Supplementary Information: Does phosphorylation increase the binding affinity of aluminum? A computational study on the Aluminum interaction with serine and O-phosphoserine

Elena Formoso ,* *,†,‡ Rafael Grande-Aztatzi ,[‡] and Xabier Lopez,^{‡,¶}

Farmazia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Centre (DIPC), 20018 Donostia, Euskadi, Spain

E-mail: elena.formoso@ehu.eus

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed

 ^{†&}lt;br/>Farmazia Fakultatea, Euskal Herriko Unibert
sitatea (UPV/EHU)

 $^{^{\}ddagger} \mathrm{Donostia}$ International Physics Centre (DIPC), 20018 Donostia, Euskadi, Spain

 $[\]P$ Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain

- Figure S1. Complexation enthalpies and free energy affinities at physiological pH.
- Table S1. Complexation free energy affinities with different functionals.
- Table S2. Enthalpy and free energy affinities for the studied 24 $Al^{3+} Ser$ complexes.
- Table S3. Enthalpy and free energy affinities for the studied 24 $Al^{3+} PSer$ complexes.
- Table S4. Distances, electron delocalization indexes (DI) and QTAIM parameters of the first coordination sphere of aluminum and of hydrogen bonds in representative $Al^{3+} Ser$ structures.
- Table S5. Distances, electron delocalization indexes (DI) and QTAIM parameters of the first coordination sphere of aluminum and of hydrogen bonds in representative $Al^{3+} PSer$ structures.
- Table S6. Enthalpy and free energy affinities for the studied 19 $[Al(OH)]^{2+}$ Ser complexes.
- Figure S2. Representative $[Al(OH)]^{2+} Ser$ structures.
- Table S7. Enthalpy and free energy affinities for the studied 29 $[Al(OH)]^{2+} PSer$ complexes.
- Figure S3. Representative $[Al(OH)]^{2+} PSer$ structures.
- Table S8. Distances, electron delocalization indexes (DI) and QTAIM parameters of aluminum interactions with the functional groups in representative $[Al(OH)]^{2+} Ser/PSer$ structures.
- Table S9. Enthalpy and free energy affinities for the studied 17 $[Al(OH)_2]^+ Ser$ complexes.
- Table S10. Enthalpy and free energy affinities for the studied 20 $[Al(OH)_2]^+ PSer$ complexes.
- Figure S4. Representative $[Al(OH)_2]^+ PSer$ structures.
- Table S11. Distances, electron delocalization indexes (DI) and QTAIM parameters of aluminum interactions with the functional groups in representative $[Al(OH)_2]^+ Ser/PSer$ structures.

Abbreviations used to indicate the different coordination modes: mC, monodentate binding of carboxylate; bC, bidentate binding of carboxylate; O, monodentate binding of alkoxide group; mP, monodentate binding of phosphate group; bP, bidentate binding of phosphate group; N monodentate binding of amine group; dCO dicoordinate binding of carboxylate and alkoxide groups; ; dCP dicoordinate binding of carboxylate and phosphate groups; dCN dicoordinate binding of carboxylate and amine groups; tCNOtricoordinate binding of carboxylate, amine and alkoxide groups; tCNP tricoordinate binding of carboxylate, amine and phosphate groups; tCP tricoordinate binding of carboxylate monodentately and phosphate bidentately; tCNbP tetracoordinate binding of carboxylate and amine groups monodentately and phosphate group bidentately. Figure S1: Complexation enthalpies and free energies for Al-Ser (filled symbols) and Al-PSer (striped symbols) complexes: A) Al^{3+} complexes; B) $[Al(OH)]^{2+}$ complexes; and C) $[Al(OH)_2]^{1+}$ complexes. The symbols denote the different protonation state of the titrable groups, which are written in parentheses: NH_3^+ and OH (spheres), NH_3^+ and O^- (squares), NH_2 and OH (stars), NH_2 and O^- (diamonds), NH_3^+ and $OHPO_3^-$ (triangles up), NH_3^+ and OPO_3^{-2} (triangles down) and NH_2 and OPO_3^{-2} (triangles left). The different colors account for the different binding modes of the complexes: monodentate binding of carboxylate group (black), bidentate binding of carboxylate group (red), amine group (yellow), binding of alkoxide or monodentate phosphate group (blue), bidentate binding of phosphate group (brown), dicoordinate binding of carboxylate and alkoxide or monodentate phosphate groups (orange), dicoordinate binding of carboxylate and amine groups (cyan), tricoordinate binding of carboxylate and bidentate phosphate groups (green), tricoordinate binding of carboxylate, amine and monodentate phosphate groups (magenta) and tetracoordinate binding of carboxylate, amine and bidentate phosphate groups (wiele). R stands for alkoxide or monodentate phosphate.

Table S1: Complexation free energy affinities in kcal/mol for representative complexes with different functionals: B3LYP-D3BJ, PBE0-D3BJ, TPSS-D3BJ, B97D3 and M062X. The † sign indicates a spontaneous proton transfer from a water molecule to alkoxide/phosphate group during the optimization.

