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Abstract

High throughput phenotyping (HTP) platforms and devices are increasingly used to characterise growth and

developmental processes for large sets of plant genotypes. This dissertation is motivated by the need to

accurately estimate genetic effects over time when analysing data from such HTP experiments. The HTP

data we deal with here are characterised by phenotypic traits measured multiple times in the presence of

spatial and temporal noise and a hierarchical organisation at three levels (populations, genotypes within

populations, and plants within genotypes). The challenge is to balance efficient statistical models and com-

putational solutions to deal with the complexity and dimensionality of the experimental data. To that aim,

we propose two strategies. The first proposal divides the problem into two stages. The first stage (spatial

model) focuses on correcting the phenotypic data for experimental design factors and spatial variation, while

the second stage (hierarchical longitudinal model) aims to estimate the evolution over time of the genetic

signal. The second proposal is to face the problem simultaneously (one-stage approach). That is, mod-

elling the longitudinal evolution of the genetic effect on a given phenotypic trait while accounting for the

temporal and spatial effects of environmental and design factors (spatio-temporal hierarchical model). We

follow the same modelling philosophy throughout our work and propose multidimensional P-spline-based

hierarchical approaches. We provide the user with appealing tools that take advantage of the sparse model

matrices structure to reduce computational complexity. All our codes are publicly available on the R-package

statgenHTP and https://gitlab.bcamath.org/dperez/htp_one_stage_approach. We illustrate the performance

of our methods using spatio-temporal simulated data and data from the PhenoArch greenhouse platform

at INRAE Montpellier and the outdoor Field Phenotyping platform at ETH Zürich. In the plant breeding

context, we show how to extract new time-independent phenotypes for genomic selection purposes.

https://gitlab.bcamath.org/dperez/htp_one_stage_approach




Resumen

El uso de técnicas y plataformas de fenotipado de alto rendimiento (HTP por sus siglas en inglés, "high-

throughput phenotyping") se ha incrementado significativamente en los últimos años en aplicaciones de

genética y fisiología de plantas. Los últimos avances en plataformas HTP han sido revisados en estudios

recientes (Jin et al., 2020; D. Li et al., 2021; Song et al., 2021; Q. Xiao et al., 2022; W. Yang et al.,

2020). Por ejemplo, D. Li et al. (2021) presentan una revisión de estas plataformas a nivel mundial: 12

en invernaderos y 34 en campo abierto (18 de ellas se midieron con sensores terrestres y 16 con sensores

aéreos de gran escala). Los datos de HTP proporcionan información rápida, precisa, no-destructiva y costo-

eficiente sobre rasgos fenotípicos con una alta resolución temporal y espacial (Tardieu et al., 2017). El

diseño de experimentos en HTP, tanto en invernadero como en campo, generalmente consiste en unidades

experimentales (p.e., plantas individuales en macetas o parcelas) que se combinan con una amplia gama

de sensores para hacer un seguimiento (casi) continuo de los rasgos fenotípicos para grandes conjuntos de

plantas y genotipos. Los datos de HTP, se obtienen de múltiples sensores (p.e., imágenes, nubes de puntos,

datos hiperespectrales) y son normalmente filtrados, condensados, integrados y resumidos en características.

Combinaciones de una o varias características se usan para aproximar rasgos biológicos que, por un lado,

siguen estando próximos a los datos y, por otro, están relativamente alejados de los rasgos objetivo de

interés comercial (la mayoría de las veces, parámetros de rendimiento y calidad). Ejemplos de estos rasgos

son la altura de la planta, la cobertura del dosel, el índice de área foliar, el recuento de espigas y tallos, la

temperatura de la copa, o los índices relacionados con el contenido de agua o clorofila. Por ejemplo, uno

de los experimentos más grandes de HTP en invernadero (en términos de capacidad del invernadero) es el

desarrollado por W. Yang et al. (2014) para 533 genotipos de O. sativa landrace y elite en 5472 plantas

de arroz. Para este experimento, los autores extrajeron 15 rasgos diferentes. Aunque no se dispone de

información sobre el tiempo transcurrido entre las mediciones, este experimento es evidencia de la enorme

cantidad de información (datos) que producen estas plataformas.

Para facilitar el progreso en el fenotipado de plantas, la inversión y la colaboración siguen siendo esen-

ciales. Diversas organizaciones, universidades e iniciativas de todo el mundo contribuyen en este ámbito.

En particular, la Iniciativa de la Asociación Mundial para el Fomento de la Capacidad de Mejora Vegetal

(GIPB), convocada por la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO),
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ejemplifica el compromiso con la colaboración mundial para la mejora y la difusión eficaz de las variedades

de cultivos. Adicionalmente, se han conformado diferentes redes que proporcionan plataformas HTP para

la colaboración, el intercambio de conocimientos y la creación de capacidad en materia de fenotipado de

plantas. Aunque la principal desventaja de las plataformas HTP es su alto costo, su ventaja radica en que

permiten controlar, cuantificar y evaluar continuamente fenotipos específicos para experimentos agrícolas

de gran escala con alta resolución y precisión. Por consiguiente, con estas plataformas HTP, investigadores

y fitomejoradores tienen acceso a grandes (y detallados) conjuntos de datos, en forma de (largas) series tem-

porales, que permiten seguir múltiples rasgos biológicos desde, por ejemplo, la germinación de la semilla

hasta su madurez fisiológica. Independientemente de si se miden rasgos complejos (como el rendimiento)

una sola vez (como tradicionalmente) o si se miden rasgos fenotípicos varias veces (como en HTP), se sabe

que su expresión se ve afectada espacialmente por factores ambientales como la heterogeneidad del suelo

en los experimentos de campo y por gradientes de temperatura y luz en experimentos de invernadero. Esto

hace necesario corregir estos factores de ruido cuando se analizan experimentos agrícolas (Araus & Cairns,

2014; van Eeuwijk et al., 2019). Sin embargo, los datos de los experimentos HTP presentan, además de

la variación espacial, una dimensión temporal que debe incorporarse y modelarse adecuadamente en los

análisis.

Consideramos que, en los experimentos de HTP, los genotipos se han asignado a las unidades exper-

imentales siguiendo un diseño experimental. En particular, los datos HTP que tratamos en esta tesis se

caracterizan por rasgos fenotípicos medidos múltiples veces en presencia de ruido espacial y temporal. Para

simplificar, en lo que sigue suponemos que sólo se han analizado los genotipos (es decir, tenemos una estruc-

tura de tratamiento de un solo factor). Sin embargo, permitimos una estructura de población, modelada como

diferentes familias, paneles o poblaciones de genotipos. Así, los datos presentan una estructura jerárquica

anidada de tres niveles, con plantas/parcelas anidadas en genotipos, y genotipos anidados en poblaciones.

Para mayor claridad y simplicidad, en lo sucesivo nos referiremos a las unidades experimentales del diseño

experimental como plantas. La unidad experimental suele ser una planta en un experimento de invernaderos

y una parcela con varias plantas en un experimento de campo. El principal objetivo de esta tesis doc-
toral es centrarse en la estimación (y posterior procesamiento y análisis) de la evolución temporal del
efecto genético sobre un fenotipo específico, al tiempo que se corrigen efectos de ruido ambientales
tanto espacial como temporalmente. Al abordar este objetivo, esta investigación se enfrenta al gran
desafío de combinar métodos estadísticos y computacionales que exploten eficaz y adecuadamente la
diversidad y complejidad de los datos de HTP para: (a) extraer información relevante relacionada con el

crecimiento y desarrollo de las plantas, (b) incrementar la comprensión biológica de los sistemas vegetales,

y (c) apoyar el proceso de toma de decisiones en los programas de fitomejoramiento. Las técnicas estadísti-

cas desarrolladas para hacer frente a los retos que plantean los datos de HTP serán de gran interés no sólo

para los fitomejoradores y estadísticos de ese campo, sino también para los profesionales que trabajan en

medicina, genética humana y animal, biología evolutiva y otros ámbitos. Esta tesis requirió una sólida base

viii
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en estadística, métodos computacionales y conocimientos en sistemas vegetales. Implicó el desarrollo e

implementación de modelos espacio-temporales, el diseño y desarrollo de software, y la evaluación y apoyo

con datos reales y simulados. El objetivo último de esta investigación es contribuir en el mejoramiento de

las prácticas de fitomejoramiento y, en consecuencia, de la seguridad alimentaria mundial.

La revisión de la literatura en modelos espacio-temporales para datos HTP (ver Capítulo 1) ha revelado

que ésta es un área de investigación en auge. Muestra de esto es que agricultores y agrónomos buscan opti-

mizar el rendimiento de los cultivos y mejorar las prácticas agrícolas mediante la toma de decisiones basada

en datos. A continuación exponemos algunos de los puntos metodológicos más relevantes que abordamos

en esta disertación

(a) Decidir el número de etapas (es decir, si utilizar un enfoque por etapas o un enfoque de una sola

etapa) y el orden de las etapas (qué componente modelar primero, el espacial o el temporal) para los

enfoques propuestos.

(b) Seleccionar y combinar métodos estadísticos apropiados para el análisis de cada componente de los

datos (espacial y temporal).

(c) Aprovechar la estructura de correlación espacio-temporal y jerárquica de los datos para evitar la pér-

dida de información (cuando sea posible/necesario) entre y dentro de las etapas, mejorar la precisión

y robustez de los modelos estadísticos utilizados, y predecir mejor los datos.

(d) Combinar métodos estadísticos y computacionales para hacer frente al tamaño y la complejidad/di-

mensionalidad de los datos. Esto requiere algoritmos eficientes y el desarrollo de software que pueda

manejar grandes conjuntos de datos

(e) Analizar datos HTP reales. La propia recopilación y análisis de datos HTP plantea varios desafíos: el

diseño del experimento, la recopilación de los datos, el procesamiento de imágenes y la limpieza de

los datos. Estos son procesos que pueden requerir mucho tiempo y recursos, además de ser costosos.

La inversión en la adquisición de datos HTP es una prueba de la relevancia de los proyectos en este

campo. Sin embargo, el alcance de este proyecto asume que los datos ya han sido recopilados y están

listos para ser analizados.

(f) Reproducir lo más fielmente posible la dinámica del sistema real utilizando datos simulados como

alternativa/oportunidad para evaluar los métodos propuestos en un conjunto de escenarios y configu-

raciones diferentes. (Bustos-Korts et al., 2019).

(g) Desarrollar software escalable y fácil de usar para los datos HTP y hacerlo accesible a la comunidad

científica.

ix
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Para dar cumplimiento al objetivo de esta investigación, hemos organizado la tesis como sigue. En el

Capítulo 2 motivamos esta propuesta presentando dos conjuntos de datos de HTP. Se trata de la plataforma

PhenoArch de un invernadero en INRAE Montpelier y la plataforma FIeld Phenotyping (FIP) en ETH

Zürich. En este capítulo, hacemos un análisis estadístico descriptivo para comentar sobre diferentes carac-

terísticas de los datos como: patrón de datos faltantes, forma de las curvas, comportamiento de la variabil-

idad entre e intra curvas, posibles interacciones entre factores, y la variación espacial (y cómo cambia a lo

largo del tiempo). En el caso de la plataforma FIP, se dispone de tres ensayos independientes (tres años:

2015, 2016 y 2017). Por lo tanto, para estos datos en particular, comentamos además sobre la consistencia

del desempeño genotípico a lo largo de los ensayos.

El Capítulo 3 contiene el soporte teórico de esta tesis con conceptos sobre P-splines y su extensión al

caso multidimensional mediante el uso de productos tensoriales. Se hace uso de dos dimensiones para los

modelos espaciales (en las direcciones de fila y columna) y de tres dimensiones para los modelos espacio-

temporales (en las direcciones de fila, columna y tiempo). Explicamos con más detalle la conexión entre

P-splines y modelos mixtos como marco de estimación. En este capítulo se esbozan algunos detalles técnicos

esenciales utilizados principalmente en los Capítulos 4 y 5.

Las principales contribuciones metodológicas de esta tesis se presentan en los Capítulos 4 y 5. Para
cumplir el objetivo principal de esta tesis, hemos propuesto dos aproximaciones al mismo problema.

La primera propuesta divide el problema en dos etapas (Capítulo 4). La primera etapa (modelo espacial)

se centra en corregir los datos fenotípicos para los factores de diseño experimental y la variación espacial,

mientras que la segunda etapa (modelo longitudinal jerárquico) tiene como objetivo estimar la evolución

en el tiempo de la señal genética. La segunda propuesta consiste en afrontar el problema simultáneamente

(enfoque de una etapa, Capítulo 5). Es decir, modelizar la evolución longitudinal del efecto genético sobre

un determinado rasgo fenotípico al tiempo que se tienen en cuenta los efectos temporales y espaciales de

los factores ambientales y de diseño (modelo espacio-temporal jerárquico). Seguimos la misma filosofía de

modelización en todo nuestro trabajo y proponemos modelos basados en P-splines.

Para ambos enfoques, explotamos la conexión entre P-splines y modelos lineales mixtos y proponemos

utilizar herramientas computacionalmente atractivas que aprovechan la estructura dispersa de las matri-

ces implicadas en los modelos para reducir la complejidad computacional. Como resultado, obtenemos

curvas estimadas y sus derivadas en los tres niveles de la jerarquía (poblaciones, genotipos y plantas). Uti-

lizamos estas curvas para extraer diferentes características independientes del tiempo. Estas características

pueden servir como entradas para análisis estadísticos posteriores que tengan como objetivo modelar las

interacciones genotipo-ambiente en rasgos biológicamente complejos, como el rendimiento, en relación con

componentes de rasgos subyacentes (véase, por ejemplo, Moreira et al., 2020; van Eeuwijk et al., 2019).

Los Capítulos 6 y 7 están dedicados a comparar y evaluar el rendimiento de los enfoques propuestos

en una y dos etapas. En el Capítulo 6, se usan datos espacio-temporales simulados, mientras que en el

x
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Capítulo 7, analizamos los dos conjuntos de datos de HTP descritos en el Capítulo 2. Para garantizar la con-

sistencia entre los dos enfoques, establecemos un entorno común de comparación tanto para la simulación

como para el análisis de datos reales. El estudio de simulación pretende respaldar los resultados de nuestra

investigación y validar nuestros enfoques explorando el impacto de diferentes variables y escenarios en un

entorno controlado. Los estudios de simulación en este entorno son poco frecuentes (véase, por ejemplo,

Bustos-Korts et al., 2019; Roth et al., 2021), en parte debido a la complejidad (estadística y biológica) del

sistema, que hace que el mecanismo de generación de datos sea una tarea difícil. Basamos el escenario

de simulación y el modelo de generación de datos en nuestros aprendizajes con análisis de datos de HTP

reales. Para minimizar el sesgo, proponemos un modelo de generación de datos que es independiente de los

modelos estadísticos utilizados para su análisis posterior. Somos conscientes de que nuestras simulaciones

implican algunas simplificaciones y suposiciones que pueden no reflejar con exactitud las complejidades

y características específicas de los datos de HTP reales. Por ello, para contrastar los resultados de la sim-

ulación, analizamos los datos de dos plataformas HTP diferentes. Los resultados obtenidos con estos dos

ejemplos proporcionan información sobre factores no considerados en la simulación, que constituirán im-

portantes líneas de investigación futura.

En un esfuerzo por compartir nuestro trabajo y contribuir al progreso del conocimiento científico, hemos

implementado los enfoques propuestos en el lenguaje R (R Core Team, 2023). Para los enfoques de una y

dos etapas, proponemos funciones para ajustar, predecir, graficar y extraer características independientes

del tiempo. Mostramos las funcionalidades del código disponible en el Capítulo 8. Al compartir nuestro

código, esperamos garantizar la reproducibilidad de nuestros resultados y promover la colaboración en la

comunidad científica. Proporcionamos al usuario un ejemplo para reproducir los resultados de la plataforma

PhenoArch. En consecuencia, es nuestro deseo que otros investigadores puedan verificar nuestros hallazgos,

reproducir el análisis y tener como referencia nuestro trabajo. Además, pretendemos acercar a los científicos

de las plantas a herramientas estadísticas fáciles de usar para apoyar su proceso de toma de decisiones.

La mayor parte del contenido de esta tesis ha sido discutido en diferentes espacios académicos. El

Capítulo 4 y parte del Capítulo 7 fueron publicados en Scientific Reports (Perez-Valencia et al., 2022).

Los Capítulos 5, 6 y 7 fueron sometidos al Journal of Agricultural, Biological and Environmental Statistics

(JABES), pero está disponible en su versión BioXiv (Perez-Valencia et al., 2023). Todas las funciones pre-

sentadas en el Capítulo 8 están disponibles públicamente a través del paquete de R statgenHTP (enfoque

en dos etapas) y en https://gitlab.bcamath.org/dperez/htp_one_stage_approach (enfoque en una etapa). Fi-

nalmente, esta tesis termina con unas conclusiones en el Capítulo 9, en donde se resumen las contribuciones

de esta tesis y se discuten algunas líneas de investigación futuras. En resumen, creemos que esta tesis repre-

senta un punto de partida prometedor para el análisis espacio-temporal de datos de HTP jerárquicos. Los dos

enfoques propuestos representan un buen compromiso entre flexibilidad, precisión, adecuación, eficiencia

computacional e interpretabilidad. Nuestros resultados demuestran la viabilidad de nuestras propuestas en

ordenadores estándar, proporcionando valiosas descripciones de la variación genética (y no genética) en la

xi

https://gitlab.bcamath.org/dperez/htp_one_stage_approach


xii

dimensión temporal y estadísticas de resumen útiles con fines de selección genotípica. Creemos que nuestra

propuesta representa una herramienta poderosa para su aplicación rutinaria en experimentos de fenotipado

con series temporales densas.

xii
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Chapter 1

Introduction

1.1 Context: High-throughput phenotyping (HTP) platforms

The use of high-throughput phenotyping (HTP) techniques and platforms has significantly increased in re-

cent years in plant genetics and physiology. The latest advancements in HTP platforms have been reviewed

in recent studies (Jin et al., 2020; D. Li et al., 2021; Song et al., 2021; Q. Xiao et al., 2022; W. Yang et al.,

2020). For instance, D. Li et al. (2021) provide an overview on HTP platforms worldwide, both indoors (a

total of 12) and in a field (a total of 18 for ground-based proximal phenotyping, and 16 for aerial large-scale

remote sensing). HTP data provide quick, precise, non-destructive and cost-effective information on phe-

notypic traits with high spatial and temporal resolution (Tardieu et al., 2017). Designed HTP experiments,

either indoors or in a field, usually consist of experimental units (e.g., single plants in pots or plots) that

are combined with a wide range of sensing equipment for the (almost) continuous monitoring of plant/plot

phenotypic traits for large sets of genotypes. High dimensional HTP data as derived from multiple sensors

(e.g., images, point clouds, hyperspectral data) are typically filtered, condensed, integrated and summarised

into features. Combinations of one or more features are used to approximate biological traits that are on the

one hand still close to the data, and on the other hand are relatively far from the target traits of commercial

interest (most often yield and quality parameters). Examples of such traits are plant height, canopy cover,

leaf area index, ear and tiller counts, canopy temperature or indices related to water or chlorophyll content.

As an illustration, one of the largest (in terms of greenhouse capacity) indoor HTP experiment is the one

developed by W. Yang et al. (2014) for 533 O. sativa landrace and elite genotypes on 5472 rice plants. For

that experiment, the authors extracted 15 different traits. Although information on the time between mea-

surements is unavailable, this experiment highlights the enormous amount of information (data) produced

by these platforms.

To facilitate progress in plant phenotyping, investment and collaboration remain essential. Various or-
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1.1. Context: High-throughput phenotyping (HTP) platforms 2

ganisations, universities, and initiatives worldwide contribute to this domain (D. Li et al., 2021). Notably,

the Global Partnership Initiative for Plant Breeding Capacity Building (GIPB), convened by the Food and

Agriculture Organisation (FAO), exemplifies the commitment to global collaboration for the effective im-

provement and dissemination of crop varieties. However, networking is required to provide platforms for

collaboration, knowledge sharing, and capacity building in plant phenotyping. With these aims in mind, sev-

eral networks have emerged, including the International Plant Phenotyping Network (IPPN), Global Plant

Phenotyping Network (GPPN), International Crop Phenotyping Initiative (ICPI), European Plant Phenotyp-

ing Network (EPPN), African Plant Phenotyping Network (APPN), Phenotyping Network of the Ameri-

cas (PanPheno), Brazilian Phenotyping Network (BraPhen), Argentine Plant Phenotyping Network (RFA-

Faneg), Australian Plant Phenomics Facility (APPF), and the Plant Accelerator (Australia).

Even though the main disadvantage of HTP platforms is that they are expensive, as noted before the

advantage relies on continuously monitoring, quantifying, and evaluating specific phenotypes for large-

scale agricultural experiments with high resolution and precision. Consequently, with these HTP platforms,

researchers and plant breeders have now access to large and detailed datasets, in the form of (long) time-

series, enabling to track multiple biological traits from, e.g., seed emergence to physiological maturity.

Regardless of the fact that endpoint traits (like yield) are measured only once (as traditionally) or phenotypic

traits are measured several times (as in HTP), it is known that their expression is spatially affected by

environmental factors such as soil heterogeneity in field experiments and temperature and light gradients in

the greenhouse. This makes it necessary to correct for these nuisance factors when analysing agricultural

experiments (Araus & Cairns, 2014; van Eeuwijk et al., 2019). Yet, data from HTP experiments present, on

top of spatial variation, a time dimension which needs to be incorporated and adequately modelled in the

analyses.

Therefore, the main objective of this PhD thesis is to focus on estimating (and further processing and

analysing) the temporal evolution of the genetic effect on a specific phenotype, while correcting for environ-

mental nuisance effects both spatially and temporally. By addressing this objective, this research contributes

to the advancement of spatio-temporal modelling methods in plant breeding and software development from

a statistical perspective. The statistical techniques developed to address the challenges of HTP data will be of

significant interest not only to plant breeders and statisticians in that field but also to professionals working

in medicine, human and animal genetics, evolutionary biology, and beyond.

1.1.1 Spatio-temporal and hierarchical HTP data structure

We consider that, in the HTP experiment, genotypes have been allocated to the experimental units following

an experimental design. Particularly, the HTP data we deal with in this thesis (see Figure 1.1) are char-

acterised by phenotypic traits measured multiple times in the presence of spatial and temporal noise. For

simplicity, in what follows we assume that only genotypes have been tested (i.e., we have a single factor
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3 Chapter 1. Introduction

treatment structure). However, we allow for population structure, modelled as different families, panels or

populations of genotypes. Thus, the data present a three-level nested hierarchical structure, with plants/plots

nested in genotypes, and genotypes nested in populations. For clarity and simplicity, hereafter we refer to

the experimental units of the experimental design as plants. The experimental unit is most commonly a plant

for an indoor experiment and a plot containing several plants for a field experiment.

Temporal Spatial Hierarchical

Figure 1.1: Spatio-temporal and three-level hierarchical HTP data structure.

In mathematical notation, let yi(t) denote the observed phenotypic trait of interest for the ith plant (i =

1, . . . ,M) at time, t ∈ {t1, . . . , tn}. We use p and g for indices of population and genotype, respectively

(p = 1, . . . ,K; g = 1, . . . , L). With a slight abuse of notation we use p(i) and g(i) to denote the population

and genotype of the ith plant, respectively. Let ℓp = # {g | p (g) = p} be the number of genotypes with

population p, and mg = # {i | g(i) = g} be the number of plants with genotype g. Consequently, L =
∑︁K

p=1 ℓp

denotes the total number of genotypes and M =
∑︁L

g=1 mg the total number of plants. We consider that plants

can be mapped to a coordinate system defined in terms of R rows and C columns, and denote as r(i) and

c(i) the row and column position respectively of the ith plant (r = 1, . . . ,R; c = 1, . . . ,C). We assume

that all plants in the experiment are measured at the same times ({t1, . . . , tn}). That is a simplification, as

platform data is typically acquired within the order of minutes to hours. However, we presume that the

factors that may affect the platform measurements within that period can be accounted for (and captured) by

the experimental design (e.g., blocking structure). The assumption of the same measuring times, however,

does not preclude the presence of incomplete data.

1.2 Literature review

This state of the art aims to explore the latest advances in spatio-temporal modelling approaches for the

analysis of HTP data in the field of agriculture. We first review the literature in spatial models used in tra-
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ditional agricultural experiments, where only a single measurement or observation is made at the end of the

experiment. Such traits can be called endpoint traits. With the emergence of HTP technologies, agricultural

experiments now include the temporal component, making the longitudinal evolution of genetic effects a

key area of interest for plant breeders. Therefore, we examine the literature for longitudinal models in this

context. However, to effectively model the genetic signal, we must also consider the temporal and spatial

effects of environmental and design factors, which ultimately drives our search towards spatio-temporal

modelling. We conclude our literature review indicating issues and challenges that guided the development

of this thesis.

1.2.1 Spatial analysis in agricultural experiments

In agricultural experiments, it is well known that the phenotype of interest is spatially affected by micro-

environmental factors. Experimental designs are used to counterbalance spatial heterogeneity in field trials

(see, e.g., Brien et al., 2013; Hartung et al., 2019; Mead, 1997). In addition to experimental design, spatial

models can be used to separate genetic and non-genetic effects properly. In this context, we assume that

spatial models are defined in a two-dimensional row-column coordinate system. Spatial models for field

trials are characterised by accounting for different sources of spatial variation (Gilmour et al., 1997): global

(large-scale) variation across the field, local (small-scale) variation within the trial, and extraneous variation

(related to the experimental procedure).

One alternative for spatial models is incorporating spatial variance-covariance structures in the errors

(i.e., assuming spatially correlated noise). Examples of this kind of model are the separable autoregressive

integrated model (ARIMA ⊗ ARIMA) by Cullis and Gleeson (1991). The problem with this model relies

on the fact that differencing is used as an artefact to model the spatial trend, and as a consequence, a more

complex variance-covariance spatial structure is imposed on the errors. Gilmour et al. (1997) and Verbyla et

al. (1999) proposed a spatial mixed model to overcome this drawback. They use a separable autoregressive

covariance structure (AR1⊗AR1) to model local variation through the errors; add polynomial (fixed effects)

or spline-based (fixed and random effects) functions of the spatial coordinates (i.e., rows and columns) to

account for global variation; and include (when necessary) design factors effects (e.g., rows and columns) to

model extraneous variation. In the bayesian framework, Besag and Higdon (1999) proposed a model with a

spatially dependent structure in the prior; they specifically use a prior based on first differences along rows

and columns to avoid nonstationarity (trend). The separable linear variance model (LV ⊗ LV) by Piepho

and Williams (2010) follows the same logic: they propose to add a baseline row–column model (to capture

extraneous variation) and a spatial structure through the errors.

The second alternative for spatial models is explicitly modelling the spatial variation and considering

independent errors. In this direction we found proposals with smoothing methods. Green et al. (1985)

proposed a least squares smoothing, but they approach the problem only in one-dimension. Durban et al.
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(2003) use loess smoothers either as a sum of two one-dimensional trends (i.e., f1(row) + f2(col)) or as

a two-dimensional smooth surface (i.e., f (row, col)). Finally, Rodríguez-Álvarez et al. (2018) propose a

two-dimensional smooth surface by using anisotropic tensor product P-splines (Eilers & Marx, 2003) to

explicitly model global and local spatial variation. They called their proposal SpATS (Spatial Analysis of

Field Trials with Splines).

The separable autoregressive model (Cullis & Gleeson, 1991; Gilmour et al., 1997) has become the

standard modelling strategy in field trials due to its popularity among applied breeders, mainly because of

existing software (e.g. Genstat®, ASReml®, and ASReml®R, all of them paid software). However, this

approach has some numerical problems (Piepho et al., 2015), making its application a cautious task that

requires well-trained specialists. SpATS is the most recent approach for the analysis of large, complicated

field trials using tensor product P-Splines; the proposal has proved to be very useful, and it is currently being

used not only by researches and plant breeders but also by companies. Comparisons of these two models

have shown that SpATS is a competitive and profitable approach (Andrade et al., 2020; Velazco et al., 2017),

with the advantages that it can be easily adapted for HTP data, and the R-package SpATS is freely available

for everyone.

1.2.2 Longitudinal analysis in agricultural experiments

In the context of HTP platforms, we are interested in modelling the temporal evolution of the genetic signal,

where genotypes are represented by multiple plants in different replicates of the design. Therefore, we have

a sample of plant curves as a function of time with a three-level hierarchical data structure (populations,

genotypes nested in populations and plants nested in genotypes). Thus, we ask for hierarchical or multilevel

longitudinal curve modelling approaches. Besides, traits are usually growth-related (e.g., canopy height and

leaf area) but not necessarily (e.g., the efficiency of the photosystem), then flexible approaches that allow

for non-linear relations are preferable.

Traditional analysis of growth-related curves uses parametric (non-linear) models. The logistic function

is one of the most commonly used (Paine et al., 2012) to model individual curves. However, while growth

processes theoretically follow a clearly defined pattern that may be modelled using a parametric function,

the observed dynamics may deviate considerably due to, for example, temporal changes in environmental

conditions (e.g. cold spells) or the application of treatments (e.g. irrigation events). More flexible models

that overcome the limitations of parametric specifications for samples of curves have been proposed in the

literature. Examples of data-driven methods include smoothing or penalised splines (P-splines; Eilers &

Marx, 1996) and functional principal components analysis (FPCA; Ramsay & Silverman, 2005). It is worth

noting that FPCA also contains penalised spline technology.

In the functional analysis framework, Greven and Scheipl (2017) provide an overview on functional re-
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gression modelling and the software available. Di et al. (2009) extended the FPCA for data with a multilevel

(or hierarchical) structure. They proposed the so-called MFPCA (multilevel functional principal component

analysis). For the particular case of data from HTP platforms, plant growth dynamics analysed through MF-

PCA have been discussed in Xu, Li, and Nettleton (2018) and Xu et al. (2021). Xu, Qiu, et al. (2018) and

Wang et al. (2020) use functional ANOVA, A. Montesinos-López et al. (2018) propose bayesian functional

regression, and Miao et al. (2020) use FPCA, but none of them considers a hierarchical data structure of

more than two levels (global mean and individual) in the analysis. For a specific analysis of HTP data, two

R-packages result from these proposals: implant (not published; Wang et al., 2023) and GFR (not published;

A. Montesinos-López et al., 2018). The packages fda (Ramsay et al., 2022) and refund (Goldsmith et al.,

2022) are other more general options. In the latest, the mfpca.sc() is a specific function for MFPCA with

penalised splines to smooth the covariance functions. A fast MFPCA (Cui et al., 2022) version is now avail-

able (jointly with the mfpca.face() function), which implements the fast covariance estimation method

(FACE; L. Xiao et al., 2016).

Conversely, semiparametric regression models based on penalised splines and their connection with

mixed models offer a rich framework for estimation and inference (Currie & Durban, 2002; Ruppert et al.,

2003; Wand, 2003). An important reference here is the extension proposed by Brumback and Rice (1998), in

which they used a sample of curves with nested and crossed effects. However, they considered fixed slopes

and intercepts at the individual level, leading to a computational problem (identifiability). To overcome

this drawback, Durban et al. (2005) proposed to use random coefficients, and Djeundje and Currie (2010)

proposed to use a double penalty at the individual level (one for smoothness and one for identifiability).

Particularly, Brien et al. (2020), Momen et al. (2019), O. A. Montesinos-López et al. (2017), and Moreira

et al. (2020) are some of the works in the HTP context. The mixed model framework is also appealing

for the variety of software available. Examples are the R-packages nlme (Pinheiro et al., 2019) and lme4

(Bates et al., 2015) or the PROC MIXED procedure (SAS Institute Inc. 2015. SAS/STAT®, 2015). Also,

the R-packages mgcv (Wood, 2017) and gamm4 (Wood & Scheipl, 2020) can be used for that purpose.

