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ABSTRACT: The purpose of this article is to characterize dynamic opti-
mal harvesting trajectories that maximize discounted utility assuming an age-

structured population model, in the same line as Tahvonen (2009). The main

novelty of our study is that uses as an age-structured population model the stan-

dard stochastic cohort framework applied in Virtual Population Analysis for fish

stock assessment. This allows us to compare optimal harvesting in a discounted

economic context with standard reference points used by fisheries agencies for long

term management plans (e.g. ). Our main findings are the following. First,

optimal steady state is characterized and sufficient conditions that guarantees its

existence and uniqueness for the general case of  cohorts are shown. It is also

proved that the optimal steady state coincides with the traditional target 

when the utility function to be maximized is the yield and the discount rate is

zero. Second, an algorithm to calculate the optimal path that easily drives the

resource to the steady state is developed. And third, the algorithm is applied to

the Northern Stock of hake. Results show that management plans based exclu-

sively on traditional reference targets as  may drive fishery economic results

far from the optimal.
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1 Introduction

The main characteristic of age-structured population models is that fish age

distribution determines the number of spawning fish and, given a stock-

recruitment relationship, the size of the recruits that enter in the exploitable

population in the next period. This kind of population models has been the

centerpiece of fisheries management for long time. From Baranov’s semi-

nal article (1918) to subsequent developments by Beverton and Holt (1957),

Ricker (1975) or Shepherd (1982), there has been a vast amount of literature

showing the advances of this approach in fishing population models.1

Recent studies have addressed a great variety of relevant empirical issues

in fisheries applying age-structured population models. Kulmala, Laukka-

nenc and Michielsens (2008) build an age-structured population dynamics

model for the Atlantic salmon fishery in the Baltic Sea which is compati-

ble with the seasonal harvest and competing harvesting by commercial and

recreational fishermen. Smith, Zhang and Coleman (2008) also use an age-

structured model with 60 cohorts to model the Gulf of Mexico gag fishery.

They suggests that the seasonal spawning closure caused an increase in fish-

ing effort. Massey, Newbold and Gentner (2006) develop a three age structure

model for the Atlantic Coast Summer Flounder Fishery. They find that im-

proving water quality conditions throughout the range of the species could

lead to substantial increases in fish abundance and higher benefits to recre-

ational anglers. Nielsen (2006) studies the effects of trade liberalization in

the East Baltic cod market by developing an age-structured fishery model

with 8 cohorts combined with basic theory of trade between two countries.

He finds liberalizing trade might cause welfare reductions in the supplier

countries, but those reductions are small compared to the welfare gains from

a hypothetical change to optimal fisheries management.

In parallel to these age-structured population developments, during the

last decades most of the fisheries economics has been based on biomass mod-

els2. This biomass approach abstracts from the age-structured behind the

biological dynamics of fish populations. Gordon (1954) and Schaefer (1954)

were the pioneers of this approach which has been extensively applied to

analyze optimal harvesting in a synthetic manner.

During years many authors have considered that models with explicit

age structure are very convenient for practical management problems but in-

tractable analytically to analyzed optimal management issues (Wilen (1985),

Quinn and Deriso (1999) or Hilborn andWalters (2001)). Very recently, it has

1A very good reflection of the past and future of population dynamics models in fisheries

can be found in Quinn (2003).
2Some authors denominates this the surplus approach.
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been shown that optimal harvesting may be different if age-structured infor-

mation is ignored and optimization is based on traditional biomass variables.

For instance, for the widow rockfish, Atlantic menhaden and Pacific halibut

fisheries Tahvonen (2008) shows that avoiding age-structure information and

applying biomass models may lead to major deviations between expected

and actual outcomes especially under multiple steady states and nonlineari-

ties. This result may appear contradictory at first glance with Moxnes (2005)

results. Moxnes(2005) analyzes the Northeast Arctic cod fishery in the Bar-

ents Sea and he finds that a simple aggregated biomass model and a more

complex cohort model lead to quite similar quota policy recommendations.

But as Tahvonen (2008) points out Moxnes’ results are highly influenced by

the fact that in his age-structured model, optimal harvest is restricted to be

a linear function of aggregate biomass. This ad hoc harvesting policy may

remove some essential differences between the two approaches and cannot

recognize problems such as growth and recruitment overfishing.

As far as we know Kulmala, Laukkanen and Michielsens (2008) and

Tahvonen (2009) are the first successful attempts to analyze optimal har-

vesting in age-structured framework. Kulmala, Laukkanen and Michielsens

(2008) solve numerically the optimal harvesting for the age-structure popu-

lation of the Atlantic salmon fishery in the Baltic Sea using Bellman’s (1957)

principle of optimality. However, Tahvonen (2009) characterizes optimal har-

vesting in a generic age-structured model. His main finding is that given two

age classes, knife-edge selectivity, and no stock-dependent harvesting cost,

the steady state is a unique saddlepoint. He also proves that under specific

conditions it may appear a stationary cycle that represents pulse fishing.

Furthermore, for conditions such as low interest rate and knife-edge selec-

tivity, he shows that optimal harvesting converges toward a unique saddle

point independently of the number of age classes. This study opens lines of

research which may be very fruitful in shedding light on many unanswered

questions related to fisheries management.

Our work is on the same line that Tahvonen (2009). We aim to character-

ize dynamic optimal harvesting that maximizes discounted utility assuming

a stochastic age-structured framework which has been extensively used for

fish stock assessment. The population model we assumed is based on Bara-

nov’s catch equation (1918) and can be considered the common element of

all Virtual Population Analysis (VPA) methods3. At first sight this choice

3Virtual population analysis is a general method for fish stock assessment that it was

introduced by Gulland (1965) based on older works. At present it is widely used. For

instance the USA and Canada use the Adaptive Framework (ADAPT) that is a VPA

variety based on minimizing the sum of squares over any number of indices of abundance

to find best fit parameters. However the European Commission relies on the Extended
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can be seen as a restriction in the sense that some particular specification is

introduced in the age-structured model. However this allows us to compare

optimal harvesting in a discounted economic context with standard reference

points used by fisheries agencies for long term management plans (e.g. 

or ).

The main findings of our research are the following. First, optimal steady

state is characterized. We demostrate sufficient conditions guaranteeing its

existence and uniqueness for the general case of  cohorts. It is also proved

that the optimal steady state coincides with the traditional target  when

the utility function to be maximized is the yield and the discount rate is zero.

Second, an algorithm to calculate the optimal path that drives the resource

to the steady state in an easy manner is introduced. Finally, the algorithm

is applied in the search for optimal harvesting in the Northern Stock of

hake. Results show that management plans based exclusively on traditional

reference targets as  may drive fishery economic results far from the

optimal.