	Structure	B3LYP-D3BJ	PBE0-D3BJ	TPSS-D3BJ	B97D3	M062X
	$[Al(Ser)_O(H_2O)_5]^2$	-65.91	-67.69	-67.83	-65.52	-66.81
	$[Al(Ser)_{dCO}(H_2O)_4]^2$	-73.21	-73.64	-72.89	-72.00	-73.48
	$[Al(Ser)_O(H_2O)_5]^1$	-81.80	-82.60	-82.74	-80.88	-82.58
	$[Al(Ser)_{dCO}(H_2O)_4]^1$	-88.95	-89.45	-88.87	-88.33	-89.13
	$[Al(Ser)_{mC}(H_2O)_5]^1$ (†)	-93.31	-94.37	-94.14	-92.12	-93.83
A13+	$[Al(Ser)_{tCNO}(H_2O)_3]^1$	-93.73	-95.58	-97.02	-95.42	-91.69
	$[Al(PSer)_{mC}(H_2O)_5]^1$ (†)	-81.14	-81.00	-82.75	-80.62	-79.13
	$[Al(PSer)_{tCNP}(H_2O)_3]$	-82.53	-83.75	-87.41	-86.24	-78.49
	$[Al(PSer)_{dCP}(H_2O)_4]^1$	-85.66	-85.96	-86.45	-85.03	-85.56
	$[Al(PSer)_{tCNbP}(H_2O)_2]$	-86.20	-88.30	-91.72	-90.10	-83.05
	$[Al(PSer)_{tCP}(H_2O)_3]$	-87.36	-88.31	-89.22	-88.83	-86.13
	$[Al(PSer)_{dCP}(H_2O)_4] (\dagger)$	-102.74	-103.62	-104.28	-102.41	-102.08
	$[Al(Ser)_{dCN}(H_2O)_3(OH)]$	-40.20	-40.22	-42.33	-43.23	-35.98
	$[Al(Ser)_O(H_2O)_4(OH)]^1$	-48.54	-49.14	-48.95	-47.52	-49.05
	$[Al(Ser)_O(H_2O)_4(OH)]$	-57.16	-57.72	-57.76	-56.49	-58.34
	$[Al(Ser)_{dCO}(H_2O)_3(OH)]^1$	-58.27	-58.60	-57.95	-57.20	-58.57
	$[Al(Ser)_{dCO}(H_2O)_3(OH)]$	-70.53	-70.96	-70.45	-70.14	-70.74
$[\Lambda l(\Omega H)]^{2+}$	$[Al(Ser)_{tCNO}(H_2O)_2(OH)]$	-77.13	-78.63	-79.90	-78.52	-75.31
	$[Al(PSer)_{bP}(H_2O)_3(OH)]$	-59.97	-60.87	-62.27	-61.26	-57.83
$[Al(OH)]^{2+}$	$[Al(PSer)_{tCP}(H_2O)_2(OH)]$	-62.06	-62.50	-63.52	-63.29	-60.63
	$[Al(PSer)_{tCP}(H_2O)_2(OH)]^-$	-65.61	-66.29	-67.28	-67.03	-64.43
	$[Al(PSer)_{dCP}(H_2O)_3(OH)]$	-65.98	-66.73	-67.41	-65.30	-67.07
	$[Al(PSer)_{tCNbP}(H_2O)(OH)]^-$	-67.01	-68.74	-71.89	-70.58	-64.10
	$[Al(PSer)_{dCP}(H_2O)_3(OH)]^-$	-75.04	-75.94	-77.96	-75.39	-74.54
	$[Al(Ser)_O(H_2O)_3(OH)_2]$	-28.68	-29.13	-29.21	-27.62	-29.47
	$[Al(Ser)_{dCN}(H_2O)_2(OH)_2]^-$	-28.79	-28.68	-30.19	-30.64	-25.60
	$[Al(Ser)_{dCO}(H_2O)_2(OH)_2]$	-37.13	-37.42	-37.51	-36.69	-36.66
	$[Al(Ser)_O(H_2O)_3(OH)_2]^-$	-40.40	-40.52	-40.49	-39.64	-40.82
	$[Al(Ser)_{dCO}(H_2O)_2(OH)_2]^-$	-47.87	-48.55	-48.85	-47.89	-47.56
$\begin{bmatrix} AI(OII) \end{bmatrix}^+$	$[Al(Ser)_{tCNO}(H_2O)(OH)_2]^-$	-55.01	-55.70	-57.20	-56.86	-52.47
$[Al(OH)_2]$	$[Al(PSer)_{tCP}(H_2O)(OH)_2]^{-2}$	-39.70	-39.44	-40.84	-40.62	-37.40
	$[Al(PSer)_{mP}(H_2O)_3(OH)_2]^-$	-41.62	-41.56	-41.59	-40.31	-40.37
$[Al(OH)]^{2+}$ $[Al(OH)_2]^+$	$[Al(PSer)_{tCP}(H_2O)(OH)_2]^-$	-42.10	-42.48	-43.92	-42.91	-41.72
	$[Al(PSer)_{bP}(H_2O)_2(OH)_2]^-$	-42.22	-43.06	-43.42	-42.50	-41.09
	$[Al(PSer)_{dCP}(H_2O)_2(OH)_2]^-$	-43.85	-43.52	-44.76	-43.14	-42.56
	$[Al(PSer)_{dCP}(H_2O)_2(OH)_2]^{-2}$	-47.18	-46.54	-48.35	-46.50	-45.70

Al^{3+} species

Table S2: Enthalpy and free energy affinities in kcal/mol for $Al^{3+} - Ser$ complexes formation with corrections that account for the physiological pH and deprotonation of the corresponding titratable groups. The subscripts indicate the coordination mode of Ser to Al^{3+} . The \dagger sign indicates a spontaneous proton transfer from a water molecule to alkoxide group during the optimization. The § sign indicates a spontaneous proton transfer from a water molecule to carboxilate group during the geometry optimization. The § sign indicates two spontaneous proton transfer from a water molecule to the alkoxide group and from another water molecule to the amine group during the optimization.

Titratable groups	Structure	ΔH_{aq}^{compl}	ΔG_{aq}^{compl}	ΔG_{aq}^{Phys}
$\rm NH_3^+, \rm COO^-, \rm OH$	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_2\mathrm{O})_5]^3$	-30.38	-27.01	-27.01
NH_3 , COU, OH	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{4}]^{3}$	-5.57	-10.69	-10.69
	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{4}]^{2}(\dagger)$	-56.18	-59.71	-52.06
$NH_{3}^{+}, COO^{-}, O^{-}$	$[\mathrm{Al}(\mathrm{Ser})_O(\mathrm{H}_2\mathrm{O})_5]^2$	-71.21	-65.91	-58.27
	$[\mathrm{Al}(\mathrm{Ser})_{dCO}(\mathrm{H}_2\mathrm{O})_4]^2$	-69.36	-73.21	-65.57
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_2\mathrm{O})_5]^2$	-42.32	-38.73	-36.48
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_2\mathrm{O})_5]^2$	-42.47	-39.29	-37.04
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{5}]^{2}$	-39.51	-34.90	-32.65
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_2\mathrm{O})_5]^2$	-41.94	-38.03	-35.78
NU COO- OU	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{4}]^{2}$	-26.77	-29.66	-27.41
$M1_2, 000, 011$	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{4}]^{2}$	-21.75	-27.55	-25.30
	$[\mathrm{Al}(\mathrm{Ser})_N(\mathrm{H}_2\mathrm{O})_5]^2$	-26.37	-21.93	-19.68
	$[\mathrm{Al}(\mathrm{Ser})_{dCN}(\mathrm{H}_{2}\mathrm{O})_{4}]^{2}$	-33.79	-37.55	-35.30
	$[\mathrm{Al}(\mathrm{Ser})_{dCN}(\mathrm{H}_{2}\mathrm{O})_{4}]^{2}$	-35.87	-39.54	-37.29
	$[\mathrm{Al}(\mathrm{Ser})_{dCN}(\mathrm{H}_{2}\mathrm{O})_{4}]^{2}$	-34.43	-37.69	-35.44
	$[Al(Ser)_{mC}(H_2O)_5]^1$ (†)	-98.69	-93.31	-83.41
	$[Al(Ser)_{mC}(H_2O)_5]^1$ (§)	-53.07	-50.87	-40.97
	$[Al(Ser)_{mC}(H_2O)_5]^1$ (\$)	-98.89	-93.19	-83.29
	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{4}]^{1}$	-33.50	-38.97	-29.08
NH_2 , COO^- , O^-	$[\mathrm{Al}(\mathrm{Ser})_O(\mathrm{H}_2\mathrm{O})_5]^1$	-87.95	-81.80	-71.91
	$[Al(Ser)_O(H_2O)_5]^1$ (§)	-86.56	-81.67	-71.78
	$[\mathrm{Al}(\mathrm{Ser})_{dCO}(\mathrm{H}_2\mathrm{O})_4]^1$	-84.86	-88.95	-79.05
	$[\mathrm{Al}(\mathrm{Ser})_{dCN}(\mathrm{H}_{2}\mathrm{O})_{4}]^{1}$	-48.95	-52.07	-42.18
	$[\mathrm{Al}(\mathrm{Ser})_{tCNO}(\mathrm{H}_{2}\mathrm{O})_{3}]^{1}$	-83.06	-93.73	-83.84

 $Al^{3+} - Ser$ Complexes

Table S3: Enthalpy and free energy affinities in kcal/mol for $Al^{3+} - PSer$ complexes formation with corrections that account for the physiological pH and de/protonation of the corresponding titratable groups. The subscripts indicate the coordination mode of PSer to Al^{3+} . The \dagger sign indicates a spontaneous proton transfer from a water molecule to the phosphate group during the optimization. The \ddagger sign indicates two spontaneous proton transfer from a water molecule to the phosphate group and from another water molecule to carboxylate group during the optimization. The \S sign indicates a spontaneous proton transfer from amine to phosphate group during the optimization.

