.55, Pboot = 0.012, calculated using 10000 MC samples). By 399 

contrast, herbivory intensity (percentage of saplings displaying leader browsing) increased 400 

significantly over time in all plots (Pboot < 0.05; Fig. 2d). There was large inter-plot 401 

variability in herbivory intensity, with very high values in Boleta woodland for P. sylvestris 402 

(up to 80% of browsed saplings) and relatively low values at Fonfría treeline (< 20%).  403 

 404 

Effects of red deer density and precipitation on herbivory intensity 405 
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While the effect was nearly always positive, the impact of red deer population density on 406 

herbivory intensity was clearly stronger in the woodlands than in the treelines (see Table 407 

S1). In contrast, the effect of precipitation variability was generally weak.  408 

Effects of herbivory and precipitation on rRHG 409 

Figure 3 shows the time-varying effects of herbivory and precipitation on rRHG in the 410 

treelines obtained with the IBM, averaged over individuals. The effect of herbivory was 411 

negligible until the end of the time series in Boleta, but was non-significant in Fonfría 412 

throughout the time series. In contrast, the effects of precipitation were clearly stronger 413 

during the whole time period in both plots, particularly during the first part of the series. 414 

The effects of environmental stochasticity decreased during the study period, but slightly 415 

increased at the end of the time series. The time-varying estimates from the LME model 416 

were rather similar (Fig. 3), but clearly underestimated the impact of environmental 417 

stochasticity throughout the series. Moreover, both in the treeline and in the woodland the 418 

time-varying LME model tended to overestimate the effect of herbivory relative to the 419 

time-varying IBM (Table 1).  420 

Figure 4 shows the time-varying effects of herbivory and precipitation on rRHG in 421 

the woodland areas obtained with the IBM, averaged over individuals. In this case, after a 422 

short transient period the effect of herbivory was clearly stronger for P. sylvestris 423 

throughout the time series relative to the effects in the treelines. The magnitude of the 424 

effects of herbivory also increased at the end of the time series. However, for P. nigra, the 425 

herbivory effects were negligible. As in the treelines, the impact of precipitation in the 426 

woodlands was stronger during the first part of the time series. But the effect of 427 

precipitation at the woodland areas was generally lower relative to the treelines, particularly 428 

in Boleta (Fig. 4, Table 1). Regarding the relative importance of precipitation and herbivory 429 

effects, although the effect of precipitation was stronger for P. nigra and for P. sylvestris in 430 
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Fonfría, the effect of herbivory was somewhat greater for P. sylvestris in Boleta for the 431 

whole study period (Table 1). With respect to environmental stochasticity, the individual-432 

averaged effect displayed the same nonlinear pattern relative to the treeline areas, and also 433 

tended to be underestimated by the LME model.  434 

As suggested by the plots of the time-varying individual-level effects of herbivory 435 

and precipitation (see Figs S1 and S2), the impact of herbivory showed greater variability at 436 

the individual level than the effect of precipitation, since individual pines showed effects of 437 

the same sign more consistently in the case of precipitation effects than in the case of 438 

herbivory effects.  439 

 440 

Model validation and posterior predictive checks 441 

The diagnostic tests revealed good mixing of the MCMC chains and rejected the hypothesis 442 

of non-convergence. The posterior correlation among parameters was low in all cases (r < 443 

0.2), which suggest that the models are correctly specified and that the effects are largely 444 

identifiable. 445 

Figure 5 shows the plot of the synthetic set of 1000 posterior simulated datasets of 446 

rRHG against the observed data, averaged over replications for each value. Since the 447 

posterior datasets tend to cluster closer to the Y = X line in the time-varying IBM, the bias 448 

in the posterior predictions are lower when using this model than when using the IBM with 449 

constant parameters. The fitting of the LME models were particularly poor relative to the 450 

fitting of the IBM, irrespective of the type of parameters. In particular, there is much more 451 

variability in the predicted datasets of the LME model, and this approach is particularly bad 452 

when estimating extreme values (Fig. 5). The PMSE is therefore consistently larger in the 453 