1.2.3 Spatio-temporal analysis in agricultural experiments

In the two previous sections, we reviewed spatial and longitudinal models separately. In this section, we

finally collect proposals that tackle the problem from both perspectives, temporal and spatial. The literature

in this field is scarce. One possibility is to use stage-wise approaches. For instance, van Eeuwijk et al. (2019)

propose first to estimate spatially adjusted genotypic means per time point and, in a second stage, they

model the genotypic signal over time independently for each genotype. A similar approach is followed by

Kar et al. (2020). Roth et al. (2021), describe a different stage-wise approach, where the temporal analysis

is performed first, followed by the spatial correction. Stage-wise proposals have the advantage of being

computationally manageable, but the problem relies on the loss of information between and within stages.

6
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Therefore, it is of interest to develop approaches that allow modelling the spatial and temporal genetic and

non-genetic variation in one stage. To the best of our knowledge, we only found one reference in this setting.

Verbyla et al. (2021) have proposed modelling the genetic effects over time using factor analytic models and

smoothing splines to model the non-genetic/residual effects over time and space. Nevertheless, the authors

report their work as a “proof of concept” in the sense that fitting the models is very time-consuming. The

authors use ASReml®R (Butler et al., 2018); nonetheless, they ask for scalable software.

1.3 Scope and challenges of the thesis

The scope of this thesis is in spatio-temporal models for HTP data to properly model the temporal evolu-

tion of the genetic effect on a specific phenotype while correcting for spatial and temporal environmental

nuisance effects. We aim to combine statistical and computational methods that efficiently and adequately

exploit the diversity and complexity of HTP data to

(a) Extract relevant information related to plant growth and development.

(b) Increase the biological understanding of plant systems.

(c) Help and support the decision-making process in plant breeding programs.

The literature review has revealed that spatio-temporal models for HTP data are a growing area of research

as farmers and agronomists seek to optimise crop yields and improve farming practices through data-driven

decision-making. Then the challenges of this research area include

(a) Determine the methodological path of our proposal and its implications (loss of information between

and within stages and computational complexity). This involves deciding on the number of stages

(i.e., whether to use a stage-wise approach or a single-stage approach) and the order of the stages

(what component model first, the spatial or the temporal) for the approaches proposed.

(b) Select and combine appropriate statistical methods for the analysis of each component in the data

(spatial and temporal).

(c) Take advantage of the spatio-temporal and hierarchical correlation data structure to avoid loss of in-

formation (when possible/necessary) between and within stages; improve the accuracy and robustness

of the statistical models used; and better predict the data.

(d) Combine statistical and computational methods to deal with the size and complexity/dimensionality

of the data. This requires efficient algorithms and software development that can handle the large

datasets.

7
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(e) Analyse real HTP data. HTP data collection and analysis itself poses several challenges: designing

the experiment, collecting the data, image processing and cleaning the data can be time-consuming

and resource-intensive and expensive. Although these challenges are out of the scope of this thesis,

the investment in data acquisition is proof of the relevance of the projects in this field.

(f) Reproduce the dynamics of the real system as closely as possible using simulated data as an alter-

native/opportunity to assess the methods proposed in a set of different scenarios and configurations

(Bustos-Korts et al., 2019).

(g) Develop scalable and user-friendly software for HTP data and make it accessible to the scientific

community.

This thesis required a strong foundation in statistics, computational methods, and knowledge of plant

systems. It involved developing and implementing spatio-temporal models, software design and develop-

ment, and assessing and supporting with real and simulated data. The ultimate goal of this research is to

improve plant breeding practices and contribute to global food security.

1.4 Thesis outline

The remainder of this thesis is organised as follows. We first introduce two motivating HTP data in Chapter

2. They are the greenhouse PhenoArch platform at INRAE Montpellier and the FIeld Phenotyping plat-

form (FIP) at ETH Zürich. In this chapter, we use statistical data analysis to comment on different data

characteristics such as the missingness pattern, the curve shape, the variability behaviour, possible factor

interactions, and the spatial variation (and how it changes through time). For the FIP platform, three inde-

pendent trials are available. Therefore, for this particular data, we additionally comment on the consistency

of the genotypic performance across trials.

Chapter 3 contains the theoretical support of this thesis with concepts about P-splines and their extension

to the multidimensional case by using tensor products. Two dimensions are used for spatial models (in the

row and column directions) and three for spatio-temporal models (in the row, column and time directions).

We elaborate on the connection between P-splines and mixed models as the estimation framework. This

chapter outlines some essential technical details mainly used in Chapters 4 and 5.

The main methodological contributions of this thesis are presented in Chapters 4 and 5. To accomplish

the aim of this thesis, we have proposed two approaches to the same problem. The first proposal divides

the problem into two stages (two-stage approach). The first stage (spatial model) focuses on correcting the

phenotypic data for experimental design factors and spatial variation, while the second stage (longitudinal

and hierarchical model) aims to estimate the evolution over time of the genetic signal. The second proposal

is to face the problem simultaneously (one-stage approach). That is, modelling the longitudinal evolution

8
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of the genetic effect on a given phenotypic trait while accounting for the temporal and spatial effects of

environmental and design factors (spatio-temporal and hierarchical model). We follow the same modelling

philosophy throughout our work and propose P-splines-based models.

For our two-stage approach, we use the SpATS model separately for each measurement time in the

first stage (similarly to van Eeuwijk et al., 2019). The phenotypic data are subsequently corrected by only

considering the (estimated) sources of variation which are of interest plus the residual component (i.e., the

measurement error). The purpose of this stage and subsequent correction is two-fold: (1) to remove nuisance

spatial variation from the phenotypic data, and (2) to keep the data resolution for the second stage at the level

of the experimental unit (through the incorporation in the correction of the residual component). This is one

of the main differences to the proposals described by van Eeuwijk et al. (2019) and Kar et al. (2020), and it is

routinely applied for data derived from the field phenotyping platform of ETH Zurich (Anderegg et al., 2020;

Kronenberg et al., 2021; Perich et al., 2020). Since analyses are performed separately for each measurement

time, our modelling strategy implicitly permits the spatial variation to differ among measurement times, i.e.,

it allows correcting for both the spatial and temporal evolution of environmental variables and experimental

design factors. The second stage of our proposal focuses on modelling the genetic signal as a function

of time for the corrected phenotype obtained in the first stage. Data for this stage consist of time-series

of spatially corrected phenotypic trait measurements per experimental unit with a three-level hierarchical

structure (populations, genotypes within populations, and plants within genotypes). We propose the use of

P-spline hierarchical curve data models (psHDM) along the lines of the work by Durban et al. (2005) and

Greven and Scheipl (2017).

Furthermore, we propose a one-stage approach to overcome the computational issues reported by Ver-

byla et al. (2021) and take advantage of all the available information given by the data structure. We use a

spatio-temporal P-spline hierarchical curve data model (spatio-temporal psHDM). In particular, we gener-

alise our two-stage modelling strategy to a full and one-stage spatio-temporal approach. We use the SpATS

model as the base model and extend it to the spatio-temporal case, considering a three-level hierarchical data

structure. Figure 1.2 depicts a comparative pictorial representation of both approaches in terms of inputs,

modelling strategies and outputs.

For both approaches, we exploit the connection between P-splines and linear mixed models and propose

to use computationally appealing tools that take advantage of the sparse structure of the matrices involved in

the models to reduce computational complexity. As a result, we obtain estimated curves and their derivatives

at the three levels of the hierarchy (populations, genotypes and plants). We use these curves to extract differ-

ent time-independent characteristics. They can serve as inputs to subsequent statistical analyses aiming to

model genotype-by-environment interactions in biologically endpoint traits, like yield, regarding underlying

component traits (see, e.g., Moreira et al., 2020; van Eeuwijk et al., 2019).

Chapters 6 and 7 are devoted to comparing and assessing the performance of the one- and two-stage

9
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Raw data SpATS model 
per time point

Spatially corrected data

First stage → Environmental Correction

P-spline 
hierarchical 
curve data 

model,
psHDM

Trajectories / deviations / 1st-order derivative 
plants / genotypes / populations

Second stage → Temporal evolution of the genetic signal

T w o - S t a g e   A p p r o a c h

Spatio-temporal effects
+
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=
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O n e - S t a g e   A p p r o a c h

Raw data Trajectories / deviations / 1st-order derivative 
plants / genotypes / populations

Error propagation

Figure 1.2: One and two-stage approaches in a pipeline.

approaches. In Chapter 6, spatio-temporal simulated data are used, while in Chapter 7, we analyse the two

HTP data sets described in Chapter 2. To ensure consistency between the two approaches, we establish

a common setting for both simulation and real-data analysis. The simulation study aims to support our

research results and validate our approaches by exploring the impact of different variables and scenarios

in a controlled environment. Simulation studies in this setting are relatively uncommon (see, e.g., Bustos-

Korts et al., 2019; Roth et al., 2021), partly due to the (statistical and biological) complexity of the system,

which makes the data generation mechanism a challenging task. We based the simulation setting and data

generating model on our learnings with real HTP data analysis. To minimize bias, we propose a data

generating model that is independent of the statistical models used for analysis. We are aware that our

simulations involve some simplifications and assumptions that may not accurately reflect the complexities

and specific features of real HTP data. Thus, to contrast the simulation findings, we analyse data from two

different HTP platforms. Results with these two examples provide insights into factors not considered in the

simulation, which will constitute important lines of future research.

As an effort to share our work and contribute to the progress of scientific knowledge, we have im-

plemented the proposed approaches in the R language (R Core Team, 2023). For the one- and two-stage

approaches, we propose functions to fit, predict, plot and extract time-independent characteristics. We show

the functionalities of the code available in Chapter 8. By sharing our software code, we expect to ensure

reproducibility of scientific results and to promote collaboration in the scientific community. We provide the

user with one example to reproduce the results for the PhenoArch platform. Accordingly, it is our wish that

other researchers can verify our findings, reproduce the analysis, and build upon our work. Moreover, we

10



11 Chapter 1. Introduction

aim to bring plant scientists closer to user-friendly statistical tools to support their decision-making process.

Most of the content of this thesis has been discussed in different academic spaces. Chapter 4 were pub-

lished in Scientific Reports (Perez-Valencia et al., 2022). Chapters 5, 6 and 7 were comprised and submitted

to the Journal of Agricultural, Biological and Environmental Statistics (JABES), but it is available in its

BioXiv version (Perez-Valencia et al., 2023). All the functions presented in Chapter 8 are publicly avail-

able through the statgenHTP R-package (two-stage approach) and in https://gitlab.bcamath.org/dperez/

htp_one_stage_approach (one-stage approach). Finally, this thesis ends with some conclusions in which the

contributions of this thesis are summarised and some lines for future research are discussed in Chapter 9.

11
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Chapter 2

Motivating examples: HTP data description

In this thesis, we analyse data of two experiments from two different HTP platforms: the PhenoArch plat-

form (INRAE Montpellier; Cabrera-Bosquet et al., 2016) (greenhouse, Figure 2.1(a)) and three independent

trials (2015, 2016 and 2017) performed at the FIP (FIeld Phenotyping) platform (ETH Zürich; Kronenberg

et al., 2017) (field, Figure 2.1 (b)). In this chapter, we introduce the particularities of each platform and

describe the data by means of a statistical descriptive analysis.

(a) PhenoArch platform at INRAE Montpellier

(image source: INRAE).

(b) FIP platform at ETH Zürich

(image source: ETH crop science).

Figure 2.1: Overview of two HTP platforms: (a) PhenoArch platform at INRAE Montpellier (greenhouse),

and (b) FIP platform at ETH Zürich (field).

13



2.1. PhenoArch platform (INRAE Montpellier) 14

2.1 PhenoArch platform (INRAE Montpellier)

The PhenoArch platform is hosted at M3P, Montpellier Plant Phenotyping Platforms (https://www6.

montpellier.inra.fr/lepse/M3P). It is composed of a conveyor belt structure of 28 lanes carrying 60 carts

with one pot each (i.e. 1680 pots on a rectangular grid of 60 rows and 28 columns (see Figure 2.1(a)), plus a

conveyor belt system that feeds the imaging or the watering units. Pots are daily moved to be imaged and/or

watered. They are then moved back to the same positions and orientation, so that the plant position with re-

spect to its neighbours is conserved throughout the experiment. The data analysed in this thesis correspond

to an experiment including two different panels of commercial maize hybrids representative of breeding

history in Europe and US during the last 60 years. This material covers a wide range of plant architecture,

growth and development. A total of 90 genotypes were tested, 60 genotypes in Panel 1 and 30 genotypes

in Panel 2. Each genotype was replicated between 4 (Panel 2) and 14 (Panel 1) times, approximately. All

genotypes were tested under two levels of soil water content: mild water deficit (WD, soil water potential of

−0.5 MPa) and retention capacity (WW, soil water potential of −0.05 MPa). The experiment was carried out

in 2017 between April 13th and May 15th, corresponding to 103 and 135 days since January 1st (hereafter

referred as DOY, Day of the Year), respectively. Red-green-blue (2056 × 2454) images taken from 13 views

(12 side views from 30° rotational difference and one top view) were captured daily for each plant. Plant

pixels from each image were segmented from those of the background and used for estimating the whole

plant leaf area (among other features), as described in Brichet et al. (2017). Concerning the experimental

design, a randomised complete block design was implemented for all four panel-by-water regime combina-

tions, as depicted in Figure 2.2. This figure illustrates that the panel-by-water regime combinations were

allocated by columns (blocks), and the assignment of genotypes to the experimental units (plants) within

a block was done randomly. To be more specific, Panel 1 comprised ten complete blocks for WD and 14

for WW, while Panel 2 had four blocks for WD and four blocks for WW. In Panel 1, whole columns were

utilised as blocks, whereas in Panel 2, half columns were employed as blocks. It is important to note that the

blocks belonging to a particular panel-by-water regime combination were not all contiguous but were rather

dispersed over the entire 60 × 28 grid to ensure comprehensive coverage of the platform’s total variability

as effectively as possible. The dataset consists of 32 leaf area measurements on 1656 plants (1656 × 32 =

52992 observations, including missing data). We briefly characterise this dataset by a descriptive analysis:

1. Time series curves with missing values at both the plant and genotype level (i.e., with plants or

even genotypes not measured for some times). Figure 2.3 shows the evolution over time of the raw

leaf area data for plants in each panel by water regime. A total of 38930 (out of 52992) observations

are available. There are between 5 to 13 missing values per plant curve (not all of them at the same

time points), and 8 of the 90 genotypes are not measured at one time point. In addition, missing

values are more present at the end of the experiment than at the beginning. That is, for the first 16

time points, we have 22234 (out of 26496) available data points, while for the second half of the

14
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Figure 2.2: Descriptive analysis of the PhenoArch platform: Illustrative visualisation of the grid with the

randomisation used for the PhenoArch experiment. The size of the grid is R × C = 60 × 28, for a total of

M = 1648 plants (white spaces are missing values). Each cell represents a plant (i = 1, . . . ,M). Colours

depict locations for plants in each panel by water regime. Highlighted colours depict replicates in two

selected genotypes (as illustration): A17 and B08 in Panel 1 and 2, respectively, under the two water regimes.
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2.1. PhenoArch platform (INRAE Montpellier) 16

observation period of the experiment, only 16696 values are accessible.

2. The phenotypic trait (leaf area) is growth-related. Plant-specific trajectories in Figure 2.3 show

J-shape instead of S-shape curves, which means that information related with the stationary/steady

phase is not available (e.g., asymptote or maximum trait as well as the time point at which this maxi-

mum is reached cannot be recovered).
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Figure 2.3: Descriptive analysis of the PhenoArch platform: Evolution over time of the raw leaf area.

3. Between plants variability increases with time. Figure 2.4 depicts the boxplots of the raw leaf area

for each time point separately for plants in each panel (Panel 1 and 2) and water regime (WW and

WD). In addition, this variability seems to be lower for plants in Panel 2 than those in Panel 1. With

regard to the growth rate (slope, speed or average change of the leaf area through time), well watered

(WW) plants seem to grow faster than those with water deficit (WD).
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Figure 2.4: Descriptive analysis of the PhenoArch platform: boxplots of the raw leaf area grouped by

time point.

4. Different performance of genotypes because of the combination of genetic origin (panel) and
water treatment.. Figure 2.5 shows another view of Figure 2.4. In this case, we are more interested

in showing the differences among panel by water regime combinations. Plants in the two panels be-

have similarly under each water regime, i.e., the leaf area of plants in Panel 1 - WD (red boxplots) /

Panel 2 - WD (blue boxplots), and Panel 1 - WW (green boxplots) / Panel 2, WW (purple boxplots)

are more similar. In addition, plants with the WW treatment (green and purple boxplots) seem to have

16



17 Chapter 2. Motivating examples: HTP data description

better performance (grow more) than those with the WD treatment (red and blue boxplots). These dif-

ferences become greater through time (approximately from time point 127 onwards). Before that time

point, differences in the leaf area seemed to be due to the panel and not to the water regime treatment.
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Figure 2.5: Descriptive analysis of the PhenoArch platform: Boxplots of the raw leaf area by panel

and water regime treatment, grouped by time point.

Another perspective of this behaviour is shown in Figure 2.6. In this case, we emphasise differences

by genotype (we use two genotypes, one per panel, as illustration). Genotype 43, in Panel 1, shows

small differences in the leaf area between plants under the two water regime treatments, and these dif-

ferences are more evident from time point 127 onwards. One important characteristic of the behaviour

of this genotype is that plants in the WD (blue boxplots) treatment have a better (or almost equal) per-

formance than those in the WW treatment (red boxplots), but this behaviour holds up to time point

126, after that period the effect is the opposite. The pattern for genotype 20 in Panel 2 is different:

differences in the leaf area between plants under the two water regime treatments are larger, and they

are evident from early time points; besides, plants in the WW treatment (red boxplots) always have a

better performance than those in the WD treatment (blue boxplots).
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Figure 2.6: Descriptive analysis of the PhenoArch platform: Boxplots of the raw leaf area for two

genotypes (one per panel, for illustration), grouped by time point and water regime treatment.

5. Presence of nuisance spatial variation over time. Figure 2.7 depicts the spatial distribution of the

raw leaf area at four different measurements times (for illustration), where the spatial component

smoothly changes over time.
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Figure 2.7: Descriptive analysis of the PhenoArch platform: Spatial distribution of the raw leaf area

at four different measurements times (t = 108, 112, 115, 117 DOY) (white spaces are empty pots).

6. Observations arising on the same plant, genotype or panel-by-water regime combination are
serially correlated, and the covariance increases as a function of the shared grouping levels. We

follow the ideas in Di et al. (2009) to estimate the empirical covariance structure at the three levels

of the hierarchy as shown in Figure 2.8: (i) the within plants covariance (Cov.plant), i.e., covariance

within plant-specific trajectories; (ii) the within genotypes covariance (Cov.geno), i.e., covariance

between plant-specific trajectories, calculated as the cross-sectional empirical means for all plants by

genotype; and (iii) the within panel-by-water regime treatments (Cov.pop), i.e., covariance between

genotypes of the same panel-by-water regime trajectories, calculated as the cross-sectional empirical

means for all plants by panel-by-water regime. As expected, the covariance increases over time and

it is higher for inner levels of the hierarchy (within plants covariance is the highest, followed by

covariances within genotypes, and lastly covariances within populations).
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Figure 2.8: Descriptive analysis of the PhenoArch platform: Empirical covariance structure.
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19 Chapter 2. Motivating examples: HTP data description

2.2 FIP platform (ETH Zürich)

The FIP platform, located at the ETH research station in Lindau-Eschikon (Switzerland), is a cable-

suspended multi-sensor platform designed for automated, accurate and supervised high throughput data

acquisition on an area of 1 hectare (Kirchgessner et al., 2016). From 2015 to 2017 (three different trials,

one per year), the FIP platform was used to measure the development of canopy height on a diverse panel

of European wheat genotypes (GABI wheat; Kollers et al., 2013), including a panel of Swiss varieties

(Kronenberg et al., 2021; Kronenberg et al., 2017; Perich et al., 2020). Figure 2.1(b) shows the FIP platform

with its crop rotation allocated to six different lots; for each trial, the wheat experiment was planted in two

different lots, as shown in Table 2.1. Details on the experimental design can be found in Kronenberg et al.

(2017) and Kronenberg et al. (2021). Figure 2.10 depicts the randomisation used for the three trials (2015,

2016 and 2017) of the FIP experiments. In short, the experimental unit was a plot to which the genotypes

were allocated as the only treatment factor in an augmented 2D design. Checks (one for the 2015 and 2016

trials, and three for the 2017 trial) and test genotypes were allocated in a row-column design assuming

that each row within a replicate (lot) received different environmental conditions (due to variability of crop

husbandry measures, such as crop protection and fertilisation) while the upper, central and lower range of

each lot received similar conditions (due to the similar slope direction within both lots). Canopy height

measurements were carried out in irregular day intervals between February and July (depending on the trial,

as indicated in Table 2.1), using a terrestrial laser scanner mounted on the FIP sensor head (Kronenberg

et al., 2017). To analyse the experiment, we arranged the two replicates (lots) diagonally in a virtual grid

with the number of rows and columns as indicated in Table 2.1. Additionally, the country in which a

genotype was first inscribed into the European variety catalogue was also considered in the analyses. We

used this information to allocate the genotypes to different wheat populations targeted at specific European

regions. We will refer to these wheat populations (groups of genotypes) as regions of origin. Accordingly,

plots are nested in genotypes, and genotypes are nested in regions of origin (wheat populations). The

number of genotypes by region of origin and per trial is presented in Figure 2.9, where 313 genotypes were

common to all three trials. The final dataset configuration of each trial for this platform is in Table 2.1. For

the three trials 7 populations (regions of origin) are considered.

As for the PhenoArch platform data, we now describe some particularities of this dataset through a

descriptive analysis:

1. Time series curves at irregularly spaced time points. Figure 2.11 shows the evolution over time of

the raw canopy height by region of origin per trial. In contrast to the PhenoArch data, the FIP platform

has 533 of missing observations, which is insignificant compared to the available data (42358 for the

three trials). The characteristic of these time series curves relies on observations measured at irregular

19



2.2. FIP platform (ETH Zürich) 20

Trial 2015 2016 2017

Lots 1 and 6 3 and 4 2 and 6

Row × Col (each lot) 17 × 21 18 × 20 18 × 21

Experimental dates (dd/mm) 27/04 - 25/06 11/04 - 04/07 27/02 - 30/06

Experimental dates (DOY) 117 - 176 102 - 186 58 - 181

Time points 17 21 23

Time between measurements (days) 3 - 5 2 - 8 2 - 13

Plots 680 678 720

Genotypes 322 319 334

Observations (including missing data) 11560 14238 16560

Table 2.1: Experimental configuration of each trial for the FIP platform (ETH Zürich)

Great Britain (GB)
39 / 38 / 38

 Poland (PL)
25 / 25 / 25

 France (FR)
91 / 92 / 90

Sweden/Denmark (SE/DK)
12 / 12 / 11

Switzerland (CH)
28 / 25 / 39

Austria/Czechia 
(AT/CZ)

15 / 15 / 17

Germany (DE)
112 / 112 / 114

Figure 2.9: Number of genotypes by region of origin and for the three trials (2015, 2016 and 2017) for the

FIP platform (ETH Zürich).

time points (Table 2.1 specifies the distance between time points for each trial, and x−axis in Figure

2.11 specifies time points at which observations were measured). Particularly, trait values for the 2017

trial are more spaced at the beginning and at the end of the period of observation. This characteristic

also makes it difficult to calculate the empirical covariance structure as is depicted in Figure 2.8 for

the PhenoArch dataset.
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Region of origen AT/CZ CH DE SE/DK FR GB PL

Figure 2.10: Descriptive analysis of the FIP platform: Illustrative visualisation of the grid with the randomi-

sation used for the three trials of the FIP experiments, (a) 2015, (b) 2016 and (c) 2017. Each cell represents

a plant (i = 1, . . . ,M), white spaces are missing values. Colours depict locations for plants in each region of

origin. Highlighted colours depict replicates in one selected genotype by region of origin (as illustration).
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2.2. FIP platform (ETH Zürich) 22

2. The phenotypic trait (canopy height) is growth-related. Plant-specific trajectories in Figure 2.11

show S-shape curves. Nevertheless, information related to the initial/lag phase is unavailable for

curves in trials 2015 and 2016.
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Figure 2.11: Descriptive analysis of the FIP platform: Evolution over time of the raw canopy height

by region of origin (AT/CZ: Austria/Czechia, CH: Switzerland, DE: Germany, SE/DK: Sweden/Den-

mark, FR: France, GB: Great Britain, PL: Poland) for the three trials (2015, 2016 and 2017).

3. Different performance of canopy height possibly due to regions of origin. Figure 2.12 depicts the

raw canopy height by trial, grouped by time point and region of origin. In this figure, we can observe

the following:

• Between plants variability increases with time, and this variability differs among regions
of origin. For example, plant-specific trajectories from genotypes in regions of origin SE/DK

and GB present lower variability than those in regions of origin AT/CZ and DE; this pattern

remains more or less the same throughout the three trials.

• Plants from genotypes in regions of origin PL and AT/CZ achieve (on average) larger canopy

height values than those from SE/DK or GB; as for the between plants variability, this pattern

remains more or less the same throughout the three trials. Nevertheless, the first maximum

height time point seems different, even between trials. Generally, plants harvested in the 2016

trial achieved higher canopy height values.

• Clustering of genotypes by region of origin changes over time. For example, for the three tri-

als, three regional clusters are achieved in the steady/stable stage (up to time point 158, approx-

22



23 Chapter 2. Motivating examples: HTP data description

imately): GB-PL-SE/DK ("northern" Europe), are the clusters with the lowest canopy height

values (as well as the lowest variability); CH-DE (central Europe) is the cluster with middle

canopy height values; and finally, AT/CZ-PL (eastern Europe) is the cluster with the highest

canopy height values. This grouping is consistent with the geographic location of the regions of

origin in Europe (see map in Figure 2.9). Additionally, observe that clustering seems to change

through time according to the growth curve stages (i.e., clusters are more or less stable in the lag

phase, exponential phase, and steady phase of each trial).
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Figure 2.12: Descriptive analysis of the FIP platform: Boxplots of the raw canopy height by trial,

grouped by time point and region of origin.

4. Genotype by trial interaction (this can be done for the 313 genotypes common to all three trials).

In Figure 2.13, we compare the raw canopy height over time for the two replicates of one genotype

by region of origin across trials (for illustration). For instance, for the 2016 trial (green boxplots),

genotype 278 has a better average performance than genotype 110, but this behaviour is not the same

for the other two trials. Additionally, this performance can change over time, e.g., for the 2017 trial

23



2.2. FIP platform (ETH Zürich) 24

(blue boxplots) the average performance of genotype 278 is better than the one for genotype 110

during the lag and exponential phases, but the behaviour is opposite in the stable phase. In this case,

we compare just two genotypes, but even when common genotypes were used, information about

"best" (or "worst") genotypes that are common to the three trials, or genotype improvement across

trials could be extracted. We also can observe differences in the plant-to-plant variation (or within

genotype variation) through trials. For instance, genotypes 8 and 166 have higher within genotype

variation for the 2016 trial than for the 2015 and 2017 trials.
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Figure 2.13: Descriptive analysis of the FIP platform: Evolution over time of the raw canopy height

for the two replicates of one genotype by region of origin (as illustration) for the three trials (2015 in

red, 2016 in green, and 2017 in blue).

5. Effect of external environmental factors. For example, Figure 2.14 depicts the raw plant-specific

trajectories (grey lines) and the mean temperature (blue line) for the 2017 trial. The temperature has

a particular effect during the cold period in April (DOY 110-120) on the "standard" S-shape of the

plant-specific curves (that is, they are temporarily disrupted).
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Figure 2.14: Descriptive analysis of the FIP platform: raw plant-specific trajectories (grey lines) vs.

mean temperature (blue line) for the 2017 trial.

6. Presence of nuisance spatial variation over time. Figure 2.15 depicts, for the three trials, the

spatial distribution of the raw canopy height at three measurement times (for illustration). As for the

24



25 Chapter 2. Motivating examples: HTP data description

PhenoArch dataset, the spatial component smoothly changes over time. In this case, the additional

lot effect (experimental design factor) can be observed in these spatial plots. For instance, for the

2017 trial in Figure 2.15(c), replicates in lot 2 (see Figure 2.1 (b) to better identify the position of the

lots in the field) have smaller canopy height values than those in lot 6. We note that, an additional

characteristic of this experiment is the non-adjacent lots.
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Figure 2.15: Descriptive analysis of the FIP platform: Spatial distribution of the raw canopy height at three

measurement times for all three trials: (a) 2015 (t = 127, 134, 147 DOY), (b) 2016 (t = 112, 130, 148 DOY),

and (c) 2017 (t = 103, 122, 135 DOY). We note that columns 1 to 19 are missing for the 2017 trial (lots 2

and 6 are sown as indicated in Figure 2.1(b)).
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Chapter 3

P-splines, tensor products and mixed
models

In the context of HTP data, we are interested in modelling a phenotype of interest (e.g., plant height, canopy

cover, leaf area index, ear and tiller counts, canopy temperature), as a function of some covariates (e.g., pop-

ulations of genotypes, genotypes, time, row and column position of the plant/plot in the field/greenhouse).

For simplicity, let’s consider the one-dimensional case in which we want to study, e.g., the evolution over

time of a phenotype of interest for one plant of a given genotype. As illustration, Figure 3.1 depicts the

temporal evolution of three different phenotypes from three different experiments.
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(c) Efficiency of the photosystem II

Figure 3.1: Temporal evolution of three different phenotypes for one plant on a given genotype (as illus-

tration) for three different experiments: (a) Canopy height (FIP platform, ETH, Zürich, Switzerland), (b)
Leaf area (PhenoArch platform, Montpellier, France), and (c) Efficiency of the photosystem II (PhenoVator

platform; data available in the R-package statgenHTP, Millet et al., 2022).
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To model the relationship between the phenotype and time we consider the following regression model

y(t) = fT(t) + ε(t), ε(t) ∼ N(0, σ2), t ∈ {t1, . . . , tn}, (3.1)

where fT(t) is an unknown function, and ε(t) is an error with variance σ2. We can be tempted to assume

a parametric form for fT(t) as first approach. For instance, to model the temporal evolution of the canopy

height in Figure 3.1(a), we can start describing a linear relation. Clearly, it is not linear, then we can propose

a polynomial function. Another alternative is to use a logistic function, which has demonstrated to be a

good approach for (S-shaped) growth curves (Paine et al., 2012). Nevertheless, in the context of HTP data,

parametric approaches can be very restrictive (and particular) to the shape of the phenotypic curve (e.g.,

Figure 3.1 shows three different shapes). Instead, more flexible approaches can be applied that overcome

the limitations of parametric specifications. One example are the well-known penalised splines (P-splines,

Eilers & Marx, 1996). Figure 3.2 shows estimated curves for the data shown in Figure 3.1(a) based on

different approaches. This thesis is focused on P-splines. It is a very appealing approach that thanks to

its connection with the linear mixed model, offers a rich framework for estimation and inference (Currie

& Durban, 2002; Wand, 2003), even in the presence of missing data. Moreover, we can easily obtain the

derivatives of the estimated curves, which can provide important insights for the decision-making process

in plant breeding.

Linear Polynomial Logistic P−splines
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Figure 3.2: (a) Estimated curves for the temporal evolution of the canopy height shown in Figure 3.1(a). Four

different approaches are depicted: linear regression, polynomial regression, logistic function and P-splines.

Raw canopy height is in black and estimated curves are in blue. The estimated curve using P-splines is in

orange to indicate our choice.

The remainder of this chapter is devoted to a detailed description of the specification of P-spline-based

models in one, two and three dimensions. These models form the basis of the proposals presented in Chap-

ters 4 and 5, that constitute the methodological contribution of this thesis. In this Chapter we also discuss and

present the procedures for the estimation of P-spline models. This includes their mixed model formulation,

parameters and derivatives estimation, and calculation of pointwise confidence intervals.

