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Multi-Start Methods and Local

Optima
Summary. Multi-start procedures were originally conceived as a way to exploit a local or neigh-

borhood search procedure, by simply applying it from multiple random initial solutions. Modern

multi-start methods usually incorporate a powerful form of diversification in the generation of solu-

tions to help overcome local optimality. Different metaheuristics, such as GRASP or tabu search, have

been applied to this end. This survey briefly sketches historical developments that have motivated the

field, and then focuses on modern contributions that define the current state-of-the-art. We consider
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the two classic categories of multi-start methods according to their domain of application: global op-

timization and combinatorial optimization. Additionally, we review several methods to estimate the

number of local optima in combinatorial problems. The estimation of this number can help to establish

the complexity of a given instance, and also to choose the most convenient neighborhood, which is

especially interesting in the context of multi-start methods.

Key words: Metaheuristics, multi-start methods, Local optima estimation

Introduction

Heuristic search procedures that aspire to find globally optimal solutions to hard op-

timization problems usually require some type of diversification to overcome local op-

timality. One way to achieve diversification is to re-start the procedure from a new

solution once a region has been explored. In this chapter we describe the best known

multi-start methods for solving optimization problems.

The first multi-start efforts described in the literature, rely on methods used

in statistics and calculus as instances of utilizing repeated constructions to produce

a preferred candidate, although such methods were not used to solve optimization

problems. In our context, early proposals can be found in the domains of heuristic

scheduling (Muth and Thompson [34] and Crowston et al [10]) and the traveling sales-

man problem (Held and Karp [23]). Multi-start global optimization algorithms on the

other hand, were introduced in the 1980s for bound constraint optimization problems.

The well-known Monte Carlo random re-start approaches, simply evaluate the objec-

tive function at randomly generated points (Solis and Wets [39]). The probability of

success approaches one as the sample size tends to infinity under very mild assumptions

about the objective function. Many algorithms have been proposed that combine the

Monte Carlo method with local search procedures (Kan and Timmer [28]).
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The re-start mechanism inherent of a multi-start design, has been superimposed

on many different search methods. Once a new solution has been generated, a variety

of options can be used to improve it, ranging from a simple greedy routine to a complex

metaheuristic such as tabu search [20] or GRASP [37]. Note that the former is based on

identifying and recording specific types of information (attributes) to exploit in future

constructions, while the latter is based on order statistics of sampling and generate

unconnected solutions. In Mart́ı et al [31] we can find a detailed description of these

two methodologies within the multi-start framework, in the context of combinatorial

optimization.

A basic multi-start procedure simply applies procedure ConstructSolution

multiple times, returning the best solution found over all starts. The constructed so-

lution is typically improved with the LocaSearch procedure. These two procedures,

also called phases, are alternated until an stopping criterion is satisfied. Then, each

global iteration produces a solution (usually a local optima) and the best overall is the

algorithm’s output. This is illustrated in Algorithm 1.

procedure MultiStart

f∗ ←∞;

while stopping criterion not satisfied do

Construct feasible solution:

S ← ConstructSolution;

S ← LocalSearch(S);

if f(S) < f∗ then

S∗ ← S;

f∗ ← f(S);

end

end

return S∗;

Algorithm 1: Pseudo-code for multi-start algorithm.
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As it is well-known in the heuristic community, the performance of the local

search based algorithms, strongly depends on the properties that the neighborhood

imposes on the search space. One of the most important properties is the number of

local optima. Given an instance and a neighborhood, the estimation of the number of

local optima can help to both measure the instance complexity, and to choose the most

efficient neighborhood. In this chapter we review and test several methods to estimate

the number of local optima in combinatorial optimization problems.

This chapter is focused on studying the different strategies and methods for

generating solutions to launch a succession of local searches for global optimum in the

context of two domains: global and combinatorial optimization. We therefore organize

it as follows. In Section we describe the developments and strategies applied in the

context of global (non-linear) optimization. In Section we introduce notation for com-

binatorial optimization and provide descriptions for solution construction procedures

and multi-start algorithms. The difficulty of finding the global optima of a combi-

natorial problem, is evaluated through the estimation of its number of local optima

in Section . Specifically, we review the methods proposed in the literature and then,

in Section we describe the associated experiments and apply statistical test to draw

significant conclusions. Concluding remarks are drawn in Section .

Global optimization

As mentioned above, many algorithms have been proposed in the 80s that combine

the Monte Carlo method with local search procedures [27], being the multi-level single

linkage the most relevant. In general terms, the probability of success approaches one

as the sample size tends to infinity under very mild assumptions about the objective
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function. The convergence for random re-start methods is studied in [39], where the

probability distribution used to choose the next starting point can depend on how

the search evolves. Some extensions of these methods seek to reduce the number of

complete local searches that are performed and increase the probability that they start

from points close to the global optimum [12].

From a theoretical point of view, Hu et al [26] study the combination of the

gradient algorithm with random initializations to find a global optimum. Efficacy of

parallel processing, choice of the restart probability distribution and number of restarts

are studied for both discrete and continuous models. The authors show that the uniform

probability is a good choice for restarting procedures.

Hickernell and Yuan [25] present a multi-start algorithm for unconstrained global

optimization based on quasirandom samples. Quasirandom samples are sets of deter-

ministic points, as opposed to random points, that are evenly distributed over a set.

The algorithm applies an inexpensive local search (steepest descent) on a set of quasir-

andom points to concentrate the sample. The sample is reduced replacing worse points

with new quasirandom points. Any point that is retained for a certain number of itera-

tions is used to start an efficient complete local search. The algorithm terminates when

no new local minimum is found after several iterations. An experimental comparison

shows that the method performs favorably with respect to other global optimization

procedures.

Tu and Mayne [41] describe a multi-start with a clustering strategy for con-

strained optimization problems. It is based on the characteristics of non-linear con-

strained global optimization problems and extends a strategy previously tested on

unconstrained problems. In this study, variations of multi-start with clustering are con-

sidered including a simulated annealing procedure for sampling the design domain and

a quadratic programming (QP) sub-problem for cluster formation. The strategies are
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evaluated by solving 18 non-linear mathematical problems and six engineering design

problems. Numerical results show that the solution of a one-step QP sub-problem helps

predict possible regions of attraction of local minima and can enhance robustness and

effectiveness in identifying local minima without sacrificing efficiency. In comparison

with other multi-start techniques, the strategies of this study are superior in terms of

the number of local searches performed, the number of minima found and the number

of function evaluations required.