Titratable groups	Structure	ΔH_{aq}^{compl}	ΔG_{aq}^{compl}	ΔG_{aq}^{Phys}
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{5}]^{2}$	-47.98	-40.65	-38.44
	$[\mathrm{Al}(\mathrm{PSer})_{bC}(\mathrm{H}_{2}\mathrm{O})_{4}]^{2}$	-17.96	-20.38	-18.17
MII^+ COO- OIIDO-	$[\mathrm{Al}(\mathrm{PSer})_{bC}(\mathrm{H}_{2}\mathrm{O})_{4}]^{2}$	-15.86	-18.17	-15.96
$\operatorname{NH}_3^-, \operatorname{COO}^-, \operatorname{OHPO}_3^-$	$[\mathrm{Al}(\mathrm{PSer})_{mP}(\mathrm{H}_{2}\mathrm{O})_{5}]^{2}$	-37.51	-33.31	-31.10
	$[\mathrm{Al}(\mathrm{PSer})_{mP}(\mathrm{H}_{2}\mathrm{O})_{5}]^{2}$	-31.18	-29.27	-27.06
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{4}]^{2}$	-43.16	-44.10	-41.89
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_2\mathrm{O})_5]^1 (\dagger)$	-90.05	-81.14	-81.14
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_2\mathrm{O})_5]^1 \ (\dagger)$	-78.43	-72.05	-72.05
	$[Al(PSer)_{mC}(H_2O)_5]^1$ (§)	-65.90	-61.13	-61.13
MH^+ COO- OPO-2	$[\mathrm{Al}(\mathrm{PSer})_{mP}(\mathrm{H}_{2}\mathrm{O})_{5}]^{1}$	-82.91	-75.93	-75.93
$MI_3, 000, 000_3$	$[\mathrm{Al}(\mathrm{PSer})_{bP}(\mathrm{H}_{2}\mathrm{O})_{4}]^{1}$	-71.33	-72.05	-72.05
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{4}]^{1}$	-85.44	-85.66	-85.66
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{4}]^{1}$	-75.55	-75.20	-75.20
	$[\mathrm{Al}(\mathrm{PSer})_{tCP}(\mathrm{H}_{2}\mathrm{O})_{3}]^{1}$	-70.22	-79.76	-79.76
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{5}]$	-48.16	-43.57	-40.22
	$[\mathrm{Al}(\mathrm{PSer})_{mP}(\mathrm{H}_2\mathrm{O})_5] (\dagger)$	-84.25	-79.36	-76.02
	$[\mathrm{Al}(\mathrm{PSer})_{mP}(\mathrm{H}_{2}\mathrm{O})_{5}] (\dagger)$	-53.21	-77.98	-74.63
	$[\mathrm{Al}(\mathrm{PSer})_{bP}(\mathrm{H}_{2}\mathrm{O})_{4}]$	-63.77	-66.97	-63.63
NH COO- OPO-2	$[\mathrm{Al}(\mathrm{PSer})_N(\mathrm{H}_2\mathrm{O})_5] \ (\ddagger)$	-91.15	-82.20	-78.85
$M1_2, 000, 000_3$	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_2\mathrm{O})_4] (\dagger)$	-103.22	-102.74	-99.39
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_2\mathrm{O})_4] (\dagger)$	-102.33	-101.69	-98.35
	$[\mathrm{Al}(\mathrm{PSer})_{tCP}(\mathrm{H}_{2}\mathrm{O})_{3}]$	-77.92	-87.36	-84.02
	$[\mathrm{Al}(\mathrm{PSer})_{tCNP}(\mathrm{H}_{2}\mathrm{O})_{3}]$	-75.02	-82.53	-79.18
	$[\mathrm{Al}(\mathrm{PSer})_{tCNbP}(\mathrm{H}_{2}\mathrm{O})_{2}]$	-69.76	-86.20	-82.85

 $Al^{3+} - PSer$ Complexes

Table S4: Distance (in Å) and electron delocalitation indexes (DI) of the first coordination sphere of aluminum and of hydrogen bonds in representative $Al^{3+} - Ser$ structures. QTAIM parameters of Al...O and Al...N bond critical points (BCP, in au): ρ_{BCP} , the electron density at BCP; ∇^2_{BCP} , the laplacian of the electron density; and H_{BCP} , the total electron energy density at BCP. O_C stands for carboxylate group oxygen atom, O for alkoxide oxygen atom, and O_W for water molecule. The subscripts indicate the coordination mode of Ser to Al^{3+} .