The paper proceeds as follows. In the next section the age-structured

population model is presented and stationary population structures are ana-

lyzed. Section 3 shows the traditional reference points used by stock assess-

ment methods associated to the age-structured model. In particular, 

is characterized. Section 4 shows optimal harvesting in a discounted utility

framework assuming a stochastic age-structure dynamics for the population.

Subsection 4.1 characterizes the optimal stationary path and Subsection 4.2

presents an algorithm that derives numerically the optimal trajectories. The

algorithm is applied to the Northern Stock of hake in Section 5 and opti-

mal trajectories are compared with traditional management plans. Finally,

Section 6 concludes the paper with a policy recommendation discussion.

2 A Stochastic Age-Structured Model

Age-structured models are the common population structure used in VPA

for fish stock assessment. The population structure is applied to a group of

fish that has the same life cycle, similar growth rates and can be considered

a single biological unit. This unit stock is broken in cohorts, i.e. in groups

of fish that have the same age and probably the same size, weight and will

mature at the same time.

Lets assume that the fish stock is broken into  cohorts. That is in each

period , there are  − 1 initial old cohorts and a new cohort is born. Let
Survivor Analysis (XSA) which is a method that does not include biomass indices for

fitting the VPA. See Lassen and Medley (2000) for an extensive survey on VPA.
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 be the mortality rate that affects to the population of fish in the 
 age

during the  period. This mortality rate can be decomposed into fishing

mortality,  
  and natural mortality (non-human predation, disease and old

age), ,

 =  
 +

While fishing mortality rate may vary throughout periods and ages, natural

mortality is constant among periods. Moreover, it is assumed that the fishing

mortality over each age is given by stationary selection patterns,  i.e.

 
 = 

Suppose that fish population is continuous and the mortality rate acts on

the fish stock continuously throughout the period. Then the size of a cohort

varies according to

+1
+1 = −




  (1)

where 
 is the number of fish in the  age at the beginning of the 

period.

The size of a new cohort (recruitment), 1
+1 , depends on the spawning

stock biomass of the previous year, ,

1
+1 = Ψ() (2)

where Ψ denotes the stock recruits (S-R) relationship. Moreover, the spawn-

ing stock biomass,  is a function of the stock weight distribution, 

and the maturity fraction,  of each age,

 =

X
=1


  (3)

Finally, the oldest age group is assumed to be a true age group, i.e. +1
+1 = 0

Figure 1 illustrates the cohorts in a matrix where ages forming the rows

and years forming the columns. The diagonal arrows represent the cohort

dynamics shown in equation (1). The figure also shows the interconnections

between the  of a period and next period recruitment given by equations

(2) and (3).

Notice that if the initial (final) age distribution of the fish stock is given,


0 ∀, and the path of the mortality rate, { }∞=0 ∀ is known, then the

evolution of the the fish age structure can be calculated forward (backwards)

using (1), (2) and (3).
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Figure 1: Fishery Age Structured Model: Cohort Dynamics
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Let 
 and 

 denote the number of fish dying from natural causes and

from fishery (catches), respectively. Then the dynamics of the cohort can be

expressed as


 −+1

+1 = 
 + 

 

Taking into account equation (1) and the definitions of natural and fishing

mortality, 
 and 

 can be expressed as


 =





¡


 −+1
+1

¢
=





¡
1− −




¢


 


 =

 




¡


 −+1
+1

¢
=

 




¡
1− −




¢


  (4)

This last equation is known as the Baranov catch equation (Baranov (1918)).

Generally in stock fishery assessment, catch data, 
  is available for the

different age classes. With this information and assuming that the natural

mortality rate,  is known and constant, equations (1) and (4) can be used

to solve for the size of the fish stock, 
  and the fishing mortality, 


  from

 = 1  age classes and from  = 1  periods. This can be forward

solved when the initial distribution of the age structure is taken as given or

backward if the final age population is known.
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In most empirical studies, stock estimations generated by VPA methods

are used as initial age distribution. Due to this, the population model we pro-

pose includes uncertainty about the initial age distribution and recruitment.

In particular, the following lognormal distributions are used to describe the

initial conditions of the state and the future number of recruits


0 = 

0  ∀ (5)

1
+1 = 1Ψ() ∀ (6)

where  is a random variable affecting the initial size of cohort of age  that

follows a normal distribution with mean 0 and standard deviation   is

a random variable affecting the size of recruitment period + 1 that follows

a normal distribution with mean 0 and standard deviation 1 Therefore the

mean of the initial distribution is given by 
0 and the mean of recruitment

in period + 1 is Ψ()

2.1 Stationary Population Structure

In a deterministic scenario, for example assuming  = 0 ∀, a station-
ary path of fishing mortality,  =  = −1 generates a stationary age
structured population characterized by

1. The stock population for each age  = 1  is given by

 = 1( ) (7)

where

( ) =

½
1 for  = 1

Π−1
=1 

−−

for  = 2 

can be interpreted as the the accumulated probability of a recruit to

reach age  for that stationary fishing mortality rate  .

2. The stationary recruit population 1 satisfies the stationary S-R rela-

tionship, that is

1 = Ψ

Ã
X
=1

( )1

!


In order to guarantee the existence of a unique stationary population asso-

ciated to a stationary fishing mortality,  it is necessary the S-R relationship

be invertible. This is,

Ψ−1[1]

1
=

X
=1

( )
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This property is satisfied by the S-R relationship proposed by Shepherd

(1982),

1 =


1 +
¡



¢  (8)

where parameter   0 is the maximum recruitment attainable when the

 is very low,   0 is a threshold of  below which the likelihood of

population collapse is increased and   0 measures the power of the density-

dependent effects4. This S-R relationship is a mimic of those proposed by

Cushing (1973), Beverton and Holt (1957) and Ricker (1954) for the cases

of  greater, equal and lower than unity, respectively. The following propo-

sition characterizes recruitment as a function of the fishing mortality in the

stationary population structure for the case of the Shepherd S-R relationship.

Proposition 1 For the Shepherd S-R relationship, (8), the stationary re-

cruitment is given by

1 = 

³

P

=1 
( )− 1

´1
P

=1 
( )



which is well defined and unique whenever fishing mortality ( per recruit)

is lower (higher) enough and
P

=1 
( )  1. Furthermore,

i) If  ≤ 1 1  0

ii) If   1 1 R 0 for values of  such that
P

=1 
( ) R

 (− 1) 
Proof. See Appendix.¥

Figure 2 illustrates the relationships between the , recruitment and

fishing mortality for the Northern Stock of Hake5. The right plot shows

the relationship between recruitment and fishing mortality. We observe a

bell shape which is consistent with Proposition 1 given that we calibrate

 = 17602 for this fishing ground6. The left plot illustrates the relationship

between  and recruitment associated to different stationary fishing mor-

tality rates. Notice that the value of  per recruit may be displayed as

a straight line through the origin on the plot of recruitment against .

