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Abstract. Theoretical positron lifetime values have been calculated systematically for most of the 

elements of the Periodic Table. Self-consistent and non-self-consistent schemes have been used for the 

calculation of the electronic structure in the solid, as well as different parameterizations for the positron 

enhancement factor and correlation energy. The results obtained have been studied and compared with 

experimental data, confirming the theoretical trends. As it is known, positron lifetimes in bulk show a 

periodic behaviour with atomic number. These calculations also confirm that monovacancy lifetimes 

follow the same behaviour. From this fact a strong relation between the atomic volume and the positron 

lifetime has been set. The effects of enhancement factors used in calculations have been commented. 

Finally, we have analysed the effects that f and d electrons cause in positron lifetimes. 

1. Introduction

The classification of the elements has been one of the major achievements in the history of Science. This 

classification was originally derived from empirical experimental results, because the concept of atomic 

number was unknown to Mendeleev [1]. Since then, the resulting periodic order has been most strikingly 

reflected in a quantitative manner by most of the physical properties of the elements. A proof of this fact is 

that about 700 forms of the Periodic Table have been proposed (classified into 146 different types or subtypes) 

[2, 3]. 

Positron-Annihilation Spectroscopy (PAS) is a powerful and versatile tool for the study of the microscopic 

structure of materials [4-7]. Using PAS, detailed experimental information about electronic and atomic 

structure from the region of the material sampled by the positrons is obtained. PAS measurements for material 

characterization generally use three techniques: positron lifetime spectroscopy, Doppler broadening analysis 

and angular correlation measurements. Positron lifetime measurements give information about electron density 

at the annihilation place. On the other hand, Doppler broadening and angular correlation measurements give 

information about electron momentum distribution. So, the electronic configuration of the material studied is 

reflected in the positron annihilation parameters. For example, in Doppler broadening experiments, the high-

momentum part is used to distinguish different non-adjacent elements in the Periodic Table [8, 9]. 
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As the annihilation properties of the positron are related to the electronic structure, they also show a 

periodic behaviour. In 1963, Rodda and Stewart [10] studied the behaviour of the experimental positron 

lifetime of rare-earth metals and compared it with the radius of the sphere, whose volume is equal to the 

volume per conduction electron, r’s (correcting the value by excluding the volume of the ion). However, 

MacKenzie et al. set a stronger relation in 1975 [11]. They collected experimental bulk lifetimes of many 

elements and reported their “systematic dependence on atomic number”. Also that year, Brandt et al. [12] 

calculated the lifetime of some elements. They explained that the periodic behaviour of positron lifetime “is 

linked prima facie to the virtual excitation of coupled valence-electron-plasma and single-particle modes in the 

collective response of the metal electrons to screen the positron charge”. Later, in 1976, Welch and Lynn 

studied the variations of the experimental mean lifetime versus the atomic number, and stated that it “is 

strikingly similar to that of the atomic volume” [13]. In 1991 Puska found that the trends observed in bulk 

lifetimes along the 3d, 4d and 5d rows of the Periodic Table are very similar to the behaviour of the Wigner-

Seitz radii [14]. However, this periodicity is not only reflected in the positron lifetime. Doppler broadening 

experiments [9, 15] and positron affinity of elemental metals [16] also show periodic behaviour. 

In this work, a systematic Density Functional Theory (DFT) calculation of positron lifetimes has been 

performed for bulk and monovacancies of most of the elements of the Periodic Table. The main factors 

influencing bulk and vacancy positron lifetimes for elemental solids have been well understood for more than 

30 years. So, our main aim is to show the periodic trends appearing in bulk and monovacancy positron 

lifetimes. The effort made to calculate and compile systematically the annihilation parameters is important to 

go deeply into the study of the calculation methods, improving the theoretical background required for a good 

interpretation of the experimental data. The organization of this paper is as follows: the computational method 

is explained in section 2; section 3 contains the results of the calculations, the correlation between lifetimes, 

and the periodic properties of the elements, information about the enhancement factors used in the calculations 

and the analysis of the effects of f and d electrons; and finally, the conclusions of the work are presented in 

section 4. 
 

2. Computational method 

 

The calculation of positron properties in solids can be traced back to the late sixties and early seventies (see 

for instance [17-20]) and since then numerical simulations have become a well developed technique (see the 

reviews [4, 6] and the recently published paper [21]). Positron states must be calculated self-consistently 

within the two-component DFT for positron and electron densities. However, the conventional way to treat 

positron states in solids simplifies the two-component DFT. Within the conventional scheme, an unperturbed 

electronic ground state for the system is constructed. Then, the positron distribution is calculated by assuming 

the electron density remains rigid, and by accounting for the electron-positron correlation in terms of a 

correlation (screening) potential dependent on the electron density. In the case of delocalized positron states, 

the positron density is vanishingly small at every point of the lattice, and it does not influence the electronic 
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structure. As a result, for bulk positron states the conventional scheme runs very well. In the case of a positron 

localized at a lattice defect, the situation is more complicated because the positron attracts electrons, and the 

average electron density increases near the defect (positron). However, in most applications for positron states 

at defects, the conventional scheme works very well too. Indeed, the two-component DFT calculations 

performed by Nieminen et al. [22] and Boronski and Nieminen [23] support the use of the conventional 

scheme, since the annihilation rates are very close to those obtained with the conventional scheme. This 

similarity of results between the conventional scheme and the two-component DFT calculation is due to the 

fact that the larger short-range enhancement compensates the smaller electron density at the positron. 