	At - Ser Complexes						
Titrable groups	Structure	Dista	nce	DI	ρ_{BCP}	∇^2_{BCP}	H_{BCP}
		Al-O_C	1.844	0.180	0.0697	0.5118	0.0063
		Al-O	1.779	0.226	0.0854	0.6698	0.0053
		$\operatorname{Al-O}_{W1}$	1.947	0.127	0.0511	0.3412	0.0053
	$[\mathrm{Al}(\mathrm{Ser})_{dCO}(\mathrm{H}_2\mathrm{O})_4]^2$	$\operatorname{Al-O}_{W2}$	1.966	0.123	0.0492	0.3150	0.0042
		$Al-O_{W3}$	1.979	0.121	0.0471	0.3036	0.0046
		$\operatorname{Al-O}_{W4}$	1.988	0.122	0.0469	0.2941	0.0038
		H_N - O_C	2.032	0.063	0.0261	0.0927	0.0013
NH ⁺ COO ⁻ O ⁻		Al-O	1.768	0.220	0.0843	0.6847	0.0076
$MI_3, 000, 0$		$\operatorname{Al-O}_{W1}$	1.924	0.151	0.0573	0.3783	0.0042
		$\operatorname{Al-O}_{W2}$	1.958	0.126	0.0497	0.3274	0.0050
		$Al-O_{W3}$	1.937	0.142	0.0544	0.3593	0.0047
	$[\mathrm{Al}(\mathrm{Ser})_O(\mathrm{H}_2\mathrm{O})_5]^2$	Al-O_{W4}	1.962	0.124	0.0495	0.3180	0.0042
		Al-O_{W5}	1.951	0.129	0.0506	0.3356	0.0051
		$\mathbf{H}_{W1}\text{-}\mathbf{O}_{C}$	1.517	0.156	0.0712	0.1601	-0.0135
		$\mathbf{H}_{W3}\text{-}\mathbf{O}_{C}$	1.698	0.104	0.0441	0.1307	-0.0009
		$\mathbf{H}_N\text{-}\mathbf{O}_C$	1.905	0.086	0.0336	0.1071	0.0001
	$[\mathrm{Al}(\mathrm{Ser})_{dCO}(\mathrm{H}_2\mathrm{O})_4]^1$	$Al-O_C$	1.827	0.198	0.0787	0.5040	-0.0030
		Al-O	1.766	0.245	0.0951	0.6240	-0.0091
		$\operatorname{Al-O}_{W1}$	1.984	0.124	0.0504	0.2935	0.0012
		$Al-O_{W2}$	1.961	0.126	0.0522	0.3166	0.0018
		$Al-O_{W3}$	1.994	0.125	0.0497	0.2924	0.0017
		$\operatorname{Al-O}_{W4}$	1.994	0.122	0.0486	0.2830	0.0017
		$Al-O_C$	1.811	0.208	0.0794	0.5939	0.0046
		Al-N	2.000	0.176	0.0620	0.3189	-0.0045
		$\operatorname{Al-O}_{W1}$	1.974	0.127	0.0482	0.3084	0.0043
NH_2 , COO^- , O^-	$[\mathrm{Al}(\mathrm{Ser})_{dCN}(\mathrm{H}_{2}\mathrm{O})_{4}]^{1}$	$Al-O_{W2}$	1.958	0.134	0.0509	0.3290	0.0044
		$Al-O_{W3}$	1.930	0.134	0.0526	0.3643	0.0067
		$\operatorname{Al-O}_{W4}$	1.934	0.138	0.0533	0.3561	0.0051
		H_{W2} -H	1.655	0.047	0.0217	0.0435	-0.0013
		$Al-O_C$	1.880	0.181	0.0717	0.4193	-0.0042
		Al-O	1.803	0.226	0.0882	0.5496	-0.0084
	$[\Lambda_1(\mathbf{C}_{on})] (\mathbf{T}_{O})^{-1}$	Al-N	2.048	0.151	0.0569	0.2471	-0.0076
	$[\mathrm{AI}(\mathrm{Ser})_{tCNO}(\mathrm{H}_2\mathrm{U})_4]^{\mathrm{T}}$	$Al-O_{W1}$	1.971	0.133	0.0517	0.3053	0.0014
		$Al-O_{W2}$	1.958	0.136	0.0538	0.3198	0.0014
		$Al-O_{W3}$	1.952	0.136	0.0536	0.3264	0.0019

4 7 Y L	a	0	1
Al^{3+}	-Ser	Comp	lexes

Table S5: Distance (in Å) and electron delocalitation indexes (DI) of the first coordination sphere of aluminum and of hydrogen bonds in representative Al-PSer structures. QTAIM parameters of Al...O and Al...N bond critical points (BCP, in au): ρ_{BCP} , the electron density at BCP; ∇^2_{BCP} , the laplacian of the electron density; and H_{BCP} , the total electron energy density at BCP. O_C stands for carboxylate group oxygen atom, and O_P for phosphate group oxygen atom. The subscripts indicate the coordination mode of PSer to Al^{3+} .

Titrable groups	Structure	Distar	nce	DI	ρ_{BCP}	∇^2_{BCP}	H_{BCP}
		$\operatorname{Al-O}_C$	1.844	0.178	0.0737	0.4691	-0.0017
		$Al-O_{W1}$	1.876	0.172	0.0688	0.4236	-0.0012
		$Al-O_{W2}$	1.921	0.152	0.0605	0.3632	0.0000
		$Al-O_{W3}$	1.936	0.140	0.0569	0.3447	0.0012
	$[A1(DC_{rr})] (H, O)$ 12	$Al-O_{W4}$	1.946	0.142	0.0563	0.3328	0.0006
	$[\mathrm{AI}(\mathrm{PSer})_{mC}(\mathrm{H}_2\mathrm{O})_5]^2$	$Al-O_{W5}$	1.930	0.140	0.0571	0.3514	0.0016
		H_{W1} - O_P	1.428	0.186	0.0894	0.1163	-0.0339
		$\mathbf{H}_{W2}\text{-}\mathbf{O}_{C}$	1.689	0.113	0.0480	0.1185	-0.0065
NIII+ COO- OUDO-		H_{W4} - O_P	1.722	0.098	0.0416	0.1150	-0.0036
NH_3 , COU, OHPO ₃		$\mathbf{H}_N\textbf{-}\mathbf{H}_P$	1.793	0.115	0.0384	0.1063	-0.0024
		$Al-O_C$	1.865	0.169	0.0690	0.4352	-0.0008
		$Al-O_P$	1.823	0.189	0.0762	0.5068	-0.0010
		$Al-O_{W1}$	1.948	0.135	0.0547	0.3298	0.0014
	$[\Lambda](\mathbf{DS}_{op})$ (\mathbf{H}_{op}) $[2]$	$Al-O_{W2}$	1.952	0.133	0.0545	0.3264	0.0013
	$[\mathrm{AI}(\mathrm{P}\operatorname{Ser})_{dCP}(\mathbf{n}_2 \mathbf{O})_4]$	$Al-O_{W3}$	1.934	0.143	0.0580	0.3481	0.0007
		$Al-O_{W4}$	1.939	0.150	0.0588	0.3407	-0.0005
		$\mathrm{H}_{W4}\text{-}\mathrm{O}_C$	1.686	0.112	0.0477	0.1225	-0.0061
		H_{W3} - O_P	1.797	0.079	0.0334	0.1128	0.0000
		$\operatorname{Al-O}_C$	1.843	0.176	0.0714	0.4691	-0.0001
		$\operatorname{Al-O}_P$	1.815	0.204	0.0804	0.5220	-0.0034
		$\operatorname{Al-O}_{W1}$	1.989	0.125	0.0502	0.2880	0.0009
NH^+ COO- OPO-2	$[A](\mathbf{PSor}), (\mathbf{H}, \mathbf{O})^{-1}$	$Al-O_{W2}$	1.969	0.129	0.0526	0.3082	0.0009
$\operatorname{MI}_3, \operatorname{OOU}, \operatorname{OPU}_3$	$[Al(PSer)_{dCP}(H_2O)_4]^1$						

 $Al^{3+} - PSer$ Complexes

9

Table S5: Distance (in Å) and electron delocalitation indexes (DI) of the first coordination sphere of aluminum and of hydrogen bonds in representative Al-PSer structures. QTAIM parameters of Al...O and Al...N bond critical points (BCP, in au): ρ_{BCP} , the electron density at BCP; ∇^2_{BCP} , the laplacian of the electron density; and H_{BCP} , the total electron energy density at BCP. O_C stands for carboxylate group oxygen atom, and O_P for phosphate group oxygen atom. The subscripts indicate the coordination mode of PSer to Al^{3+} .