Ugray et al [42] propose OptQuest/Multistart or OQMS, a heuristic designed

to find global optima for pure and mixed integer nonlinear problems with many con-

straints and variables, where all problem functions are differentiable with respect to the

continuous variables. It uses OptQuest, a commercial implementation of scatter search

developed by OptTek Systems, Inc., to provide starting points for any gradient-based

local NLP solver. This solver seeks a local solution from a subset of these points, holding

discrete variables fixed. Computational results include 155 smooth NLP and MINLP

problems, most with both linear and nonlinear constraints, coded in the GAMS model-

ing language. Some are quite large for global optimization, with over 100 variables and

many constraints. Global solutions to almost all problems are found in a small number

of local solver calls, often one or two. An improved version of OQMS is proposed in

Ugray et al [43] in terms of the filters to apply the NLP solver.

More recently, Kaucic [29] presents a multi-start particle swarm optimization

algorithm for the global optimization of a function subject to bound constraints. The

procedure consists of three main steps. In the initialization phase, an opposition learn-

ing strategy is performed to improve the search efficiency. Then, a variant of the adap-

tive velocity based on the differential operator enhances the optimization ability of the

particles. Finally, a re-initialization strategy based on two diversity measures for the

swarm is act in order to avoid premature convergence and stagnation. The algorithm
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is evaluated on a set of 100 global optimization test problems. Comparisons with other

global optimization methods show its robustness and effectiveness.

Combinatorial optimization

Boese et al [4] analyze relationships among local minima from the perspective of the

best local minimum, finding convex structures in the cost surfaces. Based on the re-

sults of that study, they propose a multi-start method where starting points for greedy

descent are adaptively derived from the best previously found local minima. In the

first step, Adaptive Multi-Start (AMS) heuristics generate r random starting solutions

and run a greedy descent method from each one to determine a set of corresponding

random local minima. In the second step, adaptive starting solutions are constructed

based on the local minima obtained so far and improved with a greedy descent method.

This improvement is applied several times from each adaptive starting solution to yield

corresponding adaptive local minima. The authors test this method for the traveling

salesman problem and obtain significant speedups over previous multi-start implemen-

tations. Hagen and Kahng [22] apply this method for the iterative partitioning problem.

Moreno et al [33] propose a stopping rule for the multi-start method based on

a statistical study of the number of iterations needed to find the global optimum. The

authors introduce two random variables that together provide a way of estimating

the number of global iterations needed to find the global optima: the number of initial

solutions generated and the number of objective function evaluations performed to find

the global optima. From these measures, the probability that the incumbent solution

is the global optimum is evaluated via a normal approximation. Thus, at each global

iteration, this value is computed and if it is greater than a fixed threshold, the algorithm

stops, otherwise a new solution is generated. The authors illustrate the method using

the median p-hub problem.
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One of the most well known Multi-start methods is the Greedy Adaptive Search

Procedures (GRASP), which was introduced by Feo and Resende Feo and Resende

[17]. It was first used to solve set covering problems (Feo and Resende [16]). Each

GRASP iteration consists of constructing a trial solution and then applying a local

search procedure to find a local optimum (i.e., the final solution for that iteration). The

construction step is an adaptive and iterative process guided by a greedy evaluation

function. It is iterative because the initial solution is built considering one element

at a time. It is greedy because the addition of each element is guided by a greedy

function. It is adaptive because the element chosen at any iteration in a construction

is a function of previously chosen elements. (That is, the method is adaptive in the

sense of updating relevant information from one construction step to the next.). At

each stage, the next element to be added to the solution is randomly selected from a

candidate list of high quality elements according to the evaluation function. Once a

solution has been obtained, it is typically improved by a local search procedure. The

improvement phase performs a sequence of moves towards a local optimum solution,

which becomes the output of a complete GRASP iteration.

Hagen and Kahng [22] implement an adaptive multi start method for a VLSI

partitioning optimization problem where the objective is to minimize the number of

signals sent between components. The method consists of two phases. It first generates a

set of random starting points and performs the iterative (local search), thus determining

a set of local minimum solutions. Then it constructs adaptive starting points derived

from the best local minimum solutions found so far. The authors add a preprocessing

cluster module to reduce the size of the problem. The resulting Clustering Adaptive

Multi Start (CAMS) method is fast and stable, and improves upon previous partitioning

results reported in the literature.
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Fleurent and Glover [18] propose some adaptive memory search principles to

enhance multi-start approaches. The authors introduce a template of a constructive

version of Tabu Search based on both, a set of elite solutions and the intensification

strategies based on identifying strongly determined and consistent variables according

to the following definitions:

• Strongly determined variables are those whose values cannot be changed without

significantly eroding the objective function value or disrupting the values of

other variables.

• A consistent variable is defined as one that receives a particular value in a

significant portion of good solutions.

The authors propose the inclusion of memory structures within the multi-start frame-

work as it is done with tabu search. Computational experiments for the quadratic

assignment problem show that these methods improve significantly over previous multi-

start methods like GRASP and random restart that do not incorporate memory-based

strategies.

Patterson et al [35] introduce a multi-start framework called Adaptive Reasoning

Techniques (ART), based on memory structures. The authors implement the short term

and long term memory functions, proposed in the Tabu Search framework, to solve the

Capacitated Minimum Spanning Tree Problem. ART is an iterative, constructive solu-

tion procedure that implements learning methodologies on top of memory structures.

ART derives its success from being able to learn about, and modify the behavior of a

primary greedy heuristic. The greedy heuristic is executed repeatedly, and for each new

execution, constraints that prohibit certain solution elements from being considered by

the greedy heuristic are introduced in a probabilistic fashion. The active constraints are

held in a short-term memory, while a long-term memory holds information regarding

the constraints that were in the active memory for the best set of solutions.
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Glover [19] approaches the multi-start framework from a different perspective.

The author views multi-start methods as an extreme version of the strategic oscillation

approach. Strategic oscillation is a mechanism used in tabu search to allow the process

to visit solutions around a “critical boundary,” by approaching such a boundary from

both sides.

