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ABSTRACT 

The aim of this work was to demonstrate that an archaeological ceramic piece has remained 

buried underground in the same stratum for centuries without being removed. For this 

purpose, a chemometric model based on Principal Component Analysis (PCA), Soft 

Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) 

classification techniques was created with the concentration of some selected elements of 

both soil of the stratum and soil adhered to the ceramic piece. Some ceramic pieces from four 

different stratigraphic units, coming from a roman archaeological site in Alava (North of 

Spain), and its respective stratum soils were collected. The soil adhered to the ceramic pieces 

was removed and treated in the same way as the soil from its respective stratum. The 

digestion was carried out following the US Environmental Pollution Agency EPA 3051A 

method. A total of 54 elements were determined in the extracts by a rapid screening ICP-MS 

method. After rejecting the major elements and those which could have changed from the 

original composition of the soils (migration or retention from/to the buried objects), the 

following elements (25) were finally taken into account to construct the model: Li, V, Co, As, 

Y, Nb, Sn, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Au, Th and U. A 

total of 33 subsamples were treated from 10 soils belonging to 4 different stratigraphic units. 

The final model groups and discriminate them in four groups, according to the stratigraphic 

unit, having both the stratum and soils adhered to the pieces falling down in the same group. 

Keywords: Archaeological pieces, ICP-MS, Linear Discriminant Analysis, Principal 

Component Analysis, Archaeometry. 
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1. Introduction 

 

Scientific studies in art and archaeology are in vogue among other reasons due to its interest 

in cultural heritage area [1,2]. A wide range of archaeological and art-historical objects are 

commonly analyzed including ceramics [1], artworks [2,3] and historical paintings [4-6] 

among others. The interest of chemical analyses in archaeological samples lies in the 

knowledge of material composition in order to characterize and understand the context in 

which the artifacts were created, to avoid falsifications, or to determine their real historical 

value [7]. In this sense there are always some doubts about the origin or dating of ancient 

archaeological objects when they are discovered in excavations. There are other economical 

or political interests behind a new archaeological discovery which makes it prone to 

falsifications. Quantitative elemental compositional data plays a key role in solving questions 

concerning dating, provenance, technology used and the relationship of ancient cultures with 

the environment. Inductively coupled plasma mass spectrometry (ICP-MS) has been used for 

this purpose [8,9]. Laser ablation (LA-ICP-MS) is a non-destructive alternative for elemental 

analysis in archaeometry [10]. The combination of elemental analysis by means of energy-

dispersive X-ray spectrometry (ED-XRF) and ICP-MS with molecular analysis such as 

Raman spectroscopy has been of great interest in archaeological ceramics analysis in order to 

establish differences or similarities among them.  The combined use of these techniques 

proved beneficial, as Raman data gives structural information on the compounds present 

whereas ICP-MS and XRF data give quantitative values [11,12]. 

 

ICP-MS is nowadays a useful technique of great interest due to its multi-element capabilities, 

low detection limits, high sample throughput, wide linear dynamic range and the possibility 

to obtain isotopic information [13]. For some applications, extremely low detection limits are 

not required, but a fast survey of all present elements is preferred instead. ICP-MS offers 

different quantification procedures depending on the accuracy and precision required. 

Quantitative analysis allows accurate and precise results to be obtained, but it is time 

consuming, especially in a context of multi-element determination of analytes at very 

different concentration levels. Although semi-quantitative analysis in ICP-MS used to be 

considered only as rapid multi-element survey tool (within 3 min, over 70 elements can be 

determined in one sample) with accuracies in the range of 30–50% and detection limits (3 

criterion) for most of the elements below 1g/L [14], the study carried out by Laborda et al. 

[15] demonstrate that semi-quantitative analysis is an alternative to quantitative analysis 

when productivity factors are important or the most significant sources of uncertainty arise 

from steps of the analytical process different from the measurement and data treatment (i.e. 

sampling or sample pre-treatment). Semi-quantitative analysis has been successfully applied 

to different types of samples including: environmental, biological, geological, industrial or 

food [14,16-20]. It is based on the use of a predefined response table for all the elements and 

a computer program that can interpret the mass spectrum and correct isotopic interferences. 