Therefore, in the present work we have used the conventional way of calculation. Firstly, we have solved 

the electron density of the perfect or defected solid, then we have calculated the positron wave function, and 

finally, we have determined the positron annihilation rate. We have used a supercell method to compute the 

electronic densities following (a) the atomic superposition approximation (AT-SUP) developed by Puska and 

Nieminen [24] and (b) the tight binding version of the Linear Muffin-Tin Orbital method within the Atomic-

Spheres Approximation (LMTO-ASA) [25, 26]. 

(a) AT-SUP method 

The AT-SUP approximation of Puska and Nieminen is a simple method that makes use of non-self-

consistent unrelaxed electronic densities. It gives satisfactory values of positron lifetimes in metals and 

semiconductors [24, 27, 28, 29]. The good agreement between the experimental and theoretical lifetimes is 

mainly due to the fact that the positron annihilation rate is obtained as an integral over the product of 

positron and electron densities. The positron density relaxes following the electron charge transfer, keeping 

the value of the positron-electron overlap integral constant. For this reason, positron lifetime calculations 

are not too sensitive to self-consistency. 

In the AT-SUP approximation the electron density n-(r) of the solid is constructed by superimposing 

individual atomic charge densities: 

 

( )∑ −= −−
i

i
atnn Rrr)(             (1) 

 

where atn−  is the free-atom electron density and Ri runs over the occupied atomic sites. For the crystalline 

Coulomb potential Vc(r) the same procedure has been used: 

 

( ) ( )∑ −=
i
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where Vat is the atomic Coulomb potential due to the electron density and the nucleus. Densities and 

potentials of the atomic ground-state electronic configuration are obtained self-consistently within the DFT. 
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The potential felt by the positron in the solid, V+(r), is obtained by adding to the Coulomb potential, Vc(r), 

the positron-electron correlation energy, Vcorr(n_(r)): 

 

( ) ))(()( rrr −+ += nVVV corrc            (3) 

 

where n-(r) is the electron density. The space is discretized in a three-dimensional mesh that forms an 

orthorhombic Bravais lattice, where the potential is projected. The discretized Schrödinger equation is 

solved iteratively at the mesh points by using a numerical relaxation method [30] to obtain the positron 

wave-function and its energy eigenvalue. Depending on the structure of the element, the density of the 

cubic mesh varies between 1 and 3 points per atomic unit in each direction. We have checked in some 

elements that this difference of density of the mesh does not affect the lifetimes. 

(b) LMTO-ASA method 

LMTO-ASA is a method that makes use of self-consistent electronic densities. It gives satisfactory values 

of positron lifetimes in metals and semiconductors [14, 28, 29]. In LMTO-ASA calculations the electron 

density and Coulomb potential are determined self-consistently within spheres centred around nuclei and 

interstitial sites (when the atomic packing is not dense) of the structure. The spheres fill the whole lattice 

space and the atomic ones have equal radii. The potential and the charge densities are assumed spherically 

symmetric inside each sphere. The potential felt by a positron is constructed according to equation (3), and 

the positron state is solved by using the same methods as used for electron states in the LMTO-ASA. From 

now on, all the references made to this method will be labelled as LMTO. 

The f electrons are a strongly correlated system. However, we have treated the 4f electrons of the 

lanthanides and the 5f electrons of the actinides as band electrons, and the 4f electrons of the actinides as 

core like states. 

Once we have calculated the electron and positron densities, the positron annihilation rate, the inverse of the 

positron lifetime, is obtained from the overlap of positron and electron densities as: 

 

)()()(dr2 rrr γπλ −+∫= nncro            (4) 

 

where ro is the classical electron radius, c is the speed of light in the vacuum, n+(r) is the positron density and 

γ(r) is the so-called enhancement factor. Vcorr(r) and γ(r) have been taken into account by using two different 

schemes: 

1.- within the Local Density Approximation. For the correlation energy the interpolation formula by 

Boroński and Nieminen [23] based on the results by Arponen and Pajanne [31] is used; and for the 

enhancement factor the widely used form [23] based on Lantto´s [32] hypernetted chain approximation 

calculations:  
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where ε∞ is the high-frequency dielectric constant of the material and rs is the radius of a sphere whose 

volume is equal to the volume per conduction electron. This last parameter is related to the electron 

density, n_(r), by: 
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Results obtained with this scheme are labelled with BN. 

2.- within the Generalized Gradient Approximation (GGA). The correlation energy and the enhancement 

factor due to Barbiellini et al. [28, 33] are used, both based on the results by Arponen and Pajanne [31]. In 

this scheme the enhancement factor is given by: 

 
αεγγ −−+= eLDAGGA )1(1 ,            (7) 

 

where γLDA is: 
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and α is an adjustable parameter and ε is obtained from this expression: 
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with (qTF)-1 the local Thomas-Fermi screening length. ε is a parameter proportional to the lowest–order 

gradient correction to the correlation hole density in the Local Density Approximation. The results obtained 

with these two schemes will be labelled LDA and GGA. 

The α parameter is determined so that the calculated and experimental lifetimes agree as well as possible 

for a large number of different types of solids. Barbiellini et al. [28, 33] found that α = 0.22 value gives 
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lifetimes in good agreement with experiments for different types of electronic environments, including 

simple metals (Na and K of 1st group), transition metals (Fe, 8th group; Ni, 10th group; Cu, 11th group; Al, 

13th group), group-IV semiconductors (Si and Ge) and III-V and II-V compound semiconductors (GaAs, 

InP and CdTe). α = 0 gives the Local Density Approximation limit of this enhancement factor, that is to 

say γLDA. As it was pointed before [28, 34], the lifetimes calculated by using γLDA are always much shorter 

than those calculated with γBN and γGGA, and the experimental ones. 