		$Al-O_{W3}$	1.912	0.161	0.0630	0.3730	-0.0009
		$Al-O_{W4}$	1.967	0.129	0.0525	0.3100	0.0013
		H_{W3} - O_P	1.444	0.188	0.0882	0.1210	-0.0324
		H_N - O_P	1.756	0.119	0.0417	0.1186	-0.0029
		$\operatorname{Al-O}_C$	1.825	0.190	0.0763	0.5026	-0.0015
		$Al-O_P$	1.875	0.188	0.0727	0.4299	-0.0050
		$Al-O_P$	1.888	0.181	0.0702	0.4121	-0.0045
	$[\mathrm{Al}(\mathrm{PSer})_{tCP}(\mathrm{H}_{2}\mathrm{O})_{3}]$	$\operatorname{Al-O}_{W1}$	2.020	0.114	0.0458	0.2588	0.0012
		$Al-O_{W2}$	1.978	0.130	0.0516	0.2993	0.0010
		$Al-O_{W3}$	1.946	0.137	0.0551	0.3339	0.0016
		H_N - O_P	2.187	0.055	0.0166	0.0570	0.0014
NII. $COO^{-}ODO^{-2}$		$\operatorname{Al-O}_C$	1.867	0.199	0.0740	0.4368	-0.0047
MH_2, COO^{-}, OPO_3^{-}		$Al-O_P$	1.803	0.229	0.0845	0.5447	-0.0055
		Al-N	2.116	0.132	0.0499	0.2002	-0.0066
		$Al-O_{W1}$	1.989	0.130	0.0495	0.2869	0.0014
	$[\mathrm{Al}(\mathrm{PSer})_{tCNP}(\mathrm{H}_{2}\mathrm{O})_{3}]$	$Al-O_{W2}$	1.983	0.133	0.0516	0.2921	0.0006
		$Al-O_{W3}$	2.051	0.116	0.0448	0.2320	-0.0008
		O_{W3} -H	2.610	0.028	0.0094	0.0311	0.0009
		H_{W3} - O_P	1.432	0.198	0.0918	0.1171	-0.0356
		$N-O_P$	2.595	0.072	0.0218	0.1017	0.0035

$[Al(OH)]^{2+}{\bf species}$

Table S6: Enthalpy and free energy affinities in kcal/mol for $[Al(OH)]^{2+} - Ser$ complexes formation with corrections that account for the physiological pH and deprotonation of the corresponding titratable groups.

		mpieneo		
Titratable groups	Structure	ΔH_{aq}^{compl}	ΔG_{aq}^{compl}	ΔG_{aq}^{Phys}
MII^+ COO- OII	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{2}$	-19.67	-15.34	-15.34
$\operatorname{NH}_3^{\circ}, \operatorname{COO}^{\circ}, \operatorname{OH}^{\circ}$	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]^{2}$	-2.95	-5.99	-5.99
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{1}$	-30.44	-23.98	-16.34
	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]^{1}$	-12.04	-14.59	-6.95
$NH_{3}^{+}, COO^{-}, O^{-}$	$[\mathrm{Al}(\mathrm{Ser})_O(\mathrm{H}_2\mathrm{O})_4(\mathrm{OH})]^1$	-54.79	-48.54	-40.90
	$[\mathrm{Al}(\mathrm{Ser})_O(\mathrm{H}_2\mathrm{O})_4(\mathrm{OH})]^1$	-55.21	-48.32	-40.68
	$[\mathrm{Al}(\mathrm{Ser})_{dCO}(\mathrm{H}_2\mathrm{O})_3(\mathrm{OH})]^1$	-55.91	-58.27	-50.63
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{1}$	-34.14	-27.90	-25.65
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{1}$	-28.47	-23.32	-21.07
NIL COO- OIL	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{1}$	-31.58	-24.02	-21.77
NH_2, COO , OH	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]^{1}$	-17.20	-19.65	-17.40
	$[\mathrm{Al}(\mathrm{Ser})_N(\mathrm{H}_2\mathrm{O})_4(\mathrm{OH})]^1$	-23.47	-16.99	-14.74
	$[\mathrm{Al}(\mathrm{Ser})_{dCN}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]^{1}$	-29.95	-32.53	-30.27
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]$	-42.97	-37.09	-27.20
	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]$	-27.68	-30.92	-21.03
NIL $COO = O =$	$[\mathrm{Al}(\mathrm{Ser})_O(\mathrm{H}_2\mathrm{O})_4(\mathrm{OH})]$	-64.69	-57.16	-47.27
$Mn_2, 000, 0$	$[\mathrm{Al}(\mathrm{Ser})_{dCO}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]$	-68.21	-70.53	-60.64
	$[\mathrm{Al}(\mathrm{Ser})_{dCN}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]$	-39.14	-40.20	-30.30
	$[Al(Ser)_{tCNO}(H_2O)_2(OH)]$	-68.37	-77.13	-67.24

 $[Al(OH)]^{2+} - Ser$ Complexes

Figure S2: Representative structures of $[Al(OH)]^{2+}$ – Ser complexes. The complexation free energies for the physiological pH (ΔG_{aq}^{Phys}) and ΔH_{aq}^{compl} are shown in kcal/mol ($\Delta G_{aq}^{Phys}/\Delta H_{aq}^{compl}$). The subscripts indicate the coordination mode of Ser to $[Al(OH)]^{2+}$.

Table S7: Enthalpy and free energy affinities in kcal/mol for $[Al(OH)]^{2+} - PSer$ complexes formation with corrections that account for the physiological pH and de/protonation of the corresponding titratable groups. The \dagger sign indicates a spontaneous proton transfer from a water molecule to the phosphate group during the geometry optimization. The \S sign indicates a spontaneous proton transfer from amine to phosphate group during the optimization.