Response factors must be updated to the actual sensitivity of the instrument by measuring a 

standard of a few selected elements (3–5) of known concentration (external calibration). This 

updating may also be performed by adding these elements to the samples, resulting in 

response factors which also include the matrix effects (internal calibration). Since errors of 

30–50% are accepted in semi-quantitative procedures, the precision associated with the 

measurements has little interest and just one replicate per sample is common practice in this 

type of analysis to save time. The software developed to perform semi-quantitative analysis 

has evolved in parallel with the instrumentation and, at the present time, accuracy values 

better than 10% for some elements have been reported [20], which values fall not very far 

from those typically obtained by quantitative analysis [15]. 
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On the other hand, Raman spectroscopy is a useful technique to obtain structural information. 

It makes it possible to differentiate several species of the same element. Moreover, Raman 

spectroscopy has the advantage to measure the sample practically without any pre-treatment 

and thus species can be identified in the solid state. Raman analysis complements elemental 

ICP-MS analysis and allows knowing in which form is present the metal of interest (sulphate, 

carbonate, nitrate…), which in several cases is the key to understand the context in which the 

artifact was created or if it is a natural or artificial compound. Due to its non destructive 

character, it has been mainly used in the study of many different kinds of artworks, such as 

wall paintings [21], glass and ceramics [22] and architectural paint analysis [23] among 

others. In the last years, Raman spectroscopy has been also used by some authors to search 

for mineral composition and characterize metallic contaminants in sediments and soils [24-

26]. 

 

Thanks to the development of modern analytical instrumental techniques a lot of problems 

concerning all kinds of disciplines, and often we can obtain very numerous data for the 

analyzed samples, obtained by means of analytical techniques. Chemometric methods (also 

known as multivariate statistical techniques) are increasingly in use and can identify the 

natural clustering pattern and group variables on the basis of similarities between the 

samples. Depending on the knowledge about the category or class membership of the data 

set, two approaches can be applied: supervised or unsupervised pattern recognition. 

Supervised methods develop rules for the classification of samples of unknown origin on the 

basis of a group of samples with known categories (known set). Unsupervised learning 

methods instead do not assume any known set, and the goal is to find clusters of objects, 

which may be assigned to classes. The most common methods of chemometric methods for 

classification are namely, cluster analysis (CA) and principal component analysis (PCA) with 

factor analysis (FA) among unsupervised ones, and linear discriminant analysis (LDA) as 

supervised classification tool. The applications of different chemometric methods i.e., cluster 

analysis (CA), principal component analysis (PCA), factor analysis (FA) and linear 

discriminant analysis (LDA) aids in reducing the complexity of large data sets and offers 

better interpretation and understanding of data sets [27-29]. Thus the effort of the analysts on 

the elaboration of a high number of data is worth it. We can find a typical example in the 

classification and study of archaeological finds. In the archaeometry, that is the application of 

scientific methods and analysis techniques to archaeological issues, one of the most important 

steps is the statistical elaboration of multivariate data obtained by physical and chemical 

analysis of ancient artifacts. In the bibliography some articles can be found concerning the 

application of chemometric multivariate techniques in pottery [1,30,31], trying to 

characterize and classify samples into groups according with their chemical composition and 

origin. 

 

In this work it was demonstrated that an archaeological ceramic piece has remained buried 

underground in the same stratum for centuries and it has not been removed or altered, so it 

belongs to that specific stratigraphic layer where it was found. An archaeological ceramic 

piece, which has been buried underground in the same stratum for centuries, when it is 

removed in the excavation it will have soil remains necessarily associated to the soil where it 

was buried. This soil adhered to the ceramic piece and the stratum soil should have similar 

composition for some chemical elements. Based on this hypothesis the soil adhered to a 

ceramic piece should group with the soil of the stratum where it was buried. For this purpose 

and by means of Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) classification techniques we have built a chemometric model which groups the 

corresponding soils and discriminate the different ones in base of the concentration of some 



- 4 - 

selected elements determined by semi-quantitative ICP-MS and supported by -Raman and 

-ED-XRF analysis. 

 

2. Experimental section 

 

2.1. Reagents and Instrumentation 

 

All plastic and glassware material in contact with samples or ICP-MS solutions were soaked 

in a 10% HNO3 bath at least 24 h, then rinsed twice with Elix (Millipore, USA) quality water 

and finally rinsed with pure water of resistance 18.2 MΩ.cm obtained from a Milli-Q 

Element A10 purification system (Millipore, USA). After drying the material in a laminar air 

flow hood inside a class 100 clean room, it was stored in clean plastic bags until use. 

