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By performing a slow adiabatic change between two traps of a quantum particle, it is possible to
transform an eigenstate of the original trap into the corresponding eigenstate of the final trap. If
no level crossings are involved, the process can be made faster than adiabatic by setting first the
interpolated evolution of the wave function from its initial to its final form and inferring from this
evolution the trap deformation. We find a simple and compact formula which gives the trap shape
at any time for any interpolation scheme. It is applicable even in complicated scenarios where there
is no adiabatic process for the desired state-transformation, e.g., if the state changes its topological
properties. We illustrate its use for the expansion of a harmonic trap, for the transformation of
a harmonic trap into a linear trap and into an arbitrary number of traps of a periodic structure.
Finally, we study the creation of a node exemplified by the passage from the ground state to the
first excited state of a harmonic oscillator.

PACS numbers: 37.10.Gh, 37.10.Vz, 03.75.Be

I. INTRODUCTION

There is a growing interest in accelerating transforma-
tions among different quantum states to limit the detri-
mental effect of decoherence or noise, or to increase the
repetition rate, or the number of quantum operations
that can be carried out in a given time interval [1]. In this
context, a few methods that bypass adiabatic transfor-
mations by designing appropriate time-dependent Hamil-
tonians have been set up. This includes methods based
on exact solutions with time-dependent scaling parame-
ters [2–5], methods based on dynamical Lewis-Riesenfeld
invariants [3, 6, 7], the transitionless tracking algory-
thm that adds counteradiabatic terms to the Hamiltonian
[8, 9], the fast-forward approach [10–13], Lie-algebraic
methods [14, 15], or the fast quasi-adiabatic approach
[16].

Recent experimental progress enables one to shape
atomic traps dynamically using for instance lasers
diffracted by Spatial Light Modulators (see e.g. [17]),
time-dependent microwave dressing [18], or, for ions in
multisegmented Paul traps, time-dependent voltages ap-
plied to the control electrodes [19]. Such trap shaping
on a short timescale has been proven useful, for example,
to implement quantum thermodynamical cycles [20, 21],
or to implement a scalable architecture for quantum in-
formation processing [22]. It is also important for some
quantum information processing schemes such as multi-
plexing and demultiplexing when information is encoded
in external degrees of freedom [7], for Fock state creation
[23], or velocity control [24, 25], and it is expected to be-
come more and more relevant given the current interest
to develop quantum technologies.
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In this article, we design the fast driving of a wave
packet for a particle in a time and position-dependent
trap potential with the aim of reaching some target state.
We provide an explicit formal solution for the time-
dependent potential that connects eigenstates of differ-
ent traps, or different eigenstates of the same trap. The
theoretical framework developed here builds on, and im-
proves, the one presented in [12, 13], where a stream-
lined version of the fast-forward method of Masuda and
Nakamura [10, 11] was derived and exemplified to drive
a matter wave from a single well to a symmetric double-
well. The solution presented here reduces considerably
the numerical time necessary to generate the appropriate
time-dependent potential, and offers therefore the possi-
bility to explore more complex state transformations. It
also enables us to drive transitions that could not be han-
dled with the techniques in [12, 13], specifically transfor-
mations that change the topology of the state with the
creation of a node.
In Sec. II we introduce the theoretical framework

and explain the inverse protocol procedure. Section
III presents several examples including ground state to
ground state and first-excited to first-excited transfor-
mations, matter wave splitting in an arbitrary number of
traps, and the transformation between states with differ-
ent topology. Finally, in Sec. IV we discuss the results
and open questions.

II. FROM WAVE FUNCTION TO POTENTIAL

To drive a wave function from an eigenstate of an ini-
tial potential to an eigenstate of a final potential (which
might be identical to the original one), we use a similar
approach to the one in [12, 13]. In this approach, the
initial wave function, ψi(x), and final (target) wave func-
tion, ψf(x), are given. The wave function should evolve
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between these two states in a predetermined time tf ,
satisfying the boundary conditions ψ(x, 0) = ψi(x) and
ψ(x, tf) = ψf(x). The corresponding time-dependent po-
tential can in principle be deduced from the Schrödinger
equation,

V (x, t) =
1

ψ(x, t)

(

i!
∂ψ(x, t)

∂t
+

!2

2m

∂2ψ(x, t)

∂x2

)

. (1)

Using the modulus-phase representation for the time-
dependent wave function,

ψ(x, t) = ρ(x, t)eiφ(x,t), (2)

the expression for the potential can be worked out, which
in general becomes a complex function with real and
imaginary parts. By imposing that the potential takes
real values, Im(V (x, t)) = 0, we get a first relation that
links the phase φ(x, t) and the modulus ρ(x, t),

1
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This is a continuity equation. The expression for the
potential then reads