Braysy et al [5] propose a multi-start local search heuristic for the vehicle routing

problem with time windows. The objective in this problem is to design least cost

routes for a fleet of identical capacitated vehicles to service geographically scattered

customers within pre-specified service time windows. The suggested method uses a

two-phase approach. In the first phase, a fast construction heuristic is used to generate

several initial solutions. Then, injection trees, an extension of the well-known ejection

chain approach [20] are used to reduce the number of routes. In the second phase, two

new improvement heuristics, based on CROSS-exchanges [40] are applied for distance

minimization. The best solution identified by the algorithm is post-optimized using a

threshold accepting post-processor with both intra-route and inter-route improvement

heuristics. The resulting hybrid method is shown to be fast, cost-effective, and highly

competitive.

Mezmaz et al [32] hybridize the multi-start framework with a model in which

several evolutionary algorithms run simultaneously and cooperate to compute bet-

ter solutions (called island model). They propose a solution method in the context

of multi-objective optimization on a computational grid. The authors point out that

although the combination of these two models usually provides very effective paral-

lel algorithms, experiments on large-size problem instances are often stopped before

convergence is achieved. The full exploitation of the cooperation model needs a large

amount of computational resources and the management of the fault tolerance issue.
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Under the template of a typical multi-start metaheuristic, Lan and DePuy [30]

propose Meta-RaPS (Meta-heuristic for Randomized Priority Search), in which several

randomization methods and memory mechanisms are present. With the Set Covering

Problem (SCP) as the application problem, it is found that these randomization and

memory-based methods work well for Meta-RaPS.

Beausoleil et al [3] consider a multi-objective combinatorial optimization prob-

lem called Extended Knapsack Problem. By applying multi-start search and path-

relinking their solving method rapidly guides the search toward the most balanced

zone of the Pareto-optimal front (the zone in which all the objectives are equally im-

portant).

Essafi et al [15] propose a multi-start ant based heuristics for a machine line

balancing problem. The proposed procedure is a constructive algorithm that assigns

operations sequentially to stations. The algorithm builds a feasible solution step by

step according to a greedy function that computes the contribution of each unassigned

operation to the partial solution under construction based on operational time and

weights. The selection of the operation to be added is performed with a roulette wheel

mechanism based on the typical ant probability distribution (pheromones of previous

assignments). The proposed heuristic is applied to solve a real industry problem.

Dhouib et al [11] propose a multi-start adaptive threshold accepting algorithm

(MS-TA) to find multiple Pareto-optimal solutions for continuous optimization prob-

lems. Threshold accepting methods (TAs) are deterministic and faster variants of the

well-known simulated annealing algorithms, in which every new move is accepted if it

is not much worse than the old one. A multi-start technique is applied in this paper to

the TA algorithm to allow more diversifications.

Villegas et al [44] propose two hybrid algorithms for the single truck and trailer

routing problem. The first one is based on GRASP and variable neighborhood de-
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scent (VND), while the second one is and evolutionary local search (ELS). In the first

one, large tours are constructed with a randomized nearest neighbor method with a

restricted candidate list that ignores capacity constraints and trailer-point selection.

VND is applied to improve these initial solutions obtained with GRASP. In the second

one, a multi-start evolutionary search is applied starting from an initial solution (giant

tour). The best solution found is strongly perturbed to obtain different solutions from

which the search is re-started. The perturbation is managed by a mutation operator.

The results of the computational experiments on a set of 32 randomly generated in-

stances also unveil the robustness of the proposed metaheuristics, all of them achieving

gaps to best known solutions of less than 1% even in the worst case. Among the pro-

posed methods,the multi-start evolutionary local search is more accurate, faster, and

scales better than the GRASP/VND.

Estimating the number of local optima

As we have previously seen, multi-start algorithms depend on a neighborhood defined

in the search space. Furthermore, the same multi-start algorithm can produce different

results in the same instance when is used with two different neighborhoods. Although

there are several characteristics of a neighborhood that influence the behavior of a

multi-start algorithm, probably, the most relevant is the number of local optima it

generates.

The knowledge about the number of local optima that a neighborhood generates

in an instance of a Combinatorial Optimization Problem (COP) can have a high impact

on the choice of the multi-start algorithm used to solve the instance. On the first hand,

different neighborhoods can generate a dramatically different number of local optima.

Of course, as a general rule, the higher the size of the neighborhood the lower the

number of local optima. However, given two neighborhoods of the same size complexity
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(number of local solutions in the same order of magnitude), the one that generates a

lower number of local optima will always be preferred.

Given an instance of a COP and a neighborhood, the exact calculation of the

number of local optima is impractical, except for extremely low dimensions (n ≤ 14).

Furthermore, this exact calculation requires, in most of the cases, the exhaustive in-

spection of every solution in the search space, what makes this approach usefulness.

Therefore, we have to resort in statistical estimation methods in order to have an ap-

proximation of the number of local optima of a landscape. However, even if we were

able to exactly calculate the number of local optima, we still would have to face another

challenge, that is, how to represent such number. When the dimension of a problem is

high (for instance, n ≥ 200) and the size of the search space is exponential in n, the

number of local optima are usually so high that can not be accurately represented in

the computer. The alternative choice to represent the proportion of solutions of the

search space that are local optima deals with similar issues as this number is too small

to be accurately represented. Therefore, the estimation of the number of local optima

of an instance of a COP is only plausible for moderate values of the problem size.

In spite of the useful information that the knowledge of the number of local

optima can provide in order to choose the best algorithm for solving a COP instance,

there have not been many proposals in the literature. This can probably be due to

the difficulty of the estimation problem. These proposals are mainly divided into three

groups (a good review and a comparison of several proposals can be found in [24]).

A first group of proposals try to find expected values on the number of local optima,

departing from the hypothesis that the instances have been generated uniformly at

random [21; 1; 2]. In a second group we mainly include proposals that have been

developed in the metaheuristics community. Finally, a third group includes a set of
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proposals that were not designed with the objective of estimating the number of local

optima, but were adapted to this problem.

In order to estimate the number of local optima, all the methods share some

steps of the process. All of them obtain uniformly at random a sample of size M from

the search space. Departing from these solutions and applying a greedy local search

algorithm, they finally obtain a sample of local optima (notice that in this sample some

local optima could be repeated several times). In addition to that, the concept of basin

of attraction is presented in all the estimation methods. Basically, a solution belongs

to the basin of attraction of a local optimum if, after applying a greedy local search

departing from that solution, it finishes in the corresponding local optimum. Notice

that, in case of injective functions the basins of attraction represent a partition of the

search space.