 

Soil samples were ground in a planetary ball mill Pulverisette 6 (Fritsch, Germany) for their 

homogenization and prior to the acid digestion in a microwave digestion system Multiwave 

3000 (Anton Paar, Graz, Austria) provided with a 8XF-100 microwave digestion rotor and 

100 mL fluorocarbon polymer (PTFE) microwave vessels. Nitric acid (69%) and 

hydrochloric acid (36%) were Tracepur grade and supplied by Merck. All solutions were 

prepared using Milli-Q water. ICP-MS standard solutions were prepared from Alfa Aesar 

(Specpure®, Plasma standard solution, Germany) stock solutions. 

 

Elemental analysis was achieved using a Perkin Elmer SCIEX 9000 ICP-MS (Toronto, 

Canada) in a class 100 clean room equipped with quartz torch, 2.0 mm id alumina injector 

tube, nickel sampler and skimmer cones, a peristaltic pump (maintaining a 1 mL min
−1

 

sample uptake rate), a cross-flow type pneumatic nebulizer and a double pass Scott-type 

spray chamber. The argon used for the plasma was supplied by Praxair (99.995%, Madrid, 

Spain). The operating conditions for sample introduction are shown in Table 1. 

 

A portable Renishaw RA100 (Renishaw, Gloucestershire, UK) microprobe system that 

implements a 785 nm excitation laser, a Peltier-cooled CCD and a mobile diffraction grating 

of 1200 lines mm
−1

  was used for the soil characterization. The laser has a nominal output 

power of 150mW at the source and some filters allow working at 1%, 10% or 100% of that 

power. The microprobe was coupled with 20× objective that allows focusing on a single grain 

by means of the micro-TV camera implemented on the probe. 

 

X-ray fluorescence spectroscopy analyses were carried out to complete molecular results. 

With this aim a portable ArtTAX -ED-XRF equipped with an X-ray tube with a 

molybdenum anode working at a maximum voltage of 50 kV and a maximum current of 0.6 

mA was used. The X-rays are collimated by a tantalum collimator with a diameter of 0.65 

mm and the beam diameter in the sample’s surface is 200 m
2
. The measurement head of the 

equipment implements a CCD camera that enables focusing on the sample by a motorized 

XYZ positioning unit controlled by a computer. 

 

2.2. Samples Identification 

 

Samples were acquired from Roman settlements of the 3
rd

 century in Araba (North of Spain) 

that have been recently excavated. Soil samples for four different strata were collected and 

named SS 1, SS 2, SS 3 and SS 4. In each stratum a ceramic piece was also taken, except in 

the stratum 1 where three different pieces were collected. The soil adhered to these ceramic 
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pieces was treated as samples named PS 1.1, PS 1.2, PS 1.3, PS 2.1, PS 3.1 and PS 4.1. Four 

replicates of each soil sample were analyzed (a, b, c and d), so a total of ten different soil 

samples were analyzed in quadruplicate. Samples were mainly clay soils, as this is the typical 

composition of the Araba´s plain. 

 

2.3. Analytical procedure 

Soil samples were carefully separated from their archaeological ceramic piece with the help 

of a brush and a spatula without scratching the piece. Strata soils were sieved to < 2mm and 

different objects such as bones or stones were removed. After air dried in a fume hood during 

24 h soils were milled in a planetary ball mill and stored at 4ºC until analysis. 

 

The analytical determination of heavy metals in soil samples were carried out following the 

US Environmental Pollution Agency EPA 3051A method which describes the Microwave 

Assisted Acid Digestion of Sediments, Sludge, Soils, and Oils. 0.5 g of soil were weighed 

directly into each pre-cleaned vessel in an analytical Mettler-Toledo balance AJ150 model 

(±0.0001g) and 9 mL HNO3 – 3 mL HCl acid mixture was added. A first ramp of 1000 watts 

was applied during 7 minutes to reach the temperature established in the method (170ºC) and 

then it was maintained by means of a plateau at 800 watts during 4.5 minutes. After cooling, 

the digests were filtered through a 0.45µm PVDF filter and quantitatively transferred to a 

polyethylene bottle with a final volume of 50 mL. A vessel containing the same acid mixture 

as used for the samples was also prepared and utilized as the analytical blank. The digests 

were stored at 4ºC until analysis. 

