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A novel kind of crystal order in high-density nanoconfined bilayer ice is proposed from molecular
dynamics and density-functional theory simulations. A first-order transition is observed between a
low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter
is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular
lattice with AA stacking. Uniquely amongst the ice phases, the triangular bilayer is characterized by
two levels of disorder (for the bonding network and for the protons) which results in a configurational
entropy twice that of bulk ice.

The exceptional polymorphism of water in its crystal
state (with 16 known bulk phases [1–4]) arises from two
properties of its molecular bonding: Firstly, the tendency
to form an open and flexible network, which allows for
many different bonding topologies. Secondly, the pos-
sibility of proton disorder, which results in a distinc-
tion between a high-temperature disordered phase and
a low-temperature ordered phase on the same bonding
network. Such a transition has been observed for al-
most all phases (Ih-XI, III-IX, V-XIII [2], VI-XV [3],
VII-VIII, XII-XIV [2]). The proton disorder introduces
a configurational entropy following the Bernal-Fowler ice
rules [5]. Pauling’s simple estimation [6] of the entropy,

W = (3/2)N (where W is the number of microstates
for N water molecules), is surprisingly accurate; indeed,
recent numerical calculations [7] show only a very small
variation between all proton-disordered bulk phases from
W ! 1.504N (XII) to W ! 1.524N (VI).

Nanoconfined 2D water, of interest in fields ranging
from biochemistry to nanotechnology, has shown a simi-
lar capacity for polymorphism (see review and references
in Zhao et al. [8] and Corsetti et al. [9]). When con-
sidered, the configurational entropy of nanoconfined ices
has been found to be either non-extensive, leading to an
intrinsically ordered phase (e.g., monolayer square ice [9–
11]), or less than or equal to that of the disordered bulk
phases (e.g., monolayer [9] and bilayer [12] honeycomb
ice). No order–disorder transition on the same network
has yet been identified.

In this paper, we investigate the phases of bilayer ice
obtained by confining water in one dimension between in-
finite plates with sub-nm separation. Different properties
of the liquid and solid bilayer have been explored in previ-
ous experimental [13] and computational studies [10–26],
all of which have made use of empirical force-field models
of water (mW [22], SPC/E [13, 19, 21, 25, 26], TIP4P [11,
12, 14, 15], TIP4P/Ice [22], TIP5P [10, 16–18, 20, 23, 24],
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FIG. 1. Schematic diagram of the stable crystalline phases
of bilayer ice obtained in this study for a confinement width
of 8 Å. The diagram is semi-quantitative, combining enthalpy
calculations by DFT-AIRSS with the high-temperature phase
transition to triangular ice obtained by MD (pressures along
the heating path are given by the thick dashed black line).
See Ref. [27] for a more detailed phase diagram of the high-
temperature range from MD, including the melting line which
is omitted here for simplicity.

ST2 [17]). The majority of studies report a low-density
honeycomb bilayer crystal [11, 12, 15, 17, 19, 21–24, 26].
Han et al. [23] distinguish a separate high-density solid
(also seen by Zangi and Mark [16]), which they define as
rhombic and suggest could be a hexatic phase. Bai and
Zeng [24] describe a similar solid, but define it instead as
very-high-density bilayer amorphous ice.

We look in detail at this high-density phase, showing
that the oxygens form a fixed and ordered triangular lat-
tice which only becomes apparent when averaging over
a sufficiently long timescale. The high degree of pro-
ton disorder allowed by the lattice gives the bilayer tri-
angular phase several interesting and unique properties;
in particular, it possesses twice the entropy of the bulk
phases without breaking the Bernal-Fowler ice rules. We
also demonstrate the transition to at least one ordered
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FIG. 2. The structure of triangular bilayer ice from MD at
310 K. (a) Instantaneous snapshot, shown parallel (top panel)
and perpendicular (bottom panel) to the confinement direc-
tion. The cell side is 34.40 Å. The oxygens in the two layers
are colored differently to help visualization. (b) Oxygen po-
sitions averaged over the entire run; both layers are included.
The inset shows the average nearest-neighbor positions with
respect to a central molecule; in this case both oxygens (in
blue) and protons (in red) are shown. The cell side for the
inset is 7 Å.