V (x, t) = −!
∂φ

∂t
+

!2

2m

[

1

ρ

∂2ρ

∂x2
−
(

∂φ

∂x

)2
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. (4)

Equation (3) can be integrated formally,

∂φ

∂x
= −mu(x, t)

!
, (5)

where u plays the role of a “hydrodynamic velocity”,

u(x, t) =
1

ρ2(x, t)

∂

∂t

(
∫ x

0
ρ2(x′, t)dx′

)

. (6)

The potential V (x, t) can therefore be inferred from
ρ(x, t),

V (x, t) = m
∂

∂t

∫ x

0
u(x′, t)dx′ +

!2

2m

1

ρ(x, t)

∂2ρ(x, t)

∂x2

− 1

2
mu2(x, t)− !φ̇0(t), (7)

where φ0 ≡ φ(x = 0, t) and the dot means time deriva-
tive. This is our central result.
In a previous streamlined version of the fast-forward

approach [12, 13], ρ(x, t) was designed first and then the
equation for the phase had to be solved numerically in
order to get the potential. However, in the current im-
proved formulation the potential only depends on ρ(x, t),
so we find it directly from Eq. (7). This is a great advan-
tage because the computation time necessary to generate
V (x, t) is reduced considerably. Furthermore, as we will
see in the examples, by reinterpreting the modulus and
phase decomposition we can also solve more complicated
problems.

Consider a transformation from the ground state,
ψi(x), of a potential V (x, 0), to the ground state, ψf(x),
of another potential, V (x, tf) in a time tf . We may use
the interpolation formula

ρ(x, t) = N (t) {[1− η(t)] ρi(x) + η(t)ρf(x)} , (8)

where ρi(x) = |ψi(x)| and ρf(x) = |ψf(x)|, η(t) is a
monotonous and smooth function that varies from η(0) =
0 to η(tf) = 1, and N (t) is a normalization factor. As
the wave functions are ground states they have no nodes
and the quantity ρ(x, t) never vanishes. This ensures the
absence of any divergent behavior in the potential (7).
Furthermore, ρ(x, t) in Eq. (8) is positive during the
whole process by construction.
Assuming the boundary conditions

η̇(0) = η̇(tf) = 0,

η̈(0) = η̈(tf) = 0, (9)

we find from Eqs. (6) and (8),

ρ̇(x, 0) = ρ̇(x, tf ) = 0,

u(x, 0) = u(x, tf ) = 0, (10)

and consequently,

V (x, 0) = −!φ̇0(0) +
!2

2m

1

ψi(x)

∂2ψi

∂x2
,

V (x, tf) = −!φ̇0(tf) +
!2

2m

1

ψf(x)

∂2ψf

∂x2
. (11)

To adjust the zero of the potential, we shall set φ̇0(0) =
−Ei/! and φ̇0(tf) = −Ef/!, where Ei is the energy of the
initial state and Ef is the one of the final state, and use an
interpolation formula for φ0(t) with the extra boundary
conditions φ0(0) = φ0(tf) = 0 for simplicity1. For exam-
ple, polynomial interpolations satisfying the boundary
conditions for η(t) and φ0(t) are

η(t) =
t3

t3f

[

1 + 3

(

1− t

tf

)

+ 6

(

1− t

tf

)2
]

, (12)

φ0(t) =
t

tf

(

1− t

tf

)[

(Ei + Ef)t− Eitf
!

]

. (13)

Note that due to Eqs. (5), (10), and (13), the phase
φ(x, t) is zero at initial and final times.

III. EXAMPLES

A. Connecting ground states

We consider the transformation in a time tf from the
ground state wave function of a one dimensional har-

1 Alternatively, we can set the initial and final energy to zero,
imposing φ0(t) = 0. This simply amounts to a “vertical” shift
of the potential with respect to the polynomial interpolation in
Eq. (13). In this paper we use the polynomial form in (13).
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monic potential of angular frequency ωi to the ground
state of a harmonic potential of angular frequency ωf =
ξωi. For ξ < 1 (resp. ξ > 1), this transformation cor-
responds to an expansion (resp. compression). Such a
transformation can be carried out in a long time using an
adiabatic evolution. Our fast inverse protocol amounts
to bypassing the adiabatic evolution.
The initial wave function and the final one in dimen-

sionless units (! = m = ωi = 1), read

ψi(x) = π−1/4e−x2/2,

ψf(x) = ξ1/4ψi(x
√

ξ). (14)

The explicit form for N (t) and ρ(x, t) can be readily
worked out from Eqs. (8) and (12). In Fig. 1 (a), we
provide an example of fast time evolution of the potential
V (x, t) from Eq. (7), with ξ = 1/3 and tf = 0.24 × 2π.
Note that the transformation is here performed on a
timescale significantly smaller than the final period. The
curvature of the potential becomes transiently negative
at the center of the trap in order to speed up the trans-
formation [3, 4].
The method developed here also gives the potential

to connect two ground states of traps of different kind.
This is illustrated in Fig. 1 (b). The ground state of
a harmonic potential UH(x) = x2/2 is transformed into
the ground state of a linear potential UL(x) = 3|x|/2 in
a time interval tf = 0.24× 2π.