 

Sample solutions were diluted to 1% HNO3 concentration and transported into the argon 

plasma via a peristaltic pump. Data were acquired using Perkin Elmer TotalQuant III 

software for multi-element semi-quantitative analysis. This program performs an automated 

interpretation of the entire mass spectrum, meaning that you do not need to specify the 

individual elements you want to determine. Based on a response curve, all the intensities are 

subsequently converted into concentrations, taking into account the isotopic abundance of the 

nuclides involved. Common isobaric interferences are pre-programmed and corrections are 

automatically applied. Each element is measured at its most abundant isotope if not other 

isotope is manually defined. The reference response table of the different elements, which is 

included in the software, was updated and matched to the sample matrix in order to improve 

the accuracy, spiking samples with few selected elements with known concentration and 

covering all the mass range (Be, Sc, In, Re, Bi at 20 ng g
-1

) [20]. The performance of an ICP-

MS instrument strongly depends on the operating conditions. The plasma operating 

conditions such as the nebulizer flow rate, the position of the torch and the ion lens voltages 

of the instrument were optimized prior to any experiment continuously nebulising a 10 ng 

mL
−1

 standard solution of Mg, Rh, In, Ba, Pb and U. The nebulizer gas flow rate was 

optimized to obtain a good compromise between high sensitivity and low oxide levels (lower 

than 3% for CeO/Ce). The ion optics in the ELAN 9000 consists of a single lens arrangement. 

The autolens mode was used. The voltage was optimized aspirating a solution of 10 ng mL
-1

 

of Be, Co, In and Bi. Dual detection was employed for all measurements. Obtained metal 

concentration data were statistically treated with the chemometric software “The 

Unscrambler 9.2” (Camo Process, Norway) and SPSS 15.0 (SPSS Inc., Chicago, USA). For 

quality assurance purposes soil certified reference materials (SRM 2711 and BCR 142R) and 

a freshwater containing trace elements (SRM 1640) were routinely analyzed in each sample 

batch. 
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To complement the ICP-MS analysis a preliminary screening by μ-ED-XRF was done to 

determine the elemental composition, which helps in the knowledge of the nature of the 

materials present in the samples. Then, Raman microprobe spectroscopy analysis was 

performed in order to obtain the molecular composition. Combination of these 

complementary results enables identification of the compounds present in the objects under 

analysis. The calibration of the Raman spectrometer was carried out daily with the 520 cm
-1

 

silicon band. The measurement conditions vary depending on the gathered signal-to-noise 

ratio and the obtained fluorescence, but exposure times from 5 to 30 s and 1–10 

accumulations were used in most of the cases. The spectra were collected with the WIRE 

(Renishaw, UK) software between 2200 and 200 cm
−1

 (spectral resolution of 1 cm
−1

 and cut-

off of the system around 200 cm
−1

) and processed with Omnic 7.1 (Nicolet, Madison, WI, 

USA) software. The interpretation of the results was performed by comparing the obtained 

spectra with standard spectra contained in our home-made Raman database [32]. 

 

3. Results and discussion 

 

A total of 54 elements were determined in the extracts by the semi-quantitative ICP-MS 

method. Multivariate statistical analysis allows differentiating soils on the basis of their 

chemical composition. In contrast to the use of single-element concentrations, multivariate 

statistical methods allow verifying the contribution of each variable to the model, and its 

capacity to discriminate one category from another. In order to find structures in a data set or 

to reveal similarities of different samples by way of multivariate analysis, the features need to 

be comparable. The most common possibility is autoscaling. This means that the data are 

related to measures of their own distribution, namely the mean, and the standard deviation, of 

a verified normal distribution. This is achieved by subtracting the mean of each feature from 

each individual value and dividing by the standard deviation of the respective feature. After 

autoscaling the data, in a first round, metal concentration raw data of all analyzed samples 

were introduced in “The Unscrambler 9.2” chemometric software and Principal Component 

Analysis (PCA) was carried out. PCA is a technique widely used for reducing the dimensions 

of multivariate problems. As an unsupervised pattern recognition technique, it makes no 

assumptions about the underlying statistical data distribution. It reduces the dimensionality of 

the data set by explaining the correlation among a large number of variables in terms of a 

smaller number of underlying factors (principal components or PCs) without losing much 

information. PCA analyze the structure of multivariate data by projecting them into a reduced 

hyperspace, which is defined by the first principal component. These are linear combinations 

of the original variables with the first principal component explaining the largest portion of 

the variance, the second principal component the second-largest portion, and so on. 