4We expect different values for  for stocks where density dependence is due to canni-

balism, compared with those where it is due to competition for limited resources.
5In Section 5 we show in detail how the S-R relationship is calibrated for this fishery.
6Notice that ( )  0 Then, low (high) values of  are associated to high (low)

values of ( ) and therefore 1  0 (0).
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Figure 2: SSB, SSB per recruiment and Fishing Mortality in the stationary

population
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The slope of such a line is just the reciprocal of the value of  per recruit

(indicated as 1/SPR). Therefore there is a one-to-one correspondence be-

tween  per recruit and fishing mortality,  , so that the  per recruit

lines may be labelled with the appropriate values of  . Notice that fishing

mortality is bounded between not fishing at all ( = 0) and that maximum

value,  that leads to the minimum  per recruitment7.

3 Management Reference Points

Fishery management advice consists of the evaluation of scenarios associated

to a desired stock status defined through reference points. These reference

points are used to indicate changes in management controls to improve the

status of the stock. Reference points fall into two groups: limit reference

points and target reference points.8

7 is the fishing mortality rate that satisfies 
1 =

P
=1 

() =

1 In this fishery  = 037
8See Caddy and Mahon (1995) for an extensive survey on reference points used in

fisheries management.
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Limit reference points are limits on the exploitation that should not be

approached. It may be either some minimum levels as for example a danger-

ously low spawning biomass or somemaximum conditions such as a maximum

fishing mortality rate.

Target reference points are levels of exploitation which are considered

to be desirable and at which management action should aim. The implicit

fishing mortality target of many regional and national fishery management

authorities and organizations is . The FAO Fishery Glossary defines

 as the fishing mortality rate which, if applied constantly, would result

in Maximum Sustainable Yield. Other targets reference points are max 01
or  which are applied in different contexts. For instance, max is defined

as the fishing mortality rate that maximizes equilibrium yield per recruit and

is used as a target in those fisheries in which the S-R relationship is not well

defined. In some occasions it is not even clear where the maximum of yield

per recruit is. For in these cases it is considered the 01 which is the fishing

mortality rate at which the slope of the yield per recruitment is 10% of its

value at the origin.  corresponds to the fishing rate that guarantees the

inverse of the median observed survival ratio (ratio of recruits to ). A

fishery exploited continually at  should be able to replace itself with an

abundance close to the observed historical median.

In general, long term fisheries management plans use a combination of

limit and target reference points.9 For example, ICES advice is based on sta-

tionary sustainable yield where  is considered the main target reference

point to be reached by the fishery in the long term as long as the  is

above the limit reference point , where subindex  stands for precau-

tionary approach. However, for fishing grounds under recovery plans ICES

target reference point is  which is the fishing mortality that guarantees

that the  reaches the  level.

The next subsection describes how to obtain  and  in the age

structured model described above.

3.1 

Among all the fishing mortality stationary paths,  can be defined as the

fishing mortality rate where the stationary yield is at its maximum. Formally,

9Alternatively the limit reference points can be considered only as a management tool.

The pulse fishing approach consists of allowing fishing in unregulated area as a limit

reference point is reached. Then fishing is stopped, when the ecosystem recovers, fishing

can begin again. See Quinn et al. (1990)
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 is the mortality rate that maximizes

max
{1}

X
=1

 =

X
=1

( )( )1 (9)

 1 = Ψ

Ã
1

X
=1

( )

!


where ( ) =  
+

¡
1− −

−¢
. Notice that this problemmaximizes

a combination of the yield per recruit
P

=1 
( ) and the  per recruit,P

=1 
( ) through the S-R relationship, Ψ().

The solution of problem (9) is characterized by the following first order

conditions,

X
=1

( )


( )1 +

X
=1

( )
( )


1 + Ψ0()1

X
=1


( )


= 0

(10)

X
=1

( )( )− [1−Ψ0()
X
=1

( )] = 0 (11)

1 = Ψ

Ã
1

X
=1

( )

!
 (12)

where Ψ0() is valuated at 1
P

=1 
( ) and  is the associated La-

grange multiplier that measures the impact of new recruits on the total yield.

Substituting equation (11) into (10) and taking into account total differ-

entiation of (12), the following expression is obtained

X
=1

( )


( ) +

X
=1

( )
( )


+

1

1( )

1( )



X
=1

( )( ) = 0

(13)

where
1( )


=

1Ψ0P

=1 
 

( )



1−Ψ0P

=1 
( )

 (14)

Equation (13) determines  and its interpretation is clear. Variations on

the fishing mortality rate, affect the stationary yield through three elements:

the weighted catches (first sum), the accumulated probability of a recruit to

reach age  (second sum) and the number of recruits (third sum).  is

chosen so that the three sources of variations cancel out.

11



Notice that an increase of the mortality rate has an ambiguous effect

over the stationary recruits. In particular, this effect is negative (positive)

whenever an increase in the number of recruits leads to a lower (larger)

increase in the .

The following statements characterize the existence and uniqueness of



Lemma 1 Yield per abundance, ( ) =  
+

¡
1− −

−¢
 is in-

creasing in  and concave in  for any age, 

Proof. See Appendix.¥

Lemma 2 If 

 (+)
+  2−

−

1−−− 
P−1

=1(
) ∀ thenP

1=2 
( )( )

is increasing and concave in  for any age, 

Proof. See Appendix.¥

Lemma 3 Suppose that Ψ is an invertible function. Then for each  there

exists a unique 1, that satisfies 1 = Ψ(
P

=1 
( )1) Moreover,

if 0  Ψ0 
P

=1 
( ) then 1 is decreasing in  ;otherwise 1 is

increasing in 

Proof. Straightforward from (14) taking into account that ( ) =P−1
=1 (−)( )  0¥

Lemma 4 If
P

1=2 
( )( ) is increasing and concave in  and 1 is

decreasing and concave in  then
P

1=2 
( )( )1 is concave in 

Proof. See Appendix.¥

Proposition 2 If i)
P

1=2 
( )( )1 is concave in  and ii) For each

 there exists a unique 1, that satisfies 1 = Ψ(
P

=1 
( )1), then

there exists a unique  that solves the maximization problem (9)

Proof. Condition ii) guarantees that the set of  over which the objective

function is maximized is compact. Since the objective function is continu-

ous, the maximization problem has at least a solution. Furthermore, sinceP

1=2 
( )( )1 is concave, the maximum is unique.¥

Corollary 1 If i) 

 (+)
+  2−

−

1−−− 
P−1

=1(
) ∀ and ii) Ψ is an

invertible function such that 0  Ψ0 
P

=1 
( ) then there exists a

unique  that solves the maximization problem (9).