Methods proposed in the metaheuristics arena

Most of the methods proposed in the metaheuristics field are mainly due to [13; 14; 36].

Fundamentally, they developed two kinds of methods: a first group where they use

confidence intervals to provide lower bounds (with high probability) for the number of

local optima and a second group using bias-correcting methods.

In the first group, by assuming that the sizes of the basins of attraction of all

the local optima are the same, they manage to get lower bounds by means of several

methods:

• Fist Repetition Time: A random solution is taken from the search space and a

greedy local search algorithm is applied to reach a local optimum. This process

continues until a local optimum is repeated for the first time. This number of

initial solutions needed until a local optimum is seen twice, is the value used to

make the estimation. Note that in this method the sample size is not fixed.
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• Maximal First Repetition Time: This method is similar to the previous one,

except that the sample size is fixed beforehand and the maximal first repetition

time (the maximum number of solutions between the first reoccurrence of a local

optimum) is used to carry out the estimation.

• Schnabel Census: In order to make the estimation, the authors take into account

in this case the probability that r different local optima are discovered from a

sample of size M .

The main drawback of the previous methods is that they are strongly biased

by the assumption that all the local optima have the same size of basin of attraction.

In order to overcome this bias, a couple of very well-known methods in the statistical

literature are proposed: Jackknife and Bootstrap. These are non-parametric methods

that, departing from a biased estimation, try to correct the bias:

• Jackknife method: It consists in calculating M new estimations by leaving each

time one of the current solutions out from the original sample. These new M

estimations are used to modify the original estimation decreasing its bias.

• Bootstrap method: This resampling technique consists in obtaining several new

samples from the original sample. Each sample has the same size as the original

one and is obtained by uniformly at random sampling solutions with replacement

from the original sample. On the contrary to the previous method, it assumes

a probabilistic model in the basins of attraction as we need to make a new

estimation for each re-sampling.

Methods proposed in the field of statistics

The community working in metaheuristics quickly realized that the methods used by

biologists and ecologists to calculate the number of species in a population could be

easily adapted to the problem of calculating the number of local optima. Particularly
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four nonparametric methods [7; 9; 8], were adapted to estimate the number of local

optima of instances of COPs [24]. Although they are nonparametric methods, they

are based on particular sampling models. An important consideration is that all these

methods assume an infinite population, in our case an infinite number of local solutions.

This assumption does not impose a big constraint because of the large cardinality of

the search space of the COPs:

• Chao1984 method: It is based on multinomial sampling. The estimator is the

result of adding to the number of local optima obtained from the sample a term

that depends only on the number of local optima seen once and twice in the

sample.

• Chao&Lee methods: These two methods are also based on multinomial sampling.

They include the idea of sample coverage (sum of the proportions of the basins of

attraction of the local optima observed in the sample). They distinguish between

the local optima observed many times in the sample, and those observed a few

number of times in the sample. So that the estimators are the sum of the number

of local optima observed many times, and some terms that depend on the sample

coverage and the number of local optima found few times, trying to compensate

for the local optima that have small basins of attraction.

• Chao&Bunge method: It is based on a mixed Poisson sampling model, and is

closely related to the previous estimators. This method bases the estimation of

unobserved local optima on a formula that depends on the expected proportion

of duplicates in the sample. It also makes the distinction between the local

optima observed many times in the sample, and those observed a few number

of times in the sample.
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Experiments

The accuracy of the different estimators presented in the previous section has been

tested on instances of three different common problems: Permutation Flowshop Schedul-

ing Problem (PFSP), Linear Ordering Problem (LOP) and Quadratic Assignment

Problem (QAP). Using these datasets we can test the methods over a wide set of

instances with different characteristics. We work with instances for which we already

know the number of local optima for different neighborhoods, which allows us to eval-

uate the accuracy of the different estimations. We report a comparison of the different

methods, giving recommendations of the methods that provide the best estimations.

Based on the results found in [24], we remove for the analysis the three first meth-

ods presented in the previous section, that is: First Repetition Time, Maximal First

Repetition Time and Schnabel Census.

Experimental design

The instances used in the experiments are taken from three well-known benchmarks.

We work with 5 instances of the PFSP obtained from the Taillards benchmark, 5

instances of the LOP taken from the xLOLIB benchmark [38] and 5 instances of the

QAP chosen from the QAPLIB.

The Flowshop Scheduling Problem can be stated as follows: there are b jobs

to be scheduled in c machines. A job consists of c operations and the j-th operation

of each job must be processed on machine j for a specific processing time without

interruption. We consider that the jobs are processed in the same order on different

machines. The objective of the PFSP is to find the order in which the jobs have to be

scheduled on the machines, minimizing the total flow time.

In the LOP, given a matrix B = [bij]nxn of numerical entries, we have to find

a simultaneous permutation of the rows and columns of B, such that the sum of the
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entries above the main diagonal is maximized (or equivalently, the sum of the entries

below the main diagonal is minimized).

The QAP is the problem of allocating a set of facilities to a set of locations,

with a cost function associated to the distance and the flow between the facilities. The

objective is to assign each facility to a location such that the total cost is minimized.

Specifically, we are given two n × n input matrices with real values H = [hij] and

D = [dkl], where hij is the flow between facility i and facility j and dkl is the distance

between location k and location l.

For the three problems, we work with instances of permutation size n = 13, so

the search space is of size |Ω| = 13! ≈ 6.23 · 109. In the case of the PFSP we consider

instances with 13 jobs and 5 machines. Notice that, first, we need to evaluate all the

solutions of the search space to know in advance the exact number of local optima.

Therefore, working with higher permutation sizes becomes unaffordable.

The local optima of the instances have been calculated according two com-

monly used operators: the 2-exchange and the insert neighborhoods. Denoting by

π = π1π2...πn a solution (permutation of size n) of the search space, the 2-exchange

neighborhood considers that two solutions are neighbors if one is generated by swapping

two elements of the other:

NS(π1π2...πn) =
{

(π′
1π

′
2...π

′
n) | π′

k = πk,∀k 6= i, j, π′
i = πj, π

′
j = πi, i 6= j

}
.

Two solutions are neighbors under the insert neighborhood (NI) if one is the result of

moving an element of the other one to a different place:

NI(π1π2...πn) =
{

(π′1π
′
2...π

′
n) | π′k = πk,∀k < i and ∀k > j, π′k = πk+1,∀i ≤ k < j, π′j = πi

}
∪ {(π′1π′2...π′n) | π′k = πk,∀k < i and ∀k > j, π′i = πj , π

′
k = πk−1,∀i < k ≤ j} .