Titnetable meung	<u>Ctrue ctrue</u>	<u>A IIcompl</u>	A Ccompl	$\Lambda CPhus$
1 itratable groups	Structure	ΔH_{aq}^{compt}	ΔG_{aq}^{compt}	$\Delta G_{aq}^{i nge}$
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{\mathrm{I}}$	-36.20	-25.27	-23.06
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{1}$	-33.70	-23.30	-21.09
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{1}$	-22.08	-14.21	-12.00
$\rm NH_3^+, \rm COO^-, \rm OHPO_3^-$	$[\mathrm{Al}(\mathrm{PSer})_{bC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]^{1}$	-9.30	-9.96	-7.75
	$[\mathrm{Al}(\mathrm{PSer})_{mP}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{1}$	-24.34	-18.85	-16.64
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]^{1}$	-30.03	-29.74	-27.53
Titratable groups NH ₃ ⁺ , COO ⁻ , OHPO ₃ ⁻ NH ₃ ⁺ , COO ⁻ , OPO ₃ ⁻² NH ₂ , COO ⁻ , OPO ₃ ⁻²	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]^{1}$	-27.55	-27.39	-25.18
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})] (\S)$	-65.43	-54.82	-54.82
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})] (\dagger)$	-64.63	-54.76	-54.76
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})] (\dagger)$	-62.82	-54.01	-54.01
	$[\mathrm{Al}(\mathrm{PSer})_{mP}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]$	-62.73	-54.93	-54.93
	$[\mathrm{Al}(\mathrm{PSer})_{bP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]$	-54.23	-54.46	-54.46
NH_3^+ , COO_3^- , $\operatorname{OPO}_3^{-2}$	$[\mathrm{Al}(\mathrm{PSer})_{bP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]$	-56.27	-55.33	-55.33
	$[\mathrm{Al}(\mathrm{PSer})_{bP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]$	-56.16	-56.46	-56.46
	$[\mathrm{Al}(\mathrm{PSer})_{bP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]$	-59.88	-59.97	-59.97
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]$	-61.45	-60.18	-60.18
NH ₃ ⁺ , COO ⁻ , OHPO ₃ ⁻ NH ₃ ⁺ , COO ⁻ , OPO ₃ ⁻² NH ₂ , COO ⁻ , OPO ₃ ⁻²	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]$	-69.06	-65.98	-65.98
	$[\mathrm{Al}(\mathrm{PSer})_{tCP}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})]$	-54.69	-62.06	-62.06
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{OH})]^{-}$	-30.76	-25.57	-22.23
	$[Al(PSer)_N(H_2O)_4(OH)]^-$ (†)	-82.07	-70.75	-67.41
	$[Al(PSer)_N(H_2O)_4(OH)]^-$ (†)	-63.74	-54.09	-50.74
	$[Al(PSer)_N(H_2O)_4(OH)]^-$	-44.35	-34.00	-30.66
	$[Al(PSer)_{mP}(H_2O)_4(OH)]^- (\dagger)$	-64.41	-56.56	-53.21
NH_2 , COO^- , OPO_3^{-2}	$[Al(PSer)_{mP}(H_2O)_4(OH)]^-$ (†)	-62.92	-55.09	-51.74
	$[\mathrm{Al}(\mathrm{PSer})_{bP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})]^{-}$	-51.73	-52.48	-49.14
	$[Al(PSer)_{dCP}(H_2O)_3(OH)]^-$	-78.49	-75.04	-71.69
	$[Al(PSer)_{tCP}(H_2O)_2(OH)]^-$	-58.34	-65.61	-62.27
	$[\mathrm{Al}(\mathrm{PSer})_{tCNP}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})]^{-}$	-42.24	-47.80	-44.46
	$[Al(PSer)_{tCNbP}(H_2O)(OH)]^{-}$	-52.36	-67.01	-63.67

 $[Al(OH)]^{2+} - PSer$ Complexes

Figure S3: Representative structures of $[Al(OH)]^{2+} - PSer$ complexes. The $\Delta G_{aq}^{Phys} / \Delta H_{aq}^{compl}$ are shown in kcal/mol. The subscripts indicate the coordination mode of PSer to $[Al(OH)]^{2+}$. The \dagger sign indicates a spontaneous proton transfer from a water molecule to phosphate group during the optimization. While the \ddagger sign indicates two spontaneous proton transfer from a water molecule to the phosphate group and from another water molecule to carboxylate group during the optimization.

g) $[Al(PSer)_{tCP}(H_2O)_2(OH)]^{-1}$ -62.27/-58.34

¹ i) $[Al(PSer)_{tCNP}(H_2O)_2(OH)]^{-1}$ -44.46/-42.24

h) $[Al(PSer)_{tCNbP}(H_2O)(OH)]^{-1}$ -63.67/-52.36

Table S8: Distance (in Å) and electron delocalization indexes (DI) of aluminum interactions with the functional groups in representative $[Al(OH)]^{2+} - Ser/PSer$ structures. QTAIM parameters of Al...O and Al...N bond critical points (BCP, in au): $\rho(r_{BCP})$, the electron density at BCP; $\nabla^2 \rho(r_{BCP})$, the laplacian of the electron density; and $H(r_{BCP})$, the total electron energy density at BCP. O_C stands for carboxylate group oxygen atom, O_P for phosphate group oxygen atom, Ofor alkoxide oxygen atom, O_H for hydroxy group oxygen atom, and O_W for average water oxygen. The subscripts indicate the coordination mode of Ser/PSer to $[Al(OH)]^{2+}$.

Titratable groups	Structure	Dista	ance	DI	$\rho(r_{BCP})$	$\nabla^2 \rho(r_{BCP})$	$H(r_{BCP})$
		$Al-O_C$	1.899	0.161	0.0631	0.3898	0.0004
${ m NH}_{3}^{+}, { m O}^{-}$ _	$[\mathbf{A}\mathbf{I}(\mathbf{S}_{op}) (\mathbf{H}, \mathbf{O}) (\mathbf{O}\mathbf{H})]]$	Al-O	1.815	0.213	0.0832	0.5251	-0.0058
	$[\mathrm{AI}(\mathrm{Ser})_{dCO}(\mathrm{H}_2\mathrm{O})_3(\mathrm{OH})]$	$\operatorname{Al-O}_H$	1.793	0.239	0.0896	0.5653	-0.0084
		$\operatorname{Al-O}_W$	2.022	0.112	0.0447	0.2575	0.0019
		Al-O	1.790	0.224	0.0862	0.5707	-0.0047
	$[\mathrm{Al}(\mathrm{Ser})_O(\mathrm{H}_2\mathrm{O})_4(\mathrm{OH})]^1$	$\operatorname{Al-O}_H$	1.790	0.243	0.0900	0.5738	-0.0079
		$\operatorname{Al-O}_W$	2.005	0.121	0.0484	0.2776	0.0010
		$\operatorname{Al-O}_C$	1.872	0.175	0.0686	0.4287	-0.0007
	$[\Delta](Ser)_{LGO}(H_0O)_0(OH)]$	Al-O	1.803	0.220	0.0861	0.5473	-0.0067
		$\operatorname{Al-O}_H$	1.796	0.237	0.0890	0.5596	-0.0084
-		$\operatorname{Al-O}_W$	2.041	0.107	0.0429	0.2422	0.0017
		$\operatorname{Al-O}_C$	1.848	0.197	0.0758	0.4694	-0.0034
	$[A](Ser)_{IGW}(H_2O)_2(OH)]$	Al-N	2.048	0.158	0.0584	0.2449	-0.0086
$\rm NH_2, O^-$		$\operatorname{Al-O}_H$	1.781	0.248	0.0925	0.5916	-0.0091
		$\operatorname{Al-O}_W$	2.004	0.121	0.0472	0.2724	0.0016
	$[\mathrm{Al}(\mathrm{Ser})_{tCNO}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})]$	$\operatorname{Al-O}_C$	1.931	0.159	0.0617	0.3504	-0.0021
		Al-O	1.845	0.203	0.0788	0.4733	-0.0061
		Al-N	2.094	0.134	0.0502	0.2166	-0.0054
		$\operatorname{Al-O}_H$	1.794	0.244	0.0891	0.5658	-0.0079
		$\operatorname{Al-O}_W$	2.009	0.117	0.0463	0.2701	0.0020
		$Al-O_C$	1.879	0.164	0.0665	0.4144	-0.0007
$NH^+ ODO^{-2}$	$[\Lambda](\mathbf{PS}_{orr})$ (\mathbf{H},\mathbf{O}) $(\mathbf{OH})]$	$Al-O_P$	1.839	0.196	0.0766	0.4800	-0.0034
MI_3 , $\operatorname{Or}\operatorname{O}_3$	$[\operatorname{AI}(\operatorname{F}\operatorname{Sel})_{dCP}(\operatorname{II}_2\operatorname{O})_3(\operatorname{OII})]$	$\operatorname{Al-O}_H$	1.839	0.208	0.0789	0.4827	-0.0049
		$\operatorname{Al-O}_W$	1.992	0.126	0.0500	0.2860	0.0008
		$Al-O_C$	1.870	0.169	0.0664	0.4261	0.0005
		$Al-O_P$	1.932	0.166	0.0620	0.3518	-0.0029
	$[\mathrm{Al}(\mathrm{PSer})_{tCP}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})]^{-}$	$Al-O_P$	1.942	0.158	0.0612	0.3414	-0.0034
		$\operatorname{Al-O}_H$	1.794	0.245	0.0891	0.5658	-0.0077
NH. OPO^{-2}		$\operatorname{Al-O}_W$	2.054	0.107	0.0424	0.2322	0.0010
$1011_2, 010_3$		$\overline{\text{Al-O}_C}$	1.925	0.170	0.0634	0.4577	-0.0032
		$Al-O_P$	1.852	0.203	0.0745	0.4577	-0.0038
	$[\mathrm{Al}(\mathrm{PSer})_{tCNP}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})]^{-}$	Al-N	2.128	0.129	0.0481	0.1937	-0.0060
		$\operatorname{Al-O}_H$	1.837	0.228	0.0811	0.4868	-0.0070
		$\operatorname{Al-O}_W$	2.056	0.115	0.0434	0.2307	0.0001