28



29 Chapter 3. P-splines, tensor products and mixed models

3.1 P-splines overview

P-splines were introduced by Eilers and Marx (1996), but more details about this smoother can be found in

their recent book (Eilers & Marx, 2021). The two principal elements of P-splines are B-splines (for more

details, see de Boor, 1978) and discrete penalties on the regression coefficients. We first describe P-splines

for one-dimension and later present the extension to multidimensional P-splines. Particularly, due to the

spatial and temporal dimensions that characterise the kind of HTP data we deal with, we will naturally

focus on spatio-temporal models. For P-splines in one dimension, we will specify a temporal model. Then,

for the bi-dimensional case, we will explicitly comment on spatial models, and for three dimensions, we

will discuss on spatio-temporal models.

3.1.1 P-splines in one dimension: temporal effect

Following the problem presented above, we are interested in studying the temporal evolution of a phenotype

of interest y(t), for one plant on a given genotype. Let fT(t) in (3.1) be approximated by a linear combination

of b1 known B-splines basis functions of degree q defined over a sequence of equally-spaced knots, i.e.,

fT(t) =
b1∑︂

k1=1

Bk1(t; q)θk1 , (3.2)

where θT = (θ1, . . . , θb1)T is a vector of unknown regression coefficients that controls the shape of the curve.

In matrix form we write,

f T = BTθT,

where f T = ( fT(t1), . . . , fT(tn))T , and BT is a (temporal) B-spline design matrix with n rows (i.e., the number

of observations/time points for one plant) and b1 columns, i.e.,

BT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
B1(t1; q) B2(t1; q) · · · Bb1(t1; q)
...

...
. . .

...

B1(tn; q) B2(tn; q) · · · Bb1(tn; q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3.3)

Note that (BT) jk1 = Bk1(t j; q) is the k1th B-spline basis function evaluated at time point t j, and q is the

degree of the B-spline basis. A graphical representation of B-spline basis functions for different values of q

is shown in Figure 3.3.

Under specification (3.2), model (3.1) is purely parametric, and θT is estimated by minimising the resid-

ual sum of squares RSST = ∥y − BTθT∥
2. Then the (unpenalised) estimator of θT accepts a closed-form

expression with the explicit solution θ̂T = (BT
T BT)−1BT

T y. When working with B-splines, two choices must

be made: (i) the B-spline degree, q, and (ii) the number of basis functions, b1. In Figure 3.4(a) estimated

curves using B-splines of degree 1 to 4 are compared. Given the nature of our data and that we are interested
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3.1. P-splines overview 30
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Figure 3.3: Illustrative visualisation of B-splines basis functions with 7 segments, equally-spaced knots

(black points along time), and different degree-orders (q = 1, 2, 3, 4).

in estimating derivatives, along this thesis we will work with cubic B-splines (i.e., q = 3). Figure 3.4(b)

depicts results for estimated curves using cubic B-splines for different basis dimensions, b1. In general, the

higher this number, the wigglier the estimated curve.

One option to control the amount of flexibility given by the choice of a large number of basis functions,

b1, while keeping a smooth fit, is to penalise the regression coefficients, θT. In P-splines, the idea is to form

(the sum of squares of) differences of order d on the vector of regression coefficients, i.e.,

b1∑︂
k1=d+1

(︂
∆dθk1

)︂2
= θT DT

1 D1θT. (3.4)

Here, ∆d forms differences of order d, i.e., ∆θk1 = θk1 − θk1−1, ∆2θk1 = θk1 − 2θk1−1 + θk1−2, and so on

for higher d; and D1 is simply the matrix representation of ∆d. Note that if neighbouring elements of θT

are similar/dissimilar, then the coefficient differences will be small/large. As illustration, Figure 3.5 shows

second order differences (i.e., d = 2) on adjacent coefficients. Thus, (3.4) can be used to measure how

“rough” θT is and to penalised its estimate. To that end, the residual sum of squares RSST is modified, and

a penalised residual sum of squares is considered instead

RSST + λ1θ
T
T PTθT⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞

Penalty term

, (3.5)

where PT = DT
1 D1, and λ1 is a smoothing parameter that sets the weight of the penalty: the larger λ1, the

smoother the result will be. In other words, λ1 controls the trade-off between fidelity to the data (when λ1

is small) and smoothness of the function estimate (when λ1 is large). It is easy to show that, for a given λ1,
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(a) B-splines-based estimated curves with different order, q.
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(b) Cubic B-splines estimated curves with different basis dimensions, b1.

Figure 3.4: B-splines-based estimated curves (in blue), for the canopy height shown in Figure 3.1(a), with

equally-spaced knots (black points along time), together with the B-splines basis functions, scaled by the

estimated coefficients, θ̂T, and (a) different degree orders (q = 1, 2, 3, 4) with 7 segments (nseg = b1 − q);

estimated curves for q = 3 are in orange to indicate our choice, (b) different number of basis functions

(b1 = 8, 11, 14), and q = 3.
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Days since January 1st

Figure 3.5: Illustrative visualisation of second order differences on adjacent coefficients of b1 = 8 cubic

B-splines basis functions.
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the solution of (3.5) also accepts a closed-form expression

θ̂T = (BT
T BT + λ1 PT)−1BT

T y. (3.6)

Figure 3.6(a) depicts estimated curves using P-splines with different d values; in this thesis, we will use

second-order differences (i.e., d = 2). Figure 3.6(b) shows results using different values for the smoothing

parameter; the larger the λ1, the smoother the result. After the number of B-spline basis functions is fixed,

the only tuning mechanism for smoothness is the strength of the penalty, i.e., the value of the smoothing

parameter λ1. Accordingly, a critical issue is setting the right value for λ1, which we like to see determined

by the data. We discuss this point in detail in Section 3.2.

d = 1 d = 2 d = 3

58 78 99 120 140 160 181 58 78 99 120 140 160 181 58 78 99 120 140 160 181

0.0

0.3

0.6

0.9

Days since January 1st

C
an

op
y 

he
ig

ht
 (

m
)

(a) P-splines-based estimated curves with different dorder difference.
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(b) P-splines-based estimated curves with different smoothing parameter λ1.

Figure 3.6: P-splines-based estimated curves (in blue), for the canopy height shown in Figure 3.1(a), with

equally-spaced knots, along with the cubic B-splines basis functions, scaled by the estimated (penalised)

coefficients, θ̂T, and (a) different d-order differences (d = 1, 2, 3), b1 = 11, q = 3 and λ1 = 0.1; estimated

curves for d = 2 are in orange to indicate our choice (b) different values for the smoothing parameter

(λ1 = 0, 0.1, 0.5, 1), b1 = 11, q = 3, d = 2.
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33 Chapter 3. P-splines, tensor products and mixed models

3.1.1.1 Derivatives

When working with B-splines, derivatives from curves of the form (3.2) can be easily obtained using the

formula given by de Boor (1978). In general, derivatives of order h can be computed as follows (Eilers &

Marx, 2021)

∂h

∂th fT(t) =
∂h

∂th

b1∑︂
k1=1

Bk1(t; q)θk1 =

b1∑︂
k1=h+1

Bk1(t; q − h)(∆hθk1)/ωh, (3.7)

where Bk1(t; q − h) is a B-spline basis function of degree q − h (it can be obtained explicitly), ∆h forms

differences of order h (in a similar fashion to expression (3.4)), and ω is the length of the domain of t

divided by the number of segments. Note that the condition h ≤ q must be satisfied, otherwise the derivative

will be zero. In our case, as we are explicitly working with cubic B-spline basis (i.e., q = 3), we can compute

derivatives up to order h = 3. Note that based on equation (3.7) it seems reasonable to estimate the hth order

derivative of function fT by plugging into (3.7) an estimate of θ̂T using (3.6).

3.1.2 Multidimensional P-splines and tensor products

We now move to multidimensional P-splines where more than one effect will be considered to model a phe-

notype of interest. For instance, in two-dimensions (rows and columns) we will talk about the spatial effect,

and in three-dimensions (rows, columns and time) we will comment on spatio-temporal effects. As a first ap-

proach linear additive functions (i.e., sum of one-dimensional functions) without interactions could be used.

Instead, to allow for interactions between the covariates, we will use tensor products of one-dimensional

cubic B-spline basis while simultaneously penalising the coefficients on each dimension considered (Eilers

& Marx, 2021). Nevertheless, one important computational implication of the use of tensor products is that

the size of the problem grows with the number of dimensions required.

3.1.2.1 Two-dimensional P-splines: Spatial effect

As we said before, our motivation to use two-dimensional P-splines comes from the need to study the

spatial pattern of a phenotype of interest yi (i = 1, . . . ,M) given by the location of M plants, in a rectangular

grid (two-dimensional space) with R rows and C columns. We use r and c for indices of row and column

position, respectively (r = 1, . . . ,R; c = 1, . . . ,C). With a slight abuse of notation, we use r(i) and c(i)

to denote the row and column position of the ith plant, respectively. As example, Figure 2.15 depicts the

spatial distribution of the raw canopy height for the FIP platform data, at one measurement time for all three

trials. As a first approach, an interaction model in two dimensions that can describe the spatial pattern of a

given phenotype is

yi = fS(r(i), c(i)) + εi, εi ∼ N(0, σ2), i = 1, . . . ,M (3.8)

33



3.1. P-splines overview 34

where fS(r, c) is a smooth and unknown function that can be approximated by the tensor product of two

one-dimensional cubic B-spline basis (one for each direction: row and column)

fS(r, c) =
b2∑︂

k2=1

b3∑︂
k3=1

Bk2(r)Bk3(c)θk2k3 =

b2∑︂
k2=1

b3∑︂
k3=1

Bk2k3(r, c)θk2k3 ,

where θS = (θ11, . . . , θb21, . . . , θb2b3)T is a vector of unknown regression coefficient. In matrix form, we have

f S = BSθS,

where f S = ( fS(r(1), c(1)), . . . , fS(r(M), c(M)))T , and BS is a (spatial) cubic B-spline design matrix such

that

BS = B2□B3 = (B2 ⊗ 1T
b3

) ⊙ (1T
b2
⊗ B3), (3.9)

where BS, of dimension M × b2b3, is calculated as the “box" product (the face-splitting product or row-wise

Kronecker product, denoted as □; Eilers et al., 2006; Slyusar, 1999) of two one-dimensional cubic B-spline

design matrices in the row and column directions, B2 and B3, ⊗ denotes the Kronecker product, and ⊙

the element-wise (Hadamard) product. We note that (B2)M×b2
ik2

= Bk2(r(i)), and (B3)M×b3
ik3

= Bk3(c(i)). For

instance, Figure 3.7(a) is an illustrative representation of one tensor product of two one-dimensional cubic

B-spline basis functions, Bk2(r) and Bk3(c). Figure 3.7(b) shows a portion (nine of them) of tensor products

of two one-dimensional cubic B-spline basis functions.

Row Column

2D
 B

−
spline

Row Column

2D
 B

−
spline

(a) One tensor product

Row Column

2D
 B

−
spline

Row Column

2D
 B

−
spline

(b) Nine tensor products

Figure 3.7: Illustrative visualisation of the tensor product of two one-dimensional cubic B-splines basis (in

the row and column directions): (a) one tensor product of Bk2(r) and Bk3(c), (b) nine tensor products.

As for the one-dimensional case, in the two-dimensional setting smoothness is achieved by penalis-

ing coefficient differences, but now it has to be done along both the rows and columns. In particular, the

penalised residual sum of squares is

∥y − BSθS∥
2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

RSSS

+θT
S (λ2Ib3 ⊗ P2 + λ3 P3 ⊗ Ib2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Spatial anisotropic penalty, PS

)θS, (3.10)
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35 Chapter 3. P-splines, tensor products and mixed models

where Pν = DT
ν Dν, ν ∈ {2, 3}, and Dν are second-order difference matrices. These difference penalties allow

small discrepancies for adjacent coefficients within the same row or column (Eilers & Marx, 2003). We note

that we are dealing with an anisotropic penalty in the sense that a different amount of smoothness on each

dimension (λ2 and λ3) is allowed. The solution to the penalised residual sum of squares (3.10), given λ2 and

λ3 is

θ̂S = (BT
S BS + PS)−1BT

S y, (3.11)

where the size of the system of equations is b2b3, the product of the number of columns of B2 and B3. As for

the one-dimensional case, setting correct values for the smoothing parameters will be discussed in Section

3.2.

3.1.2.2 Three-dimensional P-splines: Spatio-temporal effects

Our motivation for the three-dimensional case is to model spatio-temporal effects simultaneously. The space

is in two dimensions, rows and columns, and we need a third dimension for time. Then, yi(t) is the phenotype

of interest for the ith plant (i = 1, . . . ,M) measured at time t ∈ {t1, . . . , tn}. Plants are located in a rectangular

grid (two-dimensional space) with R rows and C columns. As for the two-dimensional case, we use r and

c for indices of row and column position, respectively (r = 1, . . . ,R; c = 1, . . . ,C), and r(i) and c(i) to

denote the row and column position of the ith plant, respectively. Note that we assume that all plants in the

experiment are measured at the same times, but missing data is allowed. For instance, we are interested in

studying the spatio-temporal effects of the leaf area for the PhenoArch platform, as depicted in Figure 2.7.

As a first approach, the three-dimensional interaction model is

yi(t) = fST(r(i), c(i), t) + εi(t), εi(t) ∼ N(0, σ2), i = 1, . . . ,M, t ∈ {t1, . . . , tn}, (3.12)

where fST(r, c, t) is a smooth and unknown three-dimensional function that considers the spatio-temporal

interaction. Following the ideas in Lee and Durban (2011), we approximate this function by using the

tensor-product of three one-dimensional cubic B-splines basis, i.e.,

fST(r, c, t) =
b2∑︂

k2=1

b3∑︂
k3=1

b1∑︂
k1=1

Bk2(r)Bk3(c)Bk1(t)θk2k3k1 =

b2∑︂
k2=1

b3∑︂
k3=1

b1∑︂
k1=1

Bk2k3k1(r, c, t)θk2k3k1 , (3.13)

where f ST = ( fST(r(1), c(1), t1), . . . , fST(r(1), c(1), tn), . . . , fST(r(M), c(M), tn))T = BSTθST, with θST =

(θ111, . . . , θ11b1 , θ121, . . . , θ12b1 , . . . , θ1b31, . . . , θ1b3b1 , θ211, . . . , θ21b1 , . . . , θb2b31, . . . , θb2b3b1)T the vector of co-

efficients, and the compound spatio-temporal B-spline design matrix given by

BST = BS ⊗ BT, (3.14)

where BST of dimension Mn× b2b3b1 is the Kronecker product of the bi-dimensional spatial cubic B-spline

design matrix defined in (3.9), i.e., BM×b2b3
S , and the unidimensional temporal cubic B-spline design matrix
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3.2. P-splines and mixed model formulation 36

defined in (3.3), i.e., Bn×b1
T . As for the bi-dimensional case, smoothness along rows, columns and time is

imposed by an anisotropic penalty such that the penalised residual sum of squares is

∥y − BSTθST∥
2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

RSSST

+θT
ST(λ2 P2 ⊗ Ib3 ⊗ Ib1 + λ3Ib2 ⊗ P3 ⊗ Ib1 + λ1Ib2 ⊗ Ib3 ⊗ PT

T⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Spatio-temporal anisotropic penalty, PST

)θST, (3.15)

where Pν = DT
ν Dν, ν ∈ {1, 2, 3}) are based on second-order difference matrices, and λ1, λ2 and λ3 are the

smoothing parameters. The explicit solution of the penalised objective function (3.15), given λ1, λ2 and λ3

is

θ̂S T = (BT
STBST + PST)−1BT

STy, (3.16)

where the size of the system of equations is b2b3b1. All in all, we have seen how the complexity of the

solution increases with the dimensionality of the problem. In one dimension, it is easy to be generous with

the number of cubic B-spline basis used. For instance, if we use cubic B-spline basis of size b1 = 27, we

will obtain 27 coefficients. For two dimensions, if we use a tensor product of two cubic B-spline basis with,

e.g., b2 = b3 = 27, we will obtain b2 × b3 = 729 coefficients. If we additionally have a third dimension, this

yields b2 × b3 × b1 = 19683 coefficients. Alternatively, to obtain 729 coefficients (as in the bi-dimensional

problem), we would need cubic B-spline basis of size 9 in each direction. Thus, the size of the cubic B-

spline basis together with the data size (a large number of plants and time points), could make the estimation

problem computationally challenging. We discuss this point in detail in Section 3.3.

3.2 P-splines and mixed model formulation

In the previous section, we obtained closed-form expressions for the estimates of the vector of regression

coefficients (see expressions (3.6), (3.11) and (3.16)) for given smoothing parameters. However, when

working with penalised regression, we need to find appropriate values for these smoothing parameters (λν,

ν ∈ {1, 2, 3}), since the results will heavily depend on this choice. To tackle this problem, one option is to

use the connection between P-splines and mixed models through the parameterisation proposed by Currie

and Durban (2002) and Wand (2003). In this parameterisation, the smooth functions are sums of fixed

(unpenalised) and random (penalised) components, and the smoothing parameters are replaced by ratios of

variances, which are estimated by restricted maximum likelihood (REML; Patterson & Thompson, 1971).

As before, we introduce mixed model formulation in one-dimension and we later extend the ideas for the

multidimensional case (two- and three-dimensions).

3.2.1 Mixed model formulation of P-splines in one dimension

For the one-dimensional model (3.2), we note that, for a given smoothing parameter, λ1, the solution to

the penalised residual sum of squares in (3.5) corresponds to the empirical best linear unbiased predictors
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37 Chapter 3. P-splines, tensor products and mixed models

(BLUP) for θT under the assumption that θT ∼ N(0, σ2/λ1 P−T), where P−T denotes the Moore-Penrose inverse

of the penalty matrix PT = DT
1 D1 (we need to work with the generalised inverse since PT is not of full rank).

To obtain a full rank precision matrix (i.e., the inverse of the variance-covariance matrix), we write the P-

spline model as the following standard linear mixed model

y = BTθT + ε = XTβT + ZTuT + ε; ε ∼ N(0, RT), uT ∼ N(0,GT), (3.17)

where XT (with d = 2 columns) and ZT (with b1 − 2 columns) are the mixed model design matrices, βT

and uT are the vectors of fixed and random coefficients, respectively, RT = σ
2In, and GT is the diagonal

variance-covariance matrix for the random effects. To decompose BT in the proposed way, we follow Currie

et al. (2006) and Lee and Durban (2011), and use the singular value decomposition (SVD) of PT = DT
1 D1 =

UTΛTUT
T . Here UT is the matrix of eigenvectors and ΛT is the diagonal matrix of eigenvalues. Let us

also denote UT+ (ΛT+) and UT0 (ΛT0) the sub-matrices corresponding to the non-zero and zero eigenvalues,

respectively (we note that for second-order difference penalties, there are two zero eigenvalues, and thus

ΛT0 = 02 is a 2-by-2 matrix of zeroes). Given that UTUT
T = Ib1 , it is easy to show that the P-spline model

can be parameterised as

y = BTUTUT
TθT + ε

= BT[UT0|UT+][UT
T0|U

T
T+]θT + ε

= BTUT0UT
T0θT + BTUT+UT

T+θT + ε.

(3.18)

As such, XT = BTUT0 and ZT = BTUT+, and βT = UT
T0θT and uT = UT

T+θT (i.e., θT = UT0βT + UT+uT). It

follows that the penalty term in (3.5) can also be rewritten as

λ1θ
T
T PTθT = λ1θ

T
T[UT0|UT+]

⎡⎢⎢⎢⎢⎢⎢⎣ 02 0
0 ΛT+

⎤⎥⎥⎥⎥⎥⎥⎦ [UT
T0|U

T
T+]θT

= λ1[θT
TUT0|θ

T
TUT+]

⎡⎢⎢⎢⎢⎢⎢⎣ 02 0
0 ΛT+

⎤⎥⎥⎥⎥⎥⎥⎦ [UT
TθT|UT

T+θT]

= λ1[βT
T |u

T
T]

⎡⎢⎢⎢⎢⎢⎢⎣ 02 0
0 ΛT+

⎤⎥⎥⎥⎥⎥⎥⎦ [βT|uT]

= λ1uT
TΛT+uT.

That is to say, only uT is penalised, while βT is not. In the equivalent linear mixed model, it implies that βT =

(β0, β1)T is a vector of unpenalised/fixed effects, and uT = (u1, . . . , ub1−2)T is a vector of penalised/random

effects, assumed to be distributed according to ∼ N(0,GT), where GT = σ
2
1ΣT+, with σ2

1 = σ
2/λ1 and

ΣT+ = Λ
−1
T+. That is, the smoothing parameter, λ1, is now the ratio between two variance parameters: the

residual variance, σ2, and the variance of the random effects, σ2
1. Then, the penalised residual sum of

squares (3.5) can be reformulated as

∥y − XTβT − ZTuT∥
2 + λ1uT

TΛT+uT

∥y − XTβT − ZTuT∥
2 + σ2uT

TG−1
T uT.
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3.2. P-splines and mixed model formulation 38

We note that based on the SVD, XT = BTUT0. However, it is sometimes more convenient (or, at least,

it helps to understand the unpenalised/fixed part of a P-spline) to take XT = [1n | t]. In other words, when

using P-splines in combination with a second-order penalty, the space of functions that are not penalised

corresponds to the polynomials of degree 1. Another possible parameterisation for XT is the one proposed

by Wood et al. (2013), in which we also obtain a design matrix with a constant column (no necessarily

of ones). For this purpose, we first obtain X̃T = BTUT0 as before, and then compute the singular value

decomposition of FT
T FT = VTΩTVT

T , with FT = X̃T − 11T X̃T/n (i.e., based on centered values for X̃T),

and then define XT = BTUT0VT. For simplicity, we use the parameterisation XT = [1n | t] to explicitly

understand the expression of the P-spline (3.2) into the mixed model formulation

fT(t) = β0 + β1t +
bt−2∑︂
k1=1

zk1(t)uk1 (3.19)

where {zk1(·) : 1 ≤ k1 ≤ b1 − 2} is the set of basis functions obtained from the connection between P-splines

and linear mixed models.

3.2.2 Mixed model formulation of P-splines in two dimensions

We now turn in the mixed model formulation of the bi-dimensional P-spline model. We present here the

main ideas, but more details can be found in Eilers et al. (2006), Lee (2010), Lee and Durban (2011), and

Lee et al. (2013). As for the one-dimensional case, we need to obtain the mixed model matrices XS and ZS,

the vectors of regression coefficients βS and uS, and the variance-covariance matrix GS, such that

f S = BSθS = XSβS + ZSuS, uS ∼ N (0,GS) , (3.20)

where a diagonal variance-covariance matrix GS can be obtained by simultaneously diagonalising the

marginal penalties P2 and P3 in (3.10). To that aim, we construct a compound (spatial) transforma-

tion matrix, US, on the basis of the transformation matrix for each marginal penalties. In particular, let

Pν = DT
ν Dν = UνΛνUT

ν be the SVD of DT
ν Dν, Uν = [Uν0|Uν+] (ν ∈ {2, 3}), and define US as

US = U2 ⊗ U3

= [U20|U2+] ⊗ [U30|U3+]

= [U20 ⊗ U30⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
US0

|U20 ⊗ U3+|U2+ ⊗ U30|U2+ ⊗ U3+⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
US+

].
(3.21)

Accordingly, the mixed model design matrices XS and ZS are obtained by multiplying the spatial cubic

B-spline design matrix BS in (3.9) and the appropriate component of the transformation matrix US in (3.21)
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XS = (B2□B3)US0

= (B2□B3)[U20 ⊗ U30]

= [B2U20□B3U30]

= [X2□X3]

ZS = (B2□B3)US+

= (B2□B3)[U20 ⊗ U3+|U2+ ⊗ U30|U2+ ⊗ U3+]

= [B2U20□B3U3+|B2U2+□B3U30|B2U2+□B3U3+]

= [X2□Z3|Z2□X3|Z2□Z3],

(3.22)

where X2 = B2U20, X3 = B3U30, Z2 = B2U2+, Z3 = B3U3+ and βS = θSUT
S0 and uS = θSUT

S+. Likewise,

the spatial anisotropic penalty PS in (3.10) can be specified as

UT
S PSUS = UT

S (λ2Ib3 ⊗ P2 + λ3 P3 ⊗ Ib2)US

= UT
S (λ2Ib3 ⊗ P2)US + UT

S (λ3 P3 ⊗ Ib2)US,

where

UT
S (λ2Ib3 ⊗ P2)US = λ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
02×2

I2 ⊗ Λ2+

02(b3−2)

Ib3−2 ⊗ Λ2+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

UT
S (λ3 P3 ⊗ Ib2)US = λ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
02×2

02(b2−2)

Λ3+ ⊗ I2

Λ3+ ⊗ Ib2−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We note that the first block in both matrices corresponds to the unpenalised (fixed) coefficients of the model.

The other blocks correspond to the precision matrix G−1
S of the penalised (random) coefficients, which in

this case is

G−1
S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
σ2

2
I2 ⊗ Λ2+

1
σ2

3
Λ3+ ⊗ I2

1
σ2

2
Ib3−2 ⊗ Λ2+ +

1
σ2

3
Λ3+ ⊗ Ib2−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
σ2

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I2 ⊗ Λ2+

02(b3−2)

Ib3−2 ⊗ Λ2+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Λ̃2+

+
1
σ2

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
02(b2−2)

Λ3+ ⊗ I2

Λ3+ ⊗ Ib2−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Λ̃3+

=
∑︂

j∈{2,3}

σ−2
j Λ̃ j+,

(3.23)
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3.2. P-splines and mixed model formulation 40

where σ2
1 = σ

2/λ1 and σ2
2 = σ

2/λ2. Note that the last block in G−1
S involves both variance parameters σ2

2

and σ2
3. If we compute the variance-covariance matrix, GS, we will have a block involving both variance

parameters but in a non-linear way. Consequently, standard mixed model estimation techniques can not be

used. As we will discuss in Section 3.3, to estimate the variance parameters, we will take advantage of

the fact that the precision matrix G−1
S in (3.23) is linear on the inverse of the variance parameters, i.e. it

is linear on the precision parameters σ−2
2 and σ−2

3 . Another option for estimating the variance parameters

is to reorganize the bivariate P-spline model and use the PS-ANOVA model proposed by Lee et al. (2013).

Here, we will assume that X2 = [1M |r] and X3 = [1M |c] (or more precisely the parameterisation proposed

by Wood et al., 2013). We then can construct the compound mixed model matrices as follows

XS = [X3□X2] ≡ [1M□1M |c□1M |1M□r|r□c] = [1M |c|r|r ⊙ c]

ZS = [X3□Z2|Z3□X2|Z3□Z2] ≡ [Z3□1M |1M□Z2|Z3□r|c□Z2|Z3□Z2] = [Z3|Z2|Z3□r|c□Z2|Z3□Z2],

(3.24)

where ≡ denotes that previous and actual matrices have the same elements, but in different order, and ⊙

denotes the element-wise vector (matrix) product. Note that the matrix of random effects, ZS has five

blocks. It then follows that the precision matrix has five blocks, one associated with each term in ZS , as

follows

G−1
S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
σ2

3

Λ3+

1
σ2

2

Λ2+

1
σ2

3

Λ3+

1
σ2

2

Λ2+

1
σ2

2

Ib2−2 ⊗ Λ2+ +
1
σ2

3

Λ3+ ⊗ Ib3−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.25)

As discussed in Lee et al. (2013), the block structure of both XS and ZS (see (3.24)) results in the following

interesting ANOVA-type decomposition of the bivariate smooth surface

f S = 1Mβ0 + cβ1 + rβ2 + (r ⊙ c)β3⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Bilinear polynomial (XS βS )

+ h3(c)⏞⏟⏟⏞
Z3u1

+ h2(r)⏞⏟⏟⏞
Z2u2

+ r ⊙ f3;2(c)⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(Z3□r)u3

+ c ⊙ f2;3(r)⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(c□Z2)u4

+ f2|3(r, c)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
(Z3□Z2)u5⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Smooth term (ZS uS )

, (3.26)

where uk (k = 1, . . . , 5) contains the elements of uS that correspond to the kth block of ZS . The interpre-

tation of (3.26) is as follows. The (unpenalised/fixed) bilinear term contains the intercept (β0), the linear

trends along the column (β1) and row (β2) directions, as well as the linear interaction trend (β3). The (pe-

nalised/random) smooth term includes the smooth (non-linear) trends (main effects) along columns, h3(c),

and rows, h2(r); r × f3;2(c) and c × f2;3(r) are linear-by-smooth interaction trends (varying coefficient sur-

face terms; for instance c × f2;3(r) are linear trends in the columns (c) but with slopes ( f2;3(r)) that change

40



41 Chapter 3. P-splines, tensor products and mixed models

smoothly along the rows); and the pure smooth-by-smooth interaction trend jointly defined over the row and

column directions ( f2|3(r, c)). A decomposition of this type is depicted in Figure 3.8.
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Figure 3.8: For the FIP platform data (trial 2017) described in Section 2.2, smooth components of the

ANOVA-type decomposition (see equation (3.26)) of the estimated spatial trend for one time point.

A close look at (3.25) shows that, despite the five smooth components in (3.8), only two variance param-

eters (or smoothing parameters) control their smoothness (σ2
2 and σ2

3). In fact, the same variance parameters

apply to both, main effects and interaction terms. In Lee et al. (2013) the ANOVA-type decomposition is

further exploited, and a different variance parameter is considered for each smooth term, i.e., each block in

(3.25) will have its own variance parameters. For ease of notation, let Λ1 = Λ3 = Λ3+, Λ2 = Λ4 = Λ2+, and

Λ5 = Ib2−2 ⊗ Λ2+ + Λ3+ ⊗ Ib3−2. Thus, for the PS-ANOVA model the precision matrix is defined as

G−1
S = blockdiag

⎛⎜⎜⎜⎜⎜⎝ 1
σ2

1

Λ1,
1
σ2

2

Λ2,
1
σ2

3

Λ3,
1
σ2

4

Λ4,
1
σ2

5

Λ5

⎞⎟⎟⎟⎟⎟⎠ = 5∑︂
j=1

σ−2
j Λ̃ j,

where Λ̃ j is a block diagonal matrix where the jth block is Λ j and the remaining blocks are all-zeroes ma-

trices of proper dimension, e.g., Λ̃1 = blockdiag(Λ1, 0, 0, 0, 0). As a consequence, the variance-covariance

matrix is easy to compute (it is a linear function of variance parameters)

GS = blockdiag
(︂
σ2

1Σ1, σ
2
2Σ2, σ

2
3Σ3, σ

2
4Σ4, σ

2
5Σ5
)︂
, (3.27)

where Σ j = Λ
−1
j ( j = 1, . . . , 5). Note that now GS has a standard form, and thus standard mixed model

software can be used to estimate the PS-ANOVA model.
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3.2. P-splines and mixed model formulation 42

3.2.3 Mixed model formulation of P-splines in three dimensions

We can extend and combine the ideas of the mixed model formulation from one and two-dimensions to the

spatio-temporal three-dimensional function, f ST (for details, see Lee, 2010; Lee & Durban, 2011)

f ST = BSTθST = XSTβST + ZSTuST, uST ∼ N (0,GST) , (3.28)

where the mixed model design matrices XST and ZST are constructed in a similar fashion to the two di-

mensional case, i.e., XST = BSTUST0 and ZST = BSTUST+, with spatio-temporal cubic B-spline design

matrix BST = BS ⊗ BT = (B2□B3) ⊗ BT as defined in (3.14), and spatio-temporal transformation matrix

UST = U2 ⊗ U3 ⊗ U1, with U2 and U3 as defined in (3.21), and U1 = [U10|U1+], such that

UST0 = [U20 ⊗ U30 ⊗ U10]

UST+ = [U20 ⊗ U30 ⊗ U1+ | U20 ⊗ U3+ ⊗ U10 | U20 ⊗ U3+ ⊗ U1+ |

U2+ ⊗ U30 ⊗ U10 | U2+ ⊗ U30 ⊗ U1+ | U2+ ⊗ U3+ ⊗ U10 | U2+ ⊗ U3+ ⊗ U1+],

and

XST = [(X2□X3) ⊗ XT]

ZST = [(Z2□X3) ⊗ XT | (X2□Z3) ⊗ XT | (X2□X3) ⊗ ZT |

(Z2□Z3) ⊗ XT | (Z2□X3) ⊗ ZT | (X2□Z3) ⊗ ZT | (Z2□Z3) ⊗ ZT],

(3.29)

where XT and ZT were defined previously in (3.18) for the one-dimensional case, and X2, Z2, X3, Z3 in

(3.22) for the bi-dimensional case. Moreover, by replacing in (3.29) the fixed design matrices by, respec-

tively, X2 = [1M | r], X3 = [1M | c] and XT = [1n | t] (or more precisely, by the fixed matrices obtained

using Wood et al. (2013) approach), and after some reorganisation of the matrices, we arrive at the following

expressions (and the ANOVA-type decomposition proposed by Lee & Durban, 2011)

XST ≡ [ 1Mn | r ⊗ 1n | c ⊗ 1n | t ⊗ 1M | (r ⊙ c) ⊗ 1n | r ⊗ t | c ⊗ t | (r ⊙ c) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Linear effects and interactions

],

ZST ≡ [ Z2 ⊗ 1n | (Z2□c) ⊗ 1n | Z2 ⊗ t | (Z2□c) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth row-related effects

| Z3 ⊗ 1n | (r□Z3) ⊗ 1n | Z3 ⊗ t | (r□Z3) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
smooth column-related effects

|

ZT ⊗ 1M | r ⊗ ZT | c ⊗ ZT | (r ⊙ c) ⊗ ZT⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth time-related effects

| (Z2□Z3) ⊗ 1M | (Z2□Z3) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth row and column interactions

|

Z2 ⊗ ZT | (Z2□c) ⊗ ZT⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth row and time interactions

| Z3 ⊗ ZT | (r□Z3) ⊗ ZT⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth column and time interactions

| (Z2□Z3) ⊗ ZT⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth space-time interactions

].