The different methods for estimating the number of local optima are applied to

the 5 instances of each of the considered problems (PFSP, LOP and QAP) using both

neighborhoods (NS and NI). So, a total of 30 different landscapes are considered. The
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reason why we have considered these two neighborhoods is that they provoke different

situations for the estimations obtained with the different methods. As the Insert neigh-

borhood explores at each step more solutions than the 2-exchange neighborhood, the

number of local optima obtained when using the first neighborhood is probabilistically

lower than when assuming the second one. However, as we will see, due to the intrinsic

nature of the QAP, given an instance of this problem the number of local optima when

using the Insert neighborhood is much higher than when considering the 2-exchange

neighborhood.

The estimation methods Jackknife, Bootstrap, Chao1984, Chao&Lee1, Chao&Lee2

and Chao&Bunge are applied to each of the landscapes 10 times, and the average es-

timation value of the 10 repetitions is reported. We apply the methods for different

sample sizes: M = 100, 500, 1000, 5000.

Results

Our aim is to compare the accuracy of the different methods and their relation to the

sample size. We analyze the results according the type of problem and the neighborhood

used, and study the effect of the sample size on the methods using different sample

sizes. As we realized that in real life we have to face problems of such high dimensions

that they have a huge number of local optima, and therefore, the sample we are able to

deal with is usually tiny compared to the number of local optima, we are interested in

finding methods that do not need such a large sample size to provide a good estimation.

We report in the Table 1 the average estimations (of the 10 repetitions) obtained

with the different methods and the different sample sizes for all the instances of the

three problems when using both neighborhoods, as well as we indicate the real number
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of local optima of each instance. We denote with v the real number of local optima of

the instances with the corresponding neighborhood.

We observe in the Table 1 that the method that provides the best results more

times is Chao&Lee2. In fact, in general, the estimations given by those methods that

come from the field of statistics, provide better results than Bootstrap and Jackknife,

above all, when the number of local optima is considerably high.

We carry out a statistical analysis to compare the estimations obtained for the

different methods. We consider three different scenarios for comparison. In the first

scenario considered, the estimations are grouped in three sets according to the type

of problem: PFSP, LOP or QAP. The second scenario considers two different sets

that contain the estimations of the instances when using the neighborhoods NS or

NI . In the last scenario the estimations are grouped in four sets, according to the

parameter M = 100, 500, 1000, 5000. A nonparametric Friedman’s test with level of

significance α = 0.05 is used to test if there are statistical significant differences among

the estimations provided by the 6 methods in the different scenarios. It provides a

ranking of the methods while also giving an average rank value for each method. As

we always find statistical differences in all the cases, we proceed with a post-hoc test

which carries out all pairwise comparisons. Particularly, we use the Holm’s procedure

fixing the level of significance to α = 0.05.

Table 2 shows the ranking obtained for the methods with the Friedman’s test in

the first scenario, that is, for the instances of the PFSP (first pair of columns), LOP (the

pair of columns in the middle), and QAP (last pair of columns). The lower the rank, the

worse the performance of the method is. So, the methods are ordered from best to worst.

Therefore, the best methods in the three groups are: Chao&Lee2, Chao&Lee1 and

Chao1984. However, pairwise significant differences are not found between Chao&Lee1

and Chao1984, Chao1984 and Bootstrap, and Bootstrap and Chao&Bunge, for the
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Table 1. Mean of the estimations obtained for all the instances of the PFSP, LOP, and QAP, under

the 2-exchange and the Insert neighborhoods.

Method M=100 M=500 M=1000 M=5000 M=100 M=500 M=1000 M=5000 M=100 M=500 M=1000 M=5000 M=100 M=500 M=1000 M=5000 M=100 M=500 M=1000 M=5000

Instance 1. v = 2386 Instance 2. v = 8194 Instance 3. v = 1997 Instance 4. v = 5119 Instance 5. v = 192

P
F
S
P

2
-e
x
ch

a
n
g
e

Jackknife 158.20 517.30 744.80 1371.20 185.50 709.50 1139.10 2733.60 142.70 397.50 590.40 1098.50 167.40 575.20 886.60 1920.50 77.10 131.80 153.00 183.10

Bootstrap 155.90 562.80 862.00 1786.30 173.20 706.50 1199.00 3281.70 143.60 452.90 688.60 1428.00 161.40 609.20 982.40 2376.60 90.70 170.80 208.80 240.10

Chao1984 400.80 692.80 874.70 1405.30 1148.60 1438.50 1751.30 3105.50 331.70 517.30 774.30 1153.30 544.30 843.40 1161.60 2122.60 94.00 136.20 151.60 178.30

Chao&Lee1 397.30 725.70 932.00 1401.90 1196.50 1544.50 1884.70 3223.90 340.50 546.50 769.10 1146.60 510.90 889.20 1242.60 2194.20 90.10 133.30 147.70 175.00

Chao&Lee2 482.40 917.90 1185.30 1565.30 1302.50 2132.40 2605.80 4020.70 519.70 737.80 1030.10 1301.30 587.60 1145.70 1679.00 2689.10 108.80 146.70 155.00 177.60

Chao&Bunge 236.50 822.80 2304.40 1901.50 494.40 390.50 660.30 14054.20 204.60 3789.80 2399.70 1695.90 793.20 2103.80 1887.90 6446.60 258.10 173.30 162.10 178.60

Instance 1. v = 134 Instance 2. v = 923 Instance 3. v = 506 Instance 4. v = 190 Instance 5. v = 14

In
se
rt

Jackknife 54.30 95.40 104.00 173.40 125.10 317.30 435.90 955.40 87.50 208.80 265.10 520.40 72.10 127.80 150.60 300.30 12.70 13.30 14.20 14.00

Bootstrap 66.60 124.30 141.40 231.20 129.00 374.60 535.90 1253.50 99.40 252.10 339.90 703.20 85.30 163.00 199.70 415.00 16.00 14.50 15.50 14.30

Chao1984 62.40 100.10 103.20 170.60 256.60 389.90 482.80 997.40 138.40 253.80 277.20 536.60 94.60 138.10 154.10 290.90 11.60 12.90 13.10 14.00

Chao&Lee1 65.80 95.00 100.20 165.80 247.70 408.90 488.20 978.10 128.30 263.50 285.70 522.30 83.50 133.90 147.10 287.10 12.30 13.40 14.20 14.00