12



Proof. Straightforward for Lemmas 2, 3, 4 and Proposition 2.¥

Notice that the above corollary shows sufficient conditions to guarantee

the existence and uniqueness of . However, we may find a well defined

 in a different context. For instance, for the Northern Sock of Hake we

find that recruitment shows a bell shape against fishing mortality (see Figure

2). In spite of the fact that 1 is not decreasing for all  however  is

found without major calculation problems (see section 5).

3.2 

 is the fishing mortality rate that guarantees that the  reaches a

particular level . Formally,  is the fishing level that generates sta-

tionary recruitment 1
 such that the following set of equation holds

1
 = Ψ

Ã
1



X
=1

()

!
 (15)

 = 1


X
=1

() (16)

4 Optimal Management

Most of the reference points used for long term management plans are based

on finding stationary mortality rates that maximize yield implied by the sta-

tionary population structure (). An alternative to fisheries management

based on this kind of reference points is to look for optimal trajectories asso-

ciated to some economic and/or biological criteria. In this section we show

how to characterize the optimal harvesting trajectories for different economic

criteria.

Lets assume that our aim is to find for a given discount factor10, 

the optimal path of fishing mortality, {}∞=0  that maximizes the expected
present value of discounted profits of the fishery taking into account that

the spawning stock biomass is always greater than the precautionary level,

 and the dynamics described by equations (1) to (4).

10Most of the times discount is introduced in fisheries economics using the discount rate,

, instead of discount factor,  The former uses to be applied in continuous time frame-

works while the latter is more commonly used in discrete set up. The inverse relationship

between both terms is given by  = (1 + )
−1


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Formally, the optimal management path is the solution to the following

discounted maximization problem

max
{

+2}∞=0
0

∞X
=0



(
X
=1

()

 − ()

)




⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1
+1 = −

()
 ∀ ∀ = 1 − 1

1
+1 = 11Ψ

³P

=1 




´
∀


0 = 

0  ∀ 
0 given,

 ≤
P

=1 


 ∀

(17)

where () =  
+

¡
1− −

−¢
and  and  represent the price

and the total cost function which depends positively on fishery mortality and

it is convex, respectively. 0 is the expectation operator conditioned on the

information at period 0

Notice the versatility of the objective function maximized in problem

(17). It can be interpreted in several ways. For instance if  = 1 and

the marginal cost is zero, the objective function represents the present value

of yield. When the marginal cost is zero and  6= 1 the objective function
coincides with the revenues of the fishery. In the case of  6= 1marginal cost
different from zero and total cost equal to the cost of oil and other running

costs, the objective function is equal to the added value of the yield. Finally

if the total cost also includes the labor cost, then the objective function can

be understood as the profits of the fishery.

By backwards substitution in the first restriction, the size of cohort age

  1 in period  
  can be expressed as a function of the past mortality

rates and initial recruitment,


 = −

−1
−1 (−1)−1

−1 = −
−1
−1 (−1)−

−2
−2 (−2)−2

−2 =  = Π−1
=1 

−−− (−)1
−(−1)

Therefore we can express 
 as


 = 

1
−(−1) for  = 1  (18)

where

 = (−1 −2 −(−1)) =

½
1 for  = 1

Π−1
=1 

−−− (−) for  = 2 
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can be understood as the survival function that shows the probability of a

recruit born in period  − ( − 1) to reach age   1 for a given fishing

mortality path
©
−1 −2 −(−1)

ª
 Notice that the survival function in

any period depends upon the − 2 next past mortality rates.
After substituting the survival function (18), the maximization problem

(17) can be rewritten as

max
{1

+2}∞=0
0

∞X
=0



(
11()

1
 +

X
=2

()



1
+1− − ()

)




⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

+1 = 11Ψ
³
111

 +
P

=2 


1
+1−

´
∀


0 = 

0  ∀ 
0 given,

 ≤ 111
 +

P

=2 


1
+1− ∀

(19)

In the appendix we show how to find the first order conditions that solve this

problem. Formally, the optimal paths can be characterized by the following

set of dynamic equations

X
=1


()




 −





= 

−1X
=1



(
−X
=1


£
+(+) + (Ψ

0
++ + +)

++
¤


+
+

(20)



X
=1

(+1+)

+1+ = +1 −

X
=1

(Ψ0
+1++1+ + +1+)

+1+

(21)

+1
+1 = −

()
  ∀ ∀ = 1 − 1 (22)

1
+2 = Ψ

Ã
X
=1


+1

!
 ∀ (23)

+1

"
X
=1


+1 − 

#
= 0 ∀ (24)

where  and  are the Lagrange multiplier associated to the first and third

restriction of the maximization problem (19), respectively.

Condition (20) shows how the mortality rate,  is selected. The insight is

the following. In the optimal path, an increase in current mortality rate leads
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Table 1: Age Structure and the Intertemporal Maximization Problem

t t+1 t+2 ... t+A-2 t+A-1 t+A t+A+1

a=1 1
 1

+2 ...

a=2 2
 2

+1 ... 2
+−2

... ... ... ... ... ... ... ...

a=A-1 −1
 −1

+1 −1
+2 ... −1

+−2 −1
+

a=A 
 

+1 
+2 ... 

+−2 
+−1 

++1

to an increase in current fishery profits (left hand side) that is compensated

with the decrease of future profits derived from reductions in future stock

(right hand side). In particular, the left hand side represents the effects of

changes in fishing mortality over the current profit of the fishery. However,

the right hand size shows the effect on the future size of the alive cohorts,

 + 1 to  +  − 1 (first sum) and on the future stock recruitments from
periods + 2 to + (second sum). This can be visualized also looking at

age structure in Table 1. The left hand side represents the effects of  on

the structure of the fishery in period  (column t). The first sum of the right

hand side shows the effects of  on the structure of future size of the alive

cohorts (lower triangle matrix) and the second sum illustrates the effects of

 on future stock recruitments (row  = 1).

Equation (21) indicates that the optimal path recognized that the effects

of an increase in the stock recruitment, 1
+2 is two fold. On the one hand,

the abundance in periods + 2 to + 2+− 1 goes up and this leads to an
increase in catches (left hand side). On the other hand, the  for periods

+ 3 to+ 3 +− 1 also increase, (right hand side).
Equations (22) and (23) show the dynamics of the population cohorts.