(3.30)
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Regarding the vectors of fixed and random effect coefficients, we have

βST = (β0, β1, β2, β3, β4, β5, β6, β7)T ,

uST =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝uT
2 ,u

T
2;3,u

T
2;1,u

T
2;31⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

ur

,uT
3 ,u

T
3;2,u

T
3;1,u

T
3;21⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

uc

,uT
1 ,u

T
1;2,u

T
1;3,u

T
1;2,3⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

ut

uT
2|3,u

T
2|3;1⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

ur|c

,uT
2|1,u

T
2|1;3⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

ur|t

,uT
3|1,u

T
3|1,2⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

uc|t

, uT
2|3|1⏞⏟⏟⏞

ur|c|t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

.

(3.31)

We note that for the vector of random effects, uST, we have 19 sets of random effects, each associated with

one block in (3.30). These sets can be further grouped into 7 larger sets. The first three, ur, uc and ut,

correspond to one-dimensional smooth (non-linear) effects along the rows, columns and time, respectively,

and ur|c, ur|t and uc|t to bivariate smooth (non-linear) interactions between rows and columns, rows and

time, and columns and time, respectively. Finally, ur|c|t corresponds to the trivariate smooth (non-linear)

interaction between rows, columns and time. With these 7 sets in mind, the precision matrix (i.e., the

inverse of variance-covariance matrix) associated with uST, is a block diagonal matrix, with 7 blocks, each

related to each set of random effects

G−1
ST =blockdiag

⎛⎜⎜⎜⎜⎜⎝ 1
σ2

ST,2

Λ2+ ⊗ I2 ⊗ I2,
1
σ2

ST,3

I2 ⊗ Λ3+ ⊗ I2,
1
σ2

ST,1

I2 ⊗ I2 ⊗ Λ1+,

1
σ2

ST,2

Λ2+ ⊗ Ib3−2 ⊗ I2 +
1
σ2

ST,3

Ib2−2 ⊗ Λ3+ ⊗ I2,

1
σ2

ST,2

Λ2+ ⊗ I2 ⊗ Ib1−2 +
1
σ2

ST,1

Ib2−2 ⊗ I2 ⊗ Λ1+,

1
σ2

ST,3

I2 ⊗ Λ3+ ⊗ Ib1−2 +
1
σ2

ST,1

I2 ⊗ Ib3−2 ⊗ Λ1+,

1
σ2

ST,2

Λ2+ ⊗ Ib3−2 ⊗ Ib1−2 +
1
σ2

ST,3

Ib2−2 ⊗ Λ3+ ⊗ Ib1−2 +
1
σ2

ST,1

Ib2−2 ⊗ Ib3−2 ⊗ Λ1+

⎞⎟⎟⎟⎟⎟⎠
=
∑︂

j∈{2,3,1}

σ−2
ST, jΛ̃ j+,

(3.32)

where G−1
ST depends on three precision parameters, σ−2

ST,2 = λ2/σ
2, σ−2

ST,3 = λ3/σ
2, and σ−2

ST,1 = λ1/σ
2

(responsible for controlling the smoothness along the rows, columns and time, respectively), and

Λ̃2+ =blockdiag (Λ2+ ⊗ I2 ⊗ I2, 0, 0, Λ2+ ⊗ Ib3−2 ⊗ I2,Λ2+ ⊗ I2 ⊗ Ib1−2, 0, Λ2+ ⊗ Ib3−2 ⊗ Ib1−2
)︁

Λ̃3+ =blockdiag (0, I2 ⊗ Λ3+ ⊗ I2, 0, Ib2−2 ⊗ Λ3+ ⊗ I2, 0, I2 ⊗ Λ3+ ⊗ Ib1−2, Ib2−2 ⊗ Λ3+ ⊗ Ib1−2
)︁

Λ̃1+ =blockdiag (0, 0, I2 ⊗ I2 ⊗ Λ1+, 0, Ib2−2 ⊗ I2 ⊗ Λ1+, I2 ⊗ Ib3−2 ⊗ Λ1+, Ib2−2 ⊗ Ib3−2 ⊗ Λ1+
)︁
.

(3.33)

43
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It is worth indicating that f ST also accepts an ANOVA-type decomposition similar to the one shown for the

two-dimensional case

f ST = 1Mnβ0 + (r ⊗ 1n)β1 + (c ⊗ 1n)β2 + (t ⊗ 1M)β3 + ((r ⊙ c) ⊗ 1n)β4 + (r ⊗ t)β5 + (c ⊗ t)β6 + ((r ⊙ c) ⊗ t)β7⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Linear effects and interactions

+

f2(r) ⊗ 1n⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
(Z2⊗1n)u2

+ (c ⊙ h2;3(r)) ⊗ 1n⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((Z2□c)⊗1n)u2;3

+ h2;1(r) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(Z2⊗t)u2;1

+ (c ⊙ h2;31(r)) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((Z2□c)⊗t)u2;31⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Non-linear row-related effects

+

f3(c) ⊗ 1n⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
(Z3⊗1n)u3

+ (r ⊙ h3;2(c)) ⊗ 1n⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((r□Z3)⊗1n)u3;2

+ h3;1(c) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(Z3⊗t)u3;1

+ (r ⊙ h3;21(c)) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((r□Z3)⊗t)u3;21⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Non-linear column-related effects

+

f1(t) ⊗ 1M⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(ZT⊗1M)u1

+ r ⊗ h1;2(t)⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(r⊗ZT)u1;2

+ c ⊗ h1;3(t)⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(c⊗ZT)u1;3

+ (r ⊙ c) ⊗ h1;23(t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((r⊙c)⊗ZT)u1;23⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Non-linear time-related effects

+

h2|3(r, c) ⊗ 1M⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
((Z2□Z3)⊗1M)u2|3

+ h2|3;1(r, c) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((Z2□Z3)⊗t)u2|3;1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Non-linear row and column interactions

+ h2|1(r, t)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
(Z2⊗ZT)u2|1

+ c ⊙ f2|1;3(r, t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
((Z2□c)⊗ZT)u2|1;3⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Non-linear row and time interactions

+

h3|1(c, t)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
(Z3⊗ZT)u3|1

+ r ⊙ f3|1;2(c, t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
((r□Z3)⊗ZT)u3|1;2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Non-linear column and time interactions

+ h2|3|1(r, c, t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
((Z2□Z3)⊗ZT)u2|3|1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Non-linear space-time interaction

.

(3.34)

In contrast to the two-dimensional function f S in (3.26), more components are now present (there are three

variables involved: rows, columns and time), yet their interpretation is similar. For instance, c × h2;31(r) × t

are linear interaction trends in the columns (c) and time (t), but with slopes (h2;31(r)) that change smoothly

along the rows.

3.3 Coefficients and variance parameters estimation

Estimation of the standard linear mixed model (3.17) can be carried out with any mixed-model software,

previosuly mentioned in Section 1.2.2. Also, we can use the R-package ASReml-R (Butler et al., 2018) for

that purpose. However, the P-spline context requires additional estimation methods, especially for mul-

tidimensional cases (which are our main target). For instance, in some situations, standard mixed model

procedures can not be used due to the variance-covariance matrices having a non-standard form (e.g., GS

in (3.25) and GST in (3.32) have a block involving several variance parameters but in a non-linear way).

Consequently, in the context of multidimensional P-splines, it is common to work with the precision matrix,

G−1, which is linear in the precision parameters. In the general setting of mixed models, estimation is based
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45 Chapter 3. P-splines, tensor products and mixed models

on the variance-covariance matrix for the random effects, G, which is linear in the variance parameter (e.g.

the PS-ANOVA specification results in a standard form for the variance-covariance matrix GS in (3.27)).

To tackle this particularity, we use two proposed algorithms: SAP (Separation of Anisotropic Penal-

ties; Rodríguez-Álvarez et al., 2015), and SOP (Separation of Overlapping Precision Matrices; Rodríguez-

Álvarez et al., 2019). In fact, SOP algorithm generalises SAP, and the SOP method reduces to the estimating

algorithm described in Harville (1977) when no overlapping precision matrices are present (which is the

case of PS-ANOVA). Then, for clarity and simplicity, hereafter, we will use SOP to refer to both SOP and

SAP, and we will use the SOP algorithm to present the general proposal. In what follows, we present the

estimation algorithm, but we start rewriting the general multidimensional mixed model as follows

y = Xβ + Zu + ε; ε ∼ N(0, R), u ∼ N(0,G),

where R = σ2I, and G−1 =
∑︁

j σ
−2
j Λ̃ j+. For instance the precision matrices G−1

S in (3.23) with j ∈ {2, 3},

and G−1
ST in (3.32) with j ∈ {1, 2, 3}.

3.3.1 Estimating algorithm

Initialise Set initial values for the variance parameters σ̂2[0]
j and for the residual variance σ̂2[0]. Set it = 0.

Step 1. Given the initial estimates of variance parameters, estimate the empirical best linear unbiased

estimates (BLUEs), β, and predictors (BLUPs), u, by the solution of the Henderson’s mixed

model equations (Henderson, 1963)⎛⎜⎜⎜⎜⎜⎜⎝XT R[it]−1
X XT R[it]−1

Z

ZT R[it]−1
X ZT R[it]−1

Z + G[it]−1

⎞⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
C[it]

⎡⎢⎢⎢⎢⎢⎢⎣β̂û
⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣XT R[it]−1

y

ZT R[it]−1
y

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.35)

Step 2 Update the variance parameters by maximising the restricted maximum likelihood function

(REML; Patterson & Thompson, 1971),

σ̂2
j =

û[it]T Λ̃ j+û[it]

ED[it]
j

,

and residual variance,

σ̂2 =
∥y − Xβ̂

[it]
− Zû[it]

∥2

# − rank(X) −
∑︁

j ED[it]
j

,

where # denotes the number of observations (e.g. for the two-dimensional model # : M, for the

three-dimensional model # : nM), and effective dimension

ED[it]
j = trace

⎛⎜⎜⎜⎜⎜⎜⎝(︂G[it] − C+[it]−1)︂ Λ̃ j+

σ̂2[it]
j

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.36)
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where C[it]−1
denotes the inverse of C[it] in (3.35), and C+[it]−1

is the partition of C[it]−1
corre-

sponding to the random vector of coefficients u.

Step 3. Repeat Steps 1 to 2, with variance parameters being replaced for those obtained in the pre-

vious iteration until the convergence criterion: difference in the REML deviance between two

consecutive iterations is small enough.

3.4 Standard errors and pointwise confidence intervals

We follow the work by Ruppert et al. (2003) and Welham et al. (2004) to obtain approximate 100(1 − α)%

pointwise confidence intervals and standard errors for predictions (i.e., any quantity that is linear in the

model coefficients). In particular, for fixed values of the variance parameters and error variance, we have

that

Cov

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎣ β̂

(û − u)

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ≈ C−1,

with C as defined in (3.35). We use this result to obtain pointwise confidence intervals for the predictions.

As an example, for the one-dimensional function (3.19), suppose we want to obtain a confidence interval

for fT at a particular time, t∗. Let XT(t∗) and ZT(t∗) denote the mixed model matrices for this particular value,

and let f̂ T(t∗) = XT(t∗)β̂T + ZT(t∗)ûT. Then, an approximate 100(1 − α)% pointwise confidence interval for

fT(t∗) is

f̂ T(t∗) ± z1−α/2ˆ︂SE f̂ T(t∗), (3.37)

where z1−α/2 denotes the 1 − α/2 quantile of a N(0, 1), and

ˆ︂SE f̂ T(t∗) ≡

√︂ˆ︂Var
{︂
f̂ T(t∗) − fT(t∗)

}︂
=

√︂
diag
(︂
[XT(t∗)|ZT(t∗)]C

−1[XT(t∗)|ZT(t∗)]T
)︂

Figure 3.9(a) depicts the 95% pointwise confidence intervals for the predictions for the canopy height curve

shown in Figure 3.1(a). In the same way, confidence intervals for the first and second-order derivatives

curves ( f̂
′

T(t∗), and f̂
′′

T (t∗)) can be obtained as in (3.37) by replacing XT(t∗) and ZT(t∗) by Xh
T(t∗)

and Zh
T(t∗)

, as

shown in Figure 3.9(b).
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Figure 3.9: For the canopy height curve (continuous black line) shown in Figure 3.1(a), (a) predictions

(continuous blue line) with 95% pointwise confidence intervals (blue shaded area), (b) first and second-

order derivatives (continuous blue lines) with 95% pointwise confidence intervals (blue shaded areas).
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Chapter 4

Spatio-temporal modelling of
high-throughput phenotyping data:
Two-stage approach

This chapter presents a two-stage P-spline-based approach for analysing spatio-temporal HTP data. Section

4.1 describes the first stage, in which we correct for design features and spatial trends per time point. To

that aim, we use a SpATS model, where the spatial trends are modelled using the (spatial) two-dimensional

smooth function, fS, previously described in Sections 3.1.2.1 and 3.2.2. The second stage is presented in

Section 4.2; in this stage, we focus on the longitudinal modelling of the genetic signal on the spatially cor-

rected data. We extend the longitudinal smooth function, fT (see Sections 3.1.1 and 3.2.1), to the case of

M plants, where plants are nested into genotypes and genotypes are nested into populations. Therefore, we

propose a flexible hierarchical three-level P-spline-based curve model, thereby taking advantage of shared

longitudinal features between genotypes and plants within genotypes. We let the assessment of the per-

formance of this approach through a simulation study for Chapter 6. In Chapter 7, we illustrate its usage

by analysing the HTP data described in Chapter 2. Finally, the results showed in this thesis with this ap-

proach can be reproduced with the software developments presented in Chapter 8. This chapter hinges on

the material in Perez-Valencia et al. (2022).
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4.1. First stage: Spatial correction 50

4.1 First stage: Spatial correction

The aim of the first-stage is to correct for spatial trends and design features (covariates/factors) that we are

not interested in modelling in the second stage of the two-stage approach, separately per time point. On the

otherhand, we are interested in the temporal evolution of the genetic signal, while keeping the hierarchical

data structure. As such, we model the observed phenotypic trait, yi, for the ith plant at a specific time point

(for simplicity, we omit here the dependence on time), by considering the following spatial model

yi = hp(i) + hg(i) + hr(i) + hc(i) + hS(r(i), c(i))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Spatial trend

+
∑︂

e

he(i) + εi, εi ∼ N(0, σ2
t ), 1 ≤ i ≤ M, (4.1)

where hp is the fixed effect coefficient for population p, hg is the fixed/random effect coefficient (we dis-

cuss this choice later in Section 4.1.2) for genotype g, hr and hc are random effect coefficients for row r

and column c, respectively (hr ∼ N(0, σ2
row) and hc ∼ N(0, σ2

col); they are included to account for design

factors), and hS(r, c), is a two-dimensional smooth function, defined over the row and column positions,

that simultaneously accounts for the spatial (local and global) trend variation across both directions. Other

experimental design factors (e.g., presence of block and/or replication and/or lot effects) can be included in

the model (
∑︁

e he) to build more complex models.

4.1.1 Spatial P-spline-based model: SpATS model

For the first stage, we specifically use a SpATS model to fit the spatial model in (4.1) on yt =

(y1(t), . . . , yM(t))T separately for each measurement time t ∈ {t1, . . . , tn}. A SpATS model is a linear mixed

model that is based on the two-dimensional P-spline smooth surface hS(r, c) at time t, presented in Section

3.1.2.1. In its more general specification and considering genotypes as random, the mixed model formu-

lation of the SpATS model has the following form (for more details, see Rodríguez-Álvarez et al., 2018)

yt = 1Mβ0t + XSβS,t + ZSuS,t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Spatial trend, hS,t

+Xpopβpop,t + Zgenugen,t + Zrowurow,t + Zcolucol,t + XS“βS“,t + ZS“uS“,t + εt,

(4.2)

where XSβS,t (excluding the intercept), ZSuS,t (with uS,t ∼ N(0,GS,t)), and GS,t were defined in (3.24)

and (3.27). Here, [Xpop | XS“], with XS“ = [X1 | . . . | XE1], are 1 + E1 design matrices associ-

ated with the population effects and other experimental design factors (categorical covariates), with fixed

effect coefficients (βT
pop,t,β

T
S“,t

)T (and βS“,t = (βT
1,t, . . . ,β

T
E1,t)

T ). The length of each vector of fixed ef-

fect coefficients (and therefore the number of columns in the associated design matrices) corresponds

to the number of different categories, say c“e1 (e1 = 1, . . . , E1) and c“pop, of each (fixed) experimen-

tal design factor minus one (as the intercept is included in the model). Regarding the random effects,
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51 Chapter 4. Spatio-temporal modelling of high-throughput phenotyping data: Two-stage approach

[Zgen | Zrow | Zcol | ZS“], with ZS“ = [Z1 | . . . | ZE2], are design matrices assigning plants to

genotypes, rows and columns positions, as well as to e2 = 1, . . . , E2 covariates, with random effect co-

efficients (uT
gen,t,uT

row,t,uT
col,t,u

T
S“,t

)T ∼ N(0,G∗t), with G∗t = blockdiag(Ggen,t,Grow,t,Gcol,t,GS“,t), where

uS“,t = (uT
1,t, . . . ,u

T
E2,t

)T and GS“,t = blockdiag(G1,t, . . . ,GE2,t), and εt ∼ N(0, σ2
t IM). Moreover, if geno-

types are grouped by populations, different genetic variances are assumed for each group/population, that is

Ggen,t = blockdiag(σ2
1,t Iℓ1 , . . . , σ

2
K,t IℓK ). Thus, the compound variance-covariance matrix for the full model

(4.2) is

Gt = blockdiag(GS,t,G∗t) =
5+K+2+E2∑︂

j=1

σ2
j Σ̃ j, (4.3)

where GS,t has 5 variance parameters (see equation (3.27)), Ggen,t = blockdiag(σ2
1,t Iℓ1 , . . . , σ

2
K,t IℓK ) =

blockdiag(σ2
6,tΣ6, . . . , σ

2
(5+K),tΣ5+K), Grow,t = σ2

row,t IR = σ2
(5+K+1),tΣ5+K+1,

Gcol,t = σ2
col,t IC = σ2

(5+K+2),tΣ5+K+2, GS“,t = blockdiag(σ2
1,t Ic“1 , . . . , σ

2
E2,t

Ic“E2
) =

blockdiag(σ2
(5+K+2+1),tΣ5+K+2+1, . . . , σ

2
(5+K+2+E2),tΣ5+K+2+E2), and Σ̃ j is a block diagonal matrix where the

jth block is Σ j and the remaining blocks are all-zeroes matrices of proper dimensions.

In plant breeding, it is usual to model genotypes as fixed effect coefficients in the first stage of a two

stage approach, where the first stage consists of a per trial analysis and the second stage consists of a

weighted across trial analysis. In the second stage genotypes are then taken as random effect coefficients.

The population (if any) as well as the replicate and/or (incomplete) block effects are also modelled as fixed

effect coefficients. The column and row design factors are commonly modelled as random effects. We

propose to model the genotype effects as random. In the following section some implications of this choice

are discussed, and a comparison with both results (genotypes as fixed and random) are shown in Chapter 7.

4.1.2 Genotypes as random or fixed effect coefficients

One important question that arises at this first stage is whether to model genotypes as fixed effec coefficient

(as usually in stage-wise analyses, see e.g., Damesa et al., 2017; Roth et al., 2021; van Eeuwijk et al., 2019)

or random effect coefficient (as we finally decided to do). Let us address the two models.

We start by considering genotypes as fixed effect coefficient. For the general SpATS model (4.2), let

Xgenβgen,t replace the Zgenugen term, where Xgen is the design matrix (of dimension M×(L−1); the intercept

is included in the model) assigning plants to genotypes, and βgen,t = (β1,t, . . . , β(L−1),t)T is the vector of

genotypic fixed effect coefficient. We note that if other fixed effect are included in the model, the intercept

will represent one of the levels for each of these factors. When genotypes are modelled as random effects,

Zgenugen,t is one of the terms in the SpATS model (4.2). Here, Zgen is the design matrix (of dimension

M × L) assigning plants to genotypes, and ugen,t = (u1,t, . . . , uL,t)T ∼ N(0,Ggen,t) is the vector genotypic

random effects.
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The reason to model genotypes as fixed effect coefficients in stage-wise analyses is the "double-

shrinkage" (for two-stage approaches) of genotype effects when these are considered random (Damesa et al.,

2017; Piepho et al., 2012; A. Smith et al., 2001). However, most of these analyses keep the data resolution at

the genotype level (i.e., genotype means are computed/predicted) for the first stage. Instead, we propose to

correct the phenotype of interest in such a way that the data resolution is kept at the plant level by the inclu-

sion of the residual component to the genotype prediction (as will be explained later in Section 4.1.3). In our

experience, comparison of the spatially corrected phenotype when modelling genotypes as fixed or random

effect coefficients shows essentially identical results (as will be illustrated later in Chapter 7). We believe

this is because the shrinkage of the genotypic BLUPs is counteracted by the inclusion of the residual com-

ponent into the correction. The implementation of the first stage allows for both modelling strategies: fixed

and random genotypic effect coefficients. However, our final results are consistently reported by considering

genotypes as random at this first stage. Besides the fact that BLUPs often improve precision compared to

BLUEs (as shown by Piepho et al., 2008, in plant breeding applications), incorporating a different genetic

variance per population (if any) will allow for more flexibility/fidelity to data behaviour. Finally, BLUPs

allow heritabilities to be computed for each measurement time. Heritability is a measure of the proportion of

the total phenotypic variation attributable to the genetic component, as defined in Rodríguez-Álvarez et al.

(2018); this gives geneticists an idea of the signal to noise ratio.

4.1.3 Spatially corrected phenotypic trait

Once the SpATS model in equation (4.2) is fitted, the phenotype of interest at time t, yt, is corrected by

only considering the (estimated) sources of variation that are of interest, plus the residual component. In

particular, we will retain the (random) genotypic, Zgenugen,t, and (fixed) population effects, Xpopβpop,t. Thus,

the spatially corrected phenotype at time t, denoted as ỹt = (ỹ1(t), . . . , ỹM(t))T , is obtained as follows

ỹt = 1Mβ̂0t +

E1∑︂
e1=1

1
c“e1

Je1 β̂e1t + Xpopβ̂pop,t + Zgenûgen,t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
p̂t

+ε̂t, (4.4)

where Je1 are matrices of ones of appropriate dimensions (i.e., M × (c“e1 − 1)), and p̂t represents predicted

values for the genetic populations and the genotypes at time t.

The correction is performed following the procedure for obtaining predictions (e.g., adjusted means) in

linear mixed models described in Welham et al. (2004). In that paper, the authors propose a partition of the

explanatory variables, e.g., in model (4.2), in three groups:

1. those for which predictions are required (i.e., sources of variation that are of interest for the second

stage): population Xpopβ̂pop,t, and genotypic effects Zgenûgen,t,
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53 Chapter 4. Spatio-temporal modelling of high-throughput phenotyping data: Two-stage approach

2. those to be ignored: spatial trends, ĥS,t, random row and column effects, Zrowûrow,t and Zcolûcol,t, and

other experimental design factors included as random effects in ZS“ûS“,t, and

3. those to be averaged over (i.e., sources of variation that are not of interest for the second stage):∑︁E1
e1=1(1/c“e1)Je1 β̂e1t, that is experimental design factors included as fixed effect coefficients in XS“βS“,t

(e.g., presence of block and/or replication and/or lot effects).

As result of the first stage of our two-stage approach we obtain spatially corrected time-series at the resolu-

tion of plants or plots with reduced between replicates/plots variability.

4.1.4 Error propagation

For the second stage of our proposal, we model the spatially corrected phenotype of interest ỹt (t ∈

{t1, . . . , tn}). Thus, it is worth emphasising that, in the way it is constructed, ỹt (see equation (4.4)) only con-

tains information about genetic populations and genotypes, as well as unexplained plant-to-plant variation

(measurement error). In other words, for the second stage the predicted values for the genetic populations

and the genotypes, p̂t, as well as the unexplained plant-to-plant variation, ε̂t, are maintained as the “new”

(spatially corrected) experimental unit values, while the spatial trends and other blocking factors to control

for spatial variability are omitted. Also, note that the “observations” that enter the second stage, ỹt, are

not observed but estimated/predicted. Thus, we propose to propagate the uncertainty from the first stage

to the second stage through the inclusion of weights, in a similar way to the weighted stage-wise analysis

of multi-environment trials (see, e.g., Buntaran et al., 2020). In particular, weights are obtained from the

inverse of the variance-covariance (vcov) matrix for the predictions (plus the residual variance), i.e.,

wt = diag((vcov( p̂t) + σ̂
2
t IM)−1), (4.5)

where wt = (w1(t), . . . ,wM(t))T . We note that if the error is not propagated from the first to the second stage,

then wt = 1M.

4.1.5 SpATS model estimation and computational aspects

SpATS model in equation (4.2) is a standard linear mixed model, and, thus, estimation is performed as usual

in the mixed-model framework. Thus, BLUEs and BLUPs are obtained by the solution of Henderson’s

mixed model equations (Henderson, 1963), and variance components by means of REML. We use the

so-called R-package SpATS to estimate model (4.2), which is freely available on CRAN (https://CRAN.

R-project.org/package=SpATS), and the recent statgenHTP R-package (Millet et al., 2022, available on

https://CRAN.R- project.org/package=statgenHTP) that allows for an easy fitting of SpATS models for

different (and possibly a large number of) measurement times (through the R-function fitModels, and
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4.2. Second-stage: Temporal evolution of the genetic signal 54

option engine = "SpATS"). For more details in the SpATS model estimation, we refer the reader to

Rodríguez-Álvarez et al. (2018). Instead, we will focus on the estimation and computational details of the

second stage model (see Section 4.2.5), which is the main contribution of our two-stage approach.

4.2 Second-stage: Temporal evolution of the genetic signal

The aim of the second stage is to model the spatially corrected phenotype obtained in the first stage. We

can re-organise the data for this stage in such a way that they can be seen as a sample of plant curves,

ỹi = (ỹi(t1), . . . , ỹi(tn)) (1 ≤ i ≤ M), with a nested hierarchical structure, where plants are nested in genotypes

and genotypes are nested in populations. We propose to model this sample of curves by considering an

additive decomposition of the phenotypic variation over time and use a three-level nested hierarchical model

for this purpose (Brumback & Rice, 1998)

ỹi(t) = fp(i)(t) + fg(i)(t) + fi(t) + εi(t), εi(t) ∼ N
(︂
0, σ2wi(t)

)︂
, 1 ≤ p ≤ K, 1 ≤ g ≤ L, 1 ≤ i ≤ M, (4.6)

where fp is the growth/change over time of the (spatially corrected) phenotype for the pth population (i.e.,

the pth population mean function), fg is the genotype-specific deviation from fp for the gth genotype, and fi
is the plant-specific deviation from fg for the ith plant. The additive modelling approach implies that fp + fg
can be interpreted as the evolution over time of the (spatially corrected) phenotype for the gth genotype in

the pth population. Thus, on top of genotype-specific deviations from their overall population mean, we

also obtain genotype-specific curves. Finally, wi(t) are the weights as obtained in (4.5) in the first stage of

the approach.

4.2.1 P-spline-based hierarchical data model (psHDM)

We use P-splines for hierarchical curve data (Durban et al., 2005; Greven & Scheipl, 2017) to estimate

the model in equation (4.6). Henceforth, we call model (4.6) the P-spline-based hierarchical data model

(psHDM). In this framework, each function in equation (4.6) is approximated by a linear combination of

cubic B-spline basis functions as follows

ỹi(t) =
bpop∑︂

kpop=1

Bkpop(t)θpop
p(i),kpop⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

fp(i)(t)

+

bgen∑︂
kgen=1

Bkgen(t)θgen
g(i),kgen⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

fg(i)(t)

+

bplant∑︂
kplant=1

Bkplant(t)θ
plant
i,kplant⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

fi(t)

+εi(t), (4.7)

where θpop
p(i) = (θpop

p(i),1, . . . , θ
pop
p(i),bpop

)T , θgen
g(i) = (θgen

g(i),1, . . . , θ
gen
g(i),bgen

)T , and θplant
i = (θplant

i,1 , . . . , θ
plant
i,bplant

)T are vectors

of unknown regression coefficients that control the shape of the curves at the three levels of the hierarchy. If

ỹi = (ỹi(t1), . . . , ỹi(tn))T represents the measurements for a single plant, in matrix form model (4.7) becomes
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ỹi = Bpopθ
pop
p(i)⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞

f p

+ Bgenθ
gen
g(i)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞

f g

+ Bplantθ
plant
i⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞

f i

+εi, (4.8)

where f p = ( fp(i)(t1), . . . , fp(i)(tn))T , f g = ( fg(i)(t1), . . . , fg(i)(tn))T , f i = ( fi(t1), . . . , fi(tn))T , and

(Bpop)n×bpop

jkpop
= Bkpop(t j), (Bgeno)n×bgen

jkgen
= Bkgen(t j) and (Bplant)

n×bplant

jkplant
= Bkplant(t j). As usual in P-splines,

smoothness is controlled by a penalty on the differences of the B-splines coefficients (we use differences

of order 2). The influence of the penalty is determined by the smoothing parameters. For the hierarchical

model (4.8), we have an additive penalty of the form

λpop,pθ
pop;T
p(i) Ppopθ

pop
p(i) + λgenθ

gen;T
g(i) Pgenθ

gen
g(i) + λplantθ

plant;T
i Pplantθ

plant
i , (4.9)

where Pν = DT
ν Dν (ν ∈ {pop, gen, plant}) are penalty matrices with Dν matrices that form second order

differences at each level of the hierarchy, and λpop,p, λgen and λplant are the smoothing parameters.