LME model, in particular for the constant parameter model (Table 1).   454 
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The values for the amount of explained variance (R2) are consistently larger for the 455 

time-varying IBM in all cases, probably due to its greater complexity. However, the DIC 456 

clearly selected the time-varying IBM as the most parsimonious models in all cases except 457 

in Fonfría treeline. In this case, the time-varying LME model appeared to provide a better 458 

fit in terms of a trade-off between model complexity and goodness-of-fit. However, as 459 

shown by the large PMSE value of this model (Table 1), there are clear signs of overfitting 460 

in this plot. This pattern is common to other plots as well: while the individual- and time-461 

averaged estimates of environmental stochastic impacts are consistently lower for the LME 462 

model relative to the IBM, the R2 is consistently lower and the PMSE consistently higher 463 

for both the time-varying and constant LME approaches. This is suggestive of model 464 

overfitting in the LME approach. 465 

 466 

Discussion 467 

Our results showed significant negative effects of herbivory and positive effects of 468 

precipitation in pine-sapling height growth at the southernmost distribution limit of P. 469 

sylvestris and P. nigra during a 16-year period. However, the LME model, which neglects 470 

individual variability, tended to jointly overestimate the impact of herbivory and 471 

underestimate the effects of environmental stochasticity on plant growth relative to the IBM 472 

approach. Thus, the potential for herbivory to constrain climate-driven vegetation shifts 473 

could be lower than expected based on previous studies using aggregated individual-level 474 

data (Speed et al. 2011a,b; Fisichelli, Frelich & Reich 2012). This aggregation could also 475 

lead to a dismissal of the importance of other factors influencing tree growth, such as 476 

competition or soil nutrient availability. Moreover, our time-varying IBM approach showed 477 

great variability across individuals for the impact of climate and herbivory on height 478 

growth. Different responses of individuals within a population to environmental factors 479 
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could have important implications for the long-term persistence of species, especially at the 480 

southernmost distribution limits, where species face adverse environmental conditions 481 

(Parmesan & Yohe 2003; Peñuelas et al. 2007). Greater individual variability in 482 

environmental responses increases the probability of performance success for a percentage 483 

of the population, in our study case high height-growth rates and subsequent earlier onset of 484 

reproduction (Zamora et al. 2001), boosting the chances for the future persistence of the 485 

population. Therefore, the use of disaggregated individual-level data and time-varying 486 

effects could help to improve the accuracy of predictions of climate-induced vegetation 487 

shifts and to disentangle the factors affecting tree growth. For the rest of the discussion, we 488 

will focus on time-varying individual-level effects.  489 

Our hierarchical approach allowed the simultaneous modeling of the population 490 

dynamics of red deer, the dynamics of herbivory intensity and the time-varying effects of 491 

herbivory and precipitation on pine-saplings height growth. Red deer abundance was driven 492 

mainly by environmental stochastic effects, increasing in a density-independent fashion 493 

throughout the landscape. The absence of predators, prevalence of mild winters, 494 

disproportionate hunting of males, and difficulties of adequately implementing 495 

management policies appear to be the main reasons behind the observed rise in the red deer 496 

population (Granados et al. 2001; Côte et al. 2004; CMA 2009). At the same time, red deer 497 

population density drives herbivory intensity mainly in woodland areas, where browsing 498 

damages and the negative impact of herbivory were higher. At treelines, the impact of red 499 

deer density on herbivory intensity was lower, as red deer do not browse as frequently and 500 

intensely at the treelines than at the woodlands. However, a continued increase of the red 501 

deer population would raise the herbivory intensity at the treeline, since browsing damages 502 

increased during the last years of the study even in the treeline. Under the actual climate 503 

change scenario, an increase of herbivory pressure seems plausible as mild winters increase 504 
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deer body mass (Mysterud et al. 2001) and winter survival (Loison, Langvatn & Solberg 505 

1999). Furthermore, red deer could increase its foraging activity at high elevations due to 506 

predicted warming and increasing aridity in Mediterranean basin (IPCC 2013), which may 507 

decrease forest cover and food resources (key factors for deer habitat selection; 508 