Finally, equation (24) indicates if  is under the precautionary level,

. The Lagrange multiplier  shows the effects over the mortality if

the precautionary principle is not binding. If at some period t, the  is

below the precautionary level, , then  indicates how much we should

modify the fishing mortality rates between periods − and − 1
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4.1 Optimal Stationary Solution

If the precautionary restriction is not binding,  = 0 In this context, a

stationary solution is defined as an optimal solution characterized by a vector

( 
1
 

2
 


 ) such that for any future period 

 =  = +1


 = 

 = 
+1 ∀ = 1  

 =  = + ∀ = 1  + 1
The first order conditions (20)-(21) valued at the steady sate can be written

as the following + 2 equation system,

X
=1


()




 −





=

−1X
=1



(
−X
=1

£
+() +Ψ0

++
¤
+



)


(25)

X
=1

1+()
() = 

"
1−Ψ0

X
=1

()

#
 (26)

+1
 = −

()
 ∀ = 2   (27)

1
 = Ψ

Ã
X
=1




!
 (28)

where the expectational operator does not appear because all random vari-

ables are independently distributed.

Notice that using the survival functions (18) valued in the steady state,


 = ()

1
 this +2 equation system can be reduced to a 3 equation

system that solves out ( 
1
 ). Once 

1
 is known the cohort size of

any age can be calculated using the survival function.

The next proposition shows sufficient conditions that guarantee the exis-

tence of the  Furthermore, we show that the relationship between fishing

mortality and discount factor is negative. Furthermore, it is proven that the

relationship between recruitment and discount factor is positive. The signifi-

cance of these two facts is clear. The more impatient we are, the less we care

about the future (i.e. the lower is the discount factor, ). And this leads to

a higher stationary fishing mortality and lower recruitment.

Proposition 3 If i)
P

1=2 
 is increasing in  ii) For each  there exists

a unique 1, that satisfies 1 = Ψ(
P

=1 
( )1) and such that 1

is decreasing and concave in  , and iii) For  = 0 the marginal profit per

recruitment is positive, then
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a) There exists a unique  that solves the optimal stationary conditions

(25) to (28).

b)  depends negatively on 

c) 1
 depends positively on 

Proof. See Appendix. ¥

An important issue to be analyzed is the relationship between the solutions of

the discounted maximization problem (17) and the stationary maximization

problems (9). We can prove that the optimal stationary mortality rate, 

is just a generalization of  In particular, we show that  coincides

with  for the case of in which future is not discounted and all periods are

treated equally. The following proposition formalize this result.

Proposition 4 If  = 1  = 1 and  = 0 then  = 

Proof. See Appendix.¥

This result may become relevant because only when the future is not

discounted the  is a good target reference point in terms of guarantee

that present value of yield is at its maximum.

Finally, it may be that if the future is significatly discounted and we

only care the immediately following periods, the optimal stationary fishing

mortality may be so high that the  may fall below the precautionary

level. In this case, the stationary solution is given by the biological conditions

of  Notice that the more the future is discounted, the higher the

likelihood this situation will happen.

The following proposition sets the optimal stationary solution for the case

in which this corresponds to the corner solution associated to  .

Proposition 5 Let  the discount factor for which the optimal station-

ary fishing mortality solving (25) to (28) generates a  equal to .

Then for any discount factor    the optimal stationary fishing rate that

solves the discounted maximization problem (19) is given by  character-

ized by (15)-(16). Furthermore, whenever 0  Ψ0 
P

=1 
( )  is

the maximum optimal fishing rate among the optimal solutions generated by

different .

Proof. See Appendix. ¥
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It is worth mentioning that the above proposition leads to similar results

as those in Proposition 1 in Tahvonen (2009). Notice that if for a particular

discount factor the optimal solution is  any reduction of the discount

factor would imply an increase in the effort that leads to a  under ;

so  continous to be the optimal fishing rate for the new discount rate.

In summary as in Tahvonen (2009) we find a range of optimal solutions

for which the optimal stationary fishing mortality does not depend on the

discount factor.

4.2 Finding Numerical Optimal Trajectories

The optimal trajectories derived from maximization problem (17) or (19) are

the optimal paths for {}∞=1, {}∞=2, and
©
1

+2

ª∞
=1
that satisfy the infinity

set of equations that characterizes the first order conditions (20) to (24).

To make tractable the computation of the optimal trajectories, we assume

that these converge to the stationary solution, ( 
1
 )  in a finite num-

ber of periods,  . That is, we truncate the first order conditions using that

 = , 
1
+2 = , and +1 = . Taking into account this, solving the

model consist of choosing 1,1, 2, .....,  =  such that the system of

equations implied by the first order condition (20) is satisfied. This system

of (−1) nonlinear equations with (−1) unknowns can be solved relatively
quickly using standard numerical methods following the next algorithm.

1. Assume that the fishery is above the precautionary level. That is

   ∀, and therefore  = 0  = 2   .
2. Compute the stationary solution, ( 

1
 ).

3. Guess a trajectory for the fishing mortality rate path, {}−1=1 . And

assume that in period  the stationary state has been reached, i.e.

 =  = ++1 = 

4. Project the future age cohort structure for periods 1   +  + 1,

{
 }++1=1 using the mean of the initial age structure, 

0  and the

mean of the S-R relationship. In order to do this we use the cohort

dynamic population (1), and the recruitment relationship, (2) and (3).

5. Compute Ψ0
 using the the recruitment relationship, (2) and (3), asso-

ciated with {
 }++1=1 .

6. Using  compute  from equation (21) valued at  =  − 1

 =

X
=1

()

() +

X
=1

Ψ0+
()
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Note that Ψ0+ is a function of 
1
+ which depends on the guess

{}+−2=1 .

7. Given   compute backwards recursively {+1}−1=1  using equation

(21).

8. Using the values of {+1}−1=1  the guess of {}−1=1 and the cohort

projections {
 }++1=1  we can compute how far we are from the first

order condition (20). Formally we calculate, ∀ = 1 

 =

X
=1


()




 −





−
−1X
=1



(
−X
=1


£
+(+) + (Ψ

0
++ + +)

++
¤


+
+

)


Using a Newton-Raphson algorithm, a new guess for the mortality rate

path is obtained.

9. Repeat the procedure for step 1 to 8 until  is low enough.

10. Finally check that
nP

=1 


o
=1

 . If the restriction is

not satisfied, we should guess a new set of positive11 {}=2.