We finally present model (4.8) for all plants. Let’s first order the data by plant, and time, i.e., ỹ =

(ỹ1(t1), . . . , ỹ1(tn), . . . , ỹM(t1), . . . , ỹM(tn))T . In fact, in order for the following Kronecker products to make

sense, the data should be pre-ordered by population, genotype, plant and time (in that order), where the first

m1 plants belongs to the first genotype (i.e., g = 1) of the first population (i.e., p = 1). Thus, in a compact

way, the three-level nested hierarchical model can be expressed as

ỹ = (Qpop ⊗ Bpop)θpop + (Qgen ⊗ Bgen)θgen + (IM ⊗ Bplant)θplant + ε, (4.10)

where ⊗ is the Kronecker product, and Qpop and Qgen are matrices assigning, respectively, plants to popula-

tions and plants to genotypes. That is, QM×K
pop = blockdiag(1pop;T

1 , . . . , 1pop;T
K ), with 1pop

p vectors of ones with

appropriate length (i.e., #{i | p(i) = p}), and QM×L
gen = blockdiag(1gen;T

1 , . . . , 1gen;T
L ), with 1gen

g vectors of ones

of length mg, and θpop = (θpop;T
1 , . . . , θ

pop;T
K )T , θgen = (θgen;T

1 , . . . , θ
gen;T
L )T , and θplant = (θplant;T

1 , . . . , θ
plant;T
M )T

vectors of unknown regression coefficients. The penalty associated with model (4.7) is

K∑︂
p=1

λpop,pθ
pop;T
p Ppopθ

pop
p + λgenθ

T
gen(IL ⊗ Pgen)θgen + λplantθ

T
plant(IM ⊗ Pplant)θplant, (4.11)

That is, we allow for different smoothing parameters for curves at the population level (i.e., λpop =

(λpop,1, . . . , λpop,K)), while keeping constant the smoothing parameter for all genotypic and plant curves.

4.2.2 Mixed model formulation of the psHDM

To find appropriate values for the smoothing parameters λpop, λgen, and λplant, we adopt the connection

between P-splines and linear mixed models in a similar fashion to the procedures described in Section 3.2,

where each smooth function is treated as a sum of fixed (linear) and random (non-linear) components, and
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the smoothing parameters are replaced by a ratio of variances components. Under this framework, the mixed

model representation of the P-spline model (4.8) for one plant is

ỹi = Xpopβlin,p(i) + Zpopupop
nlin,p(i)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

f p

+ Xgenugen
lin,g(i) + Zgenugen

nlin,g(i)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
f g

+ Xplantu
plant
lin,i + Zplantu

plant
nlin,i⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

f i

+εi, εi ∼ N(0, σ2wi),

(4.12)

To obtain expressions for the mixed model design matrices, for the regression coefficients, and for the

variance-covariance matrix associated with the random effects, we follow the ideas described in Section

3.2.1. That is, we use the SVD of the penalty matrices Pν = DT
ν Dν = UνΛνUT

ν (ν ∈ {pop, gen, plant}).

As before, Uν is the matrix of eigen vectors and Λν is the diagonal matrix of eigenvalues, such that Uν+
(Λν+) and Uν0 (Λν0) are the submatrices corresponding, respectively, to the non-zero and zero eigenvalues.

Therefore, the specification of model (4.12) is as follows

Xpop = BpopUpop,0 and βpop
lin,p = UT

pop,0θ
pop
p ,

Zpop = BpopUpop+ and upop
nlin,p = UT

pop+θ
pop
p = (upop

nlin,p,1, . . . , u
pop
nlin,p,bpop−2)T ∼ N(0, σ2

pop,pΣpop+),

Xgen = BgenUgen,0 and βgen
lin,g = UT

gen,0θ
gen
g ,

Zgen = BgenUgen+ and ugen
nlin,g = UT

gen+θ
gen
g = (ugen

nlin,g,1, . . . , u
gen
nlin,g,bgen−2)T ∼ N(0, σ2

genΣgen+),

Xplant = BplantUplant,0 and βplant
lin,i = UT

plant,0θ
plant
i ,

Zplant = BplantUplant+ and uplant
nlin,i = UT

plant+θ
plant
i = (uplant

nlin,i,1, . . . , u
plant
nlin,i,bplant−2)T ∼ N(0, σ2

plantΣplant+),

where the variance-covariance matrices for upop
nlin,p, ugen

nlin,g, and uplant
nlin,i are obtained from the inverse of their re-

spective precision matrices. That is, σ2
νΣν+ = σ

2/λνΛ
−1
ν+, with σ2

ν = σ
2/λν and Σν+ = Λ−1

ν+ (ν ∈ {gen, plant}).

A similar reasoning is followed at the population level but with different smoothing/variance parameters for

each population. That is, σ2
pop,pΣpop+ = σ

2/λpop,pΛ
−1
pop+, with σ2

pop,p = σ
2/λpop,p and Σpop+ = Λ

−1
pop+. Fi-

nally, wi in (4.12) is a diagonal matrix whose diagonal entries are the weights from the first stage for the ith

plant.

In addition, note that based on the SVD, Xν = BνUν0 (ν ∈ {pop, gen, plant}). However, for simplicity

we consider the parameterisation Xν = [1n | t] with βνlin,ν“ = (βνlin,ν“,0, β
ν
lin,ν“,1)T , ν“ ∈ {p, g, i}, the corresponding

intercept and slope. Moreover, in contrast to standard P-spline mixed models, but in line with the traditional

random intercept and slope model for longitudinal data, here the linear components (intercept and slope)

associated with f g (genotypic deviations) and f i (plant deviations) are modelled with penalised/random

rather than unpenalised/fixed effect coefficients. There are two reasons for this decision. On the one hand,

we treat genotypes and plants as random samples. On the other hand, it avoids identifiability problems

that arise with fixed effect coefficients for nested ANOVA models. (Brumback & Rice, 1998) Thus, these
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57 Chapter 4. Spatio-temporal modelling of high-throughput phenotyping data: Two-stage approach

components of model (4.12) become

Xpop = [1n | t] and βpop
lin,p = (βpop

lin,p,0, β
pop
lin,p,1)T ,

Xgen = [1n | t] and βgen
lin,g = ugen

lin,g = (ugen
lin,g,0, u

gen
lin,g,1)T ∼ N(0,Σgen) with Σgen = diag(σ2

gen,0, σ
2
gen,1),

Xplant = [1n | t] and βplant
lin,i = uplant

lin,i = (uplant
lin,i,0, u

plant
lin,i,1)T ∼ N(0,Σplant) with Σplant = diag(σ2

plant,0, σ
2
plant,1).

We now present the mixed model (4.12) for all plants, as we did before for the P-spline model (4.10)

ỹ = Xβ + Zu + ε, u ∼ N(0,G), ε ∼ N(0, σ2W), (4.13)

where,

X = [Qpop ⊗ Xpop],

Z = [Qpop ⊗ Zpop | Qgen ⊗ Xgen | Qgen ⊗ Zgen | IM ⊗ Xplant | IM ⊗ Zplant],

with, βpop = (βpop;T
lin,1 , . . . ,β

pop;T
lin,K )T and u = (uT

nlin,pop,u
T
lin,gen,u

T
nlin,gen,u

T
lin,plant,u

T
nlin,plant)

T , where

unlin,pop = (upop;T
nlin,1 , . . . ,u

pop;T
nlin,K)T ∼ N(0, blockdiag(σ2

pop,1Σpop+, . . . , σ
2
pop,KΣpop+),

ulin,gen = (ugen;T
lin,1 , . . . ,u

gen;T
lin,L )T ∼ N(0, IL ⊗ Σgen),

unlin,gen = (ugen;T
nlin,1 , . . . ,u

gen;T
nlin,L)T ∼ N(0, σ2

genIL ⊗ Σgen+),

ulin,plant = (uplant;T
lin,1 , . . . ,u

plant;T
lin,M )T ∼ N(0, IM ⊗ Σplant),

unlin,plant = (uplant;T
nlin,1 , . . . ,u

plant;T
nlin,M )T ∼ N(0, σ2

plantIM ⊗ Σplant+),

and the variance-covariance matrix for random effects u

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

blockdiag(σ2
pop,1Σpop+, . . . , σ

2
pop,KΣpop+) 0 0

0

⎛⎜⎜⎜⎜⎜⎜⎝IL ⊗ Σgen 0
0 IL ⊗ σ

2
genΣgen+

⎞⎟⎟⎟⎟⎟⎟⎠ 0

0 0

⎛⎜⎜⎜⎜⎜⎜⎝IM ⊗ Σplant 0
0 IM ⊗ σ

2
plantΣplant+

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

K+6∑︂
j=1

σ2
j Σ̃ j,

(4.14)
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where

Σ̃1 = blockdiag(Σpop+, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0)), σ2
1 = σ

2
pop,1

...

Σ̃K = blockdiag(0, . . . ,Σpop+, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0)), σ2
K = σ

2
pop,K

Σ̃K+1 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(1, 0, 0), IM ⊗ blockdiag(0, 0, 0)), σ2
K+1 = σ

2
gen,0,

Σ̃K+2 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 1, 0), IM ⊗ blockdiag(0, 0, 0)), σ2
K+2 = σ

2
gen,1,

Σ̃K+3 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0,Σgen+), IM ⊗ blockdiag(0, 0, 0)), σ2
K+3 = σ

2
gen,

Σ̃K+4 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(1, 0, 0)), σ2
K+4 = σ

2
plant,0,

Σ̃K+5 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 1, 0)), σ2
K+5 = σ

2
plant,1,

Σ̃K+6 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0,Σplant+)), σ2
K+6 = σ

2
plant.

Finally, we comment on the selection of the number of B-spline basis functions used to approximate

fp, fg and fi (i.e., bpop, bgen and bplant, respectively). In P-splines, it is recommended to choose a large

number of bases to provide enough flexibility; the role of the penalty is to avoid over fitting (Eilers &

Marx, 1996). In our setting the number of functions in the complete model equals K + L + M (populations

+ genotypes + plants), and, hence, the number of regression coefficients (either fixed or random) to be

estimated is K × bpop + L × bgen + M × bplant. This value can be very large, with the number of plants, M,

and associated basis dimension, bplant, playing the major role: the dataset may contain thousands of plants.

Thus, to reduce the computational burden, one could be tempted to use different basis dimensions for fp,

fg and fi, and to be less generous with fi. However, this is not a good strategy. As will be shown later,

simulation studies, as well as preparatory data analyses, have shown that results may be sensitive (and in

some cases unreliable) to using different bases dimensions. We therefore recommend choosing the same

value for bpop, bgen and bplant, while keeping the number of coefficients at a reasonable level (i.e., a trade-off

between flexibility and dimensionality). In addition to the number of regression coefficients, under model

(4.13), the number of variance components to estimate is: K at population level (σ2
pop,1, . . . , σ

2
pop,K), 3 at

genotype level (σ2
gen,0, σ

2
gen,1, σ

2
gen), 3 at plant level (σ2

plant,0, σ
2
plant,1, σ

2
plant), and the error variance (σ2).

4.2.3 psHDM with different genetic and/or plant-to-plant variation

In model (4.13) we assume the same genetic variation across populations (see variance-covariance matrix

specification, G in (4.14)). However, this assumption can be easily relaxed by considering different values

of σ2
gen,0, σ2

gen,1 and σ2
gen per population. A similar approach can be followed to allow for the plant-to-

plant variation (σ2
plant,0, σ2

plant,1 and σ2
plant) to vary across genotypes. These generalisations might be worth

exploring if there are sufficient number of genotypes per population and plants per genotype, respectively.
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For this purpose, the following specification of the model (4.13) has to be made

unlin,pop = (upop;T
nlin,1 , . . . ,u

pop;T
nlin,K)T ∼ N(0,Σpop) with Σpop = blockdiag(σ2

pop,1Σpop+, . . . , σ
2
pop,KΣpop+),

ulin,gen = (ugen;T
lin,1 , . . . ,u

gen;T
lin,L )T ∼ N(0, blockdiag(Iℓ1 ⊗ Σ

gen
1 , . . . , IℓK ⊗ Σ

gen
K )) with

Σ
gen
p = diag(σ2

gen,p,0, σ
2
gen,p,1),

unlin,gen = (ugen;T
nlin,1 , . . . ,u

gen;T
nlin,L)T ∼ N(0, blockdiag(σ2

gen,1Iℓ1 ⊗ Σgen+, . . . , σ
2
gen,K IℓK ⊗ Σgen+)),

ulin,plant = (uplant;T
lin,1 , . . . ,u

plant;T
lin,M )T ∼ N(0, blockdiag(Im1 ⊗ Σ

plant
1 , . . . , ImL ⊗ Σ

plant
L )) with

Σ
plant
g = diag(σ2

plant,g,0, σ
2
plant,g,1),

unlin,plant = (uplant;T
nlin,1 , . . . ,u

plant;T
nlin,M )T ∼ N(0, blockdiag(σ2

plant,1Im1 ⊗ Σplant+, . . . , σ
2
plant,LImL ⊗ Σplant+)),

where the variance-covariance matrix for the random effects u is

G = blockdiag(Σpop,Σgen,Σplant), (4.15)

where

Σgen =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝Iℓ1 ⊗ Σgen
1 0

0 Iℓ1 ⊗ σ2
gen,1Σgen+

⎞⎟⎟⎟⎟⎟⎟⎠ · · · 0

...
. . .

...

0 · · ·

⎛⎜⎜⎜⎜⎜⎜⎝IℓK ⊗ Σgen
K 0

0 IℓK ⊗ σ2
gen,KΣgen+

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

Σplant =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝Im1 ⊗ Σ
plant
1 0

0 Im1 ⊗ σ
2
plant,1Σplant+

⎞⎟⎟⎟⎟⎟⎟⎠ · · · 0

...
. . .

...

0 · · ·

⎛⎜⎜⎜⎜⎜⎜⎝ImL ⊗ Σ
plant
L 0

0 ImL ⊗ σ
2
plant,LΣplant+

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

thus, G can be written as G =
∑︁K+3K+3L

j=1 σ2
j Σ̃ j, where
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Σ̃1 = blockdiag(Σpop+, . . . , 0,

Iℓ1 ⊗ blockdiag(0, 0, 0), . . . , IℓK ⊗ blockdiag(0, 0, 0),

Im1 ⊗ blockdiag(0, 0, 0), . . . , ImL ⊗ blockdiag(0, 0, 0)),
...

Σ̃K = blockdiag(0, . . . ,Σpop+,

Iℓ1 ⊗ blockdiag(0, 0, 0), . . . , IℓK ⊗ blockdiag(0, 0, 0),

Im1 ⊗ blockdiag(0, 0, 0), . . . , ImL ⊗ blockdiag(0, 0, 0)),

Σ̃K+1 = blockdiag(0, . . . , 0,

Iℓ1 ⊗ blockdiag(1, 0, 0), . . . , IℓK ⊗ blockdiag(0, 0, 0),

Im1 ⊗ blockdiag(0, 0, 0), . . . , ImL ⊗ blockdiag(0, 0, 0)),
...

Σ̃K+3K = blockdiag(0, . . . , 0,

Iℓ1 ⊗ blockdiag(0, 0, 0), . . . IℓK ⊗ blockdiag(0, 0,Σgen+),

Im1 ⊗ blockdiag(0, 0, 0), . . . , ImL ⊗ blockdiag(0, 0, 0)),

Σ̃K+3K+1 = blockdiag(0, . . . , 0,

Iℓ1 ⊗ blockdiag(0, 0, 0), . . . , IℓK ⊗ blockdiag(0, 0, 0),

Im1 ⊗ blockdiag(1, 0, 0), . . . , ImL ⊗ blockdiag(0, 0, 0)),
...

Σ̃K+3K+3L = blockdiag(0, . . . , 0,

Iℓ1 ⊗ blockdiag(0, 0, 0), . . . , IℓK ⊗ blockdiag(0, 0, 0),

Im1 ⊗ blockdiag(0, 0, 0), . . . , ImL ⊗ blockdiag(0, 0,Σplant+)),

and variance parameters at genotype level σ2
K+1 = σ

2
gen,1,0, σ2

K+2 = σ
2
gen,1,1, σ2

K+3 = σ
2
gen,1, . . ., σ2

K+3K =

σ2
gen,K , and at plant level σ2

K+3K+1 = σ
2
plant,1,0, σ2

K+3K+2 = σ
2
plant,1,1, σ2

K+3K+3 = σ
2
plant,1, . . ., σ2

K+3K+3L =

σ2
plant,L. We note that, under this configuration of model (4.13), the number of variance components to

estimate is: K at population level (σ2
pop,1, . . . , σ

2
pop,K), 3 × K at genotype level (σ2

gen,p,0, σ
2
gen,p,1, σ

2
gen,p with

p = 1, . . . ,K), 3× L at plant level (σ2
plant,g,0, σ

2
plant,g,1, σ

2
plant,g with g = 1, . . . , L), and the error variance (σ2),

while the number of regression coefficients (fixed and random) remains the same. It is worth noting that the

implementation of the model with this specification allows for both genetic and plant-to-plant variations, or

only one of them.

60



61 Chapter 4. Spatio-temporal modelling of high-throughput phenotyping data: Two-stage approach

4.2.4 Covariance structure

Under the model specification (4.13) and based on the hierarchical structure in the psHDM (4.6),

Cov(ỹ) = ZCov(u)ZT + R = ZGZT + R.

More specifically, there is the assumption that observations arising from the same plant, genotype or

population are serially correlated, and the correlation increases as a function of the shared grouping levels

(Brumback & Rice, 1998). In particular (and for simplicity), if we use the variance-covariance specification

in (4.14), curves ỹi and ỹi′ have covariance

cov(ỹi, ỹi′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 p(i) ≠ p(i′)

ZpopΣpopZT
pop p(i) = p(i′), g(i) ≠ g(i′)

ZpopΣpopZT
pop + XgenΣ

gen
p XT

gen + σ
2
gen,pZgenΣgen+ZT

gen g(i) = g(i′), i ≠ i′

ZpopΣpopZT
pop + XgenΣ

gen
p XT

gen + σ
2
gen,pZgenΣgen+ZT

gen

+XplantΣ
plant
g XT

plant + σ
2
plant,gZplantΣplant+ZT

plant + σ
2diag(wi(t)) i = i′.

This covariance structure is depicted in Figure 4.1 for a toy example with K = 2 populations, L = 4

genotypes, and M = 8 plants measured at n = 10 time points (a total of 8×10 = 80 observations). To observe

differences between the two populations we deliberately increase the genetic variation and the variance of

one of the populations (p = 2). We used cubic B-spline basis of dimension 13 to represent fp, fg and fi (i.e.,

bpop = bgen = bplant = 13). Under this configuration, the mixed model (4.13) has 2×13+4×13+8×13 = 182

regression coefficients (both fixed and random) and (2 + 3 + 3 + 1=) 9 variance components.

This covariance structure is consistent with the empirical covariance structure of different datasets we

have analysed before (see, e.g., Figure 2.8), as well as with other covariance structures reported in the

literature for this kind of HTP data (e.g., Zhang, 2019). Figure 4.1 shows that for each plant trajectory the

correlation increases with time, and the covariance increases as a function of the shared grouping levels. For

instance, for population 2 (p(i) = 2) we observe some relation between trajectories of plants (i = 5, . . . , 8)

belonging to different genotypes (g(i) = 3, 4), but this relation increases for plant trajectories belonging to

the same genotype (e.g., plants i = 5, 6 in genotype g(i) = 3).

4.2.5 psHDM estimation and computational aspects

We note that model in equation (4.13) is a standard linear mixed model. That is, the variance-covariance

matrix for random effects in (4.14) has a standard form, with G linear in the variance parameters. Thus,

estimation can be carried out with any mixed-model software (see, e.g., Bates et al., 2015; Butler et al.,

2018; Pinheiro et al., 2019; SAS Institute Inc. 2015. SAS/STAT®, 2015; Wood, 2017). However, HTP data

are usually characterised by a large number of observations, which, together with the number of regression
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Figure 4.1: Variance-covariance structure under the model specification (4.13) for a toy example that con-

siders K = 2 populations with σ2
pop,1 = 1 and σ2

pop,2 = 5, L = 4 genotypes with σ2
gen,p,0 = σ

2
gen,p,1 = 1 and

σ2
gen,p = 10, M = 8 plants with σ2

plant,g,0 = σ
2
plant,g,1 = σ

2
plant,g = 1, and n = 10 time points. Cubic B-spline

bases of dimension 13 are used for the three levels of the hierarchy (i.e., bpop = bgen = bplant = 13). Every

pixel represents the covariance between the ith plant at the time t, ỹi(t), and the i′th plant at the time t, ỹi′(t).

coefficients (given by the selection of the cubic B-spline basis dimension) in equation (4.13), might make

estimation with the above-mentioned software computationally expensive. Thus, we have implemented in

the R language (R Core Team, 2023) our own code (freely available on https : / /CRAN . R - project . org /

package= statgenHTP, Millet et al., 2022, through the function fitSplineHDM()), which resorts to the

recently proposed SOP estimating algorithm, previously described in Section 3.3. However, as already

mentioned, the variance-covariance matrix for the random effects in model (4.13) is linear in the variance

parameters and thus, the SOP method reduces to the estimating algorithm described in Harville (1977).

BLUEs and BLUPs are obtained by the solution of Henderson’s mixed model equations in Step 1 of

the SOP algorithm. To speed up computation, we take advantage of the array structure of the data, which

leads to the Kronecker structure of X and Z in (4.13), through the use of Generalised Linear Array Models

(GLAM) (Currie et al., 2006). Specifically, we use the GLAM algorithm for fast and efficient computation

of the matrix cross-products in C (see equation (3.35)). We also improve our codes by using efficient sparse

matrix algebra implemented in the spam (Furrer et al., 2022) and Matrix (Bates et al., 2022) R-packages

to construct the sparse matrices involved in the model (X, Z, R−1, G−1 and C). Moreover, the SVD we use
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63 Chapter 4. Spatio-temporal modelling of high-throughput phenotyping data: Two-stage approach

to reformulate the P-spline model into the mixed model results in a diagonal variance-covariance matrix

G (see (4.14)), making computation more efficient. One problem when solving the system of equations in

(3.35) is that calculating C−1 is very expensive. We propose reducing time by using the sparse Cholesky

decomposition of C = LLT , where L is a lower triangular matrix. Then, BLUEs and BLUPs are obtained

by solving LLT b = ỹ in (3.35) with b = (β̂
T
, ûT )T in two steps: (1) Lz = b (forwards), and (2) LT ỹ = z

(backwards).

Variance components are estimated using REML in Step 2 of the SOP algorithm. Here, we use the

R-package LMMsolver (Boer, accepted, 2023; Boer & van Rossum, 2022) to calculate partial derivatives

of the REML log-likelihood in an efficient way. The use of this package allows us to further reduce the

computational burden by exploiting the sparse structure of the matrices involved in the model using the

so-called ‘sparse inverse’, i.e., the automated differentiation of Cholesky algorithm proposed by S. P. Smith

(1995). Specifically, the effective dimensions in (3.36) are equivalent to the partial derivatives of the log-

determinant

ED[it]
j = σ̂

−2[it]
j

∂log
⃓⃓⃓
C[it]
⃓⃓⃓

∂σ̂−2[it]
j

.

In this case, we do not need to calculate C−1, but its partial derivatives, which is more efficient.

4.2.6 Derivatives, standard errors and pointwise confidence intervals

As result of the second stage, we obtain estimated curves at the three levels of the hierarchy:

1. population trajectories ( f̂ p) and respective first-order derivatives ( f̂
′

p),

2. genotype-specific deviations and first-order derivatives ( f̂ g, f̂
′

g), and respective trajectories and first-

order derivatives ( f̂ p + f̂ g, ( f̂ p + f̂ g)′), and

3. plant-specific deviations and first-order derivatives ( f̂ i, f̂
′

i), respective trajectories and first-order

derivatives ( f̂ p + f̂ g + f̂ i, ( f̂ p + f̂ g + f̂ i)
′).

Derivatives are obtained as explained in Section 3.1.1.1. Construction of (approximate) confidence intervals

for the estimated curves and their derivatives are based on the prediction error variance (for details go

to Section 3.4 and Ruppert et al., 2003; Welham et al., 2004). Standard errors are based on C−1, thus

two computational challenges arise at this point (in terms of large time and memory consumption): (i)

calculation of C−1 (depending on the number of coefficients, i.e., the number of B-spline basis functions

used) and, (ii) construction of confidence intervals for the estimated curves at the plant level (depending

on the number of observations). For the former, we calculate the inverse of the variance-covariance matrix

only once, at the last iteration step of the SOP algorithm. Regarding the second challenge, it is actually

a limitation of our implementation and the user has to be aware that standard errors at the plant level will
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demand large memory. Predictions are implemented in the R-function predict.psHDM of the statgenHTP

package. They can be obtained for the same time points at which the original measurements were taken, or

on a finer grid.

4.2.7 Extracting time-independent attributes to characterise genotypes

The second stage consists of a temporal analysis with a hierarchical curve data model to jointly estimate

curves at each hierarchy level (plant or plot, genotype, and population) and their first-order derivatives.

Different time-independent characteristics (intermediate traits) can be easily extracted from the estimated

curves and their derivatives. Examples of intermediate traits for a growth-related trait (as illustrated in Fig-

ure 4.2, see, e.g., Hurtado et al., 2012; Roth et al., 2021) include the maximum and minimum trait values

(from trajectories), the maximum and average growth rate (from the first-order derivative of the trajectories),

the onset and end of senescence/growth (from second-order derivatives of the trajectories), and the area un-

der the curve (AUC, from the deviation curves). Note that the timing of key plant-development stages can

also be of interest. That is the value of the intermediate trait and the time at which it occurs. The area under

the deviation curves can be interpreted as a global measure of a genotype/plant performance over time when

compared to the genotypes/plants of the same region. A positive (negative) AUC indicates a genotype/plant

performance better (worse) than the population/genotype average. The AUC can be estimated for the com-

plete time interval where the measurements were taken. However, nothing precludes focusing attention on

a restricted time interval of interest. Finally, if any treatment is applied to the trait of interest at any stage

of the experiment, other maxima of the first-order derivative can be important to detect the response to the

treatment (e.g., recovery rates). We will use these intermediate traits to compare the one and two-stage

approaches proposed in this thesis in Chapters 6 and 7.
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Figure 4.2: Examples of different intermediate traits (time-independent characteristics) obtained from es-

timated curves at each level of the hierarchy (plant or plot, genotype, and population) as well as their

first-order derivatives. We use a growth-related trait as illustration.
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Chapter 5

Spatio-temporal modelling of
high-throughput phenotyping data:
One-stage approach

In the previous chapter, we introduced a two-stage approach to model hierarchical spatio-temporal data from

HTP experiments. Although stage-wise proposals are computationally feasible, they may result in loss of

information between and within stages. For instance, our two-stage P-splines-based approach may not fully

account for spatial heterogeneity across time when correcting for environmental factors in the first stage, and

uncertainty is lost between stages (weights are used to propagate error from the first to the second stage). It

is therefore of interest to develop approaches that allow modelling the spatial and temporal genetic and non-

genetic variation in one stage to take advantage of all the available information. To that aim, in this chapter,

we propose a one-stage spatio-temporal P-spline hierarchical curve data model for the analysis of HTP data.

In particular, we generalise the two-stage modelling strategy presented in Chapter 4 to a full and one-stage

spatio-temporal approach. We use the SpATS model as the base model and extend it to the spatio-temporal

case by considering a three-level hierarchical data structure (populations, genotypes within populations, and

plants within genotypes) and a three-dimensional smooth function (similar to the fST presented in Sections

3.1.2.2 and 3.2.3). While the transition from a two-stage to a one-stage approach may seem straightforward,

implementing the latter is challenging due to the complexity and dimensionality of the data and models

involved, leading to issues such as identifiability, scalability, and computational burden. We assess the

performance of the proposed approach using simulated and real data in Chapters 6 and 7, and compare the

results with those obtained using the two-stage approach. Additionally, we present advances in software

implementation in Chapter 8. This chapter builds on the material presented in Perez-Valencia et al. (2023)

and represents a significant step towards a more comprehensive and efficient solution for the analysis of

HTP data.
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5.1 Spatio-temporal (psHDM) P-spline hierarchical curve data model

Our approach builds upon the spatial SpATS model proposed by Rodríguez-Álvarez et al. (2018). In partic-

ular, if yi is the phenotypic trait for the ith plant for a specific time point t (for simplicity, we omit here the

dependence on time), the SpATS model we consider is as follows

yi = fp(i) + fg(i) + fr(i) + fc(i) + fS(r(i), c(i))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Spatial trend

+εi, εi ∼ N(0, σ2), 1 ≤ i ≤ M. (5.1)

Note that model (5.1) is a simpler model than the one presented in the first stage of the two-stage approach

(4.1); here we do not consider extra experimental design factors. Recall that fp is the fixed effect coefficient

for population p, fg is the random effect coefficient for genotype g ( fg ∼ N(0, σ2
gen)), and fr and fc are

random effect coefficients for row r and column c, respectively ( fr ∼ N(0, σ2
row) and fc ∼ N(0, σ2

col)).

Finally, fS(r, c) is a two-dimensional smooth function at time t, defined over the row and column positions,

that simultaneously accounts for the spatial (local and global) trend variation across both directions. This

smooth function is constructed with tensor-product P-splines (see equation (3.20), and Eilers & Marx, 1996,

2003).

By taking the SpATS model (5.1) as the base model, we now extend it to the spatio-temporal case by

allowing all effects to vary with time, i.e.,

yi(t) = fp(i)(t) + fg(i)(t) + fr(i)(t) + fc(i)(t) + fST(r(i), c(i), t) + εi(t),

= fp(i)(t) + fg(i)(t) + fi(t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
3-level longitudinal effects

+ fr(i)(t) + fc(i)(t) + fST(r(i), c(i), t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Spatio-temporal trend

+εi. (5.2)

Note that, in the second equation, εi(t) has been decomposed such that εi(t) = fi(t) + εi, that is, we capture

the temporal trend of each plant in fi(t), while εi is pure random noise, i.e., εi
iid
∼ N(0, σ2). The interpretation

of each component in model (5.2) is as follows: fp(t) is the time-varying effect coefficient for population p;

fg(t) is the time-varying random effect coefficient for genotype g (it measures deviations from the population

effect to which the genotype belongs to); fi(t) is the time-varying random effect coefficient for plant i (it

measures deviations from the genotype effect to which the plant belongs to); and fr(t) and fc(t) are time-

varying random effect coefficients for row r and column c, respectively. Finally, fST(r, c, t) is a spatio-

temporal three-dimensional surface defined over rows, columns and time. This three-dimensional surface

accounts for spatial trend variations, but it allows these spatial trends to change with time.

To model (and estimate) the time-varying effects in model (5.2), we assume that all these effects vary

smoothly along time. Following the ideas presented in Section 3.1.1, each one-dimensional function in

(5.2), fp(t), fg(t), fi(t), fr(t), and fc(t), is modelled as a linear combination of cubic B-spline basis functions.

Similarly, in Section 3.1.2.2, we presented the basis for modeling the three-dimensional function fST(r, c, t)

using the tensor product of three marginal cubic B-spline bases. From now on we call model (5.2) the
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spatio-temporal psHDM, which is approximated by a linear combination of cubic B-spline basis functions

as follows

yi(t) =
bpop∑︂

kpop=1

Bkpop(t)θpop
p(i),kpop⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

fp(i)(t)

+

bgen∑︂
kgen=1

Bkgen(t)θgen
g(i),kgen⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

fg(i)(t)

+

bplant∑︂
kplant=1

Bkplant(t)θ
plant
i,kplant⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

fi(t)

+

brow∑︂
krow=1

Bkrow(t)θrow
r(i),krow⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

fr(i)(t)

+

bcol∑︂
kcol=1

Bkcol(t)θ
col
c(i),kcol⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

fc(i)(t)

+ fST(r(i), c(i), t) + εi(t),

(5.3)

where (Bpop)n×bpop

jkpop
= Bkpop(t j), (Bgen)n×bgen

jkgen
= Bkgen(t j) and (Bplant)

n×bplant

jkplant
= Bkplant(t j) are cubic B-spline

basis functions, evaluated at time t j, at population, genotype and plant levels, respectively; (Brow)n×brow
jkrow

=

Bkrow(t j) and (Bcol)
n×bcol
jkcol

= Bkcol(t j) are cubic B-spline basis functions, evaluated at time t j, for rows and

columns, respectively; and fST is the tensor-product of three one-dimensional cubic B-splines basis (in the

row, column and time directions) in (3.13), which results in the spatio-temporal B-spline design matrix

BST in (3.14). Here, θpop
p(i) = (θpop

p(i),1, . . . , θ
pop
p(i),bpop

)T , θgen
g(i) = (θgen

g(i),1, . . . , θ
gen
g(i),bgen

)T , θplant
i = (θplant

i,1 , . . . , θ
plant
i,bplant

)T ,

θrow
r(i) = (θrow

r(i),1, . . . , θ
row
r(i),brow

)T , and θcol
c(i) = (θcol

c(i),1, . . . , θ
col
c(i),bcol

)T are vectors of unknown regression coefficients.