B. Splitting of a wave function

The invariant-based method and the transitionless
tracking approach are problematic for splitting wave
functions [13]. This is to be contrasted with the simpli-
fied fast forward method [13]. The compact formula (7)
allows for the possibility to split the wave function into
an arbitrary number of parts. In Fig. 2 the ground state
wave function, ψi(x), of a harmonic potential of angu-
lar frequency ω0 is split into five parts (given by ground
states of corresponding harmonic oscillators) separated
by a distance of 3a0/4 = 3(!/mω0)1/2/4, each having an
eighth of the initial width. The time-dependent poten-
tial deduced from the theoretical framework provides an
exact solution for the perfect loading of a periodic struc-
ture, an important operation for cold atoms [26–31]. The
transformation is performed here in a time interval equal
to 10π. for ω0 = 1.

C. Connecting first excited states

The approach presented in Sec. II can be readily gen-
eralized to transform the first excited state of a given
trap into the first excited state of another trap in a short
time. From Eqs. (5), (10), and the boundary condi-
tions φ0(0) = φ0(tf) = 0, the condition for the phase
φ(x, 0) = φ(x, tf ) = 0 is fulfilled by construction. Thus,
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FIG. 1: (a) Snapshots of the time evolution of the trap shape
from a harmonic potential of initial angular frequency 1 to a
harmonic potential of final angular frequency 1/3 that guar-
antees the perfect transfer of the ground state of the initial
trap to that of the final trap in a short time tf = 0.24×2π. (b)
Snapshots of time evolution of the trap shape from a harmonic
potential UH(x) = x2/2 to a linear trap UL(x) = 3|x|/2 in a
time interval tf = 0.24 × 2π that ensure the perfect transfer
of the ground state of the initial trap to that of the final trap.

a way to define an odd state using Eq. (2) is to assume
that ρ(x, t) may take negative values. The ansatz in Eq.
(8) generates a positive ρ(x, t) so we set a new one,

ρ(x, t) = N (t) {[1− η(t)]ψi(x) + η(t)ψf (x)} . (15)

For the transformation between two harmonic traps con-
sidered in Sec. III A, (ωi = 1,ωf = 1/3), Figure 3 (a)
shows the evolution of V (x, t) using Eq. (7) and Eqs.
(12), (13) and (15). In Fig. 3 (b) ρ(x, t) is represented.
The process time is tf = 0.48× 2π.
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FIG. 2: (a) Snapshots of the time evolution of the trap shape
that splits the wave function of a harmonic potential (of angu-
lar frequency ω0 = 1) in five equidistant wave functions with
the same weight. The transformation is performed in a time
tf = 10π. (b) Snapshots of ρ(x, t) (arbitrary units) versus
position in the course of the transformation.

D. Connecting ground and first excited states

The connection between states with different topologi-
cal properties is of much interest for quantum computing
processes because it allows, for example, to prepare Fock
states by deforming the trap without using laser excita-
tion of internal states [7]. Using sequences of π-pulses is
demanding, as a N -phonon Fock state needs very precise
N pulses, but fluctuations in intensity, frequency, and
timing imperfections give a reduced fidelity [32].
We want to drive the system from an even state

(ground) to an odd one (first excited) of the harmonic
oscillator with frequency ω0/(2π). Whenever ρ(x, t) has
a definite symmetry (even or odd with respect to x = 0),
the potential in Eq. (7) will have even symmetry. The
reason lies in Eq. (6), since for an either even or odd
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FIG. 3: (a) Snapshots of the time evolution of the trap shape
from a harmonic potential of initial angular frequency ωi = 1
to a harmonic potential of final angular frequency ωf = 1/3
that ensures the perfect transfer of the first excited state of the
initial trap to that of the final trap in a short time tf = 0.48×
2π. (b) Snapshots of the time evolution of the corresponding
ρ(x, t) (in arbitrary units).

ρ(x, t), the “hydrodynamic velocity” u(x, t) is always
odd. Thus the potential becomes a sum of even func-
tions and stays even throughout the process. Therefore,
the parity of the initial state will be preserved, and using
the interpolation in Eq. (8) for ρ(x, t) the system can-
not be driven from the even initial state to the desired
odd final state. Note in addition the numerical difficul-
ties because of the discontinuity of ∂xρ(x, t) at zeros of
ρ(x, t).