Jedrzejewska et al. 1994; Borkowski & Ukalska 2008) at lower elevations. 509 

 Modeled effects of precipitation generally dominate over herbivory effects across 510 

plots. It is important to note that we assess the impact of herbivory on annual height-growth 511 

rates and that the accumulated effect of herbivory in total height growth for the study period 512 

would be probably greater than the effect on annual rates averaged over years. 513 

Nevertheless, in the plot with the highest herbivory intensity, the recorded effect of 514 

herbivory was greater than precipitation effect for the whole study period. This 515 

demonstrates the capacity of ungulate browsing to counteract the beneficial effect of 516 

climate, as has been previously observed in other ecosystems different from Mediterranean 517 

ones (e.g. Speed et al. 2011a; Fisichelli, Frelich & Reich 2012).  518 

 Interestingly, the relative impact of herbivory and precipitation displayed a clear 519 

variability across time. The decrease in the effects of precipitation during the later years of 520 

the series suggest a greater capacity to access water in deeper soil horizons with increasing 521 

sapling size. In contrast, the increase of herbivory effects seems mediated by the rise of the 522 

ungulate population and subsequent increase in herbivory intensity, although the browsing 523 

likelihood for a tree sapling decreased with height as saplings grow (Zamora et al. 2001; 524 

Speed et al. 2011b). In this context, the time-varying approach, which explicitly consider 525 

temporal variability in the modeled effects, greatly improves the assessment of the effects 526 

of precipitation and herbivory on plant growth accounting for the ontogenetic process of 527 

juvenile maturation and deer population dynamics. Due to the growing interest in climate-528 

induced vegetation shifts, long-term studies analyzing tree sapling growth prior to their 529 
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inclusion in the overstory layer are increasingly necessary, which need to include the 530 

temporal variability of the environmental variables affecting tree growth.  531 

The effects of environmental stochasticity tended to decrease with time and 532 

consequently with increasing age of saplings, representing a lowered dependence of 533 

environmental conditions (Quero et al. 2008; Quero, Herrero & Zamora 2011) probably 534 

mediated through a better developed root system. The slight increase in stochastic effects 535 

recorded at the end of the study period could be associated to the joint effects of higher 536 

browsing damages and lowered precipitation during these years (e.g. 2005 extreme 537 

drought; Herrero & Zamora 2014). Across plots, an average of 35% of the variance in 538 

rRHG could not be explained by the fitted time-varying IBM. Competition exerts a major 539 

influence on plant performance in forest ecosystems (Clark et al. 2011b; Gómez-Aparicio 540 

et al. 2011), and this could overwhelm the impact of climate. Thus, future studies assessing 541 

environmental impacts on plant performance should account for the effects of additional 542 

factors, such as competition, in order to improve the estimation of growth responses under 543 

global warming scenarios.  544 

At the treeline, the effect of precipitation on plant performance was much higher 545 

than at woodland. This suggests that the treelines are responsive zones to climatic 546 

conditions, in agreement with previous studies (e.g., Harsch et al. 2009; Speed et al. 547 

2011a,b). The increasing warmer conditions in the study area (Herrero, Rigling & Zamora 548 

2013; Matías & Jump 2015) could allow for the positive influence of precipitation in this 549 

harsh environment. Thus, strong effects of precipitation and weak influence of herbivory 550 

could allow tree upward expansion, although increasing browsing damages associated to 551 

increments in ungulate population and/or climatic change might limit positive climatic 552 

responses of pine-saplings in the near future. 553 
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The effects of herbivory presented larger variability among individuals than the 554 

effects of precipitation, since individual pines showed effects of the same sign more 555 

consistently for precipitation. The overall stronger impact of precipitation and its lower 556 

variability between individuals suggests a more pervasive effect of precipitation at the 557 

population level, since all saplings are subjected to similar water availability. In contrast, 558 

the greater inter-individual heterogeneity in the effects of herbivory is consistent with the 559 

different levels of browsing damage between individuals, in agreement with the 560 

hierarchical foraging of mammal herbivores, which includes the individual scale (Danell & 561 