We now present the P-spline model (5.3) in matrix notation for all plants y =

(y1(t1), . . . , y1(tn), . . . , yM(t1), . . . , yM(tn))T , which are ordered by plant and time. As for the two-

stage approach, recall that data are pre-ordered by population, genotype, plant and time to make use of the

Kronecker products

y = (Qpop ⊗ Bpop)θpop⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
f pop

+ (Qgen ⊗ Bgen)θgen⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
f gen

+ (IM ⊗ Bplant)θplant⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
f plant

+ (Qrow ⊗ Brow)θrow⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
f row

+ (Qcol ⊗ Bcol)θcol⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
f col

+ BSTθST⏞ˉ̄⏟⏟ˉ̄⏞
f ST

+ε,
(5.4)

where f pop = ( fp(1)(t1), . . . , fp(1)(tn), . . . , fp(M)(t1), . . . , fp(M)(tn))T , f gen =

( fg(1)(t1), . . . , fg(1)(tn), . . . , fg(M)(t1), . . . , fg(M)(tn))T , f plant = ( f1(t1), . . . , f1(tn), . . . , fM(t1), . . . , fM(tn))T ,

f row = ( fr(1)(t1), . . . , fr(1)(tn), . . . , fr(M)(t1), . . . , fr(M)(tn))T , f col =

( fc(1)(t1), . . . , fc(1)(tn), . . . , fc(M)(t1), . . . , fc(M)(tn))T , and f ST as defined in (3.13). Additionally, Qpop,

Qgen, Qrow and Qcol are contrast matrices assigning, respectively, plants to populations, plants to genotypes,

plants to row locations, and plants to column locations. That is, QM×K
pop = blockdiag(1pop,T

1 , . . . , 1pop,T
K ), with

1pop
p vectors of ones of length #{i | p(i) = p}; QM×L

gen = blockdiag(1gen,T
1 , . . . , 1gen,T

L ), with 1gen
g vectors of ones

of length mg; QM×R
row = blockdiag(1row,T

1 , . . . , 1row,T
R ), with 1row

r vectors of ones of length #{i | r(i) = r}; and

QM×C
col = blockdiag(1col,T

1 , . . . , 1col,T
C ), with 1col,c vectors of ones of length #{i | c(i) = c}. The vectors of un-

known regression coefficients for all plants become θpop = (θpop;T
1 , . . . , θ

pop;T
K )T , θgen = (θgen;T

1 , . . . , θ
gen;T
L )T ,

θplant = (θplant;T
1 , . . . , θ

plant;T
M )T , θrow = (θrow;T

1 , . . . , θrow;T
R )T , and θcol = (θcol;T

1 , . . . , θcol;T
C )T (see (3.13) for

θST).
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As said before, we propose using P-splines (Eilers & Marx, 1996, 2003) to model y, i.e., we combine B-

spline basis functions on equidistant knots and a discrete difference penalty on the (regression) coefficients

to ensure smoothness. Then, the penalty associated with model (5.4) is

K∑︂
p=1

λpop,pθ
pop;T
p Ppopθ

pop
p + λgenθ

T
gen(IL⊗Pgen)θgen + λplantθ

T
plant(IM ⊗ Pplant)θplant+

λrowθ
T
row(IR ⊗ Prow)θrow + λcolθ

T
col(IC ⊗ Pcol)θcol + θ

T
ST PSTθST,

(5.5)

where Pν = DT
ν Dν (ν ∈ {pop, gen, plant, row, col}) are penalty matrices with Dν matrices that form second

order differences, and PST as defined in (3.15). The influence of the penalty (i.e., the amount of smooth-

ness) is determined by one smoothing parameter for each one-dimensional function (i.e., λgen, λplant, λrow

and λcol), and by three smoothing parameters in the three-dimensional case (with λ1, λ2 and λ3 smoothing

parameters in the time, row and column directions), i.e., we consider anisotropy (details are given in Sec-

tions 3.2.1 and 3.2.3, but we refer the reader to Eilers & Marx, 2021; Rodríguez-Álvarez et al., 2015, and

references therein for a more in-depth presentation). As for the second stage of our two-stage approach,

we allow for different population smoothing parameters (i.e., λpop = (λpop,1, . . . , λpop,K)). In what follows,

we present in detail the estimation of the spatio-temporal psHDM (5.2) and discuss some computational

aspects.

5.2 Mixed model formulation of the spatio-temporal psHDM

For estimation, we follow the same modeling philosophy used for the two-stage approach. That is, we use

the connection between P-splines and linear mixed models (Currie & Durban, 2002; Currie et al., 2006;

Lee & Durban, 2011; Wand, 2003). Thus, the smooth functions are decomposed (reparameterised) in two

components: one whose coefficients are not penalised (these coefficients are considered as fixed effect co-

efficients), and one whose coefficients are penalised (and thus considered as random effect coefficients). As

before, smoothing parameters become (ratios of) variance parameters, and estimated using REML. Follow-

ing the same ideas as for the two-stage approach, the unpenalised/fixed effect coefficients (intercept and

slope) for fg(t) and fi(t) are assumed to be penalised/random to avoid identifiability problems (and the same

assumption applies to fr(t) and fc(t)). In summary, the modeling strategy we follow implies that there is one

variance parameter per population, and three variance parameters (associated, respectively, with the inter-

cept, the slope and the non-linear/penalised/smooth effect) for genotypes, plants, rows and columns. Thus,

under this framework, the spatio-temporal psHDM (5.2) is expressed as follows (for one plant) (we refer the
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reader to Section 3.2.1 for more technical details on the spatio-temporal smooth function, fST)

yi = Xpopβlin,p(i) + Zpopupop
nlin,p⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

f p

+ Xgenugen
lin,g(i) + Zgenugen

nlin,g(i)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
f g

+ Xplantu
plant
lin,i + Zplantu

plant
nlin,i⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

f i

+

Xrowurow
lin,r(i) + Zrowurow

nlin,r(i)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
f r

+ Xcolucol
lin,c(i) + Zcolucol

nlin,c(i)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
f c

+ f ST(r(i), c(i), t) + εi,
(5.6)

where the basis functions, the regression coefficients, and the variance-covariance matrices of the random

effects, are obtained from the connection between P-splines and linear mixed models (see Section 3.2.1). As

before, we use the SVD of the penalty matrices Pν = DT
ν Dν = UνΛνUT

ν (ν ∈ {pop, gen, plant, row, col}) to

find these expressions. Therefore, the specification of the model (5.6) is as follows

Xpop = [1n | t] and βpop
lin,p = (βlin,p,0, βlin,p,1)T ,

Zpop = BpopUpop+ and upop
nlin,p = UT

pop+θ
pop
p = (upop

nlin,p,1, . . . , u
pop
nlin,p,bpop−2)T ∼ N(0, σ2

pop,pΣpop+),

Xgen = [1n | t] and ugen
lin,g = (ugen

lin,g,0, u
gen
lin,g,1)T ∼ N(0,Σgen) with Σgen = diag(σ2

gen,0, σ
2
gen,1),

Zgen = BgenUgen+ and ugen
nlin,g = UT

gen+θ
gen
g = (ugen

nlin,g,1, . . . , u
gen
nlin,g,bgen−2)T ∼ N(0, σ2

genΣgen+),

Xplant = [1n | t] and uplant
lin,i = (uplant

lin,i,0, u
plant
lin,i,1)T ∼ N(0,Σplant) with Σplant = diag(σ2

plant,0, σ
2
plant,1),

Zplant = BplantUplant+ and uplant
nlin,i = UT

plant+θ
plant
i = (uplant

nlin,i,1, . . . , u
plant
nlin,i,bplant−2)T ∼ N(0, σ2

plantΣplant+),

Xrow = [1n | t] and urow
lin,r = (urow

lin,r,0, u
row
lin,r,1)T ∼ N(0,Σrow) with Σrow = diag(σ2

row,0, σ
2
row,1),

Zrow = BrowUrow+ and urow
nlin,r = UT

row+θ
row
r = (urow

nlin,r,1, . . . , u
row
nlin,r,brow−2)T ∼ N(0, σ2

rowΣrow+),

Xcol = [1n | t] and ucol
lin,c = (ucol

lin,c,0, u
col
lin,c,1)T ∼ N(0,Σcol) with Σcol = diag(σ2

col,0, σ
2
col,1),

Zcol = BcolUcol+ and ucol
nlin,c = UT

col+θ
col
c = (ucol

nlin,c,1, . . . , u
col
nlin,c,bcol−2)T ∼ N(0, σ2

colΣcol+),

(5.7)

where the variance-covariance matrices for upop
nlin,p, ugen

nlin,g, uplant
nlin,i, urow

nlin,r, and ucol
nlin,c are obtained from the

inverse of their respective precision matrices. That is, σ2
νΣν+ = λ

−1
ν Λ

−1
ν+, with σ2

ν = σ
2/λν and Σν+ = Λ−1

ν+

(ν ∈ {gen, plant, row, col}), and σ2
pop,pΣpop+ = λ

−1
pop,pΛ

−1
pop+, with σ2

pop,p = σ
2/λpop,p and Σpop+ = Λ

−1
pop+ at the

population level (we consider different smoothing/variance parameters for each population). For simplicity,

we use the parameterization Xν = [1n | t] instead of Xν = BνUν+, ν ∈ {pop, gen, plant, row, col}, (but more

precisely, they are obtained as described in Wood et al. (2013); see also Section 3.2.1 for more details), with

βνlin,ν“ = uνlin,ν“ = (uνlin,ν“,0, u
ν
lin,ν“,1)T , ν“ ∈ {g, i, r, c}, and βpop

lin,p = (βpop
lin,p,0, β

pop
lin,p,1)T the corresponding intercepts

and slopes. With respect to the spatio-temporal three-dimensional surface, f ST(r, c, t), we follow the ideas

in Lee and Durban (2011) and Rodríguez-Álvarez et al. (2015) for its mixed model reparameterisation (for

details, see also Section 3.2.3).

Before proceeding, recall that f ST can be decomposed in an ANOVA-way (see (3.34)). This decompo-

sition reveals that there are three components which are confounded with the population effect, namely, the

intercept β0, the linear effect along time t × β3, and the non-linear (smooth) main effect along time f1(t).
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These terms (in blue) are removed from fST

f ST = 1Mnβ0 + (r ⊗ 1n)β1 + (c ⊗ 1n)β2 + (t ⊗ 1M)β3 + ((r ⊙ c) ⊗ 1n)β4 + (r ⊗ t)β5 + (c ⊗ t)β6 + ((r ⊙ c) ⊗ t)β7⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Linear effects and interactions

+

f2(r) ⊗ 1n⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
(Z2⊗1n)u2

+ (c ⊙ h2;3(r)) ⊗ 1n⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((Z2□c)⊗1n)u2;3

+ h2;1(r) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(Z2⊗t)u2;1

+ (c ⊙ h2;31(r)) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((Z2□c)⊗t)u2;31⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Non-linear row-related effects

+

f3(c) ⊗ 1n⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
(Z3⊗1n)u3

+ (r ⊙ h3;2(c)) ⊗ 1n⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((r□Z3)⊗1n)u3;2

+ h3;1(c) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(Z3⊗t)u3;1

+ (r ⊙ h3;21(c)) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((r□Z3)⊗t)u3;21⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Non-linear column-related effects

+

f1(t) ⊗ 1M⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(ZT⊗1M)u1

+ r ⊗ h1;2(t)⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(r⊗ZT)u1;2

+ c ⊗ h1;3(t)⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
(c⊗ZT)u1;3

+ (r ⊙ c) ⊗ h1;23(t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((r⊙c)⊗ZT)u1;23⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Non-linear time-related effects

+

h2|3(r, c) ⊗ 1M⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
((Z2□Z3)⊗1M)u2|3

+ h2|3;1(r, c) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
((Z2□Z3)⊗t)u2|3;1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Non-linear row and column interactions

+ h2|1(r, t)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
(Z2⊗ZT)u2|1

+ c ⊙ f2|1;3(r, t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
((Z2□c)⊗ZT)u2|1;3⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Non-linear row and time interactions

+

h3|1(c, t)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
(Z3⊗ZT)u3|1

+ r ⊙ f3|1;2(c, t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
((r□Z3)⊗ZT)u3|1;2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Non-linear column and time interactions

+ h2|3|1(r, c, t)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
((Z2□Z3)⊗ZT)u2|3|1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Non-linear space-time interaction

.

(5.8)

Consequentely, some terms of the mixed model form (in matrix notation) of the spatio-temporal three-

dimensional surface fST(r, c, t) (see (3.28)) have to be removed. That is, we omitted in (3.30) the two terms,

1 and t, from XST, and the ZT term from ZST. The new design matrices become (blocks in blue should be

omitted of the following specification)

XST ≡ [ 1Mn | r ⊗ 1n | c ⊗ 1n | t ⊗ 1M | (r ⊙ c) ⊗ 1n | r ⊗ t | c ⊗ t | (r ⊙ c) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Linear effects and interactions

],

ZST ≡ [ Z2 ⊗ 1n | (Z2□c) ⊗ 1n | Z2 ⊗ t | (Z2□c) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth row-related effects

| Z3 ⊗ 1n | (r□Z3) ⊗ 1n | Z3 ⊗ t | (r□Z3) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
smooth column-related effects

|

ZT ⊗ 1M | r ⊗ ZT | c ⊗ ZT | (r ⊙ c) ⊗ ZT⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth time-related effects

| (Z2□Z3) ⊗ 1M | (Z2□Z3) ⊗ t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth row and column interactions

|

Z2 ⊗ ZT | (Z2□c) ⊗ ZT⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth row and time interactions

| Z3 ⊗ ZT | (r□Z3) ⊗ ZT⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth column and time interactions

| (Z2□Z3) ⊗ ZT⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
smooth space-time interactions

].

(5.9)

In the same way, β0 and β3 are excluded from βST, and u1 is removed from uST in (3.31). Thus, by excluding
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the terms in blue, the vectors of coefficients are

βST = (β0, β1, β2, β3, β4, β5, β6, β7)T ,

uST =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝uT
2 ,u

T
2;3,u

T
2;1,u

T
2;31⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

ur

,uT
3 ,u

T
3;2,u

T
3;1,u

T
3;21⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

uc

,uT
1 ,u

T
1;2,u

T
1;3,u

T
1;2,3⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

ut

uT
2|3,u

T
2|3;1⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

ur|c

,uT
2|1,u

T
2|1;3⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

ur|t

,uT
3|1,u

T
3|1,2⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

uc|t

, uT
2|3|1⏞⏟⏟⏞

ur|c|t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

.

(5.10)

Notice that the vector of random effects, uST, results in 18 (instead of 19) sets of random effects, each

associated with one block in ZST. As before, these sets can be further grouped into 7 larger sets, i.e.,

uST = (uT
r ,uT

c ,uT
t ,uT

r|c,u
T
r|t,u

T
c|t,u

T
r|c|t). Then, the precision matrix (i.e., the inverse of variance-covariance

matrix) associated with uST, is a block diagonal matrix, with 7 blocks, each related to each set of random

effects

G−1
ST =blockdiag

⎛⎜⎜⎜⎜⎜⎝ 1
σ2

ST,2

Λ2+ ⊗ I2 ⊗ I2,
1
σ2

ST,3

I2 ⊗ Λ3+ ⊗ I2,
1
σ2

ST,1

I3 ⊗ Λ1+,

1
σ2

ST,2

Λ2+ ⊗ Ib3−2 ⊗ I2 +
1
σ2

ST,3

Ib2−2 ⊗ Λ3+ ⊗ I2,

1
σ2

ST,2

Λ2+ ⊗ I2 ⊗ Ib1−2 +
1
σ2

ST,1

Ib2−2 ⊗ I2 ⊗ Λ1+,

1
σ2

ST,3

I2 ⊗ Λ3+ ⊗ Ib1−2 +
1
σ2

ST,1

I2 ⊗ Ib3−2 ⊗ Λ1+,

1
σ2

ST,2

Λ2+ ⊗ Ib3−2 ⊗ Ib1−2 +
1
σ2

ST,3

Ib2−2 ⊗ Λ3+ ⊗ Ib1−2 +
1
σ2

ST,1

Ib2−2 ⊗ Ib3−2 ⊗ Λ1+

⎞⎟⎟⎟⎟⎟⎠
=
∑︂

j∈{2,3,1}

σ−2
ST, jΛ̃ j+,

(5.11)

where the specific form ofΛ j+ and Λ̃ j+ ( j = 1, 2, 3) are given in Section 3.2.3 (once again it is obtained from

the connection between P-splines and linear mixed models). We note that the difference between the G−1
ST in

(3.32) and (5.11) is the (blue) block associated with the one-dimensional smooth (non-linear) effects along

time (ut); in this case, we have removed the non-linear main effect along time (u1). As can be observed,

G−1
ST depends on three variance parameters, σ2

ST,1, σ2
ST,2, and σ2

ST,3; they are responsible for controlling the

smoothness along the rows, columns and time, respectively. Consequently, Λ̃1+ in (3.33) becomes

Λ̃1+ = blockdiag (0, 0, I2 ⊗ I2 ⊗ Λ1+, 0, Ib2−2 ⊗ I2 ⊗ Λ1+, I2 ⊗ Ib3−2 ⊗ Λ1+, I3 ⊗ Λ1+) .

With all ingredients introduced before (i.e., the specifications in equations (5.7) for the longitudinal

one-dimensional functions, and in equation (5.9) for the spatio-temporal function), in matrix notation model
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5.2. Mixed model formulation of the spatio-temporal psHDM 72

(5.4) is expressed, for all M plants, as

y = Xβ + Zu + ε, u ∼ N(0,G), ε ∼ N(0, σ2I), (5.12)

where

X = [Qpop ⊗ Xpop | XST],

Z = [Qpop ⊗ Zpop | Qgen ⊗ Xgen | Qgen ⊗ Zgen | IM ⊗ Xplant | IM ⊗ Zplant |

Qrow ⊗ Xrow | Qrow ⊗ Zrow | Qcol ⊗ Xcol | Qcol ⊗ Zcol | ZST],

where the contrast matrices Qpop, Qgen, Qrow and Qcol were defined before in (5.4), and

β =
(︂
βT

pop,β
T
ST

)︂T
u =(uT

nlin, pop,u
T
lin, gen,u

T
nlin, gen,u

T
lin, plant,u

T
nlin, plant,u

T
lin, row,u

T
nlin, row,u

T
lin, col,u

T
nlin, col,u

T
ST)T ,

where

βpop =
(︂
β

pop;T
lin,1 , . . . ,β

pop;T
lin,K

)︂T
,

ulin, gen =
(︂
ugen;T

lin,1 , . . . ,u
gen;T
lin,L

)︂T
,

ulin, plant =
(︂
uplant;T

lin,1 , . . . ,u
plant;T
lin,M

)︂T
,

ulin, row =
(︂
urow;T

lin,1 , . . . ,u
row;T
lin,R

)︂T
,

ulin, col =
(︂
ucol;T

lin,1 , . . . ,u
col;T
lin,C

)︂T
,

unlin, pop =
(︂
upop;T

nlin,1 , . . . ,u
pop;T
nlin,K

)︂T
,

unlin, gen =
(︂
ugen;T

nlin,1 , . . . ,u
gen;T
nlin,L

)︂T
,

unlin, plant =
(︂
uplant;T

nlin,1 , . . . ,u
plant;T
nlin,M

)︂T
,

unlin, row =
(︂
urow;T

nlin,1 , . . . ,u
row;T
nlin,R

)︂T
,

unlin, col =
(︂
ucol;T

nlin,1, . . . ,u
col;T
nlin,C

)︂T
.

Finally, the variance-covariance matrix G is a block diagonal matrix given by

G = blockdiag(Gpop,Ggeno,Gplant,Grow,Gcol,GST), (5.13)

where

Gpop = blockdiag
(︂
σ2

pop,1Σpop+, . . . , σ
2
pop,KΣpop+

)︂
,

Ggeno = blockdiag
(︂
IL ⊗ Σgen, IL ⊗ σ

2
genΣgen+

)︂
,

Gplant = blockdiag
(︂
IM ⊗ Σplant, IM ⊗ σ

2
plantΣplant+

)︂
,

Grow = blockdiag
(︂
IR ⊗ Σrow, IR ⊗ σ

2
rowΣrow+

)︂
,

Gcol = blockdiag
(︂
IC ⊗ Σcol, IC ⊗ σ

2
colΣcol+

)︂
.

We note that the variance-covariance (5.13) has a non-standard form, with the last block in GST depending

on three variance parameters in a non linear way. More precisely, in our case what is linear in the (inverse

of the) variance parameters is the precision matrix, G−1 and not the variance-covariance matrix, G, i.e.,
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G−1 =
∑︁

j σ
−2
j Λ̃ j where

Λ̃1 = blockdiag(Λpop+, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), 0),
...

Λ̃K = blockdiag(0, . . . ,Λpop+, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), 0),

are block diagonal matrices with zeroes matrices of proper dimension each, associated with the effects at

the population level,

Λ̃K+1 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(1, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), 0),

Λ̃K+2 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 1, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), 0),

Λ̃K+3 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0,Λgen+), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), 0),

are block diagonal matrices with zeroes matrices of proper dimension each, associated with the effects at

the genotype level,

Λ̃K+4 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(1, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), 0),

Λ̃K+5 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 1, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), 0),

Λ̃K+6 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0,Λplant+),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), 0),

are block diagonal matrices with zeroes matrices of proper dimension each, associated with the effects at

the plant level,

Λ̃K+7 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(1, 0, 0), IC ⊗ blockdiag(0, 0, 0), 0),

Λ̃K+8 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 1, 0), IC ⊗ blockdiag(0, 0, 0), 0),

Λ̃K+9 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0,Λrow+), IC ⊗ blockdiag(0, 0, 0), 0),
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are block diagonal matrices with zeroes matrices of proper dimension each, associated with the row effects,

Λ̃K+10 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(1, 0, 0), 0),

Λ̃K+11 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 1, 0), 0),

Λ̃K+12 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0,Λcol+), 0),

are block diagonal matrices with zeroes matrices of proper dimension each, associated with the column

effect,

Λ̃K+13 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), Λ̃2+),

Λ̃K+14 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), Λ̃3+),

Λ̃K+15 = blockdiag(0, . . . , 0, IL ⊗ blockdiag(0, 0, 0), IM ⊗ blockdiag(0, 0, 0),

IR ⊗ blockdiag(0, 0, 0), IC ⊗ blockdiag(0, 0, 0), Λ̃1+),

are block diagonal matrices with zeroes matrices of proper dimension each, associated with the spatio-

temporal effects, where Λ̃1+ was redefined in (5.2), and Λ̃2+ and Λ̃3+ were defined in (3.33).

Finally, to be aware of the model complexity, we note that under this configuration, the mixed model

formulation of our one-stage approach has a total of

• K + L + M + R + C one-dimensional smooth functions (populations + genotypes + plants + rows +

columns), plus the spatio-temporal smooth function (in the row, column, and time directions),

• K × bpop + L × bgen +M × bplant + R × brow +C × bcol regression coefficients (both, fixed and random)

for the one-dimensional smooth functions, and (b2b3 − 1)b1 regression coefficients (both, fixed and

random, and by considering second-order difference penalties and cubic B-spline basis) associated

with the spatio-temporal smooth function, and

• K + 16 variance parameters:

– K variance parameters at population level, σ2
1 = σ

2
pop,1, . . . , σ

2
K = σ

2
pop,K ,

– 3 variance parameters at genotype level, σ2
K+1 = σ

2
gen,0, σ2

K+2 = σ
2
gen,1, and σ2

K+3 = σ
2
gen,

– 3 variance parameters at plant level, σ2
K+4 = σ

2
plant,0, σ2

K+5 = σ
2
plant,1, and σ2

K+6 = σ
2
plant,

– 3 variance parameters for the row effects, σ2
K+7 = σ

2
row,0, σ2

K+8 = σ
2
row,1, and σ2

K+9 = σ
2
row,
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– 3 variance parameters for the column effects, σ2
K+10 = σ

2
col,0, σ2

K+11 = σ
2
col,1, and σ2

K+12 = σ
2
col,

– 3 variance parameters for the spatio-temporal smooth function (in the row, column and time

directions), σ2
K+13 = σ

2
ST,1, σ2

K+14 = σ
2
ST,2, and σ2

K+15 = σ
2
ST,3, and

– the residual variance, σ2.

Besides, as we have proposed a P-spline-based approach, the computation time increases with the number

of plants and basis dimensions, resulting in a scalability problem. Based on our experience, we recommend

using the same number of B-spline basis functions for the three levels of the hierarchy (bpop, bgen and bplant),

as well as for the row and column random effects (brow and bcol). Regarding the number of B-spline basis

functions used for the three-dimensional surface (b1, b2 and b3), we suggest keeping them relatively small

to enable the solution to run on standard computers.

5.3 Computational aspects

Implementation of our one-stage approach is even more challenging than the previous two-stage approach

proposed. Here, all the complexity is addressed with a single model increasing the computational burden.

Thus, to make our one-stage approach computationally affordable, we combine different specialised meth-

ods that take advantage of the sparse model matrices structure (sparse matrix algebra in the R-packages spam

and Matrix, and the Linear Mixed Model Solver LMMsolver), the array data structure (GLAM), and the

non-standard form of the variance-covariance matrix (SOP). Although the SOP algorithm can be used to

estimate any of the models proposed in this thesis, it is especially relevant for our one-stage approach (the

variance-covariance matrix G in (5.13) does really have a non-standard form). We follow the same ideas as

in Section 4.2.5 to estimate our one-stage approach. That is, we integrate the computational tools indicated

before to the SOP algorithm in Section 3.3, where BLUEs and BLUPs are obtained by the solution of Hen-

derson’s mixed model equations, and variance parameters are estimated using REML. As for the two-stage

approach, we implemented our own code in the R language to keep the computational effort manageable,

which will be publicly available through the statgenHTP R-package (Millet et al., 2022), and that it is now

accessible on https://gitlab.bcamath.org/dperez/htp_one_stage_approach. In Chapter 8, we describe details

on the usage of the developed code.

5.4 Derivatives, standard errors and pointwise confidence intervals

As result of the one-stage approach, we can obtain estimated curves (trajectories and deviations) at the

three levels of the hierarchy (populations, genotypes and plants; in the same way that are obtained for

our two-stage approach) plus estimated curves (deviations) for rows and columns, and an estimated three-
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dimensional surface in the row, column and time directions. However, in the application examples in Chapter

7, we are particularly interested in the estimated curves for the hierarchical structure. For these hierarchical

estimated curves, we can further estimate first-order derivatives and confidence intervals as addressed in

Sections 3.1.1.1 (for derivatives estimation), 3.4 (for confidence intervals estimation), and 4.2.6 (for infer-

ence procedures used in the two-stage approach). Once again, the computational challenge (and limitation)

at this point is to obtain the inverse of the variance-covariance matrix, C−1, to calculate standard errors. We

note that the size of this matrix is much larger than the one obtained in the second stage of the two-stage

approach. Consequentely, confidence intervals estimation is very time-consuming and memory-intensive.

We believe one solution is to obtain standard errors without calculating C−1 in a similar way that effective

dimensions are estimated using the LMMsolver.

5.5 Time-independent features extraction

The aim here is to extract time-independent characteristics (intermediate traits) from the estimated curves

(trajectories, deviations and first-order derivatives) at the three hierarchy levels (populations, genotypes and

plants) for further genotype analysis. As is proposed for the two-stage approach in Section 4.2.7 and de-

picted in Figure 4.2, some examples are the maximum and minimum trait (from trajectories), the maximum

and average growth rate (from the first-order derivative of the trajectories), the onset and end of senes-

cence/growth (from second-order derivatives of the trajectories), and the area under the curve (AUC, from

the deviation curves).
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Chapter 6

Simulation study

When applying the one-stage (Chapter 5) and two-stage (Chapter 4) approaches to real data sets, two prob-

lems arise: (i) the phenotypic trait is only measured at the plant level, with no available measurements at

the population and genotype levels; as a result, it is not feasible to evaluate models’ performance in es-

timating curves at these higher levels using real data, and (ii) the approaches seem to be sensitive to the

dimension of the B-spline bases used at each level of the hierarchy. In this chapter, we present a data gen-

erating model and a simulation experiment to study the above-mentioned problems. The data generating

model aims to mimic the spatio-temporal three-nested hierarchical data structure that motivated this the-

sis while keeping it independent from the statistical models used for their analysis. The generating model

decomposes the spatio-temporal variation of the phenotype of interest in three components (for simplicity,

we consider one population): within genotypes and plant variation, and spatio-temporal correlated noise.

Data are simulated by considering the between genotype and plant (deviations) variability, and the number

of replicates per genotype effects. The results of the simulations assess the performance of the one- and

two-stage approaches and five different configurations for the dimensions of the B-spline bases for the hier-

archical components. Ultimately, this simulation study aims to illustrate the strengths and limitations of the

two proposed approaches.
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6.1 Data generating model

Following the same notation introduced in the previous chapters, we simulate HTP data assuming the fol-

lowing spatio-temporal three-level nested hierarchical model

yi(t) = fp(i)(t) + fg(i)(t) + fi(t) + ε(r(i), c(i), t), (6.1)

where 1 ≤ g ≤ L, 1 ≤ i ≤ M, 1 ≤ r ≤ R 1 ≤ c ≤ C, and t ∈ {t1, . . . , tn}. For simplicity, here we consider

only one population (K = 1), and M = R×C plants (i.e., the number of plants corresponds to the number of

spatial locations, with a 1:1 correspondence). In what follows we assume that the plants are located on the

R×C grid such that the first plant (i = 1) is in the first row and column position (i.e., r(1) = 1 and c(1) = 1),

and the last plant (i = M) is in the last row and column position of the grid (i.e., r(M) = R and c(M) = C),

and plants are ordered by rows. Figure 6.1 depicts, for two simulated datasets (each with different number of

replicates by genotypes, i.e., mg = 3 and 10) the grid with the randomisation used (complete block design).