Chao&Lee2 84.00 103.90 104.60 169.60 371.80 545.50 583.90 1092.90 178.10 350.40 331.20 570.80 101.40 152.20 157.00 296.60 12.50 13.70 14.70 14.00

Chao&Bunge 250.80 121.30 109.20 171.80 112.20 1202.90 1108.50 1341.40 74.70 367.70 498.50 652.70 281.00 212.60 169.80 303.80 12.80 14.10 15.10 14.00

Instance 1. v = 9969 Instance 2. v = 3355 Instance 3. v = 4732 Instance 4. v = 3227 Instance 5. v = 6810

L
O
P

2
-e
x
ch

a
n
g
e

Jackknife 183.00 732.10 1185.50 3256.30 176.20 642.40 980.70 1946.70 172.80 615.90 921.00 2068.10 136.30 394.10 587.80 1274.40 185.00 746.60 1248.20 2995.20

Bootstrap 171.30 723.00 1237.20 3754.40 167.50 662.00 1073.30 2458.60 164.80 638.90 1019.00 2539.90 138.50 443.90 685.60 1607.50 172.70 734.40 1291.00 3578.20

Chao1984 923.50 1633.00 1939.20 4073.00 810.70 1001.10 1225.40 2007.00 842.70 1013.50 1211.00 2321.60 259.90 562.90 765.70 1428.50 1884.60 1523.20 1970.00 3297.30

Chao&Lee1 935.30 1612.50 2043.00 4580.20 740.40 1003.10 1319.30 2033.40 813.00 1070.80 1299.90 2369.00 257.40 615.10 792.10 1463.30 1757.50 1589.10 2157.70 3485.10

Chao&Lee2 987.30 2104.70 2860.80 6487.20 904.80 1185.50 1677.20 2308.20 1068.70 1450.40 1744.20 2914.70 328.00 935.00 1088.80 1785.30 1966.40 1960.20 2868.70 4263.30

Chao&Bunge 349.80 399.90 680.10 2040.20 144.30 3188.10 2642.10 2950.40 156.90 27501.80 558.90 7544.60 121.70 714.80 2946.60 4654.60 666.80 14991.50 7635.90 10894.20

Instance 1. v = 1113 Instance 2. v = 60 Instance 3. v = 12 Instance 4. v = 9 Instance 5. v = 67

In
se
rt

Jackknife 124.40 335.20 472.70 1093.50 51.90 60.50 61.50 137.10 9.60 12.40 12.60 19.30 7.80 9.40 9.00 20.60 49.10 63.80 60.90 108.90

Bootstrap 128.80 391.80 578.00 1431.90 66.90 82.00 77.70 169.70 11.80 13.40 14.40 20.20 9.70 13.00 10.20 23.00 64.00 86.00 78.70 128.30

Chao1984 224.00 396.30 528.70 1121.70 53.20 57.70 60.40 133.70 8.80 11.70 12.10 18.20 7.20 9.00 8.90 20.20 51.00 65.40 59.90 107.30

Chao&Lee1 235.60 445.10 556.90 1137.30 52.30 57.60 59.60 133.40 9.10 13.20 12.60 20.10 9.20 9.20 8.90 20.30 47.80 60.40 58.70 106.20

Chao&Lee2 351.70 595.80 693.60 1285.00 57.30 57.70 59.70 133.60 9.30 14.20 12.60 22.30 10.40 9.40 8.90 20.40 51.30 61.30 59.10 106.60

Chao&Bunge 1111.70 859.80 8551.50 1630.70 67.70 57.70 59.70 133.60 9.20 14.80 12.40 19.00 8.20 9.40 8.90 20.50 57.00 61.80 59.10 106.80

Instance 1. v = 18720 Instance 2. v = 3472 Instance 3. v = 62 Instance 4. v = 173568 Instance 5. v = 563

Q
A
P

2
-e
x
ch

a
n
g
e

Jackknife 197.10 958.80 1811.60 6594.90 171.70 598.50 910.60 1889.80 27.40 42.30 48.80 57.40 198.70 992.00 1965.20 9280.00 94.40 204.50 264.00 368.00

Bootstrap 180.00 873.60 1678.60 6740.80 164.80 628.60 1009.20 2369.00 33.00 54.30 66.00 73.10 180.90 891.60 1771.50 8532.00 105.20 254.10 338.80 494.60

Chao1984 2000.70 9847.80 8007.20 9818.00 609.40 870.40 1191.10 2009.20 39.90 48.70 47.50 58.00 580.10 48561.00 49112.70 51951.40 139.00 227.10 286.40 373.90

Chao&Lee1 2025.00 9914.80 7973.80 9750.90 616.20 934.40 1247.50 2026.20 32.30 44.10 49.50 54.90 585.00 48783.40 49601.10 51848.80 157.80 224.70 278.60 351.90

Chao&Lee2 2025.00 10323.30 8296.00 10683.60 679.90 1188.50 1652.60 2351.40 39.80 50.90 53.30 56.00 585.00 48783.40 49601.10 53432.60 257.00 266.60 320.90 365.80

Chao&Bunge 1050.00 3752.20 128363.10 17782.40 260.10 1330.50 4564.80 3386.60 55.20 130.20 66.70 56.50 340.00 24529.10 25050.50 174841.50 261.30 521.50 457.40 378.10

Instance 1. v = 4615326 Instance 2. v = 1501175 Instance 3. v = 579275 Instance 4. v = 6712090 Instance 5. v = 83240

In
se
rt

Jackknife 198.70 995.70 1991.60 9821.40 198.70 995.30 1988.20 9795.60 199.00 987.00 1947.40 9108.50 199.00 997.70 1997.30 9955.30 193.70 884.40 1616.80 5935.70

Bootstrap 180.80 892.70 1787.00 8851.40 180.80 892.50 1785.20 8837.20 181.00 889.90 1758.20 8408.30 181.00 894.50 1791.90 8929.10 179.00 829.50 1548.00 6141.30

Chao1984 580.10 93351.20 210869.40 226925.80 580.10 45585.50 196680.90 199572.40 100.00 43655.70 33049.70 54343.30 100.00 25200.50 225000.60 938528.00 2902.10 3923.60 4892.70 10856.90