phase at low temperature, with a possible distinct or-
dered phase appearing at very high lateral pressure, as
shown in Fig. 1.
We use two models at different levels of theory for our

calculations. Firstly, we perform classical molecular dy-
namics (MD) simulations of 294 water molecules with the
TIP4P/2005 [28] force-field model in the LAMMPS [29]
code. We use a time step of 0.5 fs, a cutoff of 12 Å
for Lennard-Jones (L-J) interactions, and the particle–
particle particle–mesh [30] (PPPM) method for long-
range Coulombic interactions. Secondly, we perform an
ab initio random structure search [31] (AIRSS) procedure
to identify the lowest-enthalpy configurations for small
unit cells (we test cells of four and eight molecules). The
AIRSS uses density-functional theory (DFT) calculations
in the SIESTA [32, 33] code with a fully non-local ex-
change and correlation functional that gives an accurate
description of van der Waals interactions in water from
first principles [34]. A detailed description of the DFT
and AIRSS methodologies can be found in our previous
study of monolayer ice [9]. For both the MD and DFT
simulations the confining walls are described by the same
classical L-J 9-3 potential [9], and the simulation cell is
periodic in all directions with a buffer region in z of 11 Å.
Fig. 2 shows a representative example of the triangular

phase obtained by MD. The simulation is carried out in
a fixed square cell with an area per molecule of 4.02 Å2

and a confinement width of 8 Å. The cell is first equili-
brated with a Berendsen thermostat for 60 ns, after which
statistics are collected for 100 ps in the NV E ensemble.
Any instantaneous snapshot of the system (Fig. 2(a))

seems to confirm the definition of an amorphous solid.
Although the particles are densely packed, they are not

FIG. 3. Potential energy per molecule as a function of tem-
perature from MD. The cell shape and size and the number
of molecules is kept constant. The insets show the structure
of square tubes bilayer ice at 235 K and triangular bilayer ice
at 310 K. The position of the oxygens (in blue) and protons
(in red) is averaged over the entire run for both phases, with
both layers being included. A (15× 15) Å2 portion of the
entire cell is shown.

arranged on a clear lattice and there is no visible order
in the hydrogen-bonding network; instead, there is an
irregular combination of squares, pentagons, hexagons,
and so on (similarly to low-density amorphous bilayer
ice [11, 15, 17, 24]). If quenched to low temperature
the system would therefore freeze into this amorphous
arrangement. However, the bonding network constantly
rearranges during the course of the simulation, and the
molecules are pulled towards different neighbors depend-
ing on the instantaneous bonding arrangement. When
averaging the oxygen positions over the entire 100 ps
(Fig. 2(b)) a very clear triangular lattice emerges. The
unit cell is found to be hexagonal to a good approxima-
tion (with errors of 1% in the unit cell angle and 0.3%
in the a/b ratio, which can be attributed to finite size
effects due to the fixed supercell). The inset of the figure
shows that every molecule is at the centre of a hexago-
nal cage with six in-plane neighbors; the hydrogen bonds
(shown by the inner circle of protons bonding to the cen-
tral molecule) fluctuate between all six neighbors with no
preferential direction. It is also important to note that
the bilayer has an AA stacking. Each molecule therefore
maintains a constant bond to the other layer, and three
fluctuating in-plane bonds. The number of molecules
with defective configurations is reasonably small, <5%
of the total.

The molecular bonding arrangement of bilayer trian-
gular ice is consistent with the expected sixfold orienta-
tional order of a hexatic phase; we discuss this in more
detail elsewhere [27]. It is interesting to note that a
hexatic ice monolayer has previously been predicted and
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FIG. 4. All non-equivalent hydrogen-bond configurations
around a site of the triangular lattice (symmetry degeneracy
given in brackets). Some examples of extended networks are
shown below; for the square tubes and square wave networks
the bonds in the second layer are shown in light blue.

analyzed using a coarse-grained model [35]; however, in
that case the number of hydrogen bonds was found to be
greatly reduced, and, therefore, is significantly different
to what we observe.