$[Al(OH)_2]^+$ species

Table S9: Enthalpy and free energy affinities in kcal/mol for $[Al(OH)_2]^+ - Ser$ complexes formation with corrections that account for the physiological pH and deprotonation of the corresponding titratable groups.

		Automal	A Crompl	A aPhus
Titratable groups	Structure	ΔH_{aq}^{compt}	ΔG_{aq}^{compt}	$\Delta G_{aq}^{i ngs}$
NH+ COO- OH	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})_{2}]^{1}$	-10.64	-6.74	-6.74
$MI_3, 000, 011$	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]^{1}$	0.28	-2.98	-2.98
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})_{2}]$	-22.94	-16.09	-8.44
NH^+ COO ⁻ O ⁻	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]$	-6.28	-9.51	-1.87
$MI_3, 000, 0$	$[\mathrm{Al}(\mathrm{Ser})_O(\mathrm{H}_2\mathrm{O})_3(\mathrm{OH})_2]$	-33.80	-28.68	-21.04
	$[\mathrm{Al}(\mathrm{Ser})_{dCO}(\mathrm{H}_2\mathrm{O})_2(\mathrm{OH})_2]$	-35.20	-37.13	-29.49
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})_{2}]$	-24.00	-19.36	-17.11
	$[\mathrm{Al}(\mathrm{Ser})_{mC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})_{2}]$	-17.00	-13.35	-11.10
NH_2 , COO^- , OH	$[\mathrm{Al}(\mathrm{Ser})_{bC}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]$	-10.89	-14.45	-12.20
	$[\mathrm{Al}(\mathrm{Ser})_N(\mathrm{H}_2\mathrm{O})_3(\mathrm{OH})_2]$	-15.86	-9.82	-7.57
	$[\mathrm{Al}(\mathrm{Ser})_{dCN}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]$	-20.17	-22.96	-20.71
	$[Al(Ser)_{mC}(H_2O)_3(OH)_2]^{-1}$	-22.16	-18.70	-8.81
	$[Al(Ser)_{bC}(H_2O)_2(OH)_2]^{-1}$	-16.68	-20.79	-10.89
MII COO- O-	$[Al(Ser)_O(H_2O)_3(OH)_2]^{-1}$	-46.70	-40.40	-30.51
NH_2, COO, O	$[Al(Ser)_{dCO}(H_2O)_2(OH)_2]^{-1}$	-44.99	-47.87	-37.97
	$[Al(Ser)_{dCN}(H_2O)_2(OH)_2]^{-1}$	-26.09	-28.79	-18.90
	$[\mathrm{Al}(\mathrm{Ser})_{tCNO}(\mathrm{H}_2\mathrm{O})(\mathrm{OH})_2]^{-1}$	-45.74	-55.01	-45.12

 $[Al(OH)_2]^+ - Ser$ Complexes

Table S10: Enthalpy and free energy affinities in kcal/mol for $[Al(OH)_2]^+ - PSer$ complexes formation with corrections that account for the physiological pH and de/protonation of the corresponding titratable groups.

	Structure	ΛH^{compl}	ΛC^{compl}	ΔC^{Phys}
		Δm_{aq}	ΔG_{aq}	
	$[\mathrm{Al}(\mathrm{PSer})_{mC}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})_{2}]$	-24.46	-15.37	-13.16
	$[\mathrm{Al}(\mathrm{PSer})_{bC}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]$	-2.78	-6.01	-3.80
$\rm NH_3^+, \rm COO^-, \rm OHPO_3^-$	$[\mathrm{Al}(\mathrm{PSer})_{mP}(\mathrm{H}_{2}\mathrm{O})_{3}(\mathrm{OH})_{2}]$	-14.26	-9.00	-6.79
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]$	-11.92	-13.68	-11.47
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]$	-13.26	-13.80	-11.59
	$[Al(PSer)_{mC}(H_2O)_3(OH)_2]^{-1}$	-21.24	-13.31	-13.31
	$[Al(PSer)_{mP}(H_2O)_3(OH)_2]^{-1}$	-49.09	-41.62	-41.62
MII^+ COO- ODO-2	$[Al(PSer)_{mP}(H_2O)_3(OH)_2]^{-1}$	-45.26	-36.90	-36.90
$MH_3^{-}, COO^{-}, OPO_3^{-}$	$[Al(PSer)_{bP}(H_2O)_2(OH)_2]^{-1}$	-41.91	-42.22	-42.22
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_2\mathrm{O})_2(\mathrm{OH})_2]^{-1}$	-46.04	-43.85	-43.85
	$[\mathrm{Al}(\mathrm{PSer})_{tCP}(\mathrm{H}_{2}\mathrm{O})(\mathrm{OH})_{2}]^{-1}$	-35.47	-42.10	-42.10
	$[Al(PSer)_{mC}(H_2O)_3(OH)_2]^{-2}$	-30.79	-22.02	-18.67
	$[Al(PSer)_{mC}(H_2O)_3(OH)_2]^{-2}$	-25.30	-20.28	-16.94
	$[Al(PSer)_N(H_2O)_3(OH)_2]^{-2}$	-35.07	-26.61	-23.27
	$[Al(PSer)_N(H_2O)_3(OH)_2]^{-2}$	-34.29	-26.61	-23.27
$\rm NH_2, \rm COO^-, \rm OPO_3^{-2}$	$[Al(PSer)_{mP}(H_2O)_3(OH)_2]^{-2}$	-35.46	-27.53	-24.19
	$[Al(PSer)_{bP}(H_2O)_2(OH)_2]^{-2}$	-32.34	-34.71	-31.37
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]^{-2}$	-50.85	-47.18	-43.83
	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_2\mathrm{O})_2(\mathrm{OH})_2]^{-2}$	-45.62	-44.07	-40.73
	$[\mathrm{Al}(\mathrm{PSer})_{tCP}(\mathrm{H}_{2}\mathrm{O})(\mathrm{OH})_{2}]^{-2}$	-32.77	-39.70	-36.36