251

389

637

395384

94

546

46

119

308

499

758

4

54

839

359

479

118

712

98

133

201

607

171

320

493

751

420

424

683

246

24

770

396

657

71

287

753

87

540

716

746

513

588

610

341

416

72

270

443

35

769

778

143

579

669

48

497

655

81

447

709

728

322

456

617

543

620

108

311

321

369

197

255

688

333

514

742

624

803

134

227

340

10

233

432

184

193

418

431

576

816

826

194

541

660

364

410

693

354

386

485

530

63

140

444

480

178

347

398

739

356

29

66

472

490

58

478

600593

468

685

771

266

310

67

511

584

686

328

49

103

210

148 157

403

53

167

11

630

43

222

16

674

459

558

740

768

793

47

526

622

729

209

344

106

250

13

658

286

414

673

406

4130

283

719

105

306

421

498

436

704

741

377

470

22

232

475

146

226

463

491

203

426

461

204

508

599

195

374

492

326

627

721

370

486

80

455

667

170

503

549

135

723

737

79

368

448

672

522

611

663

385

76

125

401

647

73

419

615

707

215

331

348

404

453

774

200

216

61

241

529

708

290

807

174

654

745

99

269

365

821

342

640

126

228

297

349

650

779

117

527

51

164

744

121

128

325

489

59

430

612

666

252

665

799

595

641

731

219

1

482

223

605

697

259

292

34

346

373

636

237

555

102

435

825 827

481466 471

646

701

169

496

738

185

339

19

581

208

454

68

332

535

717

379

554

587

452

625

783

679

725

775

585

590

176

465

684

186

694

777

161

512

606

109

330

632

808

274

561

33

382

516

834

440

696

116

256

314

137

295

560

670

439

618

782

469

582

833

525510

138

303

337

21

276

564

743

294

2

495

17

580

763

517

794

150

571

798785

457

621

652 671

724

149

217

247

764

302

805

163

319

692

789

531

575

795

408

423

586

542

77

132

350

3

458

268

538

173

225

240

551

441

662656

509

32

755

309

446

619

18

574

97

196

327

732

198

37

634

487

518 524

221

460

678

371

700

168

86

113

188

411

500

131

9

710

90

220

45

82

532

62

181

450

592

40

434

462

675

305

633

57

317

375

534

214

407

142

644

147

154

14

800

183

629

635

702

205

234

557

261

553

797

772

787

65

213

681

141

548

603

139

7

598

838

202

415

91

388

570

189

312

345

28

281

720

815

238

323

378

298

730

56

265

422

651

476

520

151

279

537

776

366

506

628

544

74

153

191

397

727

272

12

616

609

44

156

275

788

836

428

545

572

474

566

823

299

664

752

596

631 648

262

353

820

338

706 711

27

84

114

254

367

814

501

559

64

335

547

597

703

735

760

567

726

107

242

358

165

285

718

754

264

563

804

343

387

756

307

383

689

409

504

676

653

92

145

263

362

818

245

762

792

229

361

451

301

786

78

577

589

713

282

438

85

39

70

177

380

766

796

199

20

591

565

25

806

315

614

642

248239

736

31

668

699

569

601

162

249

578

130

318

494

773

236

289

95

267

363

811

402

817

136

445

42

159

427

120

182

313

613

639

211

284

687

23

830

187

273

442

115

257

352

413

394

505

96

36

828

110

190

417

722

218

288

6

351

643

761

477

568

832

253

539

645

231

433

759

698

55

104

552

583

680

425

733

50

502

822

155

258

412

562

449

695

835

304

626

88

293

473467

278

355

8

206

381

52

521

573

160

528

714

93

372

594

158

244

677

734

780

831 837

192

230

536

334

26

765

484

791

122

300

392

750

38

129

180

812

60

172

405

429

691

243

604

111

271

296

748

391

437

89

390

400

819

519

767

152

260

280

393

488

813

75

5

608

790

15

638

801

336

682

175

507

829 840

649

661

781

357

705

112

749

824

124

291

464

747

316

809

123

360

623

101

659

690

802

235

329

523

399

550

602

127 144

179

207

757

810

224212

100

324

715

166

483

515

784

277

533

83

376

556

69

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Column

R
ow

Highlighted genotypes 79 145 161 199 256

(a) mg = 3

295

375

448

579

639

747

782

53

139

173

200

315

347

426

541

665

678

793

48

99

195

276

409

471

559

664

690

783

54

104

311

4

403

501

576

620

692

825

162

178

222

256

399

18

427

534

614

688

784

166

223

258

348

7

502

528

655

679

833

134

247

288

380

1

430

550

601

680

797

85

332

391

433

583

605

727

765

68

89

180

197

304

383

436

511

42

638

711

809

90

203

290

412

483

543

597

34

696

781

107

242

335

353

498

538

22

626

683

791

153

218

286

360

456

505

623

715

821

73

87

235

292

358

428

512

629

697

814

43

111

248

313

415

442

580

39

630

674

770

95

231

308

342

462

582

642

752

786

78

105

191

259

339

497

521

26

652

709

762

136

198

302

343

10

479

533

602

707

826

114

204

298

355

493

565

25

632

721

819

122

331

364

450

532

603

708

760

71

127

182

296

407

491

510

619

718

56

828

106

189

241

271

401

480

570

589

738

769

80

159

249

297

370

482

552

628

756

822

70

116

284

337

444

542

660

739

832

67

97

185

209

281

357

477

584

647

714

827

75

138

219

314

349

499

586

41

657

681

813

148

243

255

410

447

569

662

751

803

81

93

245

319

398

469

556

37

663

716

759

137

199

253

344

14

454

525

598

686

835

92

196

274

372

459

545

28

611

712

838

119

215

326

387

441

531

599

694

62

820

124

214

301

405

425

553

654

687

796

59

101

234

293

393

13

455

530

596

698

839

140

221

269

390

464

509

631

685

788

72

86

201

282

384

461

574

593

706

812

55

152

229

303

365

500

523

27

666

734

758

168

233

322

374

5

458

508

671

746

805

147

267

345

445

578

635

673

779

61

160

186

265

381

8

457

548

615

699

808

150

169

190

275

363

476

585

613

737

776

83

96

237

323

397

431

573

33

669

703

774

132

194

294

378

12

453

515

624

749

834

151

246

324

388

474

539

627

717

807

64

91

334

418

439

560

590

710

764

84

155

174

262

406

490

575

609

24

704

811

161

181

225

264

402

449

540

618

750

771

76

154

232

330

376

15

468

506

651

723

778

167

240

261

392

446

547

612

728

798

51

121

239

328

371

421

588

607

726

801

69

146

238

260

396

503

544

649

713

802

63

112

193

277

340

473

581

648

732

60

837

109

213

305

361

9

472

527

633

701

815

164

268

354

467

517

30

658

693

818

118

175

309

377

17

451

524

659

753

775

130

170

208

283

389

460

561

594

745

806

47

145

263

416

481

551

32

640

682

789

100

187

206

327

341

486

537

634

720

768

45

142

289

21

408

504

507

591

702

829

149

177

227

291

404

496

526

595

730

794

82

108

300

395

2

443

520

668

691

830

143

171

310

6

420

488

557

610

729

824

102

172

211

312

346

16

438

562

672

689

799

98

321

385

3

429

513

637

724

840

131

179

244

279

362

485

536

31

661

684

836

88

226

273

350

495

568

644

731

787

77

117

224

318

373

434

554

650

741

761

66

156

212

285

366

424

567

606

23

719

817

115

202

329

386

494

564

35

625

740

800

157

228

307

414

470

535

604

675

804

52

120

299

413

452

529

646

733

772

58

126

184

252

270

419

465

566

636

754

795

49

141

272

359

478

555

29

616

736

790

125

188

192

266

369

20

492

549

653

700

816

110

250

278

356

489

558

608

743

777

65

113

317

400

463

518

656

722

780

79

123

176

216

254

367

11

484

587

600

676

810

163

207

316

19

411

440

571

670

735

792

158

205

333

351

437

546

667

677

57

823

94

230

257

338

423

519

38

641

725

831

135

210

280

382

475

563

621

742

757

74

144

287

417

466

572

40

645

705

763

129

183

217

306

352

435

514

592

36

744

785

165

236

336

394

422

577

622

755

773

44

133

220

320

379

487

522

617

695

766

50

103

251

325

368

432

516

643

748

767

46

128

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Column

R
ow

Highlighted genotypes 12 23 31 33 40

(b) mg = 10

Figure 6.1: Illustrative visualisation of the grid with the randomisation used for two simulated datasets (as

illustration) with (a) mg = 3, and (b) mg = 10 replicates per genotype. The size of the grid is R×C = 40×21,

for a total of M = 840 plants. Each cell represents a plant (i = 1, . . . ,M), which is identified by its

row and column position, i.e., the ith plant has coordinates (r(i), c(i)) (e.g., plant i = 457 has position

(r(457), c(457)) = (22, 16)). Colours depict replicates in five selected genotypes (as illustration).

We note that the data generating model, equation (6.1), is independent from the statistical models,
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79 Chapter 6. Simulation study

(SpATS model (4.1) and the psHDM (4.6) for the two-stage approach, and the spatio-temporal psHDM

(5.2) for the one-stage approach), used for the analysis. The difference between the three models lies in how

the spatio-temporal (stochastic) component is incorporated. In the data generating model (6.1), we have

spatio-temporal correlated noise, ε(r, c, t); in the spatio-temporal psHDM (5.2), we have a spatio-temporal

three-dimensional surface, fST(r, c, t), and the pure random noise, εi; while in the two-stage approach the

spatial and (environmental) temporal components are modeled independently in the first stage, i.e., the spa-

tial trend is modelled through hS(r, c) in the SpATS model (4.1), separately for each time point. Besides,

the data generating model (6.1) does not consider the row and column random effects. However, what is

common to the three models, (4.6), (5.2), and (6.1), is the three-level hierarchical structure.

In particular, the data are generated from the population to the plant level in the following five steps (we

provide Figure 6.2 to graphically summarise the procedure and the kind of curves that are obtained at each

step)

Step 1. Generate one population trajectory, f p = ( fp(t1), . . . , fp(tn))T , from the growth logistic curve model.

Following the notation in Z. Li and Sillanpää (2015), we consider

f p =
a

1 + ec(b−t) ,

where a is the asymptote, b is the inflection point, and c is the growth rate. Additionally, it can be

shown that the first-order derivative of this function with respect to time, t, is

f ′p =
acec(b−t)

(1 + ec(b−t))2 .

Step 2. Generate L genotype-specific deviations, f g = ( fg(t1), . . . , fg(tn))T iid
∼ N(0,Σgen) (g = 1, . . . , L).

For the n × n variance-covariance matrix Σgen, we consider a first-order autoregressive structure with

heterogeneous variance (ARH(1), with a slight modification to the structure presented by Wolfinger,

1996, to account for variance increasing with time structure), that is(︂
Σgen
)︂

jk
=

1
1 − ρ2 sgen

jk ρ
d jk ,

where ρ is the autocorrelation parameter, d jk is the euclidean distance between time points t j and

tk (i.e., d jk = |tk − t j|)), and sgen
jk = σ

4
genh(t j)h(tk) are the elements of the heterogeneous variance-

covariance matrix. Here, σ2
gen is the between genotype (deviation) variability, and h (·) is a function

that is quadratic in t. The genotype trajectories can be obtained as the sum of the population trajectory

and the genotype deviations, i.e., f p + f g(p), as depicted in Figure 6.2.

Step 3. Generate M (= R × C) plant-specific deviations, f i = ( fi(t1), . . . , fi(tn))T iid
∼ N(0,Σplant) (i =

1, . . . ,M). We follow the same ideas used in Step 2 to obtain the n × n variance-covariance ma-

trix Σplant. We use σ2
plant for the between plants (deviation) variability, and splant

jk = σ4
planth(t j)h(tk) for

the elements of the heterogeneous variance-covariance matrix.
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Population trajectory Genotype deviations Plant deviations Spatio-temporal correlated noise

Genotype trajectories
Plant trajectories / Phenotyping data

Step 1 Step 2 Step 3 Step 4

Level of data 
resolution

Level of 
decision making

Step 5

Spatial distribution of the plant trajectories (simulated phenotyping data)

Spatial distribution of the spatio-temporal correlated noise

Figure 6.2: For the simulation study: Data generating strategy. Reference values to simulate the Phenotype

of interest are based on the leaf area (m2 plant−1) data from the PhenoArch platform as described in the

simulation settings on Table 6.1.
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Step 4. Generate M = R × C spatio-temporal correlated noise curves, ε(r, c, t) =

(ε(r(1), c(1), t), ε(r(2), c(2), t), . . . , ε(r(M), c(M), t))T ∼ N(0,Σε), where ε(r(i), c(i), t) =

(ε(r(i), c(i), t1), . . . , ε(r(i), c(i), tn)) is the noise curve for the ith plant. For the (RCn) × (RCn)

variance-covariance matrix Σε, we use a space-time separable covariance model Σε = ΣS⊗ΣT, where

ΣS is a (RC) × (RC) isotropic and homogeneous spatial variance-covariance matrix (Matérn, Guttorp

& Gneiting, 2006), and ΣT is a n × n temporal ARH(1) variance-covariance matrix. In particular,

(ΣS) jk =
1

2ω−1Γ(ω)

⎛⎜⎜⎜⎜⎜⎜⎝ sS
jk

ν

⎞⎟⎟⎟⎟⎟⎟⎠
ω

κω

⎛⎜⎜⎜⎜⎜⎜⎝ sS
jk

ν

⎞⎟⎟⎟⎟⎟⎟⎠ , (ΣT) jk =
1

1 − ρ2
ε

sεjkρ
d jk
ε ,

where κω(·) denotes the modified Bessel function of the third kind and order ω, with ω > 0 being a

smoothness parameter, Γ(·) is the Gamma function, ν > 0 is the scale parameter of the correlation

function, and sS
jk =

√︂
(c(k) − c( j))2 + (r(k) − r( j))2 is the euclidean distance between two plants loca-

tions, (r(k), c(k)) and (r( j), c( j)). As for Steps 2 and 3, sεjk = σ
4
εhε(t j)hε(tk), where σ2

ε is the residual

variance, hε(·) is a function of t to the power of 0.8 and ρϵ is the autocorrelation parameter.

At this step, genotypes are assigned to spatial positions/locations following a randomised complete

block design, such that each replicate (plant) of a genotype is present in just one block. Depending on

the number of replicates (mg), blocks are accommodated in the row or column direction such that the

size of the blocks is the ratio between the number of rows (or columns) and the number of replicates

(see Figure 6.1 for an illustrative example of the randomisation). Randomisation is independent for

each dataset generated.

Step 5. Calculate M plant trajectories as the sum of the population trajectories, the genotype and plant

deviations and the spatio-temporal correlated noise, i.e., yi = f p + f g(i) + f i + ε(r(i), c(i), t).

6.2 Simulation scenarios and set-up

Data is simulated under eight different scenarios given by the combination of the levels of three factors, each

with two levels:

1. the between genotype (deviation) variability, σ2
gen ∈ {σ

2
geno.l, σ

2
geno.h},

2. the between plant (deviation) variability, σ2
plant ∈ {σ

2
plant.l, σ

2
plant.h}, and

3. the number of replicates per genotype, mg ∈ {3, 10}.

For σ2
gen and σ2

plant, l stands for low and h for high, that is, σ2
·.l < σ

2
·.h. Each scenario is denoted by

(σ2
gen, σ

2
plant,mg), and they represent different levels of heritability (see, e.g., Rodríguez-Álvarez et al., 2018,

for a definition of heritability). For instance, scenarios with mg = 10 replicates per genotype have higher
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heritability than those with mg = 3 replicates; and the scenario with the highest heritability is (σ2
geno.h,

σ2
plant.l, 10), that is, the scenario where the between genotype variability is higher than the between plant

variability (see Figure 6.3 for a comparison of the heritability among simulation scenarios).

(σgeno.l
2 = σplant.l

2 ) (σgeno.l
2 < σplant.h

2 ) (σgeno.h
2 > σplant.l

2 ) (σgeno.h
2 = σplant.h

2 )

m
g =

10
m

g =
3
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Figure 6.3: Heritability over time for the simulated/true data under eight simulation scenarios (i.e.,

(σ2
geno, σ

2
plant, mg)). Each curve corresponds to one simulated dataset (100 datasets by scenario). Heritability

is calculated using SpATS (Rodríguez-Álvarez et al., 2018) per time point.

For each scenario, 100 datasets are generated and the simulation settings are described in Table

6.1. We compare the performance of five different configurations for the dimensions of the B-spline

bases for the hierarchical components, fp, fg and fi. In particular, we consider (bpop, bgen, bplant) ∈

{(13, 13, 13), (13, 13, 8), (13, 8, 8), (13, 9, 7), (8, 8, 8)}. The first and fifth configuration aim to assess model’s

flexibility and over/under-fitting, the second and third configuration evaluate the possible impact of consid-

ering different bases dimensions at different levels of the hierarchy, and the fourth configuration assesses

model performance under non-nested bases. In this context, nested bases refers to B-spline bases such that

the space spanned by Bplant and Bgen are subsets of the space spanned by Bpop. For an example see Figure

6.4, and for more technical details we refer to Lee et al. (2013).
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Level Description Parameter Value

Experimental design

Number of populations p 1

Number of replicates per genotype mg 3 and 10

Number of time points n 25

Number of rows R 40

Number of columns C 21

Number of genotypes L RC/mg

Number of plants M Lmg

Population level

Asymptote a 0.6

Inflection point b 12.5

Growth rate c 0.4

Genotype level

Between genotypes (deviations)

variability

σ2
gen σ2

l = 8 × 10−7 and

σ2
h = 1.2 × 10−6

Time function h(t) 8 × 10−1t2

Autocorrelation ρ 0.9999

Plant level

Between plants (deviations) variability σ2
plant σ2

l = 8 × 10−7 and

σ2
h = 1.2 × 10−6

Time function h(t) 8 × 10−1t2

Autocorrelation ρ 0.9999

Spatio-temporal correlated

noise

Residual variance σ2
ε 1 × 10−8

Time function hε(t) 1000×t0.8

Autocorrelation ρε 0.5

Smoothness parameter ω 10000

Scale parameter ν 5

Table 6.1: Simulation settings. Reference values are based on the leaf area (m2 plant−1) data from the

PhenoArch platform. For this data, the maximum leaf area is approximately 0.5 (we fixed the asymptote for

the population trajectory at a = 0.6), the average growth rate is 0.01 (we increased this value to c = 0.4 to

obtain S-shape curves), the between plants variability at the beginning of the experiment is 4.5 × 10−7 (we

set σ2
l = 8 × 10−7 and σ2

h = 1.2 × 10−6), and the maximum first-order autocorrelation for observations of

plant trajectories is 0.9986 (we used ρ = 0.9999 to obtain smoother curves).

In addition, to make the one and two-stage approaches comparable, we set the dimensions of the B-spline

bases of the model components that are common to the two approaches to the same values. Consequently,
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Figure 6.4: Illustrative visualisation of (a) nested (e.g., (b1 = 13, b2 = 8)) and (b) non-nested B-spline bases

(e.g., (b1 = 13, b2 = 9)).

• Two-stage approach

– First stage: we fit a SpATS model separately for each time point, with b2 = b3 = 13 B-splines

for the two-dimensional smooth function, hS (see also (4.1) and (3.26)).

– Second stage: we fit the psHDM (4.6), using the five different configurations, (bpop, bgen, bplant),

previously described for the hierarchical functions at population, fp, genotype, fg, and plant

levels fi.

• One-stage approach: we fit the spatio-temporal psHDM (5.2) with brow = bcol = 13 B-splines for the

random row, fr, and column, fc, effects; b1 = b2 = b3 = 13 for the spatio-temporal smooth function,

fST; and the five different configurations, (bpop, bgen, bplant), previously described for the hierarchical

functions at population, fp, genotype, fg, and plant levels fi.

We note that the number of simulated datasets (100 in total) are limited by the running time of the

one-stage approach (which is the most time and memory consuming). Computations were performed in the

the BCAM HPC (Basque Center for Applied Mathematics High Performance Computing), with three types

of nodes ((i). 4 nodes (1 with Tesla GPU), Processor Intel(R) Xeon(R) CPU E5-2680 v3, 24 core - 128GB

memory, (ii). 12 nodes, Processor Intel(R) Xeon(R) CPU E5-2683 v4, 32 core - 256GB memory, and (iii). 2

nodes, Processor Intel(R) Xeon(R) Gold 6140 CPU, 72 core - 384GB memory), and a (64-bit) R 4.0.4-foss-

2020b. Running times (d-h:m:s) for 100 datasets with the one-stage approach, one simulation scenario, and
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one B-spline basis configuration, ranged between 2 − 15 : 58 : 19 and 19 − 05 : 33 : 23. Similarly, memory

consumption ranged between 6 and 17GB approximately. Our algorithms did not present any convergence

problem (for either approach). It should be noted that at the time of the simulations the LMMsolver was not

implemented in our codes, which leads to longer calculation times.

6.3 Simulation results

We use the logarithm of the root mean square error (log(RMSE)) as a performance measure to compare the

simulated and the estimated curves. Thus, the lower the value, the better the performance. This measure

is calculated for the combination of the five basis configurations, the two models, and the eight simulation

scenarios. In what follows, we present the results of the simulation study by hierarchy level (populations,

genotypes and plants). General conclusions are given in the final remarks.

6.3.1 Population-level results

For curves at the population level (trajectories and first-order derivatives) we compare the simulated

population trajectory, f p (which is fixed for all simulations), and the estimated population trajectory,

f (γ)
p = ( f (γ)

p (t1), . . . , f (γ)
p (tn))T , for each simulated dataset (γ = 1, . . . , 100) as follows (for trajectories, as

illustration, but the same idea is followed for their first-order derivatives)

RMSEγ =

⌜⃓⎷
1
n

n∑︂
j=1

(︃
fp(t j) − f̂

(γ)
p (t j)

)︃2
.

In Figure 6.5, we use boxplots to compare the results using the two approaches (the one-stage in con-

tinuous borders and the two-stage in dotted borders) for the eight simulation scenarios and the five B-spline

basis configurations (in colours). For all scenarios with the same number of replicates, results are similar

when comparing the B-spline basis configurations. Furthermore, for scenarios with mg = 10 replicates, the

one-stage approach consistently outperforms the two-stage approach for all B-spline basis configurations.

When the non-nested basis configuration (i.e., bpop = 13, bgen = 9, and bplant = 7, in blue) is used, the

two-stage performs the worst for scenarios with mg = 10 replicates. We found that results for scenarios with

mg = 3 replicates and the B-spline basis configuration (8,8,8), in purple, performs the worst for the one- and

two-stage approaches.

For a more in-depth analysis of the population trajectories, we plot in Figure 6.6 the simulated, f p

in black, and estimated, f̂ p in grey, population trajectories when using the two approaches with the non-

nested B-spline basis configuration, for the eight simulation scenarios. We observe that for all scenarios

with mg = 10 replicates and the two-stage approach, some of the simulated population trajectories have
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Figure 6.5: Simulation results: comparison of the simulated/true ( f p) and estimated ( f̂ p) population trajec-

tories, for eight simulation scenarios (σ2
geno, σ

2
plant,mg), using the one- and two-stage approaches, and the

five B-spline basis configurations (bpop,bgen,bplant) at population, genotype and plant level, respectively.

an unexpected and wild behaviour, which is more evident in the first time period (i.e., before t = 12, that

corresponds with the inflection point, b = 12.5, as indicated in Table 6.1, used to simulate the population

trajectory).

In Figure 6.7, we use boxplots to compare the log(RMSE) calculated for the first-order derivative curves

using the two approaches (the one-stage in continuous borders and the two-stage in dotted borders) for

the eight simulation scenarios and the five B-spline basis configurations (in colours). For these first-order

derivative curves, the one-stage approach consistently outperforms the two-stage approach. Results are

stable among simulation scenarios with the same number of replicates. The biggest difference between

scenarios with mg = 10 and mg = 3 replicates is that the non-nested B-spline basis configuration (i.e.,

bpop = 13, bgen = 9, and bplant = 7, in blue) is the one that performs the worst for the two-stage approach.

Opposite to what we found for the population trajectories (see Figure 6.5), for all simulation scenarios, the

B-spline basis configuration (8,8,8) in purple performs the best for the one- and two-stage approaches.

In Figure 6.8, we use as illustration one simulation scenario (the one with the highest heritability,

(σ2
geno.h, σ

2
plant.l, 10), see Figure 6.3) to show the simulated, f ′p in black, and the estimated, f̂ ′p in grey,

first-order derivative of the population trajectories for the five B-spline basis configurations using the two

approaches. Three things are noteworthy: firstly, as a consequence of the unexpected and wild behaviour

of the estimated population trajectories with the non-nested B-spline basis configuration, their first-order

derivative behaves similarly; secondly, we observe a rougher behaviour and more variation at the bound-
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Figure 6.6: Simulation results: comparison of the simulated/true ( f p, in black) and estimated ( f̂ p, in

grey) population trajectories when a non-nested cubic B-spline basis configuration is used (i.e., bpop = 13,

bgen = 9, and bplant = 7), for the eight simulation scenarios (σ2
geno, σ

2
plant,mg), and the one- and two-stage

approaches.
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Figure 6.7: Simulation results: comparison of the simulated/true ( f ′p) and estimated ( f̂ ′p) first-order deriva-

tive of the population trajectories, for eight simulation scenarios (σ2
geno, σ

2
plant,mg), using the one- and two-

stage approaches, and the five B-spline basis configurations (bpop,bgen,bplant) at population, genotype and

plant level, respectively.
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aries (especially on the right side); and lastly, estimated first-order derivative curves for the (8, 8, 8) B-spline

basis configuration are smoother (less wiggly) and with less variation at the boundaries, and consequentely

with better performance for the two-approaches.
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Figure 6.8: Simulation results: comparison of the simulated/true ( f ′p, in black) and estimated ( f̂ ′p, in grey)

first-order derivative of the population trajectories for one simulation scenario ((σ2
geno.h, σ

2
plant.l, 10), as illus-

tration), using the one- and two-stage approaches, and the five B-spline basis configurations (bpop,bgen,bplant)

at population, genotype and plant level, respectively.

6.3.2 Genotype-level results

We now focus on the results at the genotype level, which is the decision-making level for plant breeders.

Our main question is: Can we properly reproduce the genotype deviations? For these curves (trajectories

and deviations) and for each genotype (genotypic curves are the same for all simulations , we calculate (for

deviations, as illustration, but the same applies to trajectories)

RMSEg,γ =

⌜⃓⎷
1
n

n∑︂
j=1

(︃
fg(t j) − f̂

(γ)
g (t j)

)︃2
.

Boxplots in Figure 6.9 depict the log(RMSE) when comparing the simulated and estimated genotype

deviations for the eight simulation scenarios, colours represent different B-spline basis configurations, and

line type box border stands for the approach used (continuous border for the one-stage and dotted border for

the two-stage). Differences among simulation scenarios are more remarkable at this hierarchy level than at
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the population level. We assume these differences are related to heritability (see Figure 6.3). For instance,

scenarios with mg = 10 replicates have higher heritability and better performance when compared with

scenarios with mg = 3 replicates; and those scenarios with mg = 10 replicates, and (σ2
geno.l, σ

2
plant.l) and

(σ2
geno.h, σ

2
plant.l) show the best performance (as well as the highest heritability). For this hierarchy level, we

consistently observe (as for the population trajectories and their first-order derivatives in Figures 6.7 and 6.8)

the fitting problem when the non-nested B-spline basis configuration is used with the two-stage approach

(i.e., bpop = 13, bgen = 9, and bplant = 7, in blue), for scenarios with mg = 10 replicates. Opposite to

what we found at the population level, results for the one- and two-stage approach and the different B-spline

basis configurations (except for (13, 9, 7)) are very similar. A very slight difference can be noticed for the

(13, 13, 8) B-spline basis configuration (in olive), where the one-stage approach performs the "worst"; we

note that in this case, we are using different basis dimensions at genotype and plant levels.
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Figure 6.9: Simulation results: comparison of the simulated/true ( f g) and estimated ( f̂ g) genotype devi-

ations, for eight simulation scenarios (σ2
geno, σ

2
plant,mg), using the one- and two-stage approaches, and the

five B-spline basis configurations (bpop,bgen,bplant) at population, genotype and plant level, respectively.

To go further in the results shown in Figure 6.9, we depict in Figure 6.10 for three genotypes (g =

5, 10, 72), one simulation scenario ((σ2
geno.h, σ

2
plant.l, 10), the one with the highest heritability), and the non-

nested B-spline basis configuration (13, 9, 7), the simulated/true (in black) and estimated (red for the one-

stage and blue for the two-stage approaches) genotype deviations; red and blue lines are pointwise averages

of estimated curves, and shaded areas are bands constructed using the pointwise 2.5% and 97.5% quantiles

across simulations. As for the population level in Figure 6.6, we observe the unexpected behaviour for some

of the simulated genotype deviations when the non-nested, (13, 9, 7), B-spline basis configuration is used,
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being the inflection point (around b = 12.5) a point of major change in the shape of the deviation.
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Figure 6.10: Simulation results: comparison of the simulated/true ( f g, in black) and pointwise average of

estimated genotype deviations ( f̂ g) calculated with the one-stage (in red) and two-stage (in blue) for three

genotypes (g = 5, 10, 72, as illustration), for one simulation scenario (σ2
geno.h, σ

2
plant.l, 10) and the non-nested

B-spline basis configuration (bpop = 13, bgen = 9, bplant = 7). The shaded area are bands constructed using

the pointwise 2.5% and 97.5% quantiles across simulations.

In Figure 6.11, we zoom in on the performance results with the two approaches for the simulation sce-

nario (σ2
geno.h, σ

2
plant.l, 10), when omitting the (13, 9, 7) basis configuration. We plot the genotype deviations

for three genotypes (g = 5, 10, 72). In all three cases, the shaded area (i.e., the bands constructed using

the pointwise 2.5% and 97.5% simulation quantiles) contains the simulated/true genotype deviation, and the

pointwise average of estimated curves for the one- and two-stage approaches are very close between them

(red and blue lines), as well as to the simulated/true genotype deviation (in black).

We finally present, in Figure 6.12, some extra results for the simulation scenario with the lowest heri-

tability (i.e., (σ2
geno.l, σ

2
plant.h, 3), see Figure 6.3). Recall that scenarios with mg = 3 replicates are not strongly

sensitive to the non-nested basis configuration as they are the scenarios with mg = 10 replicates. We observe

an additional result here: the estimated genotype deviations with the B-spline basis configurations (13, 13, 8)

and (13, 9, 7) seem to be linear, even when smooth (non-linear) terms are included in the model specification

(5.7). We find the shaded areas (i.e., the bands constructed using the pointwise 2.5% and 97.5% simulation

quantiles) for this scenario to be slightly wider than those for the scenario shown in Figure 6.11, i.e., for

(σ2
geno.h, σ

2
plant.l, 10), which makes sense as there are fewer replicates.

90



91 Chapter 6. Simulation study

(13,13,13) (13,13,8) (13,8,8) (8,8,8)

5
10

72

1 6 11 16 21 1 6 11 16 21 1 6 11 16 21 1 6 11 16 21

−0.05

0.00

0.05

0.10

−0.05

0.00

0.05

0.10

−0.05

0.00

0.05

0.10

Time

G
en

ot
yp

e 
de

vi
at

io
ns

Model One−stage Two−stage

Figure 6.11: Simulation results: comparison of the simulated/true ( f g, in black) and pointwise average of

estimated ( f̂ g) genotype deviations for three genotypes (g = 5, 10, 72, as illustration), for one simulation

scenario (σ2
geno.h, σ

2
plant.l, 10), using the one- (in red) and two-stage (in blue) approaches, and four (excluding

the non-nested basis configuration) B-spline basis configurations (bpop,bgen,bplant) at population, genotype

and plant level, respectively. The shaded area are bands constructed using the pointwise 2.5% and 97.5%

quantiles across simulations.

6.3.3 Plant-level results

Finally, for curves at the plant level (trajectories and deviations), and for each plant we have (for deviations,

as illustration, but it can also be calculated for trajectories)

RMSEi,γ =

⌜⃓⎷
1
n

n∑︂
j=1

(︃
f (γ)
i (t j) − f̂

(γ)
i (t j)

)︃2
Figure 6.13 shows the boxplots used to compare the performance of the estimated plant trajectories

for the eight simulation scenarios when using the one-stage (in continuous box borders) and the two-stage

(in dotted box borders) approaches and the five B-spline basis configurations (in colours). As for the re-

sults at the genotype level in Figure 6.9, we find differences in results among simulation scenarios, being

(σ2
geno.h, σ

2
plant.l, 10) and (σ2

geno.l, σ
2
plant.l, 10), the two scenarios with the best performance (and the ones with
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Figure 6.12: Simulation results: comparison of the simulated/true ( f g, in black) and and pointwise aver-

age of estimated ( f̂ g) genotype deviations for three genotypes (g = 59, 216, 266, as illustration), for one

simulation scenario (σ2
geno.l, σ

2
plant.h, 3), using the one- (in red) and two-stage (in blue) approaches, and the

five B-spline basis configurations (bpop,bgen,bplant) at population, genotype and plant level, respectively. The

shaded area are bands constructed using the pointwise 2.5% and 97.5% quantiles across simulations.

the highest heritability, see Figure 6.3); and (σ2
geno.l, σ

2
plant.h, 3) and (σ2

geno.h, σ
2
plant.h, 3), the two scenarios

with the worst performance (and the ones with the lowest heritability). For the two scenarios with the

highest heritability, we also observe bigger differences between the one- and two-stage approaches for the

five B-spline basis configurations, and the one-stage consistently outperforms the two-stage approach. In

contrast to the results at population (see Figures 6.5 and 6.7) and genotype (see Figure 6.9) levels, at the

plant level, we do not find the strange and wild behaviour of the non-nested B-spline basis for none of the

scenarios studied.