 

As can be seen in Figure 1, soil replicates of different samples are mixed among them, 

without any group formation. Considering that there are ten different soil samples, ten 

different groups should be obtained. Besides, PC1 only explains 34% of the total variance of 

the data. 

  

In order for the grouping to occur, metal concentration data were normalized to a major 

element of the soil composition, such as Fe, Mg, Al, Mn, Ti, Si or Ca, so-called conservative 

metal [33]. In this way, variations generated in the microwave extraction efficiency due to 

different final temperatures reached in each microwave vessel are counteracted. The best 

grouping was obtained normalizing data to Mn and representing PC1 vs PC 3 (Figure 2) after 

eliminating some outliers. The replicates of the same soil sample are shown in different 

circles. 
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The next step was to try to group soil samples from the same stratum following the 

hypothesis that the chemical composition of both stratum soil and soil adhered to ceramic 

pieces buried in that stratum must be the same. However, not all the elements should be 

included in the chemometric model. Metals whose concentration in the soil could change 

because of the dissolution or interaction of metal objects with the archaeological ceramic 

pieces inside the stratum should be discarded. For this purpose, Raman and ED-XRF 

spectroscopy data together with those obtained by means of ICP-MS give this information 

about elements that would distort the chemometric model. 

 

Abnormally elevated amounts of some metals compared with the average value found in 

stratum soil were detected in some soils belonging to different soil strata by ICP-MS. That is 

the case of metals shown in Table 2, where concentrations of Pb and Zn results forty times 

higher than the average value were obtained. 

 

The Raman inspection of the soils adhered to the ceramic surfaces showed a big amount of 

calcite (CaCO3) covering the inner surface of the ceramic pieces. Its presence can only be 

explained by the in-situ reaction of percolated bicarbonate (HCO3
-
) with available calcium. 

The bicarbonate ion is formed by the reaction of the carbonate from the top soil surfaces with 

the acid gases of the atmosphere [34] and then it migrates down the stratum, reacts and forms 

the white deposits on the ceramic surface (see the microphotography in Figure 3). But over 

there, different micro-crystals can be observed. As an example, the XRF analysis of the one 

shown in Figure 4 gives a big amount of Sb, Zn, S with traces of Pb, together with the 

expected elements in Roman ceramic ware: Si, Fe, Ca, Sr, Ti and Mn. K emission lines of 

the identified elements are shown. For some elements K lines also appear. Lines of the Mo 

source are indicated since they should be considered as the background of the spectrum. 

 

The Raman spectra of such a grain showed the presence of more than one compound. Figure 

5 shows one of those spectra collected by the Raman microprobe focused on the whole 

volume of the microcrystal. The background of calcite appeared in all the spectra. The other 

signals suggest that the antimony compound could be a mixed sulphate-antimoniate 

compound because the spectrum of standard Peretaite (CaSb4O4(SO4)2(OH)2·2H2O) match 

quite well (the four main Raman signals) with the unknown spectra. Moreover, the basic 

carbonate of zinc also appears although in minor intensity than the antimoniate compound. 

Probably this zinc carbonate is spread in the calcite layer covering the surface of the ceramic 

and since the laser penetrates into the surface of the piece, the signals of both compounds 

were considered as the background when we worked further in other micro-crystals. Due to 

the fluorescence effect it is not possible to see the other characteristic peaks of these 

compounds. This fluorescence effect could be attributed to the clay matrix of the samples. 