 $[Al(OH)_2]^+ - PSer$ Complexes

Figure S4: Representative structures of $[Al(OH)_2]^+ - PSer$ complexes. The complexation free energies for the physiological pH (ΔG_{aq}^{Phys}) and ΔH_{aq}^{compl} are shown in kcal/mol ($\Delta G_{aq}^{Phys}/\Delta H_{aq}^{compl}$). The subscripts indicate the coordination mode of PSer to $[Al(OH)_2]^{1+}$.

Table S11: Distance (in Å) and electron delocalization indexes (DI) of aluminum interactions with the functional groups in representative $[Al(OH)_2]^+ - Ser/PSer$ structures. QTAIM parameters of Al...O and Al...N bond critical points (BCP, in au): $\rho(r_{BCP})$, the electron density at BCP; $\nabla^2 \rho(r_{BCP})$, the laplacian of the electron density; and $H(r_{BCP})$, the total electron energy density at BCP. O_C stands for carboxylate group oxygen atom, O_P for phosphate group oxygen atom, Ofor alkoxide oxygen atom, O_H for hydroxy group oxygen atom, and O_W for average water oxygen. The subscripts indicate the coordination mode of Ser/PSer to Al^{1+} .

Titratable groups	Structure	Distance		DI	$\rho(r_{BCP})$	$\nabla^2 \rho(r_{BCP})$	$H(r_{BCP})$
NH_{3}^{+}, O^{-}	$[\mathrm{Al}(\mathrm{Ser})_{dCO}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]$	$Al-O_C$	1.986	0.128	0.0497	0.2866	0.0010
		Al-O	1.849	0.196	0.0753	0.4682	-0.0033
		$\operatorname{Al-O}_H$	1.820	0.227	0.0836	0.5132	-0.0070
		$\operatorname{Al-O}_H$	1.843	0.211	0.0786	0.4741	-0.0055
		$\operatorname{Al-O}_W$	2.098	0.097	0.0375	0.1994	0.0010
	$[\mathrm{Al}(\mathrm{Ser})_O(\mathrm{H}_2\mathrm{O})_3(\mathrm{OH})_2]$	Al-O	1.820	0.213	0.0803	0.5163	-0.0034
		$\operatorname{Al-O}_H$	1.804	0.242	0.0867	0.5462	-0.0068
		$\operatorname{Al-O}_H$	1.825	0.231	0.0831	0.5078	-0.0066
		$\operatorname{Al-O}_W$	2.104	0.097	0.0382	0.1977	0.0003
NH ₂ , O ⁻	$[\mathrm{Al}(\mathrm{Ser})_{dCO}(\mathrm{H}_2\mathrm{O})_2(\mathrm{OH})_2]^-$	Al-O_C	1.923	0.154	0.0596	0.3581	0.0002
		Al-O	1.825	0.214	0.0805	0.5062	-0.0048
		$\operatorname{Al-O}_H$	1.856	0.204	0.0760	0.4545	-0.0050
		$\operatorname{Al-O}_H$	1.853	0.206	0.0768	0.4574	-0.0055
		$\operatorname{Al-O}_W$	2.123	0.094	0.0359	0.1835	0.0005
	$[\mathrm{Al}(\mathrm{Ser})_{dCN}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]^{-}$	Al-O_C	1.895	0.170	0.0664	0.3975	-0.0016
		Al-N	2.045	0.152	0.0566	0.2497	-0.0068
		$\operatorname{Al-O}_H$	1.814	0.229	0.0842	0.5251	-0.0066
		$\operatorname{Al-O}_H$	1.834	0.219	0.0806	0.4908	-0.0060
		$\operatorname{Al-O}_W$	2.096	0.103	0.0403	0.2204	0.0013
	$[\mathrm{Al}(\mathrm{Ser})_{tCNO}(\mathrm{H}_{2}\mathrm{O})(\mathrm{OH})_{2}]^{-}$	Al-O_C	1.949	0.153	0.0577	0.3280	-0.0008
		Al-O	1.903	0.179	0.0670	0.3840	-0.0034
		Al-N	2.265	0.089	0.0340	0.1281	-0.0030
		$\operatorname{Al-O}_H$	1.813	0.236	0.0842	0.5276	-0.0060
		$\operatorname{Al-O}_H$	1.816	0.236	0.0836	0.5211	-0.0060
		$\operatorname{Al-O}_W$	2.157	0.087	0.0327	0.1634	0.0006
$\mathrm{NH}_3^+, \mathrm{OPO}_3^{-2}$	$[\mathrm{Al}(\mathrm{PSer})_{dCP}(\mathrm{H}_{2}\mathrm{O})_{2}(\mathrm{OH})_{2}]^{-}$	$Al-O_C$	2.049	0.105	0.0415	0.2268	0.0009
		$Al-O_P$	1.931	0.151	0.0581	0.3448	0.0001
		$\operatorname{Al-O}_H$	1.819	0.230	0.0838	0.5142	-0.0069
		$\operatorname{Al-O}_H$	1.825	0.224	0.0819	0.5035	-0.0060
		$\operatorname{Al-O}_W$	2.034	0.120	0.0453	0.2461	0.0006
$\rm NH_2, OPO_3^{-2}$	$[\mathrm{Al}(\mathrm{PSer})_{tCP}(\mathrm{H}_{2}\mathrm{O})(\mathrm{OH})_{2}]^{-2}$	$Al-O_C$	1.934	0.143	0.0556	0.3378	0.0013
		$Al-O_P$	2.061	0.119	0.0455	0.2275	-0.0022
		$Al-O_P$	1.945	0.163	0.0594	0.3326	-0.0023
		$\operatorname{Al-O}_H$	1.813	0.239	0.0848	0.5259	-0.0069
		$\operatorname{Al-O}_H$	1.865	0.204	0.0742	0.4383	-0.0046
		$\operatorname{Al-O}_W$	2.134	0.092	0.0355	0.1764	-0.0001