Bergström 2002). In fact, while some individuals escaped ungulate herbivory by reaching 562 

browsing-free height or by the protection of spiny and/or unpalatable shrubs (e.g. Berberis 563 

sp. or Juniperus sp.), others remained under the browsing threshold or lacked the protection 564 

of shrubs, thus suffering heavy damage. In this context, herbivory can act as a spatially 565 

aggregating force, creating regeneration hotspots associated with low herbivory, and 566 

patches of blocked or slowed-down regeneration associated with high herbivory. 567 

These patterns of environmental impacts could result in heterogeneous vegetation 568 

structure in ecotones when herbivores exert a negative effect on plant growth, adding a new 569 

dimension to the predictions on climate-driven vegetations shifts based on previous works 570 

(Speed et al. 2011a,b; Fisichelli, Frelich & Reich 2012). At treeline areas, treeline 571 

ascension would be partially allowed through scattered individuals escaping browsing. At 572 

temperate-boreal transition zones, individual-level differences in herbivory effects would 573 

lead to complex patterns of growth between saplings of different species at small spatial-574 

scales, promoting the dominance toward boreal or temperate species depending of the 575 

ecological context and individual responses. Therefore, growth responses at individual level 576 

can modulate the ‘cooling’ effect of the herbivory (sensu Fisichelli, Frelich & Reich 2012).  577 
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Overall, our study highlights the benefits achieved by modeling ecological 578 

processes at the individual level and allowing for time-varying effects. Precipitation 579 

fluctuations showed a more pervasive and spatially homogenous effect than did herbivory 580 

on long-term height-growth rate. By contrast, herbivory exerted a more spatially 581 

heterogeneous effect through individual-level damage, producing a negative impact on 582 

plant growth that can constrain treeline shifts when herbivore density is high (Speed et al. 583 

2011a,b; Van Bogaert et al. 2011). Our results serve to delineate a prediction framework for 584 

treeline shifts under a global warming scenario, based on the relative effects of climate and 585 

herbivory. On one hand, where climate is the dominant environmental factor (and herbivory 586 

pressure is low), the treeline would gradually shift upwards through a spatially 587 

homogeneous altitudinal ascension of saplings. On the other hand, where the effect of 588 

herbivory is more important than climate, herbivory would constrain the growth of 589 

saplings, precluding the upward shift of treeline in many areas, except in patches with low 590 

herbivory, resulting in a spatially heterogeneous vegetation structure. Further studies are 591 

necessary to test these predictions, considering individual-level and temporal heterogeneity 592 

in environmental responses and treeline dynamics. Finally, modeling approaches 593 

considering individual variability would be particularly useful to assess the importance of 594 

other biotic interactions, such host-parasite relations (e.g. mistletoe) or insect herbivory 595 

(e.g. pine processionary caterpillar), on tree species performance. Enhancing our 596 

knowledge about the relative importance of biotic interactions on plant performance and the 597 

spatial scale at which interactions exert influence, would improve the forecasting of 598 

climate-driven vegetation shifts under the global warming scenario.   599 
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Table 1. Long-term effects of herbivory and summer precipitation on residual Relative Height Growth (rRHG) of Pinus sylvestris and P. nigra in four plots of 
Southeastern Spain during a 16-year period. The standardized modelled effects (mean ± 1 SD) are posterior averaged effects (over time and individuals) for the time-
varying Individual-Based Model (IBM); time-averaged estimates for the time-varying Linear Mixed-Effects model (LME), and point parameter estimates for the 
constant parameter models (for both the IBM, averaged over individuals, and LME model). R2 shows the proportion of variance in rRHG explained by each model, 
while PMSE is the Predicted Mean Squared Error of the difference between the observed data and the average value of 1000 posterior simulated stochastic datasets. The 
DIC is the Deviance Information Criterion; the model minimizing this quantity provides the most parsimonious fit to the data, and is shown in bold type 