The fluctuating hydrogen bonds suggest a large config-
urational entropy and the possibility of an order–disorder
transition upon cooling. We first verify this empiri-
cally within our MD simulation, by starting from a high-
temperature configuration (prepared as described previ-
ously) and cooling in steps of 5 K. Each step is carried
out by re-equilibrating the system with a Berendsen ther-
mostat for 5 ns, and then collecting NV E statistics for
100 ps. The reverse heating process is also performed
independently. The two processes are shown in Fig. 3.

The sharp discontinuity and hysteresis loop in the po-
tential energy of the system are indications of a first-order
phase transition occurring at Tc ! 280 ± 15 K. Below
this temperature the triangular bilayer transforms into a
phase characterized by rows of square-based tubes, with
no hydrogen bonds between them [24]. The unit cell
symmetry is lowered from hexagonal to rhombic (cen-
tred rectangular), with an angle of ∼106◦. The posi-
tion of the protons as well as the oxygens in the square
tubes is fixed for the entire simulation, denoting a proton-
ordered phase with no configurational entropy. We can
therefore estimate the configurational entropy of the tri-
angular phase by equating it with the gain in inter-
nal energy at the transition (assuming a similar vibra-
tional contribution). Since we are in the NVE ensemble,
∆S = ∆U/Tc ! 0.7 ± 0.1 kB/molecule. The configu-
rational entropy is therefore almost twice the value for
bulk ice, S/N ! 0.4 kB. Additional calculations in the
NPxyT ensemble give a perfect qualitative and quantita-
tive agreement both for Tc and∆S (estimated in this case
as ∆H/Tc); details are in the Supplemental Material.

The large entropy value can be understood by consid-
ering the generalization of the ice rules to the case of the
triangular bilayer lattice. There are two levels of config-
urational entropy, in the arrangement of hydrogen bonds

FIG. 5. All allowed non-equivalent proton configurations for
a molecule on the triangular bilayer lattice (symmetry de-
generacy given in brackets). Out-of-plane molecules donate a
proton to the interlayer bond (not pictured). The frequency
for each configuration, shown below, is calculated from MD
simulations of the triangular phase.

on the lattice and in the placement of protons along those
bonds. For all other solid phases only the latter applies,
since the bonding network is fixed.

Fig. 4 shows the possible configurations of the three
in-plane hydrogen bonds around a molecule. As already
mentioned, the fourth bond is fixed and connects the
molecule to the other layer. The bonding pattern in the
two layers is therefore decoupled. From the random net-
work example shown in the figure it can be seen how
polygons of varying size and shape are created, result-
ing in the characteristic amorphous appearance of the
instantaneous snapshots.

It should also be expected that low-energy configu-
rations will result from particular regular bonding pat-
terns; indeed, the square tubes network can be created on
the triangular lattice entirely from B configurations (see
Fig. 4). This is an unusual pattern, made up of entirely
disconnected networks with 1D periodicity. The regular
pattern allows for a macroscopic distortion of the lattice
(as opposed to the localized distortions of the molecules
in the random network), which is enhanced by the weak
interaction between tubes. This results in the change of
symmetry observed in the simulation.

The second level of configurational entropy is the ar-
rangement of protons on the bonding network (Fig. 5),
such that each molecule has two short and two long OH
distances. The two layers are now no longer indepen-
dent, because the total number of in-plane and out-of-
plane molecules in the system has to be equal, but they
do not have to be equally distributed between the two
layers. There are 12 non-symmetrically equivalent pro-
ton configurations for an individual molecule, and 120
distinguishable configurations in total.
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FIG. 6. Relaxed crystal structures for stable bilayer ice phases
calculated by DFT and found with an AIRSS methodology.
(a) Honeycomb, lateral pressure of 0.01 GPa·Å, area per
molecule of 4.98 Å2. (b) Square tubes, lateral pressure of
0.01 GPa·Å, area per molecule of 4.03 Å2. (c) Square wave,
lateral pressure of 10 GPa·Å, area per molecule of 3.83 Å2.
The confinement width is 8 Å. The four-molecule unit cell is
shown.