Chao&Lee1 585.00 93575.00 211316.70 226706.30 585.00 41316.70 179342.60 199911.00 100.00 38924.50 32904.70 58780.20 100.00 25275.00 225250.00 933604.60 2950.10 3925.40 5521.50 12057.10

Chao&Lee2 585.00 93575.00 211316.70 245043.10 585.00 45980.20 198268.50 213030.90 100.00 45088.10 36647.70 83214.20 100.00 25275.00 225250.00 976729.70 2950.10 4803.90 8319.40 18835.30

Chao&Bunge 340.00 46925.00 105933.30 26271.90 340.00 16916.30 74087.70 34635.20 100.00 12960.90 8107.80 4677.70 100.00 12850.00 113000.00 304803.40 1499.90 458.70 857.40 3354.70

PFSP instances, and between Bootstrap and Chao&Bunge, Bootstrap and Jackknife,

and Jackknife and Chao&Bunge, for the LOP and the QAP instances.
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In Table 3, the ranking for the methods is shown, but this time for the second

scenario, that is, when grouping the estimations for the instances using the 2-exchange

neighborhood NS (the first pair of columns), and the Insert neighborhood NI (the

last pair of columns). In the first case the Holm’s procedure states that significant

differences exist among each pair of methods. Nevertheless, for the second neighborhood

significant differences are not found between Chao&Lee1 and Chao1984, and between

Chao&Bunge and Bootstrap. From this table we can observe that, also in this scenario

the best estimations are provided by Chao&Lee2, Chao&Lee1 and Chao1984.

Table 2. Average rankings of the methods according to the type of problem

PFSP LOP QAP

Method Ranking Method Ranking Method Ranking

Chao&Lee2 4.85 Chao&Lee2 4.83 Chao&Lee2 4.77

Chao&Lee1 3.74 Chao&Lee1 4.08 Chao&Lee1 3.97

Chao1984 3.51 Chao1984 3.78 Chao1984 3.60

Bootstrap 3.37 Chao&Bunge 2.82 Jackknife 2.97

Chao&Bunge 3.05 Jackknife 2.78 Bootstrap 2.88

Jackknife 2.47 Bootstrap 2.69 Chao&Bunge 2.81

Finally, Table 4 shows the ranking obtained for the methods when the es-

timations are separated according to the sample size used by the methods M =

100, 500, 1000, 5000. Again, we find that the three best methods are Chao&Lee2,

Chao&Lee1 and Chao1984. Significant differences are not found between Chao&Lee1

and Chao1984, and between Bootstrap and Jackknife, when using M = 100. For M =

500 there are not significant differences among Bootrstrap, Chao&Bunge and Jackknife,

while significant differences are not found between Bootstrap and Chao&Bunge when

M = 1000. Finally, when taking M = 5000, there are not significant differences among

Chao&Lee1, Chao1984 and Chao&Bunge, and between Jackknife and Bootstrap.
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Table 3. Average rankings of the methods according to the neighborhood.

NS NI

Method Ranking Method Ranking

Chao&Lee2 5.22 Chao&Lee2 4.41

Chao&Lee1 3.94 Chao&Lee1 3.92

Chao1984 3.61 Chao1984 3.66

Bootstrap 3.12 Jackknife 3.26

Chao&Bunge 2.88 Chao&Bunge 2.91

Jackknife 2.23 Bootstrap 2.84

Table 4. Average rankings of the methods according to the sample size

M=100 M=500 M=1000 M=5000

Method Ranking Method Ranking Method Ranking Method Ranking

Chao&Lee2 4.72 Chao&Lee2 5.01 Chao&Lee2 5.01 Chao&Lee2 4.54

Chao&Lee1 3.87 Chao&Lee1 4.06 Chao&Lee1 3.97 Chao&Lee1 3.83

Chao1984 3.65 Chao1984 3.63 Chao1984 3.57 Chao1984 3.67

Bootstrap 3.19 Bootstrap 2.93 Bootstrap 3.00 Chao&Bunge 3.48

Jackknife 3.12 Chao&Bunge 2.69 Chao&Bunge 2.93 Bootstrap 2.81

Chao&Bunge 2.46 Jackknife 2.67 Jackknife 2.52 Jackknife 2.67

Although the statistical analysis gives a global picture of the performance of the

methods, and we have concluded that Chao&Lee2 provides the best solutions with sig-

nificant differences between this method and the remaining methods, it is also relevant

to consider some aspects that are not reflected in the hypothesis tests. The closeness of

the estimations provided by the methods to the value we want to estimate is the most

important factor. Obviously, there are methods that estimate better than others, but

it does not mean that the estimations provided by the best methods are close enough

to the real value. In order to check if the methods provide useful estimations, and so as
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to add more information to that deduced from Table 1, the average errors of the esti-

mations with respect to the real number of local optima are calculated. Tables 5, 6 and

7 show the average relative errors and the standard deviations (in brackets) grouped

by the neighborhood used and the sample size, for all the instances of the PFSP, LOP

and QAP, respectively.

A general conclusion deduced from Tables 5, 6 and 7, is that, in general terms,

the estimations improve as the sample size grows, and they are worse as the number

of local optima increases. Specifically, as we saw in the Table 1, the instances of the

LOP with the Insert neighborhood, had a low number of local optima, and we observe

in Table 6 that the average error is lower than in the rest of the cases. Moreover, the

instances of the QAP with the Insert neighborhood, had a high number of local optima,

and the errors obtained for those instances (in Table 7) are higher than for the rest. It

is remarkable that for sample size M = 100 and M = 500 the estimations are far from

the real value. However, there is one method which behavior is different and does not

follow the general lines. This is the Chao&Bunge method. This estimation method does

not necessarily improve as the sample size grows, and the standard deviation presented

in most of the cases is really high comparing with other methods. We consider that

Chao&Bunge is a very unstable method. The instability of this method is a consequence

of the variability on the estimation of the parameter that represents the expected

proportion of duplicates in the sample [24]. This estimation is unreliable when we have

a sample where many local optima are seen only once, but there is a small number of

local optima seen a low (but higher than one) number of times. These particularities

are commonly found when the sample size is small with respect to the number of local

optima, or even when the variance of the sizes of the attraction basins of the local

optima is high.
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Table 5. Average relative errors and standard deviations (in brackets) of the estimations provided by

the different methods for the instances of the PFSP, according to the neighborhood and the sample

size M .