The positron lifetime calculations have been performed for most of the elements of the Periodic Table. The 

unit cell of the crystalline structure has been used as supercell for bulk calculations. In vacancy calculations 

one atom is removed from the supercell to produce a vacancy. If the supercell is large enough, the vacancy 

does not interact with its periodic image and the system describes quite well an isolated vacancy. However, in 

practice, the supercell size cannot be made arbitrarily large. The size of the supercells in AT-SUP method has 

been increased till convergence. The maximum number of atoms per supercell used to reach convergence has 

been: 511 atoms (orthorhonbic structure), 511 atoms (diamond structure), 499 atoms (tetragonal structure), 

463 atoms (cubic structure), 255 atoms (FCC structure), 249 atoms (hexagonal structure), 383 atoms 

(rhombohedric structure) and 127 atoms (BCC structure). Self-consistent calculations within the LMTO 

method for monovacancies are much more computationally demanding than the ones performed with the AT-

SUP method, particularly for large supercells. Moreover, for large supercells, calculations performed 

employing the Γ point for the positron density or the lowest lying band in the Brillouin zone give identical 

values for the monovacancy positron lifetime [29]. Therefore, for the calculations within the LMTO method 

for monovacancies we have integrated over the lowest positron band in the Brillouin zone, because it gives 

faster convergence in the supercell approach [29]. The maximum number of atoms used within the LMTO has 

been: 127 atoms (hexagonal structure), 124 atoms (BCC structure), 107 atoms (rhombohedric structure), 63 

atoms (FCC structure), 53 atoms (tetragonal structure), 53 atoms (diamond structure), 31 atoms (orthorhonbic 

structure) and 28 atoms (cubic structure). 

For the monovacancy supercells no relaxation in the atomic positions have been performed, this means that 

the ions neighbouring the vacancy are not allowed to relax from their ideal lattice positions. It is known that an 

accurate calculation of the monovacancy lifetime needs atomic relaxation. In insulators and semiconductors 

the atomic relaxation may be important, and can change with the charge state of the defect and with the 

localization of the positron [35, 36], but it is not large in metals [37-39]. However, the study of the effects of 

these relaxations goes beyond the aims of this work. 

Some elements get a different crystal structure for different conditions of pressure and temperature. When 

an element has more than one possible structure, we have chosen the most common one in normal conditions. 

The rare gases are not solid in normal conditions, so we have studied the solid state at very low temperature. 

The crystal structure and the lattice parameters used in the calculations are shown in table 1, and have been 

taken from experimental data [40-42]. 
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In BN calculations, the semiempirical correction based on high-frequency dielectric constant of equation 5 

[43] is used for the elements of table 2, which shows experimental values of dielectric constants [41, 42, 44]. 

For several insulators (As, Cl, Br and I) we have not found any value for their dielectric constants in the 

literature. So, these insulators and rare gases have been treated as metals, using ε∞ = ∞. In the rare gases a 

special treatment is needed; however, it goes beyond the aim of this work. In LDA and GGA frameworks, this 

correction is not necessary. 

 

3. Results and discussion 

 

3.1. Bulk and monovacancy lifetimes 

 

The positron lifetime values calculated for the bulk state are given in table 3 and table 4. The values of table 3 

correspond to calculations made within the AT-SUP method with BN and GGA approximations. The results 

obtained within the LMTO method with BN and GGA approximations are given in table 4. 

On the other hand, the results of monovacancy lifetime calculations (BN and GGA) are shown in tables 5 

and 6 for AT-SUP and LMTO methods, respectively. Table 6 do not present monovacancy lifetime of 

actinides due to convergence problems with the LMTO code. The bulk and monovacancy lifetime results are 

in agreement with previously reported values (Barbiellini et al. [28, 33]). 

Table 7 shows the AT-SUP results of bulk and monovacancy lifetimes obtained within the LDA 

framework. As mentioned before, these values are shorter than BN and GGA ones, but show the same trend. 

Finally, experimental positron lifetime values in bulk and monovacancy states (see [45] and the references 

therein) are given in table 8 for comparison with theoretical ones. Even though the first positron lifetime 

measurements were made more than 50 years ago [46-49], nowadays the experimental data does not reach to 

all elements of the Periodic Table. Moreover, there is much more data for bulk than for monovacancy 

lifetimes. In some elements, there is no experimental data, but in others the experimental data and the 

scattering among them is large. Therefore, the selection of the measurements is a difficult affair, and we have 

fixed some conditions to select data with a minimum of quality and coherence. The chosen conditions might 

not be the best ones; however, a selection has to be made. First of all, we have considered data from 1975 up 

to now. We have chosen this requirement because the POSITRONFIT program was developed around 1972 

[50], and improved in 1974 [51], becoming a common, or even standard, tool for the positron community to 

analyze experimental spectra. Furthermore, we have chosen a maximum of 320 ps for the full width at half 

maximum of the resolution function. Finally, we have taken as the limit value for the error of the measurement 

±5 ps in bulk lifetimes, and ±10 ps in monovacancy lifetimes. In the case the literature gives different lifetime 

values following the previous requirements, the average value has been calculated. It is expected that the 

systematic errors from various experiments would be cancelled. In order to fill the extremes of the Periodic 

Table, we have taken into account two experimental works in alkalines (Li, Na, K, Rb, Cs) [52] and ideal 
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gases (Ar, Xe) [53] that do not fit the previous requirements. However, these works have been used in 

previous reviews. 

 

3.2. Positron lifetime among periodic properties 

 

In order to present the expected periodic behaviour of the positron lifetime, figure 1 shows calculated bulk 

(circles) and monovacancy (squares) positron lifetimes versus atomic number. Plotted lifetimes have been 

calculated within the AT-SUP method using BN approximation for the enhancement factor and correlation 

energy. Experimental values of table 8 have not been plotted, but follow the same theoretical trends. 