Plot Parameters Effects Modelled effects R2 PMSE DIC 

   Herbivory Precipitation Stochasticity    

Fonfría treeline 

Constant 
IBM 0.009 (0.121) 0.428 (0.108) 1.071 (0.110) 0.314 0.639 1209.0 

LME 0.001 (0.120) 0.419 (0.101) 0.768 (0.055) 0.242 0.712 1097.0 

Time-varying 
IBM -0.002 (0.046) 0.383 (0.079) 1.056 (0.152) 0.674 0.305 955.4 

LME -0.013 (0.114) 0.383 (0.192) 0.581 (0.048) 0.476 0.494 934.7 

Boleta treeline 

Constant 
IBM -0.025 (0.034) 0.348 (0.054) 1.156 (0.105) 0.252 0.701 1529.0 

LME -0.024 (0.031) 0.340 (0.046) 0.889 (0.056) 0.121 0.825 1425.0 

Time-varying 
IBM 0.010 (0.037) 0.388 (0.077) 1.049 (0.146) 0.684 0.295 1163.0 

LME 0.041 (0.080) 0.451 (0.192) 0.773 (0.053) 0.296 0.659 1299.0 

Fonfría woodland 

Constant 
IBM -0.244 (0.203) 0.322 (0.150) 1.110 (0.101) 0.278 0.678 1469.0 

LME -0.205 (0.194) 0.246 (0.159) 0.854 (0.056) 0.158 0.789 1360.0 

Time-varying 
IBM -0.198 (0.130) 0.329 (0.104) 1.058 (0.145) 0.639 0.339 1094.0 

LME -0.237 (0.207) 0.333 (0.194) 0.781 (0.060) 0.280 0.677 1203.0 
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 791 

Boleta woodland  
(P. sylvestris) 

Constant 
IBM -0.173 (0.044) 0.263 (0.044) 1.236 (0.063) 0.182 0.767 4463.0 

LME -0.172 (0.040) 0.265 (0.039) 0.904 (0.034) 0.099 0.844 4032.0 

Time-varying 
IBM -0.186 (0.060) 0.146 (0.052) 1.081 (0.087) 0.662 0.317 3249.0 

LME -0.211 (0.115) 0.091 (0.132) 0.790 (0.034) 0.248 0.706 3383.0 

Boleta Woodland  
(P. nigra) 

Constant 
IBM 0.012 (0.036) 0.232 (0.040) 1.232 (0.082) 0.188 0.761 2709.0 

LME 0.012 (0.030) 0.228 (0.035) 0.954 (0.047) 0.052 0.888 2511.0 

Time-varying 
IBM 0.001 (0.053) 0.209 (0.050) 1.115 (0.107) 0.630 0.347 2003.0 

LME 0.050 (0.097) 0.221 (0.080) 0.953 (0.054) 0.109 0.836 2341.0 



36 
 

Figures 792 

 793 

Fig. 1. A graphical representation of the individual-based hierarchical Bayesian time-series 794 

model (Individual-Based Model; IBM) linking the dynamic variables used in the analysis, 795 

each belonging to an ecological scale. Black unidirectional arrows connecting the boxes 796 

denote a statistical effect modeled; the parameters measuring these effects are depicted 797 

along with its corresponding arrow. Grey arrows denote a stochastic effect affecting a given 798 

variable. r, K: intrinsic rate of increase and carrying capacity of red deer population, 799 

respectively; : process variance of the stochastic term for the environmental and 800 

demographic process error of the Gompertz kernel used to model the evolution of red deer 801 

population; : sampling variance of the Gaussian model used to link population estimates 802 

to the true abundances of red deer; φk, ζk: effects of red deer abundance and summer 803 

precipitation, respectively, on herbivory intensity (estimated as the proportion of saplings 804 

with the leader shoot browsed for each plot and species); : variance of the 805 

environmental noise term of the modeled herbivory intensity; ak, bk: the intercept and the 806 

slope, respectively, of the regression model used to subtract the biological trend in Relative 807 