It should be expected that not all proton configura-
tions are energetically equivalent, and some might be
effectively prohibited for this reason, thus reducing S.
Table SI in the Supplemental Material gives our Pauling-
like estimate for the configurational entropy of the sys-
tem depending on which proton configurations are al-
lowed; we use a Monte Carlo method to calculate this,
also detailed in the Supplemental Material. Including all
possible configurations gives an unreasonably high value
of 1.35 ± 0.01 kB. Indeed, if we analyze our MD sim-
ulations, as shown in the histogram in Fig. 5, we find
that four configurations are almost entirely absent (B3,
C1, C2, C2*). Interestingly, there is also a noticeable
asymmetry between in-plane and out-of-plane configura-
tions, with the latter being more permissive (B3* and
C1* are allowed). Taking these restrictions into account,
the Pauling estimate is 0.8 ± 0.1 kB, in good agreement
with the value obtained previously from MD.

We conclude our analysis by returning to the overall
phase diagram presented in Fig. 1. Here we make use
of first principles calculations with DFT and the AIRSS
methodology to identify the lowest-enthalpy structures
at different lateral pressures. Temperature dependence
is obtained by estimating the phases’ configurational en-
tropy, and, hence, Gibbs free energy. Our previous study
of monolayer ice has shown the contribution to free en-
ergy differences from vibrational effects to be small [9].

The AIRSS recovers the low-density honeycomb bi-
layer crystal (Fig. 6(a)). Contrary to previous re-
ports [12], there is no noticeable distortion in the hexag-
onal unit cell, and so no preferential proton orientation.
The derivation of the configurational entropy is there-
fore equivalent to that of Pauling for bulk ice (more than
twice the previous estimate for the bilayer [12]).

Two high-density bilayer crystals, close in enthalpy,
are predicted: square tubes ice (Fig. 6(b)), and a novel

structure not found by MD which we refer to as square
wave ice (Fig. 6(c)). The latter has a similar bonding
network to the tubes, but with the two layers shifted rel-
ative to each other; the whole crystal is now connected
into a single network, and when viewed perpendicular to
the confinement direction gives a square wave pattern.
This is illustrated schematically in Fig. 4. The rhombic
distortion with respect to the hexagonal cell is less pro-
nounced for the wave than for the tubes, with unit cell
angles of 112◦ and 101◦, respectively.
The square wave and the square tubes phases are pre-

dicted to be ordered on both levels. This is because the
bonding network is fixed, and all the examples recovered
from the AIRSS make use of only four proton configu-
rations (B1, B1*, B2, B2*). Two other possible con-
figurations compatible with the network are not found
(B3, B3*). It can easily be shown that this results in a
non-extensive entropy. It is important to note that the
specific configuration of protons in the square tubes ob-
tained by MD using TIP4P/2005 is in agreement with
the lowest-energy configuration found by DFT. A previ-
ous study using TIP5P instead gives a different configu-
ration [24]. This is a similar result to what was found for
the square monolayer [9], and a further indication of the
accuracy of the TIP4P/2005 force-field model.
Recent experimental observations of ice confined be-

tween graphene sheets [13] show a square configuration
for the monolayer up to the trilayer. While DFT and
some force-field models are in excellent agreement with
experiment for the monolayer [9], we have been unsuc-
cessful in obtaining the square bilayer; calculations using
both DFT and TIP4P/2005 find it to be unstable with
respect to the high-density phases discussed here. This
suggests interesting effects originating either from deeper
levels of theory, or considerations such as the confinement
and the dynamics of formation, meriting further study
both from experiment and simulation [36].
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