The atomic volume of the elements [54] has been plotted against atomic number in figure 1, too. The 

atomic volume (defined as the product of the atomic weight and the specific volume of an element at normal 

conditions) is a good magnitude to measure the size of one single atom in its own structure and is defined for 

all the elements in the same way. This is one of the main reasons why the atomic volume has been chosen, 

even though different magnitudes such as metallic radius, ionic radius, covalent radius ... have been defined 

for the quantification of the atomic size. However, from these last magnitudes it is not possible to obtain an 

accurate value for the volume. Besides, most of radii types are defined only for some kind of elements and not 

for all. The atomic volume, as other properties of the elements, has a strong relation with the arrangement of 

the electrons in atomic shells [55-59]. For this reason, the atomic volume is a periodic function of the atomic 

number, as it was formulated first by Lothar Meyer in 1870 (with reference to atomic weight, not to atomic 

number) [60]. 

The similarity between atomic volume curve and the two positron lifetime curves on figure 1 is very big. 

Different factors affect positron lifetimes, like many-body enhancements, the region occupied by the positron 

(which in the bulk is less than the atomic volume), and the electrons available for annihilation in that region. 

However, the three graphics show the same periodic behaviour, reproducing also many little details. Although 

the lifetime has been compared with other periodic properties like rs parameter, Wigner-Seitz radii,... the 

relation with the atomic volume seems to be more fundamental. This work confirms previous statements [13], 

but also proves that the monovacancy lifetimes exhibit the same periodic behaviour. Despite the localization of 

the wave function, the positron lifetime in bulk (delocalized state) and at a monovacancy (localized state) are 

still related to a single atom's volume, and this is independent of the methods of calculation used in this work. 

When an atom is removed from perfect crystal structure, the remaining volume is mainly related to that atom. 

But removing more than one atom the remaining volume is more structure dependent [34]. 

The lifetimes of some elements (As, Br, Kr, I and Xe) do not follow the trends of atomic volume (see 

figure 1). This special behaviour will be analyzed in section 3.3. 

The periodic behaviour of the positron lifetime found for AT-SUP method within BN approximation is also 

found using GGA and LDA frameworks, as well as in the calculations performed with the LMTO code by 

using BN and GGA approximations. 
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3.3. Enhancement factors 

 

The enhancement factor is of crucial importance in positron lifetime calculations [61, 62, 63 and references 

therein]. For this reason, it is necessary to study the behaviour of enhancement factors used in these 

calculations. 

As it has been pointed before, in figure 1 the lifetimes of some elements (As, Br, Kr, I and Xe) do not 

follow the periodic trends as it could be predicted from the atomic volume. In the case of insulators, a model 

based in atomic polarizabilities, estimated from the Clausius-Mossotti relation, has been used too [43], where 

the dielectric constant of the solid is also needed. For the rare gases a special framework is needed. However, 

in these calculations, some insulators (As, Cl, Br and I) and all the rare gases (Ne, Ar, Kr and Xe) have been 

considered as metals (ε∞ = ∞). So the real lifetimes of BN approximation for these eight elements are really 

longer and closer to GGA values than the calculated ones (see tables from 3 to 6). 

Boroński-Nieminen enhancement, γBN (eq. 5), is based on the many-body calculations performed by Lantto 

[32]. Stachowiak and Boroński reported that the calculations of Lantto start from a physically oversimplified 

trial function [64]. Fraser in her Ph.D. thesis failed to reproduce Lantto’s results using a Quantum Monte Carlo 

approach [65]. However, Boroński reported that the lifetimes calculated based on Fraser’s results are quite 

inaccurate, becoming even unreasonable for rs > 4 [66]. 

Boroński-Nieminen parameterization, used in this work, agrees very well the positron enhancements 

calculated by Arponen and Pajanne [67], Gondzik and Stachowiak [68] and Rubaszek and Stachowiak [69] for 

rs ≤ 8 (see Fraser´s thesis [65], page 143). Indeed, Stachowiak and Boroński [64] pointed out that γBN is the 

best formula to fit the experimental lifetimes in metals. In bulk metals, rs usually runs from 2 to 6 (in Cs it gets 

the maximum value, 5’6). However, the enhancement factor of Boroński-Nieminen approach has two 

important problems at low densities (see figure 1 in [28]): 

a) The scaled proton limit rule [70] is violated for rs ≥ 9. This is the upper bound for all the enhancement 

factors. 

b) For rs greater than 6 the lifetimes obtained with γBN do not increase monotonically with rs. For this 

reason, the lifetimes can not reach the 500 ps limit. 

These two problems appear when the electronic density is low (semiconductors, insulators, rare gases, 

vacancies, voids,…). In the case of semiconductors and insulators, the problem has been tackled using 

semiempirical corrections introduced by Puska et al. [43]. Using this correction, calculated lifetimes in the BN 

approximation fit well the experimental ones, even when the densities are low. 

In the case of γLDA (eq. 8), the enhancement factor has the same form as that used by Stachowiak and Lach 

[71]. γLDA has been obtained fitting the Arponen-Pajanne data points only up to rs = 5 [28]. In Arponen-

Pajanne data, the Friedel sum rule is violated for rs = 6 and 8, and the scaled proton limit value is crossed at rs 

= 8 [31]. As γGGA (eq. 7) is obtained from γLDA, the LDA and GGA enhancements are both not very reliable for 
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low electron densities, like BN enhancement. Calculations made in systems of low electron densities using 

GGA approximation with the universal value α = 0’22 do not give reasonable lifetimes [63, 72]. For example, 

in order to get lifetime values near the experimental ones for C60, it is necessary to fit the α parameter to a 

“suitable” value [72]. 

As a result of all of these problems in the enhancements, we have to be very careful with all of the 

calculated lifetimes near or longer than 400 ps. So, more theoretical work is needed for low density systems. 