Height Growth (RHG) due to the aging of pines; βk,t: column vector including the time-808 

varying individual-level parameters estimating the temporal effect of herbivory on 809 

individual pines; γk,t: column vector including the time-varying individual-level parameters 810 

estimating the temporal tracking of lagged summer precipitation by individual pines. : 811 

variance term for the environmental stochasticity impacting on residual RHG (rRHG). See 812 

text for further details. 813 

  814 

Fig. 2. Time-series of Relative Height Growth (RHG), precipitation variability, red deer 815 

population size and herbivory intensity in the study area from 1992 to 2008. a) Value of 816 
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RHG for each individual pine sapling and year, pooled across the four plots and two species 817 

(Pinus sylvestris and P. nigra). The thick red line is a locally-weighted least-squares 818 

function fitted to enhance the local dynamics. b) Time series of precipitation during 819 

summer (months of June, July and August). c) Estimations of red deer abundance across the 820 

landscape based on observed yearly abundance (counts) are shown as open green squares; 821 

the latent (unobserved) states estimated with the Gompertz state-space model is shown as a 822 

solid red line, with 95% credible intervals depicted as dotted red lines. d) Recorded 823 

proportion of saplings with the leader shoot browsed for each plot and species during the 824 

study period (1993-2008). 825 

 826 

Fig. 3. Plots of time-varying coefficients measuring the effect of herbivory intensity, 827 

precipitation variability and environmental stochasticity on residual Relative Height 828 

Growth of Pinus sylvestris in the treelines of Boleta and Fonfría. The effects shown are the 829 

individual-averaged time-varying impact of herbivory, summer precipitation, and 830 

environmental stochasticity. For each graph, the dotted lines represent the 68% credible 831 

interval, equivalent to 1 standard deviation, while the thick red lines represent the fitting of 832 

a Linear Mixed-Effects (LME) model to the data. 833 

 834 

Fig. 4. Plots of time-varying coefficients measuring the effect of herbivory intensity, 835 

precipitation variability and environmental stochasticity on residual Relative Height 836 

Growth of Pinus sylvestris in the woodlands of Fonfría and Boleta and P. nigra in Boleta 837 

woodland. The effects shown are the individual-averaged time-varying impact of herbivory, 838 

precipitation, and environmental stochasticity. For each graph, the dotted lines represent the 839 

68% credible interval, equivalent to 1 standard deviation, while the thick red lines represent 840 

the fitting of a Linear Mixed-Effects model (LME) to the data. 841 
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Fig. 5. Posterior simulated (predicted) datasets of residual Relative Height Growth (rRHG) 842 

obtained with the constant and time-varying parameters models for both the Individual-843 

Based Model (IBM, purple and red open circles for the constant and time-varying model, 844 

respectively) and the Linear Mixed-Effects model (LME, green and blue open circles, for 845 

the constant and time-varying model, respectively). These values were plotted against the 846 

observed rRHG, pooled for the four plots and the two species (Pinus sylvestris and P. 847 

nigra). Each dot represents the average of 1000 synthetic values randomly obtained with 848 

each fitted model (standard errors omitted for clarity). The thick black line is the Y=X 849 

regression line. Note data standardization prior to the analyses.  850 

 851 

 852 

853 
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SUPPORTING INFORMATION 854 

Additional supporting information may be found in the online version of this article: 855 

 856 

Table S1 Modelled effects of the long-term impacts of red deer population density, summer 857 

precipitation and environmental stochasticity on herbivory intensity. 858 

 859 

Figure S1 Plots of time-varying coefficients measuring the individual-level effects of 860 

herbivory intensity and precipitation variability on residual Relative Height Growth in the 861 

treeline areas. 862 

 863 

Figure S2 Plots of time-varying coefficients measuring the individual-level effects of 864 

herbivory intensity and precipitation variability on residual Relative Height Growth in the 865 

woodland areas.  866 

 867 

Appendix S1 BUGS code for the fitting of the time-varying Individual-Based Model. 868 

 869 

Appendix S2 BUGS code for the fitting of the time-varying Linear Mixed-Effect Model. 870 

 871 

Appendix S3 BUGS code for the fitting of the Individual-Based Model with constant 872 

parameters. 873 

 874 

Appendix S4 BUGS code for the fitting of the Linear Mixed-Effect Model with constant 875 

parameters. 876 

 877 

 878 
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