 

Therefore the alkaline metals and major components of the soil (Na, K, Mg, Ca, Al, Si, Ti, 

Mn, Fe and P) were eliminated due to its high mobility and the possibility of precipitate in the 

surface of the archaeological piece, resulting in a highly variable distribution of these 

elements along different points of the stratum. Most of the elements listed in Table 2 (Pb, Zn, 

Hg, Cr, Ni, Cu, Cd) are common heavy metals used in Roman age for the daily life like 

different metal tools or pigments used for decorative purposes. Others like Sb must have an 

anthropogenic origin from the pollution of urban areas nearby and have arrived by 

atmospheric deposition and migrated down forming those synthesis products. This is a clear 

distorting map of the original composition of the stratum, showing the importance of the 

referred migrations of elements and the subsequent formation of chemical artifacts. 
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Once the elements to include in the chemometric model were selected, a new principal 

component analysis was performed with the following elements: Li, V, Co, As, Y, Nb, Sn, 

Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Au, Th and U. As can be shown 

in Figure 6 (PC1 59% vs. PC3 4%) samples from the same stratum form different groups. 

Samples coming from the stratum 3 differ well from the rest and appear on the right side of 

the graph. The others are closer among them but in no case can be grouped together. With 

this model soft independent modelling of class analogies (SIMCA) supervised pattern 

recognition method was run. This classification procedure uses linear discriminant functions 

derived from principal component analysis of the data. One set of functions is derived for 

each category studied by computing the category-mean and a specified number of the 

principal components. Objects are classified into the category whose principal component 

model best reproduces the data. Only data points which are members of a given category are 

used in determining the model functions for that category. The importance of each feature in 

classification is determined by its contribution to the category covariance matrices. Weights 

of the elements included in the model are shown in Figure 7 for each one of the 4 groups 

created. Each group is explained by different elements and therefore they can be separated in 

PCA. Consequently, knowing the concentration of these metals for different soils, they could 

be classified in one group or other running a SIMCA analysis. 

 

Linear discriminant analysis (LDA) is a supervised procedure that maximizes the variances 

between categories and minimizes the variances within categories. LDA is a common linear 

and parametric classification method for classification purposes. The classification of new 

objects into groups or the reclassification of the learning data set is carried out by means of 

the values of non-elementary discriminant functions which are calculated as a linear 

combination of an optimum separation set of the original features. So, the next step was to 

perform a LDA in order to demonstrate that the four found groups can be differentiated based 

on the concentration of the elements. The selection of variables containing the most powerful 

information for the correct classification was carried out on the basis of the canonical analysis 

of data, using the forward stepwise inclusion option. In this strategy the variables are 

included one by one into the discriminant function and, in this way, it is possible, on one 

hand, to construct a function with the variables which really result useful for the 

classification, and on the other hand, the individual contribution of each variable to the 

discriminant model can be evaluated. The statistic parameter chosen for the inclusion of one 

variable or another was the variance not explained. The variable that decreases is included in 

the model. The values of F parameter to enter or to remove were fixed at 3.84 and 2.71, 

respectively. The number of steps was fixed at 50 and no variable was forced to enter into 

any model. Prior probabilities were established in proportion to the number of samples in 

each group. A leave-one-out cross-validation procedure was performed for assessing the 

performance of the classification rule. 

 

The forward stepwise LDA allows 97.2% discrimination amongst soils from four studied 

strata using only eight discriminant variables: Li, Co, As, Ba, Ho, Yb, Th, and U for 

distinguishing between soils from different strata. Three canonical discriminant functions 

were calculated with high canonical correlation (97.2%, 89.0% and 80.2%, respectively). 

Figure 8 shows the distribution of samples on plane given by first two canonical discriminant 

functions accounting for 92.1% of total variance (function 1 accounts for 75.5% and function 

2 accounts for 16.6%). As occurs in the PCA, samples coming from different stratum appear 

in different parts of the plane described by the first two canonical discriminant functions. 

Circles, triangles, diamonds and asterisks represent samples whereas squares are the centroid 

of the group. Samples from the stratum two and four appear again close and samples from the 
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third stratum far away from the rest. Each sample fall around the centroid in differentiate 

groups. Only some samples from the second and fourth strata could mix up. These samples 

could be in origin close to each other and belong to adjacent stratigraphic layers. In table 3 

the classification results of LDA and the percentages of correctly classified samples are 

presented (97.2%).  

 

4. Conclusions 

 

One of the most important contributions of chemical analyses in archaeological samples lies 

in the knowledge of material composition in order to avoid falsifications. The combination of 

-ED-XRF and micro-Raman spectroscopy techniques has shown to be a powerful analytical 

method to characterize archaeological ceramics. 