 

3.4. f and d electrons 

 

Figure 2 represents the behaviour of positron lifetimes for bulk (circles) and monovacancy (squares) in 

elements from 57La to 80Hg of the 6th row of the Periodic Table. As f and d shells get filled between 57La and 

80Hg, positron lifetimes of these elements can be used for studying the effects of f and d electrons in positron 

annihilation properties. The represented lifetimes are those obtained within the LMTO method using BN 

(empty symbols) and GGA (full symbols) approximations (see table 4 and 6). Experimental lifetimes from 

table 8 have been plotted as a reference. As it is known, GGA calculation method uses the gradient of 

electronic density. So, for an accurate calculation, it is necessary to use a self-consistent electronic density, 

enabling charge-transfer in the system. Therefore, in order to make a better comparison between BN and GGA 

calculation methods, we have represented LMTO results. 

First of all, we must remark that figure 2 shows the same general behaviour for bulk and for monovacancy 

lifetimes. As electrons fill the d shell between 71Lu and 80Hg, the bulk and monovacancy lifetimes show the 

same parabolic behaviour. As d electrons start filling the shell, the lifetime reduces considerably, and, after 

reaching a minimum near the half-filled shell (d6), it rises up again. This trend is explained simply with the 

behaviour of the atomic volume (see figure 1). This general dependence of positron lifetime with the 

outermost d electrons in bulk and monovacancies is independent of the row of the Periodic Table. The 4th 

row, from 21Sc to 30Zn elements, and the 5th row, from 39Y to 48Cd elements, show the same behaviour. 

On the other hand, in lanthanides (from 57La to 70Yb) the positron lifetime remains nearly constant as 4f 

shell fills up (τbulk ≈ 200 ps and τvacancy ≈ 315 ps). The increasing number of the f inner electrons is responsible 

for the magnetic properties of lanthanides, and the outermost s-d electrons determine the bonding and other 

electronic properties [73-75]. So, the f inner electrons can not cause appreciable changes in positron lifetimes, 

since the positron wave-function is mainly located in the interstitial space. However, the lifetimes of 63Eu and 

70Yb are larger than the other lanthanides, because they have a half-filled (63Eu) or completely filled 4f shell 

(70Yb). For this reason, Eu and Yb get a more closed electronic structure and show a particular behaviour in 

several properties (atomic volume, electronegativity, melting point, ionization potentials,...). It has to be 

remarked that in the case of actinides (from 90Th to 97Bk), the positron lifetime does not remain constant (see 

table 4). Indeed, it follows a parabolic behaviour (see figure 1) similar to the one found in d shells. This 

behaviour is in agreement with previous statements [76-78], which indicate that opposite to 4f electrons, 5f 
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electrons are relatively delocalized and can contribute to the bonding. This special electronic structure makes 

positron lifetime (and other physical properties) behaviour more complex. 

However, there are some especial features superposed to these general trends. In bulk, for the first 

lanthanide elements (from 57La to 62Sm) GGA lifetimes are similar to BN ones. But, between 64Gd and 69Tm, 

GGA lifetime is a little bit larger than BN one, about 4 ps (see table 4). There are only three experimental bulk 

lifetimes from the literature. These experimental lifetimes are from different researcher groups and not from 

very recent measurements. So, it would be interesting to get new experimental data in the lanthanides. 

In monovacancies, lifetimes of lanthanides have a particular behaviour (see figure 2). For most of the 

elements of the Periodic Table, GGA lifetimes are usually larger than BN ones (see table 6 ). Opposite to this 

general trend, the GGA lifetimes of lanthanides are shorter than BN ones, about 3-5 ps (see table 6). As it is 

known, the positron is much localized in a monovacancy and the probability of annihilating with inner 

electrons is much lower than in bulk. Taking into account that f electrons are inner electrons, they have not an 

appreciable effect in these lifetimes. So, the values of these lifetimes are due to the external electronic 

configuration, similar to the outer electronic configuration of 57La. As in bulk case, 63Eu and 70Yb are outside 

this trend, showing a special feature. It could be expected them to follow the same trend as the other 

lanthanides. However, they show the opposite, GGA lifetimes are longer than BN ones. 

A lot of work has been made to understand the behaviour of d electrons [79, 34]. In the bulk case (see 

figure 2), for La, Ce and Lu the BN lifetimes are longer than the GGA ones. However, as electrons start to fill 

the d shell, the difference gets smaller. And from d3 (73Ta) to d10 (80Hg) GGA lifetime is longer than BN one, 

increasing the difference as d orbitals are being occupied. The GGA correction to the Local Density 

Approximation is roughly proportional to the number of outermost d-electrons in the atom [34]. The four 

experimental lifetimes found in the literature fit very well GGA values in this region. Local Density 

Approximation calculations made with different parameterizations, BN (table 3) and LDA (table 7), show that 

the positron lifetimes for bulk transition metals are systematically too short in comparison with the 

experimental values, and GGA fits better experimental values. 

In monovacancies the trend is similar to that of the bulk. BN lifetime is longer than GGA one for the first 

elements, from Lu (d1) to Ta (d3). At W (d4) and Re (d5) BN and GGA lifetimes are the same. And finally, 

from Os (d6) to Hg (d10) GGA lifetimes are longer than BN ones. So, the trend is the same, but in 

monovacancies more d electrons are needed for GGA lifetimes to get longer than BN ones. In monovacancies, 

the calculated lifetimes and the experimental ones show a larger difference than in the bulk case. 

In lifetimes calculated within AT-SUP method, BN and GGA values follow the very same general trends. 

However, the differences between GGA and BN lifetimes are much greater, due to the lack of self-consistency 

of the electronic densities used in calculations. 