Notice that optimal trajectories are not contingent to the shocks affecting

the initial conditions. This is because we are assuming that when decisions

are taken policy makers only know the mean of the initial population distrib-

ution. In the case of shocks affecting the initial distribution could be known

when taking decisions, then the optimal trajectories should take them into

account. In order to do this, it would be enough to use as initial population

distribution the observed realization instead of the mean. Since at any period

recruitment is affected by a shock, the optimal trajectory should recalculated

each period once the drawn is known.12

11In long-run management plans, the stock uses to be far from . So for those

cases, the best initial guess is  = 0.
12This numerical method is known as the Model Predictive Control (see Garcia, Prett

and Morari (1989) and Mayne, Rawlings, Rao and Scokaert (2000)).
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Table 2: Parameters by age

Initial conditions

Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10

 (1) 186213 152458 123457 100213 67409 35551 19674 10206 9147 4078 1819

Population dynamics

Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10

 0,00 0,06 0,54 1,15 1,03 1,52 2,09 2,43 2,43 2,43 2,43

 (2) 006 013 022 034 060 098 144 183 268 268 268

 000 000 000 023 060 090 100 100 100 100 100

Stochastic shocks

Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10

 0200 0200 0166 0086 0061 0063 0076 0084 0084 0084 0084

Prices

Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10

 236 293 342 385 455 522 581 622 692 692 692

Source: Meeting on Northern Hake Long-Term Management Plans (STECF/SGBRE-07-03) and

ICES Report (2007)
(1) Thousand;(2) kg ; (3) /kg

5 The Northern Stock of Hake

In this section we illustrate the use of the algorithm developed to find the op-

timal trajectories for the Northern Stock of Hake13. In order to calibrate the

age structured model for this fishery two data sources have been used. First,

the information regarding the biological parameters of the fishery comes from

expert working group meeting on Northern Hake Long-Term Management

Plans (STECF/SGBRE-07-03) held in Lisbon, June 4-8 2007. Most of the

parameters come from the summary of XSA results from the 2006 update

(ICES (2007) ). Secondly, economic data of the fishery emanate of expert

working group meeting on Northern Hake Long-Term Management Plan Im-

pact Assessment (STECF/SGBRE-07-05) held in Brussels, December 3-6

2007.

Table 2 shows, for each age, the number of fishes at the initial condi-

tions, the parameters of the population dynamics (selection pattern, weight

13STEFC advice for the Long Term Plan of this fishery was established comparing the

benefits of gradual changes of the current level of fishing mortality to a new target, ,

in steps 5% per year, 10% per year and 15% per year.
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Figure 3: Calibration of the model under Shepherd S-R relationship
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and maturity), the stochastic structure about the initial conditions and the

prices14. Following Pontual, Groison, Piñeiro and Bertignac (2006) we con-

sider that  = 11. The 8(plus) age-group is disaggregated assuming that the

sum of the abundance of the new age-groups (8−  11) is equal to the 8 (plus)

age-group. We also use the values of the STECF group for  = 140 000



As S-R relationship we use the Shepherd relationship (1982) described

by (8). To calibrate this function recruitment and  data for the period

1978-2006 are used. Since parameter  represents the slope of the S-R re-

lationship at the origin, it is calibrated as the maximum value of 1
 .

This calibration implies  = 24879 which means that 24879 recruits are

generated by each kilo of biomass in the case this is close to zero. Given

 the Shepherd S-R relationship implies  = (1 − 1)1 In
order to calibrate  and , first for each possible value of , we calculate the

value of  that reproduces the mean of  and 1. Then, among all the

pairs of () we select the one that minimizes the sum of the square errors

by comparing the model calibrated and the data. This calibration implies

 = 168270 and  = 17602.

The left plot in Figure 3 displays the accuracy of the Shepherd S-R cal-

ibration. Also from this calibration of the S-R relationship, stationary yield

14To calculate prices as a function of ages we have used data on 2007 daily sales for the

trawl, gill nets and long lines Galician fleets.
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Table 3: Economic Parameters Calibration

Cost structure Macro magnitudes

Data per vessel Data Model

Fuel per day () 471.39 Landings (t) 54,889 54,889

Other costs per day () 444.48 Income (thousand ) 301,551 301,560

Total cost per day () 915.87 Total cost (thousand ) 73,576 73,576

Total days 80,335 Value Added (thousand ) 227,975 227,984

Total cost (thousand ) 73,576 Wages (thousand ) 120,620 120,624

Wages (thousand ) 120,620 Profits (thousand ) 107,355 107,360

Own calculations from the Spanish data fleet (2006) and French data fleet (2004)

and  can be calculated as functions of the stationary fishing mortality.

Right plot in Figure 3 shows the shape of those relationships. We observe

that the model implies as stationary targer reference points  = 0156.

Finally, the model uses the fact that catches were equal to 54,889 t in

2007 with a fishing mortality rate of  = 025This situation represents the

so called status quo.

Table 3 illustrates the cost structure and the variables related with the

output for the Northern Stock of Hake15. In the numerical simulations we

assume that the cost of effort is proportional to the mortality rate,  = 

where  =  represents the marginal cost. It is worth mentioning that

the valuation of total costs has to be consistent with the variable that is

considered as output in the objective function. For instance, to obtain the

optimal paths that maximize the added value of yield we use as value of cost

the total operating costs, 73,576 Euros. This value is divided by the current

mortality rate,  = 025 to calculate the marginal cost. When the variable

to maximize correspond to the profits, the value of cost used is the sum of

operating cost and labor cost (73,576 plus 120,620 Euros), which is divided

by the current mortality rate,  = 025

Once the model is calibrated Monte Carlo simulations are carried out

using 20,000 replications of the fishery for 28 periods.

Figure 4 shows the optimal paths that maximize the economic indicators

assuming the Shepherd S-R relationship for the Northern Stock of Hake. The

solid blue and red lines display the optimal path assuming a discount factor of

0.90 and 0.95, respectively. These optimal paths are compared with strategies

15To calculate the costs associated to each fleet we only consider the proportion of hake

in relation to the total revenues.
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Figure 4: Optimal Fishing Mortality for different Discount Factors
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that consist of reaching target reference points related to  In concrete,

taking into account STEFC advice for this fishery, we show the evolution

of approaching at steps of 15% to 12 ×  = 01872,  = 01560 and

08×  = 01248 which are displayed in shaded lines.

The main results we observe are the following. First, in all the cases the

optimal paths consist of reducing drastically current mortality ( = 025)

up to values even lower than 0.10 in the short run. After this, fishing mortal-

ity recovers until it reaches the stationary values in the long run. Second, the

level of the optimal stationary fishing mortality depends on which economic

indicator we are interested in. For instance, when the aim is to maximize

landings or the values of these, the stationary fishing rate is around 0.20

which can be identified with the classical target reference of 12 × .

However, when valued added is the objective, the stationary fishing mortal-

ity fluctuates between 0.16 for and 0.19 depending on the discount factor.