M=100 M=500 M=1000 M=5000
2-

ex
ch

an
g
e

Jackknife 0.88 (0.14) 0.74 (0.22) 0.66 (0.24) 0.44 (0.22)

Bootstrap 0.87 (0.17) 0.69 (0.30) 0.61 (0.28) 0.38 (0.15)

Chao1984 0.79 (0.15) 0.68 (0.21) 0.60 (0.22) 0.42 (0.20)

Chao&Lee1 0.79 (0.14) 0.67 (0.20) 0.60 (0.20) 0.42 (0.19)

Chao&Lee2 0.74 (0.18) 0.60 (0.20) 0.51 (0.19) 0.35 (0.16)

Chao&Bunge 0.89 (0.26) 1.06 (2.23) 0.84 (1.12) 0.28 (0.38)

In
se

rt

Jackknife 0.60 (0.28) 0.39 (0.22) 0.30 (0.18) 0.19 (0.23)

Bootstrap 0.58 (0.26) 0.28 (0.23) 0.21 (0.16) 0.54 (0.40)

Chao1984 0.53 (0.23) 0.34 (0.19) 0.28 (0.17) 0.19 (0.21)

Chao&Lee1 0.54 (0.24) 0.34 (0.18) 0.29 (0.15) 0.17 (0.19)

Chao&Lee2 0.45 (0.22) 0.25 (0.15) 0.24 (0.14) 0.23 (0.20)

Chao&Bunge 0.92 (1.40) 0.50 (0.78) 0.20 (0.18) 0.32 (0.24)

As a conclusion from this analysis, we highly recommend the use of the

Chao&Lee2 method to estimate the number of local optima. According to the hypoth-

esis test, this estimation method provides the best results. Although in the statistical

analysis is not reflected, the Chao&Bunge method gives also good estimations in a

high number of occasions, however, its instability provokes that we do not know if

we should or should not trust it. Therefore, we recommend to execute both methods

independently. If the results provided are close, Chao&Bunge is usually the choice,

otherwise, select Chao&Lee2.
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Table 6. Average relative errors and standard deviations (in brackets) of the estimations provided

by the different methods for the instances of the LOP, according to the neighborhood and the sample

size M .

M=100 M=500 M=1000 M=5000
2-

ex
ch

an
g
e

Jackknife 0.96 (0.01) 0.87 (0.04) 0.81 (0.06) 0.56 (0.08)

Bootstrap 0.97 (0.01) 0.87 (0.04) 0.79 (0.06) 0.47 (0.12)

Chao1984 0.83 (0.14) 0.79 (0.06) 0.73 (0.06) 0.52 (0.07)

Chao&Lee1 0.84 (0.12) 0.78 (0.05) 0.71 (0.07) 0.49 (0.06)

Chao&Lee2 0.80 (0.15) 0.71 (0.07) 0.62 (0.09) 0.37 (0.05)

Chao&Bunge 0.95 (0.06) 2.38 (8.21) 1.12 (1.44) 0.51 (0.47)

In
se

rt

Jackknife 0.33 (0.30) 0.18 (0.27) 0.16 (0.22) 0.77 (0.49)

Bootstrap 0.28 (0.32) 0.37 (0.21) 0.26 (0.17) 1.05 (0.61)

Chao1984 0.35 (0.25) 0.18 (0.24) 0.14 (0.20) 0.72 (0.47)

Chao&Lee1 0.35 (0.28) 0.19 (0.23) 0.14 (0.19) 0.75 (0.48)

Chao&Lee2 0.33 (0.33) 0.18 (0.24) 0.12 (0.15) 0.82 (0.51)

Chao&Bunge 0.49 (0.74) 0.31 (0.70) 1.39 (4.95) 0.83 (0.37)

Conclusions

The objective of this study has been to extend and advance the knowledge associated

to implementing multi-start procedures. Unlike other well-known methods, it has not

yet become widely implemented and tested as a metaheuristic itself for solving complex

optimization problems.

We have reviewed different methods for estimating the number of local optima

of instances of combinatorial optimization problems. We have compared some methods

in the optimization field with methods previously used for estimating the number of

species in a population in the field of statistics. The methods have been applied to in-

stances of three different problems (PFSP, LOP and QAP), under two neighborhoods
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Table 7. Average relative errors and standard deviations (in brackets) of the estimations provided

by the different methods for the instances of the QAP, according to the neighborhood and the sample

size M .

M=100 M=500 M=1000 M=5000
2-

ex
ch

an
g
e

Jackknife 0.87 (0.17) 0.75 (0.25) 0.67 (0.28) 0.50 (0.29)

Bootstrap 0.84 (0.20) 0.69 (0.33) 0.62 (0.34) 0.44 (0.32)

Chao1984 0.77 (0.24) 0.57 (0.21) 0.53 (0.19) 0.41 (0.19)

Chao&Lee1 0.78 (0.20) 0.56 (0.21) 0.53 (0.19) 0.42 (0.19)

Chao&Lee2 0.73 (0.25) 0.52 (0.22) 0.49 (0.19) 0.38 (0.19)

Chao&Bunge 0.91 (0.40) 0.87 (1.41) 1.89 (5.45) 0.27 (0.39)

In
se

rt

Jackknife 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 0.98 (0.03)

Bootstrap 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 0.98 (0.03)

Chao1984 0.99 (0.02) 0.96 (0.04) 0.93 (0.06) 0.89 (0.04)

Chao&Lee1 0.99 (0.02) 0.97 (0.03) 0.94 (0.05) 0.89 (0.04)

Chao&Lee2 0.99 (0.02) 0.96 (0.04) 0.93 (0.06) 0.86 (0.06)

Chao&Bunge 1.00 (0.01) 0.99 (0.01) 0.98 (0.03) 0.98 (0.03)

(2-exchange and Insert). The main conclusions observed in the three scenarios are that,

in general, the higher the sample used by the methods, the more precise the estima-

tions, and the higher the number of local optima, the worse the estimations provided.

Based on the results observed through the experiments, we provide the following rules

of thumb: we recommend using ChaoBunge and Chao&Lee2. Due to the instability

observed for ChaoBunge, both methods should be executed independently, and com-

pare both results. If the results provided are considerably far, ChaoBunge is probably

giving an unreliable estimation and we should select Chao&Lee2. However, if analyzing

the sample we realize that each (or most) of the initial solutions reach different local

optima, none of the previous methods can be applied. In this case, we can base our

estimator on the proportion of local optima over the sample [6; 21].
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