 

4. Conclusions 
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The systematic calculations performed in this work set a theoretical support for understanding and interpreting 

different positron lifetime experiments. It has to be remarked that there are many firstly calculated elements 

among these lifetimes. 

As a result of this positron lifetime calculations, a well-known trend for the bulk lifetimes has been 

systematically proved again, and the same trend has been established for the calculated monovacancy lifetimes 

too. In both cases, the correlation with atomic volume of the elements is direct, and it is demonstrated that the 

trends of atomic volumes can be extrapolated to positron lifetime values. However, a direct quantitative 

extrapolation on the absolute values can not be done in the whole Periodic Table due to the fact that positron 

lifetimes reach saturation at 500 ps. This fact deforms the trends compared to the atomic volume. So, it is 

concluded that the positron lifetime of bulk and vacancy is a periodic property of the elements. 
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TABLE CAPTIONS 
 
 
Table 1. Structural data of the elements. The crystal structures of the elements are named as: cubic (CUB), 
body-centered cubic (BCC), face-centered cubic (FCC), cubic diamond (DIAM), rhombohedral (RHOMB), 
tetragonal (TETRA), orthorhombic (ORTHOR), hexagonal close-packed (HEX) and double hexagonal close-
packed (HEX/abac). (*) Manganese has a cubic complex structure (see Donohue [40]). 
 
Table 2. High-frequency dielectric constant of some elements used in calculations. 
 
Table 3. Calculated positron bulk lifetimes using AT-SUP method with BN and GGA parametrizations. 
 
Table 4. Calculated positron bulk lifetimes using LMTO method with BN and GGA parametrizations. 
 
Table 5. Calculated positron monovacancy lifetimes using AT-SUP method with BN and GGA 
parametrizations. 
 
Table 6. Calculated positron monovacancy lifetimes using LMTO method with BN and GGA 
parametrizations. 
 
Table 7. Calculated positron lifetimes using AT-SUP method with LDA parametrization for bulk and 
monovacancy states. 
 
Table 8. Experimental positron lifetimes for bulk and monovacancy states. 
 



 16

TABLE 1 
⎯

 
H 
⎯ 
⎯ 
⎯ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

⎯
 

He 
⎯ 
⎯ 
⎯ 

B
C

C
 

Li 
3.49 

H
EX

 

Be 
2.29 

 
3.59 

 
 

 

 

 

 

 

 

O
R

TH
O

R
 U 

2.85
5.87
4.96

 

 

 

 

 

 

 

 

 

 

⎯
 

B 
⎯
⎯
⎯ D

IA
M

 C 
3.57

⎯
 

N 
⎯
⎯
⎯

⎯
 

O 
⎯
⎯
⎯

⎯
 

F 
⎯ 
⎯ 
⎯ 

FC
C

 

Ne 
4.43 

B
C

C
 

Na 
4.23 

H
EX

 

Mg 
3.21 

 
5.21 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FC
C

 

Al 
4.05

D
IA

M
 Si 

5.43

O
R

TH
O

R
 P 

3.32
10.52
4.39

⎯
 

S 
⎯
⎯
⎯ O

R
TH

O
R

 Cl 
6.24 
4.48 
8.26 

FC
C

 

Ar 
5.31 

B
C

C
 

K 
5.23 

FC
C

 

Ca 
5.58 

H
EX

 

Sc 
3.31

5.28 H
EX

 

Ti 
2.95 

 
4.68 

B
C

C
 

V 
3.03 

B
C

C
 

Cr 
2.88

C
U

B
 (*

) Mn 
8.91

B
C

C
 

α-Fe 
2.87

H
EX

 

α-Co
2.51

4.07

FC
C

 

Ni 
3.52

FC
C

 

Cu 
3.61

H
EX

 

Zn 
2.66

4.94 O
R

TH
O

R
 Ga 

4.52
7.66
4.53 D

IA
M

 Ge 
5.66

R
H

O
M

B
 As 

3.76

10.55 H
EX

 

Se 
4.36

4.95 O
R

TH
O

R
 Br 

6.67 
4.48 
8.72 

FC
C

 

Kr 
5.64 

B
C

C
 

Rb 
5.59 

FC
C

 

Sr 
6.08 

H
EX

 

Y 
3.65

5.73 H
EX

 

Zr 
3.23 

 
5.15 

B
C

C
 

Nb 
3.30 

B
C

C
 

Mo 
3.15

H
EX

 
Tc 
2.74

4.40 H
EX

 

Ru 
2.70

4.28

FC
C

 

Rh 
3.80

FC
C

 

Pd 
3.89

FC
C

 

Ag 
4.09

H
EX

 

Cd 
2.98

5.62 TE
TR

A
 In 

3.25

4.95 TE
TR

A
 β-Sn

5.83

3.18 R
H

O
M

B
 Sb 

4.31

11.27 H
EX

 

Te 
4.45

5.92 O
R

TH
O

R
 I 

7.27 
4.80 
9.80 

FC
C

 

Xe 
6.13 

B
C

C
 

Cs 
6.05 

B
C

C
 

Ba 
5.02 

H
EX

 

La 
3.75

6.07 H
EX

 

Hf 
3.20 

 
5.06 

B
C

C
 

Ta 
3.31 

B
C

C
 

W 
3.16

H
EX

 

Re 
2.76

4.46 H
EX

 
Os 

2.74

4.33
FC

C
 

Ir 
3.84

FC
C

 

Pt 
3.92

FC
C

 

Au 
4.08

TE
TR

A
 β-Hg 

4.00

2.83

H
EX

 

Tl 
3.46

5.53

FC
C

 