The optimal fishing mortality falls even more when we focus on maximizing

profits, dropping up to 0.11 in the steady state. In this case the stationary

state is very close to the classical target of 08× 

Those results are very relevant because they indicate that management
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Table 4: Discounted Economic Indicators under Several Management Sce-

narios

Discounted  with  = 095  with  = 090

Indicators   Yield Income VA Profits Yield Income VA Profits

F target 0250 0156 0173 0160 0139 0112 0194 0180 0154 0121P∞
=1 

−1P

=1 



mean 570 557 1176 1164 1131 1064 573 567 550 518

cv 383 326 335 327 318 309 343 335 321 307P∞
=1 

−1P

=1 


mean 3045 3102 6517 6536 6404 6099 3136 3145 3076 2930

cv 369 319 336 329 321 314 334 327 315 302P∞
=1 

−1 

mean 2309 2619 5527 5570 5578 5390 2587 2616 2618 2534

cv 487 378 397 385 369 355 407 392 370 349P∞
=1 

−1
mean 1103 1829 3873 4038 4202 4226 1671 1762 1868 1886

cv 1019 541 567 531 490 453 629 583 519 469

plans based exclusively on biological target references may drive the economic

results of the fishery far from the optimal.

Table 4 reports the discounted value of several economic indicators for

different scenarios. By rows, information on discounted yield, revenues, value

added and profits are shown. For any of them, the mean and the coefficient

of variation associated to the 20,000 simulations are displayed. Column 1

shows the information assuming that the fishery maintains the status quo

harvesting policy,  = 025 for ever. Column 2 shows the results when

the target is to move from the actual situation to the  = 0156 in steps

of 15% per year. Those values displayed for the status quo and the 

scenarios are discounted with a discount factor  = 090.

Columns 3 to 6 show the results of optimal harvesting assuming a discount

factor,  = 095 for the cases in which yield, revenues, value added and

profits are used as objective function, respectively. Finally, columns 7 to 10

show the results of optimal management assuming a discount factor  = 090.

In light of these results we can observe that the status quo policy gen-

erates a higher discounted yield than the  policy. However, optimal

management implies a  = 01940 which is a policy in between the status

quo and the  So if the criteria used to select management policies is

25



Table 5: Annual Risk of  falling under 

SQ  (yield)

 = 095  = 090

target 0250 0173 0194

 = 1 000 000 000

 = 2 040 001 001

 = 3 083 000 000

 = 4 092 000 000

 = 5 092 000 000

 = 6 090 000 000

 = 7 086 000 000

 = 8 082 000 000

 = 9 082 000 000

 = 10 082 000 000

based exclusively on discounted indicators without taking into account opti-

mal trajectories, the resource can be pushed to risk situations. As we prove

in Section 4.1,  only matches up with the optimal policy if the future

is not discounted. This can be the reason why the socio-economic analysis

carry out for the ICES working group advised no to change the actual pol-

icy instead to move towards a  policy proposed an the first case by the

biologist.

Our results also bear out Grafton, Kompas and Hilborn (2007) conclu-

sions. They analyze the biomass associated to yield maximization and dis-

counted profit maximization for the Western and Central Pacific big eye tuna

and yellowfin tuna, the Australian northern prawn fishery and the Australian

orange roughy fishery. Their main conclusion is that the stock associated to

the maximization of yield is always lower than the stock derived from the

maximization of discounted profits. This also happens for the Northern stock

of hake since fishing mortality for profit maximization runs from 0.112 for

 = 095 to 0.121 for  = 090. Whereas fishing mortality goes up to 0.156 for

 = 1, 0.173 for  = 095, and 0.194 for  = 090 when yield is maximized.

Our results also highlight the relevance of optimal behavior with respect

to the possibility of pressuring the stock towards a risk situation. Table 5

shows the annual probability of the  is under  for the status quo

scenario and for the case in which discounted yield is maximized. Probability

of period  for a particular scenario is calculated as the ratio of number of

simulations where  falls under  in period  over 20000 which is the

26



Figure 5: Optimal Stationary Fishinf Rate and Discount Factor
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total number of simulation run. We can see that the status quo policy which

consists of keeping current fishing rate forever leads to a high probability

of putting the stock at risk. However, the optimal trajectory that selects

fishing mortality maximizing discounted yield reduces to the minimum the

risk of the stock regardless of the discount factor applied. Similar results

appears when the variable to maximize is discounted revenues, valued added

or profits.

Finally, Figure 5 displays the relationship between fishing mortality and

discount factor for the optimal policy that maximized present value of dis-

counted yield. The solid red line shows the relationship between the marginal

current yield,
P

=1



(), and the fishing mortality. We can see

that this relationship is negative and it does not depend on the parameteri-

zation of the model16. The red, green and blue dashed lines show the effects

that changes on fishing mortality have over the future yields, multiplied by

less 1, for  = 1  = 095 and  = 090, respectively. For any discount rate,

an increase on the fishing mortality reduce the future yield because of the cut

16Observe that the negative relationship always holds because the yield function is in-

creasing and concave with respect to  (see Lemma 1) and  = 1() 

0.
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in future recruitment.17 We see that future marginal yield depends positively

on the discount rate. And the intuition is clear, the more we care about the

future (i.e. the higher  is), the more value has the future yield. Observe

that all these plots are related with the optimality condition associated to

the stationary solution, (25). Solid line corresponds to the right hand side of

the optimal condition which does not depend on Dashed lines correspond

with the right hand side which depend positively on  Therefore any point

in the solid line corresponds to an optimal solution for a particular discount

factor. For instance, the fishing mortality associated to the point where red

lines crossed represents the optimal stationary fishing rate when  = 1 In

summary, it is clear from Figure 5 that the relationship between optimal sta-

tionary fishing rate and discount factor is negative. This empirical finding is

in accordance with Proposition 3.

6 Conclusions

During the last decades, age-structured and biomass fisheries models have

developed without much iteration. Age-structured model has been consid-

ered to complex to be included into optimal harvesting models. However,

recent advances by and Kulmala, Laukkanen and Michielsens (2008) and

Tahvonen (2008, 2009) have shown that the task is not impossible.

The study presented in this article follows the research line opened by

Tahvonen (2009). Dynamic optimal harvesting that maximizes discounted

utility is characterized. One of the difference between this study and Tahvo-

nen’ works is that we assume a stochastic age-structured framework similar

to the one used by VPAmethods. This allows us to compare optimal harvest-

ing in a discounted economic context with standard target references used

by fisheries agencies for long term management plans (e.g.  or max).

Our main findings are the following. First, we show sufficient conditions

that guarantees the existence and uniqueness of the optimal steady state for

the general case of  cohorts. It is also proved that the optimal steady state

coincides with the traditional target  whenever the utility function to be

maximized is the yield and the discount rate is zero. Second, an algorithm

is provided to calculate the optimal trajectories that drives the resource to

the steady state. Finally, when the algorithm is applied to Northern Stock

of hake, we observe that management plans based exclusively on biological

target references may drive the fishery economic results far from the optimal.