 

In this work we have treated with the soils adhered to the ceramic pieces when they are 

removed in the excavation. For our knowledge is the first time that multivariate statistical 

methods are used directly in metal concentration data of the soil adhered to ceramic pieces, 

with the aim of classifying them according to their provenance stratum. A chemometric 

model, based on PCA, SIMCA and LDA classification techniques, was designed. In this way, 

it is possible to demonstrate that the piece has remained buried for centuries in the same 

stratum and it has not been manipulated.  

 

Semi-quantitative ICP-MS analysis of the soils allows us knowing its elemental composition 

(major and trace elements). More than 50 elements were determined in less than 2 minutes 

per sample. These data were complemented with -ED-XRF and Raman analysis in order to 

find artifact compounds originated in soils as a consequence of the migration of elements 

from the upper layers or interaction and dissolution of buried objects with the ceramics. In 

this sense, it was found a crystalline grain of an antimony compound on a calcite (CaCO3) 

layer which covers the ceramic inner surface. This calcite can only be explained by the in-situ 

reaction of the available calcium with percolated bicarbonate (HCO3
-
). This is a clear 

distorting map of the original composition of the stratum and therefore, these compounds 

should not be taken into account in the model. The final chemometric model groups the 

corresponding soils and discriminate the different ones according to the concentration of 25 

elements: Li, V, Co, As, Y, Nb, Sn, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, 

Lu, Au, Th and U. 
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FIGURE CAPTIONS 

 

Fig. 1. PCA representation of the raw data of metal concentration in soil adhered to 

archaeological pieces and stratum soil. Subsamples are mixed among them. No 

clear grouping can be seen. 

Fig. 2. New PCA representation with metal concentration normalized to Mn. In this case 

subsamples appear forming groups marked inside a circle. 

Fig. 3. Microphotography showing the crystal grain on the calcite deposit and the surface of 

the ceramic on the left side. 

Fig. 4. -ED-XRF spectrum in helium atmosphere of a crystalline grain on the calcite deposit 

which covers the surface of a Roman archaeological ceramic piece. K and K 

lines are identified. 

Fig. 5. Raman spectra of a) a soil sample taken from a Roman archaeologic ceramic piece; b) 

Standard spectrum of Peretaite (CaSb4O4(SO4)2(OH)2·2H2O); c) Standard 

spectrum of the solid Aurichalcite (Zn5(CO3)2(OH)6); and d) Standard of Calcite 

(CaCO3). The spectrum of the sample is shown without any smoothing treatment. 
Fig. 6. PC1 vs PC3 representation of the model for metal composition of soil adhered to 

archaeological pieces and stratum soil. Groups of soil samples from the same 

stratum appeared inside a circle. 

Fig. 7. Weights of the different metals that describe each group in SIMCA analysis. 

Fig. 8. Distribution of samples on plane given by first two canonical discriminant functions, 

accounting for 92.1% of total variance (function 1: 75.5% and function 2: 16.6%). 

■: group centroid; ○, ◊, *, ∆: samples. Soil samples from the same stratum appear 

close to each other around the centroid without mixing among them. 
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Table 1. ICP-MS experimental conditions. 

 

RF power 1100 W 

Plasma gas flow rate 15 L/min 

Auxiliary gas flow rate 1 L/min 

Nebulizer gas flow rate 0.9 L/min 

Sample uptake rate 1 mL/min 

Mass range 6-240 amu 

Data acquisition Peak Hopping 

Dwell time 50 ms 

Sweeps per reading 6 

Readings per replicate 1 

Replicates 1 
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Table 2: ICP-MS obtained metal concentration (g/g) after microwave acid digestion of the 

archaeological soils. 

 

Metal Pb Zn Mo Ag Sb Hg Cr Ni Cu Cd 

Maximum  3100 3400 7.6 6.4 1.0 1.3 82 42 164 5.0 

Average 70 95 0.4 1.0 0.35 0.2 15 10 40 0.2 
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Table 3: Percentages of correctly classified samples corresponding to the LDA classification 

developed to differentiate between different strata provenance. 

Category Classification (%) Prediction (leave-one-out) (%) 

Stratum 1 100 100 (14/14) 

Stratum 2 100 85.7 (6/7) 

Stratum 3 100 100 (7/7) 

Stratum 4 100 100 (8/8) 

   

Total 100 97.2 

The number of correct/total classifications (predictions) appears in parentheses 
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