Pb 
4.95

R
H

O
M

B
 Bi 

4.55

11.86 C
U

B
 

Po 
3.35

⎯
 

At 
⎯ 
⎯ 
⎯ 

⎯
 

Rn 
⎯ 
⎯ 
⎯ 

⎯
 

Fr 
⎯ 
⎯ 
⎯ 

B
C

C
 

Ra 
5.15 

FC
C

 

Ac 
5.31  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

FC
C

 

γ-Ce 
5.16 

H
EX

/a
ba

c Pr 
3.67

11.83 H
EX

 

Nd 
3.66

5.91 H
EX

/a
ba

c Pm 
3.65

11.65 R
H

O
M

B
 Sm 

3.63

26.22

B
C

C
 

Eu 
4.61

H
EX

 

Gd 
3.64

5.78 H
EX

 

Tb 
3.60

5.69 H
EX

 

Dy 
3.59

5.65 H
EX

 

Ho 
3.58

5.62 H
EX

 

Er 
3.56

5.59 H
EX

 

Tm 
3.54

5.56

FC
C

 

Yb 
5.49 

H
EX

 

Lu 
3.51 

 
5.56 

 

 

 

 

 

 

 

 

FC
C

 

Th 
5.08 

TE
TR

A
 Pa 

3.93

3.24 O
R

TH
O

R
 U 

2.85
5.87
4.96 O

R
TH

O
R

 Np 
4.72
4.89
6.66

FC
C

 

Pu 
4.64

H
EX

/a
ba

c Am 
3.47

11.24 H
EX

/a
ba

c Cm 
3.50

11.33

FC
C

 
Bk 

5.00

⎯
 

Cf 
⎯
⎯
⎯

⎯
 

Es 
⎯
⎯
⎯

⎯
 

Fm 
⎯
⎯
⎯

⎯
 

Md 
⎯
⎯
⎯

⎯
 

No 
⎯ 
⎯ 
⎯ 

⎯
 

Lr 
⎯ 
⎯ 
⎯ 

Element

Crystal 
Structure

a (Å) 
b (Å) 
c (Å)



 17

 
 
 

TABLE 2 
 

Element ∞ε  
C 5.62
Si 11.9 
P 6.1 

Ge 16.0 
Se 13.98 
Sn 23.8 
Te 29.5 
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TABLE 3 
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TABLE 4 
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TABLE 5 
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Li 
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β-Sn 
277
294

Sb 
275
303

Te 
329
353

I 
290 
329 

Xe 
320 
444 

Cs 
429 
496 

Ba 
392
399

La 
322 
310 

Hf 
254 
252 

Ta 
217
217

W 
194
197

Re 
183
188

Os 
175
184

Ir 
175
189

Pt 
177
191

Au 
191
233

β-Hg 
218
270

Tl 
268
325

Pb 
277
329

Bi 
288
335

Po 
293
345

At 
⎯ 
⎯ 

Rn 
⎯ 
⎯ 

Fr 
⎯ 
⎯ 

Ra 
394
415

Ac 
317 
306 

               

    γ-Ce 
316
302

Pr 
318
306

Nd 
318
306

Pm 
316
307

Sm 
314
307

Eu 
366
378

Gd 
312
309

Tb 
311
307

Dy 
310
307

Ho 
309
307

Er 
307
307

Tm 
305
306

Yb 
346 
364 

Lu 
300 
301 

    Th 
292
284

Pa 
250
238

U 
218
208

Np 
203
199

Pu 
259
255

Am 
285
287

Cm 
287
289

Bk 
290
299

Cf 
⎯
⎯

Es 
⎯
⎯

Fm 
⎯
⎯

Md 
⎯
⎯

No 
⎯ 
⎯ 

Lr 
⎯ 
⎯ 

 

Element

Monovacancy Lifetimes 
( )psSUPAT

BN
−τ  

( )psSUPAT
GGA

−τ  



 21

TABLE 6 
H 

⎯ 
⎯ 

                He 
⎯ 
⎯ 

Li 
330 
308 

Be 
183
161

    Zn 
217
229

     B 
⎯
⎯

C 
118
114

N 
⎯
⎯

O 
⎯
⎯

F 
⎯ 
⎯ 

Ne 
244 
556 

Na 
363 
377 

Mg 
308
292

          Al 
250
237

Si 
262
245

P 
275
260

S 
⎯
⎯

Cl 
280 
321 

Ar 
290 
456 

K 
409 
446 

Ca 
374
364

Sc 
298 
282 

Ti 
242 
234 

V 
203
200

Cr 
184
184

Mn 
194
196

α-Fe 
181
188

α-Co 
172
182

Ni 
169
182

Cu 
178
194

Zn 
217
229

Ga 
238
240

Ge 
265
266

As 
253
267

Se 
326
392

Br 
300 
337 

Kr 
323 
482 

Rb 
415 
466 

Sr 
388
393

Y 
324 
311 

Zr 
269 
258 

Nb 
226
220

Mo 
205
204

Tc 
191
191

Ru 
183
187

Rh 
185
194

Pd 
192
209

Ag 
212
236

Cd 
251
273

In 
278
298

β-Sn 
280
283

Sb 
290
307

Te 
350
400

I 
329 
370 

Xe 
353 
473 

Cs 
423 
499 

Ba 
395
395

La 
328 
321 

Hf 
261 
253 

Ta 
224
219

W 
203
203

Re 
191
191

Os 
184
188

Ir 
185
193

Pt 
192
206

Au 
206
228

β-Hg 
234
264

Tl 
278
320

Pb 
293
324

Bi 
299
318

Po 
312
346

At 
⎯ 
⎯ 

Rn 
⎯ 
⎯ 

Fr 
⎯ 
⎯ 

Ra 
393
426

Ac 
324 
324 

               