17Notice however that the dashed lines are increasing because we are displayed the

reductions on future yield multiplied by less 1.
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A Appendix

Proof of Proposition 1

1 is obtained directly by substituting equations (3) and (7) into Shepherd’s

S-R relationship, (8).

On the other hand, taking derivatives over 1 and after some manipula-

tion it can be shown that

1


= 

P

=1 
 





h

P

=1 
 − 1

i(1−)
P

=1 


"

(1− )



X
=1

 + 1

#


Notice that for well defined values of 1 
P

=1 
 − 1  0 Further-

more, since ( ) = Π−1
=1 

−−



( )


=

−1X
=1

(−)( )  0 (29)

Therefore, the sign of 1 it is the opposite of the sign of the right brace.

It is straightforward that 
(1−)


P

=1 
 + 1  0 whenever  5 1

However for the case of   1


(1− )



X
=1

 + 1 R 0 if
X
=1

 Q 

 (− 1) 

¥

Proof of Lemma 1

The derivative of yield abundance respect to  is given by

( )


= 

½


( +)2

¡
1− −

−¢
+

 2 

 +
−

−

¾
 (30)

which is positive because 1− −
−

 0

The second derivative can be expressed as

2( )

 2
= − 2  2

( +)3

½

¡
1− −

−¢
+

∙
 ( +)2

2
−( +)

¸
−

−

= − 2  2

( +)3

½

£
1− −

−

(1 +  +)
¤
+

 ( +)2

2
−

−

¾
which is negative because 1  −



(1 + ) for any 

¥
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Proof of Lemma 2

First derivative of ( )( ) is given by,

( )( )


=

( )


( ) + ( )

( )




Substituting equations (29) and (30) in this expression,

( )( )


=

"


 ( +)
+

 2 −
−

1− −− −
−1X
=1

()

#
( )( )

Therefore, a sufficient condition for
P

=1 
( ) to be increasing is that

∀  1


 ( +)
+

 2 −
−

1− −− 

−1X
=1

() (31)

On the other hand, the second derivative of ( )( ) is given by,

2( )( )

 2
=

2( )

 2
( ) + 2

( )



( )


+ ( )

2( )

 2
 (32)

Derivating (29) we obtain that

2( )

 2
=

Ã
−1X
=1

(−)
!2

( )  0

Substituting this and (30) into (32)
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="
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Since Lemma 1 shows that the yield function is concave, 2( ) 2  0

On the other hand, if the condition that guarantees
P

=1 
( ) is increas-

ing (31) holds, then the second sum inside the bracket also is negative.

¥

Proof of Lemma 4

Second derivative of
P

=1 
( )( )1( ) is given by,
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If
P

=1 
 and 1 are concave, first and second term on the right hand

side are negative. Moreover, if
P

=1 
 is increasing and 1 is decreas-

ing, the third term also is negative. Therefore, under those circumstancesP

=1 
( )( )1( ) is concave.

¥

Obtaining First Order Condition (20) to (24):

The Lagrangian associated to the maximization problem (19) is given by

L = 0

∞X
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At any period  
 and 1

+1 are given and the variables to solve are

 

+1 ∀ = 2  and 1

+2. Notice that 

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Taking into account this fact it is easy to write the first order conditions
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which are completed with the restriction +1
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()
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Proof of Proposition 3

 is determined by the equation system (25) and (28). Using the survival

functions (18) and substituting (26), (27) and (28) into (25) the following

expression is obtained
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On the one hand, we can see after some manipulation that
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On the other hand, taking into account that
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it is easy to show that

−1X
=1


−X
=1

+++() = −
X
=1


()



 (35)

Moreover, from the first order condition (23) we obtain that
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Substituting (34), (35) and (36) into (33)
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=1

−
!
−

− 1


1


X
=1

1+()
() (37)

To prove the existence and uniqueness of the  that solves (37), we prove

that under the assumption of the proposition right (left) hand side is strictly

increasing (decreasing). Then we show that both right and left hand side

crosses each other.
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Lets call 1 and 2 to the two left hand side terms, respectively.

In the same way, define 1and 2 as the two sums in the right hand

side. First we show that the left hand side of this equation is decreasing in

 Notice that by Lemma 1 and taking into account equation (29) we know

that

1



=

X
=1


∙
2

 2


 +








¸
 0

Also considering that the cost function, , is increasing and convex in 

and assuming 1 is decreasing in  we have

2



= −
2

 2


1

1


+
1

(1
)

2

1








 0

Second we prove that the right hand side of expression (37) is decreasing

on  If ()
() is increasing in  ∀, then easy to show that

1



=

X
=1






Ã
−1X
=1

−
!

 0

Moreover, if the  is increasing in  ∀ and 1 is decreasing and concave

in 

2



=

"
1

(1)
2

µ
1



¶2
− 1

1

21

 2


#
X
=1

1+− 1

1

1



X
=1

1+




 0

Notice that for the case of  = 0 the left hand side is equal to zero

because (0) = 0 ∀ Therefore, the left hand side of (37) is a strictly
increasing function that crosses the origin. On the other hand, under the

assumption that for  = 0 current marginal profit is positive, the right

hand side is a strictly decreasing function crossing the y-axis at a positive

level. Therefore there is a unique  that satisfies (37).

In order to prove that  depends negatively on  we totally differentiate

expression (37)




=

1


+ 2


1


+ 2


− 1


− 2




Notice that the under the conditions of the proposition, the denominator of

the expression is negative and

1


=

X
=1

()
()

Ã
−1X
=1

(− )−−1
!

 0

2


= − 1



1


X
=1

(1 + )()
()  0
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Therefore   0

To analyze the relationship between 1
 and we just take into account

(36). Under the conditions of the proposition 1
  0 and  

0 and therefore,
1




=

1







 0

¥

Proof of Proposition 4

If  = 1  = 1 and  = 0 the equation that determines  (37),

can be expressed as

X
=1

()


( )1

+

X
=1

()
()



1
+

1()



X
=1

()
() = 0

Comparing this expression with the equation that determines  (13), it

is clear that  = 

¥

Proof of Proposition 5

We prove that when 0  Ψ0 
P

=1 
( ) the  associated to the

optimal fishing rate  depends positively on  Notice that




=








=

"
1



X
=1

( ) +1

X
=1


( )



#



 0

because ( )  0 by (29) and 0  Ψ0 
P

=1 
( ) guarantees

a decrease 1 and   0

This implies that for any    the optimal mortality rate that solves

(25) to (28) generates    For these cases, the optimal solution

consists of selecting the corner solution 

¥
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