The connection will be achieved by allowing ρ(x, t) to
be asymmetric so that the potential in Eq. (7) becomes
in general a sum of even and odd functions. The use of
Eq. (15) as the interpolation formula is a simple way to
get an asymmetric ρ(x, t). The potential is singular when
ρ(x, t) = 0 but, as we will see, these are mild singularities
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in the sense that they may be numerically handled by
truncation.
An alternative way to design the interpolation of ρ(x, t)

would be, instead of using Eqs. (8) and (15), to de-
sign ρ(x, t) directly from the wave function as a positive
square root of the density,

ρ(x, t) =
√

|ψ(x, t)|2. (16)

We have unsuccessfully tested this ansatz trying differ-
ent interpolations for ψ(x, t). Choosing the interpolating
wave function in the form ψ(x, t) = N [(1− η)ψi + iηψf ]
and substituting in Eq. (16), the modulus, ρ(x, t) =

|N |
(

(1 − η)2|ψi|2 + η2|ψf |2
)1/2

, vanishes only at the
boundary of the time interval, but the resulting ρ(x, t)
has a definite even symmetry. We have also tried the
interpolation ψ(x, t) = N(t){[1− η(t)]ψi(x)+ η(t)ψf (x)},
which, substituted in Eq. (16), generates an asymmetric
function. However the desired final state could not be
reached numerically due to singularities that affect the
successive derivatives of ρ(x, t), generated because of the
definition of ρ(x, t) via a modulus. Therefore, hereinafter
we will use the protocol in Eq. (15) to connect the ground
and first excited states.
Imposing that the initial and final states in dimension-

less units (! = m = ω0 = 1) are

ψi(x) = π−1/4e−x2/2,

ψf(x) = π−1/4x
√
2e−x2/2, (17)

and substituting in Eq. (15), we get the explicit form

ρ(x, t) = π−1/4 1 + [x
√
2− 1]η(t)

√

1 + 2[η(t)− 1]η(t)
e−x2/2. (18)

Introducing Eqs. (12), (13) and (18) in Eq. (7), we find
the potential evolution represented in Fig. 4 (a). Figure
4 (b) shows the evolution of ρ(x, t) given by Eq. (18).
The system may thus be driven from the ground state
into the first excited state without final excitations in a
finite, arbitrarily short time.
The effect of the divergence of the potential at a posi-

tion for intermediate times [see Fig. 4 (a)] is now studied
by truncating the potential as

Vtrun(x, t) =







V (x, t) if −c < V (x, t) < c
c if V (x, t) ≥ c
−c if V (x, t) ≤ −c,

(19)

where c is a positive real number. To check the stabil-
ity of the method under this approximation, we compute
the fidelity between the final state ψf and the final state
evolved by the truncated potential ψe(x, tf) for different
values of c. The evolution of ψe(x, tf) is calculated using
the ‘split-operator method’ with the truncated Hamilto-
nian Htrun = T + Vtrun, T being the kinetic energy. Fig-
ure 5 shows that the method is stable for large enough
c. For a relative small value of c = 8!ω0 the transition is
performed with a 0.9996 fidelity.
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FIG. 4: (a) Snapshots of the time evolution of the trap shape
that connects the ground state to the first excited state of
a harmonic potential (ω0 = 1). The transformation is cal-
culated in a time tf = 8π. (b) ρ(x, t) (in arbitrary units)
is plotted as a function of the position in the course of the
transformation.

FIG. 5: Fidelity F ≡ |〈ψe(x, tf )|ψf(x)〉|
2 versus the potential

truncation constant c, where ψe(x, tf ) is the final wave func-
tion evolved using the truncated potential Vtrun. tf = 8π/ω0.
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IV. CONCLUSION

We have proposed an improved version of the fast-
forward approach described in [12, 13]. In this new for-
malism, the solution of the time-dependent potential is
explicit, so the time necessary to design the potential will
be shorter. We applied this technique to accelerate some
basic operations that are relevant for quantum informa-
tion processing and fundamental studies, such as expan-
sions or compressions of a harmonic trap, splitting of a
wave function, and generic driving between eigenstates.
In particular, we have studied the connection between the
ground and first excited states of a harmonic potential.
The connection has been realized allowing ρ(x, t) to be
asymmetric and take negative values. Furthermore, this
protocol may also be used to create higher Fock states
just by changing the final states. Open questions left for
future work include comparing the present protocol with

other methods that break the parity symmetry of the
potential without using the fast-forward approach [7], or
optimizing the robustness versus noise and perturbations
[6]. Applications of the method go beyond quantum me-
chanics, e.g. to determine potentials in a Fokker-Planck
equation [33].
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