    γ-Ce 
315
312

Pr 
317
312

Nd 
317
312

Pm 
315
311

Sm 
314
311

Eu 
362
373

Gd 
316
314

Tb 
312
308

Dy 
311
308

Ho 
311
307

Er 
309
305

Tm 
307
304

Yb 
350 
355 

Lu 
305 
297 

 

Element 

Monovacancy Lifetimes 
( )psLMTO

BNτ  

( )psLMTO
GGAτ  
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TABLE 7 
H 

⎯ 
⎯ 

                He 
⎯ 
⎯ 

Li 
261 
294 

Be 
123
158

    Ga 
168
210

     B 
⎯
⎯

C 
84
98

N 
⎯
⎯

O 
⎯
⎯

F 
⎯ 
⎯ 

Ne 
222 
223 

Na 
286 
326 

Mg 
203
260

          Al 
148
212

Si 
184
210

P 
188
205

S 
⎯
⎯

Cl 
221 
223 

Ar 
246 
250 

K 
332 
387 

Ca 
249
326

Sc 
173 
253 

Ti 
132 
206 

V 
106
174

Cr 
96

160

Mn 
98

175

α-Fe 
94

157

α-Co 
90

150

Ni 
90

149

Cu 
100
153

Zn 
125
177

Ga 
168
210

Ge 
190
216

As 
163
208

Se 
244
257

Br 
218 
223 

Kr 
253 
260 

Rb 
343 
401 

Sr 
269
350

Y 
189 
278 

Zr 
142 
228 

Nb 
114
195

Mo 
100
176

Tc 
91

163

Ru 
88

158

Rh 
90

159

Pd 
99

157

Ag 
115
180

Cd 
143
205

In 
162
241

β-Sn 
171
243

Sb 
187
242

Te 
250
289

I 
231 
260 

Xe 
267 
294 

Cs 
356 
420 

Ba 
265
355

La 
183 
281 

Hf 
135 
221 

Ta 
109
191

W 
94

172

Re 
88

162

Os 
83

156

Ir 
84

157

Pt 
92

160

Au 
103
172

β-Hg 
139
196

Tl 
165
239

Pb 
169
247

Bi 
202
256

Po 
204
261

At 
⎯ 
⎯ 

Rn 
⎯ 
⎯ 

Fr 
⎯ 
⎯ 

Ra 
267
360

Ac 
174 
276 

               

    Ce 
179
275

Pr 
182
277

Nd 
182
277

Pm 
181
275

Sm 
181
274

Eu 
238
327

Gd 
179
273

Tb 
180
272

Dy 
179
271

Ho 
179
270

Er 
178
268

Tm 
177
267

Yb 
223 
308 

Lu 
172 
262 

    Th 
153
254

Pa 
125
217

U 
107
190

Np 
109
178

Pu 
131
225

Am 
152
249

Cm 
153
251

Bk 
156
254

Cf 
⎯
⎯

Es 
⎯
⎯

Fm 
⎯
⎯

Md 
⎯
⎯

No 
⎯ 
⎯ 

Lr 
⎯ 
⎯ 

 

Element 

( )psLDA
bulkτ  

( )psLDA
vacτ  
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TABLE 8 
H 

⎯ 
⎯ 

                He 
⎯ 
⎯ 

Li 
291 
⎯ 

Be 
137
⎯

    Zn 
153
220

     B 
⎯
⎯

C 
107
⎯

N 
⎯
⎯

O 
⎯
⎯

F 
⎯ 
⎯ 

Ne 
⎯ 
⎯ 

Na 
338 
⎯ 

Mg 
225
254

          Al 
165
244

Si 
219
272

P S 
⎯
⎯

Cl 
 
 

Ar 
430 
⎯ 

K 
397 
⎯ 

Ca Sc 
230 
⎯ 

Ti 
150 
222 

V 
124
191

Cr 
120
150

Mn α-Fe 
111
175

α-Co 
119
⎯

Ni 
109
180

Cu 
120
180

Zn 
153
220

Ga 
198
⎯

Ge 
228
279

As Se 
335
⎯

Br 
 
 

Kr 
 
 

Rb 
406 
⎯ 

Sr Y 
249 
⎯ 

Zr 
164 
252 

Nb 
120
210

Mo 
106
170

Tc Ru Rh Pd 
98
⎯

Ag 
130
208

Cd 
184
252

In 
196
270

β-Sn 
200
242

Sb 
214
275

Te I 
 
 

Xe 
400 
⎯ 

Cs 
418 
⎯ 

Ba La 
241 
⎯ 

Hf 
 
 

Ta 
120
203

W 
105
195

Re Os Ir Pt 
99

168

Au 
116
205

β-Hg Tl 
226
258

Pb 
204
294

Bi 
240
325

Po At 
⎯ 
⎯ 

Rn 
⎯ 
⎯ 

Fr 
⎯ 
⎯ 

Ra Ac 
 
 

               

    γ-Ce Pr Nd Pm Sm 
199
⎯

Eu Gd 
230
⎯

Tb Dy Ho Er Tm Yb 
 
 

Lu 
 
 

 
  

Element 

( )psbulk
expτ  

( )psvac
expτ  
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FIGURE CAPTIONS 
 
 
Figure 1. Atomic volume (filled circles) and positron lifetimes plotted against atomic number. Positron lifetimes are 
calculated in bulk (circles) and monovacancy (squares) states within the AT-SUP method using BN approximation. 
 
Figure 2. Bulk (circles) and monovacancy (squares) positron lifetimes of elements from La to Hg (6th row of the 
Periodic Table) versus atomic number. Lifetimes have been calculated within the LMTO using BN (open symbols) and 
GGA (filled symbols) approximations. 
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FIGURE 2 
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