At the plant level, we are also interested in the fitted values, i.e., the plant trajectories, which are the

curves the breeders finally observe and measure. In Figure 6.14, we compare the simulated (thicker, trans-

parent lines) and the estimated plant trajectories (one-stage in continuous lines and two-stage in dotted

lines) for the plants (in colours) in three genotypes (g = 90, 160, 224, as illustration) for one simulation

scenario (σ2
geno.h, σ

2
plant.l, 3) and one simulated dataset, and the five B-spline basis configurations. The dif-

ference between Figures 6.14(a) and 6.14(b) is the simulated data that is used to compare with the estimated

plant curves, f̂ p + f̂ g + f̂ i. In Figure 6.14(a), we use the simulated plant trajectories when including the

spatio-temporal correlated noise, ε(r, c, t), while in Figure 6.14(b), we omit this term from the simulation

model (6.1). We consistently observe slight differences between the one- and two-stage approaches, which
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Figure 6.13: Simulation results: comparison of the simulated/true ( f i) and estimated ( f̂ i) plant deviations,

for eight simulation scenarios (σ2
geno, σ

2
plant,mg), using the one- and two-stage approaches, and the five B-

spline basis configurations (bpop,bgen,bplant) at population, genotype and plant level, respectively.

properly fit the simulated plant curves in Figure 6.14(b).

As for the genotype level (see Figures 6.10, 6.11, and 6.12), we are also interested in plant devia-

tions. Figure 6.15 depicts the simulated (thicker, transparent lines) and estimated (continuous lines for the

one-stage and dotted lines for the two-stage) plant deviations (colours represent different plants) for three

genotypes (g = 90, 160, 224, as illustration) in one simulation scenario (σ2
geno.h, σ

2
plant.l, 3), for one simulated

dataset and the five B-spline basis configurations. Genotype deviations are also depicted as reference curves

(simulated genotype deviations in black and estimated genotype deviations using the one-stage in contin-

uous red lines and the two-stage in continuous blue lines). While we observe slight differences between

the one- and two-stage approaches for the plant trajectories in Figure 6.14, they are noteworthy for plant

deviations.

6.3.4 Final remarks

We close this chapter with a summary of the main findings of the simulation study. We mainly refer to the

results in Figures 6.5, 6.7, 6.9 and 6.13

• Results show more differences in the performance among scenarios at the genotype and plant levels,

where scenarios with the highest heritability performed better.
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(a) Comparison with simulated plant trajectories, f p + f g + f i + ε(r, c, t)
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(b) Comparison with spatially corrected plant trajectories, f p + f g + f i

Figure 6.14: Simulation results: comparison of the (a) simulated/true plant trajectories, f p + f g + f i +

ε(r, c, t) (thicker, transparent lines) and (b) spatially corrected simulated plant trajectories, f p + f g + f i + εi

(thicker, transparent lines) with the estimated, f̂ p + f̂ g + f̂ i, plant trajectories for the plants (in colours) in

three genotypes (g = 90, 160, 224, as illustration), for one simulation scenario (σ2
geno.h, σ

2
plant.l, 3) and one

simulated dataset, using the one-stage (continuous lines) and two-stage (dotted lines) approaches, and the

five B-spline basis configurations (bpop,bgen,bplant) at population, genotype and plant levels, respectively.
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Figure 6.15: Simulation results: comparison of the simulated/true plant deviations, f i (thicker, transparent

lines), and estimated plant deviations, f̂ i, for plants (in colours) in three genotypes (g = 90, 160, 224, as

illustration we show the same used in Figure 6.14), for one simulation scenario (σ2
geno.h, σ

2
plant.l, 3) and one

simulated dataset, using the one-stage (in continuous lines) and two-stage (in dotted lines) approaches, and

the five B-spline basis configurations (bpop,bgen,bplant) at population, genotype and plant level, respectively.

• We found slight differences in the performance of the one- and two-stage approaches at the genotype

and plant levels. The largest differences are for the population trajectories (for scenarios with mg = 10

replicates) and their first-order derivatives. When differences are found, the one-stage consistently

outperforms the two-stage approach.

• Similar results were obtained with different B-spline basis configurations. Nevertheless, we found the

non-nested B-spline basis configuration, (13, 9, 7), problematic (unexpected and wild behaviour) at

the population (for trajectories and their first-order derivatives) and genotype levels for scenarios with

mg = 10 replicates. We are also struck by the ambivalent result for the B-spline basis configuration

(8, 8, 8): it performs the best for the first-order derivative, i.e., smoother and with less variation at the

boundaries. However, it does not show good behaviour when the population trajectories and plant

deviations are estimated.

• We have proposed two P-spline-based approaches (in one and two stages), which means that as the

number of plants and basis dimensions increase, so it does the computation time (scalability problem).

These simulation results, jointly with data analyses performed during the research period, have shown

that results may be sensitive (and in some cases unreliable) to using different bases dimensions. We,

therefore, recommend choosing the same number of B-spline basis functions for the three levels of the
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hierarchy (i.e., bpop, bgen, and bplant), as well as for the row and column random effects (i.e., brow and

bcol), even if this increases computation. Regarding the number of B-spline basis functions used for

the three-dimensional surface (in the row, column and time directions, i.e., b1, b2, and b3 in the one-

stage approach), we suggest keeping them relatively small to enable the solution to run on standard

computers. We expect this choice allows to keep the number of coefficients at a reasonable level (i.e.,

a trade-off between flexibility and dimensionality).
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Chapter 7

Data application: HTP data analysis

The aim of this chapter is twofold. We present the results by modelling the two HTP datasets presented in

Chapter 2 using both the one-stage (Chapter 5) and two-stage (Chapter 4) approaches, while simultaneously

comparing them. For that purpose, we set the dimensions of the B-spline basis that are common to both

approaches to the same value, which are limited by running times for the one-stage approach. For each

dataset, we first present the models configuration used, then we show the most relevant results and compare

the one- and two-stage approaches. Finally, we extract some time-independent attributes to characterise

genotypes. For the FIP data, we additionally comment on the genotype consistency across the three trials.

Computations were performed in a (64-bit) R 4.2.1 and a 1.60GHz Dual-CoreTM i5 processor computer

with 16GB of RAM and macOS Monterrey Version 12.5. Chapter 8 shows the functionalities of the code

implemented for this thesis. More specifically, to obtain the results for the two-stage approach we use the

code available in the R-package statgenHTP (Millet et al., 2022), and for the results with the one-stage

approach the codes are available in https://gitlab.bcamath.org/dperez/htp_one_stage_approach.

97

https://gitlab.bcamath.org/dperez/htp_one_stage_approach


7.1. PhenoArch results 98

7.1 PhenoArch results

A data description of the PhenoArch platform was presented in Section 2.1. We recall that this dataset

consists of n = 32 leaf area measurements on M = 1656 plants (in a grid of R rows × C columns = 60×28),

where L = 90 genotypes were tested, grouped in two panels (60 genotypes in Panel 1 and 30 genotypes in

Panel 2). All genotypes were tested under two levels of soil water content (WW and WD). For a proper

analysis of this dataset, the factorial structure of panels and treatments (crossed effects) should have been

included in our model. For simplicity, we treated the combinations of panels and treatments as a single

factor with 4 levels (“populations” with K = 4 levels, that is, Panel 1 - WD, Panel 1 - WW, Panel 2 - WD

and Panel 2 - WW) and L = 180 “genotypes” (60 genotypes in Panel 1 and WW treatment, 60 genotypes

in Panel 1 and WD treatment, 30 genotypes in Panel 2 and WW treatment and 30 genotypes in Panel 2

and WD treatment). As such, in our analysis, the “population” effects should be understood as the effects

resulting from the panel-by-water regime combination, while the “genotypic” effects should be interpreted

as the effects arising from the genotype-by-water regime combination. Additionally, we eliminated the last

time point (i.e., n = 31), and plants with 20 or less measurements (i.e., M = 1648).

7.1.1 PhenoArch results: Approaches specification

In this section we comment on the approaches specification, and more precisely on the number of coefficients

and variance parameters to give the reader an idea of the complexity of the models used. For the two-stage

approach, we fitted a SpATS model (see (4.2)) for each individual measurement time point of the leaf

area data. In addition to the spatial trend hS(r, c), and the genotypic effects hg, the model included the

population (panel by water regime combination) as fixed effect hp, and the row and column positions as

random effects, hr and hc. We illustrate the difference in the fitted values when modelling genotypic effects

hg as random (BLUPs) or fixed (BLUEs) in Section 7.1.2. A different genetic variance for each of the

four populations (panel by water regime combination) was considered when genotypes were modelled as

random. Regarding the spatial trend (i.e., the bi-dimensional tensor-product P-spline), B-spline bases of

dimension b2 = b3 = 8 were chosen in the row and column directions. Under this configuration, the mixed

model formulation (4.2) of the SpATS model (for one time point) when modelling genotypes as random

has (K + L + R + C + (b2b3 − 1) = 4 + 180 + 60 + 28 + (8(8) − 1) =) 335 coefficients and 12 variance

parameters: four genotype variances associated with each population; two variances for the random row

and column effects; five variances for the smooth spatial function hs(r, c), where we assume the PS-ANOVA

decomposition in the variance-covariance matrix GS in (3.27); and the residual variance. Similarly, the

SpATS model (for one time point), when genotypes are considered as fixed effects, has (L+R+C+(b2b3−1) =

180+ 60+ 28+ (8(8)− 1) =) 331 coefficients and 8 variance parameters (four less than in the previous case,

due to the variances associated with the genotypes, one for each of the four populations). We note that when
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genotypes are modelled as fixed effects, we decided not to introduce the population effect into the model

to avoid identifiability problems. The computation time for each of both models (genotypes as random and

fixed effects) was approximately 20 seconds.

As an output of the first stage, we obtained two inputs for the second stage of the two-stage approach: (i)

the spatially corrected leaf area at the plant level (it included the estimated population and genotypic effects,

as well as the residuals; see (4.4)); and (ii) the weights, which are used to propagate uncertainty from the first

to the second stage (see (4.5)). Thus, to model the genetic signal in the second stage, we fitted the psHDM

model (4.6) to the spatially corrected leaf area, with B-spline bases of dimension bpop = bgeno = bplant = 11

for population fp, genotype fg, and plant fi functions. The mixed model formulation (4.13) of the psHDM

has a total of 20152 regression coefficients (both fixed and random, K × bpop + L × bgen + M × bplant =

4 × 11 + 180 × 11 + 1648 × 11) and 11 variance parameters (one for each population, four in total; three

at genotype level – intercept, slope and smooth term – and the same at the plant level; plus the residual

variance). Estimation took approximately 1 minute.

For the one-stage approach, we used the spatio-temporal psHDM (5.2) to fit the leaf area, with brow =

bcol = 11 B-splines for the random row, fr, and column, fc, effects; b1 = b2 = b3 = 8 for the spatio-temporal

smooth function, fST; and bpop = bgeno = bplant = 11 for the hierarchical components, fp, fg and fi. Under

this configuration, the mixed model formulation of the one-stage approach (see equation (5.12)) has a total

of 21624 regression coefficients (both fixed and random, K × bpop + L × bgen + M × bplant + R × brow + C ×

bcol + (b2b3 − 1)b1 = 4 × 11 + 180 × 11 + 1648 × 11 + 60 × 11 + 28 × 11 + ((8)(8) − 1) × 8) and 20 variance

parameters (one for each population, four in total; three at genotype level – intercept, slope and smooth term

– and the same at plant level, as well as for row and column effects; three variances in the row, column

and time directions related with fST(r, c, t); and the residual variance). Estimation took approximately 25

minutes.

7.1.2 PhenoArch results: One- and two-stage approaches comparison

We first start this section by raising the question about whether to model genotypes as fixed (as usually in

stage-wise analyses) or random effects (as proposed in this thesis) when using the SpATS model (4.2) in the

first stage of our two-stage approach (see Section 4.1.2). Figure 7.1 shows (for the plants of two genotypes,

one per panel, under the two water regimes, as illustration) essentially identical results when we compare

both results (for random genotypic effects curves are in blue and for fixed genotypic effects curves are in

green) for the spatially corrected leaf area. We presume that this is due to the shrinkage of the genotypic

BLUPs being counteracted by the inclusion of the residual component into the correction in equation (4.4).

Henceforth, the results for the two-stage approach are based on genotypes modelled as random effects for

its first stage.
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Figure 7.1: For the PhenoArch platform: Comparison of the evolution over time of the spatially corrected

leaf area when modelling, in the first stage of the two-stage approach, genotypes as random (blue lines) or

fixed (green lines) effects. Results are shown for the plants of two genotypes, one per panel, under the two

water regimes (as illustration).

We follow the analysis by presenting the spatial trend results. As depicted in Figure 7.2, the spatial pat-

tern observed in the raw data (see Figures 7.2(a) or 2.7) is successfully recovered by using both approaches

(Figures 7.2(b) and (c)) at four different time points (as illustration). Figure 7.2(c) shows the centred spa-

tial trends estimated by the one-stage approach (modelled through fST(r, c, t) in (5.2)). As expected, they

vary smoothly over time. In contrast, the spatial trends obtained with the two-stage approach (modelled in

the first stage through hS(r, c) in (4.2) at time t) depicted in Figure 7.2(b) exhibit more marked differences

among time measurements because analyses in the first-stage are performed separately per time point. Con-

sequently, information on spatial heterogeneity is not shared across different measurement times. Finally,

a detailed look at the scale of these two plots (estimated spatial trends) reveals small spatial effect for this

particular dataset, when compared against the spatial distribution of the raw data in Figure 7.2(a).

Once the spatial trend is modelled, results show that, as expected, the spatial pattern observed in the raw

data (Figures 7.2(a) or 2.7) disappears in the spatially corrected phenotype, as illustrated in Figures 7.3(a)

and (b) for the two- and one-stage approaches, respectively. Spatially corrected leaf area is obtained for the

two-stage approach in the first stage through expression (4.4). Similarly, the spatially corrected leaf area for

the one-stage approach can be calculated by eliminating from the spatio-temporal psHDM (5.2) the spatio-

temporal trend, fST(r, c, t), and the random row and column effects, i.e. ỹi(t) = f̂ p(i)(t) + f̂ g(i)(t) + f̂ i(t) + ε̂i.

Moreover, Figure 7.4 compares the evolution over time of the raw leaf area (grey lines) with the spatially

corrected leaf area with the two-stage (blue lines) and one-stage (green lines) approaches. In general, the

spatial correction reduced the variability among plants (i.e., replicates) of the same genotype and water

treatment combination.

After the leaf area is spatially corrected, we can focus our analysis on the genetic signal. For both
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(b) Spatial trend two-stage approach
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(c) Spatial trend one-stage approach

Figure 7.2: Results for the PhenoArch platform: (a) raw spatial distribution of the leaf area, and estimated

spatial trend obtained with the (b) two-stage and (c) one-stage approaches, at four different measurements

times (t = 108, 112, 115, 117 DOY). The colour scale is independently adjusted for each time point.
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(a) Spatial distribution of the spatially corrected leaf area with the two-stage approach
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(b) Spatial distribution of the spatially corrected leaf area with the one-stage approach

Figure 7.3: Results for the PhenoArch platform: Spatial distribution of the spatially corrected leaf area

with the (a) two-stage approach and (b) one-stage approach at four different measurements times (t =

108, 112, 115, 117 DOY). The white areas denote missing data. The colour scale is independently adjusted

for each time point.
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Figure 7.4: Results for the PhenoArch platform: Evolution over time of spatially corrected leaf area with

the two-stage (blue lines) and one-stage (green lines) approaches. Results are depicted for all plants in the

experiment as shown for the raw data (grey lines) in Figure 2.3.
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approaches (for the two-stage approach from the psHDM (4.6) and for the one-stage approach from the

spatio-temporal psHDM (5.2)) we analyse the following estimates at the three hierarchy levels

1. estimated population trajectories, f̂ p, and respective first-order derivatives, f̂
′

p,

2. estimated genotype-specific deviations, f̂ g, and respective trajectories, f̂ p + f̂ g, and first-order deriva-

tives, ( f̂ p + f̂ g)′, and

3. estimated plant-specific trajectories, f̂ p + f̂ g + f̂ i.

Results for all genotypes are depicted in Figure 7.5: Figures 7.5(a) to (c) show results at population (or-

ange and red lines for the one- and two-stage approaches, respectively) and genotype (with the one-stage

approach in blue, and the two-stage approach in green) levels, and Figure 7.5(d) depicts results at genotype

(continuous black lines for the one-stage and dotted black lines for the two-stage) and plant (grey continu-

ous lines for the one-stage and grey dotted lines for the two-stage) levels for plants of two genotypes, one

per panel, under the two water regimes (as illustration); blue lines correspond to raw data. Figure 7.5(a)

shows a different growth pattern under both water regimes for the four populations (panel by water regime

combination). That is, well watered (WW) plants grow faster than plants with water deficit (WD) for both

panels. Consequently, the speed of leaf area growth (or leaf area growth rate, described by the estimated

first-order derivative curves in Figure 7.5(b)) for WW plants reach higher values than those for WD plants.

Genotype-specific deviations from their estimated population mean are shown in Figure 7.5(c)), where pos-

itive and negative deviations refer, respectively, to better and worse genotypic performance compared to the

mean population. As expected, the magnitude of the deviations (and, thus, the differences in genotypes per-

formance) increases with time. Also, genotypes from Panel 1 show the largest genetic variation under both

water regimes. This is in concordance with the spatially corrected data showed in Figure 7.4. As illustrated

with the estimated plant-specific trajectories in Figure 7.5(d), the two approaches are able to successfully

recover the evolution over time of the raw leaf area in blue lines (recall that the grey lines represent spatially

corrected data with both approaches, and then they can not be directly compared with the raw data, but

they give an idea of the estimation accuracy), while appropriately handling the missing data. Moreover,

genotype-specific trajectories (Figure 7.5(d), black lines) seem to summarise/describe the behaviour of the

plant curves adequately. In the descriptive analysis in Section 2.1, we showed that missing data are mainly

present in the second half of the observation period. We assume that the estimated curves in Figure 7.5 with

the one-stage approach better describe the raw data structure in the presence of missing data when compare

with estimated curves obtained with the two-stage approach. We believe this is due to the fact that the

one-stage approach borrows strength across plant curves since less information is lost between and within

stages. For instance, for this second half period, estimated trajectories with the two-stage approach are gen-

erally lower than curves with the one-stage approach (Figures 7.5 (a) and (c)). This period also shows the

largest difference between the two approaches for the estimated first-order derivatives, which may affect the
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precision with which growth and development related traits (e.g., local/global maximum/minimum speed

values) can be extracted from the biomass trajectories. All in all, Figure 7.5 shows that the major discrep-

ancy between the one- and two-stage approaches corresponds to the estimated first-order derivative curves

in Figure 7.5(b). One- and two-stage approaches were most similar for genotypic deviations (Figure 7.5(c)).

These results are consistent with the results of the simulation study (Section 6.3) and the analysis of other

HTP datasets performed in the research period.

We now zoom in on the results at the genotype level, which is the decision-making level for plant

breeders (genotypic performance can be assessed) and where the genotype-by-water regime interaction is

analysed. In Figure 7.6, we use four genotypes per panel to illustrate our results for the one-stage (continuous

lines) and two-stage (dotted lines) approaches. Genotypes were chosen such that two of them have the best

(genotypes 48 and 15 in Panel 1 and 2, respectively) and worst (genotypes 27 and 20 in Panel 1 and 2,

respectively) performance and the other two have an intermediate performance (genotypes 43 and 44 in

Panel 1, and genotypes 03 and 29 in Panel 2). Results are essentially the same as the ones described for

Figure 7.5. We additionally comment on the genotype-specific deviation results in Figure 7.6(c), which

allows evaluating differences in genotypic performance. For instance, in Panel 1 and under both water

regimes, genotype 48 (in pink) performs the best. This figure also allows us to analyse the genotype-

by-water regime interaction. Note that genotypes 43 (in blue) and 44 (in purple) in Panel 1 have similar

performance under WD, but their performances differ under WW. For Panel 2, we see that the curves for

genotypes 03 (in red) and 15 (in brown) differ under WD, but become similar under WW. Differences

between the one- and two-stage approaches for these curves are minimal.

7.1.3 PhenoArch results: Extracting time-independent attributes to characterise genotypes

One of the most important aspects in the previous analyses is whether decision-making changes with the

approach used. To address this question, we extracted some time-independent features from the estimated

curves to characterise genotypes (see Sections 4.2.7 and 5.5). We are aware that this data does not have

information for the stationary phase common in the classic growth curve analysis. Consequently, the feature

extraction is limited by the time window at which plants were measured. However, we calculate three

features for all genotypes

1. maximum corrected leaf area (maxTrait) from the estimated genotype-specific trajectories (Figure

7.5(a)),

2. maximum speed rate (maxSpeed), before t = 130, from the estimated first-order derivatives for the

genotype-specific trajectories (Figure 7.5(b)), and

3. area under the estimated genotype-specific deviations (AUC; Figure 7.5(c)).
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(c) Genotype−specific deviations
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Figure 7.5: For the PhenoArch platform: For all genotypes, separately for each population and for both

approaches: (a) estimated population- and genotype-specific trajectories, (b) estimated first-order derivative

for the population- and genotype-specific trajectories, (c) estimated genotype-specific deviations, and (d)

estimated genotype- and plant-specific trajectories (for plants of two genotypes, one per panel and under the

two water regimes, as illustration).

105



7.1. PhenoArch results 106
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(b) First−order derivative for the Genotype−specific growth curves
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Figure 7.6: For the PhenoArch platform: Results at the genotype level (for four genotypes by panel, as

illustration) for the one-stage (continuous lines) and two-stage (dotted lines) approaches, separately for each

panel-by-water regime combination: (a) estimated genotype-specific trajectories, (b) estimated first-order

derivatives for the genotype-specific trajectories, and (c) estimated genotype-specific deviations. In Figures

(a) and (b) black lines represent curves at population level.

Bivariate scatter plots were used to compare the two approaches for each feature, as illustrated in Figure

7.7. The maxTrait and the AUC are the strongest correlated features, suggesting minimal differences in the

decision-making process between both approaches. As expected and in concordance with the simulation

results (Section 6.3), estimated first-order derivative curves are the most sensitive to differences between

both approaches and consequently, the maxSpeed feature presents the largest differences between the one-

and two-stage approaches (the results under the WW treatment show, for both panels, the highest difference).
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However, the values of maxSpeed obtained using both approaches also show a high correlation within a

panel-by-water regime combination. In brief, the results of both the simulation study and the application

are consistent. That is, slight differences are detected when using the one- and two-stage approaches for

most situations, with the estimation of the first-order derivative being the result with the most noticeable

differences between the approaches proposed.
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Figure 7.7: For the PhenoArch platform: Bivariate scatterplots with the extracted attributes at the genotype

level. Each scatterplot depicts the comparison between the one- and the two-stage approaches for one

feature. Colours represent the populations (panel-by-water regime combination).

7.2 FIP results

In Section 2.2, we described the data characteristics for the FIP platform. In contrast to the PhenoArch data,

we have information available for this experiment for three trials (2015, 2016 and 2017, the experimental

configuration of each trial was presented in Table 2.1). Thus, in addition to the genetic signal analysis,

plant breeders are also interested in assessing the genotype consistency across trials (a total of 313 common

genotypes) and identifying, e.g., those genotypes that perform the best.

7.2.1 FIP results: Approaches specification

We follow the same ideas presented before, for the PhenoArch data, to model the canopy height with the

one- and two-stage approaches and for each trial separately. Once again, we comment on the number of

coefficients and variance parameters to give the reader an idea of the complexity of our approaches. In this

case, the SpATS model (4.1) used in the first stage of the two-stage approach included, besides the spatial

trend hS(r, c), and the genotypic effects hg (we later show differences in the fitted values when modelling hg
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as random (BLUPs) or fixed (BLUEs)), fixed effects for the two lots (experimental design factor he) and the

seven wheat populations hp (region of origin, with different genetic variance for each of the seven regions of

origin when genotypes were considered as random effects), as well as random effects for the row and column

positions, hr and hc. For the spatial trend hS(r, c), b2 = b3 = 8 B-spline basis dimensions were assumed for

the row and column positions of the virtual grid, respectively. The correction (see equation (4.4)) included

the estimated population (when genotypes were random), the genotypic effects and the residuals, and we

averaged over the lot fixed effect to eliminate its impact.

Consequently, when modelling genotypes as random, the mixed model formulation (4.2) of the SpATS

model has 475, 472 and 489 coefficients and 15 variance parameters (seven genotype variances associated

with each region, two variances for the random row and column effects, five variances for the smooth spatial

function, and the residual variance) for each trial (2015, 2016 and 2017) at each time point, respectively.

Similarly, when genotypes were considered as fixed effects, the SpATS model, has 434, 431, and 448 coeffi-

cients and 8 variance parameters for each trial (2015, 2016 and 2017) at each time point, respectively. Note

that, for each time point we have seven variance parameters less than in the previous case, due to the vari-

ances associated with the genotypes, one for each of the seven regions of origin. The computation time for

each of both models (genotypes as random and fixed effects) and each of the three trials was approximately

20 seconds.

In the second stage of the two-stage approach, we used the spatially corrected canopy height to model

the genetic signal. The trajectories for the spatially corrected phenotype show here a more complex pattern

than for the PhenoArch platform (see Figures 2.3 and 2.11), so we used the psHDM (4.6) with cubic B-spline

bases of dimension bpop = bgeno = bplant = 20 for the three levels of the hierarchy ( fp, fg and fi). The mixed

model formulation (4.13) of the psHDM has a total of 20180, 20080, and 21220 regression coefficients (both

fixed and random) and 14 variance parameters (one for each of the seven regions of origin, three at genotype

level – intercept, slope and smooth term – and the same at the plant level, and the residual variance) for each

trial (2015, 2016 and 2017), respectively. The fitting processes needed approximately 1 minute for each of

the three trials.

Following the modelling choices made for the two-stage approach, for the one-stage, we used the spatio-

temporal psHDM (5.2) to fit the canopy height, with brow = bcol = 20 B-splines for the random row, fr, and

column, fc, effects, b1 = b2 = b3 = 8 for the spatio-temporal smooth function, fST, and bpop = bgeno =

bplant = 20 for the hierarchical components, fp, fg and fi. Under this configuration, the mixed model

formulation of the one-stage approach (see the spatio-temporal psHDM (5.2)) has a total of 22204, 22104

and 23284 regression coefficients (both fixed and random) and 20 variance parameters (one for each of the

seven regions of origin; three at genotype level – intercept, slope and smooth term – and the same at plant

level, as well as for row and column effects; three variances in the row, column and time directions related

with fST(r, c, t); and the residual variance) for each trial (2015, 2016 and 2017), respectively. Although we
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could explore a more general one-stage approach, our current formulation of the spatio-temporal psHDM

(5.2) and its implementation (code) is very specific. We only consider the spatio-temporal smooth function,

fST, and random effects for rows and columns, fr, and fc, as non-genetic effects, but no other experimental

factors are taken into account. Thus, in contrast to the two-stage approach, the lot effect is not included into

the one-stage approach. Estimation took approximately 35 minutes for the 2015 trial, 1 hour and 30 minutes

for the 2016 trial (it took more iterations until convergence), and 30 minutes for the 2017 trial.

7.2.2 FIP results: One- and two-stage approaches comparison

We start by comparing in Figure 7.8 the spatially corrected canopy height obtained when modelling geno-

types either as fixed (green lines) or random (blue lines) effects for the plants of one genotype by region of

origin (as illustration) and for the three trials. As for the PhenoArch data (see Figure 7.1), the results are

very similar. In the following results, genotypes are modelled as random effects for the first stage of the

two-stage approach.
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Figure 7.8: For the FIP platform: Comparison of the evolution over time of the spatially corrected canopy

height when modelling, in the first stage of the two-stage approach, genotypes as random (blue lines) or fixed

(green lines) effects. Results are shown for the plants of one genotype per region of origin (as illustration).

AT/CZ: Austria/Czechia; CH: Switzerland; DE: Germany; FR: France; GB: Great Britain; PL: Poland;

SE/DK: Sweden/Denmark.
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Figures 7.9, 7.10 and 7.11 depict the spatial trend obtained when modelling the canopy height for the

three trials (2015, 2016 and 2017, respectively) with the one- and two-stage approaches at three different

measurement days (DOY). As for the PhenoArch data, the spatial trends vary smoothly over time when the

one-stage approach is used (Figures 7.9(c), 7.10(c) and 7.11(c)), and for the two-stage approach (Figures

7.9(b), 7.10(b) and 7.11(b)) differences in the spatial trend are more evident through time. A look at the

canopy height scale for these plots shows a small spatial effect. We note that a particularity of this experiment

is that the two lots for the three trials are non-adjacent. In this case, we fill in the gaps with NA (where

necessary) to assume the complete grid.

As for the PhenoArch experiment, the correction performed in the first stage reduced the variability

among replicates of the same genotype. In Figure 7.15, we show all the replicates for each region of origin

by trial. We observe that the variability among raw canopy height (green lines) plants of the same region

of origin and trial are higher than for the spatially corrected data with the one-stage (blue lines) and the

two-stage approaches (in grey). This reduction is due to the lot effect and the spatial variation when using

the two-stage approach and only due to the spatial variation when using the one-stage approach

Once the spatially corrected canopy height is obtained, we analyse the genetic signal with the two

proposed approaches. To that aim, we show for each region of origin and trial the estimated region- and

genotype-specific trajectories in Figure 7.16, their estimated first-order derivatives in Figure 7.17, and the

estimated genotype-specific deviations in Figure 7.18. Results show differences between regions of origin

(and between genotypes within a region) in, e.g., growth patterns (Figure 7.16), growth rates (Figure 7.17),

and genotype performance (Figure 7.18) for the three trials. In contrast to the PhenoArch data, for the three

trials of this experiment, we found more than one maximum point in their first-order derivatives (Figure

7.17). For instance, for the 2017 trial, these speed rates correspond to maxima around DOYs 97, 133

and 147, respectively. We have information about the mean temperature for this trial, as shown in Figure

2.15 (blue line). Thus, maximum speed rates around DOY 133 and 189 can be interpreted, respectively, as

recoveries after a severe cold period in April (DOY 110-120) and a milder one in May (DOY 140). However,

for DOY 189 the growth rates declined as plants approached their final height. We also observe a wigglier

behaviour (but more similar through regions of origin) of the first-order derivatives for the 2016 trial than

for the 2015 and 2017 trials. Growth rates reach higher values for Austria/Czechia (AT/CZ), Switzerland

(CH), Germany (DE) and Poland (PL) than for Sweden/Denmark (SE/DK), France (FR) and Great Britain

(GB) for both, 2015 and 2017, trials. We also highlight the importance of the genotype-specific deviations

(Figure 7.18) when comparing the performance among genotypes of the same region. Deviations refer to

the "pure" genetic signal since the non-genetic effects (spatial effects and other experimental factors) and

the regional trends are removed from the phenotype of interest. We observe that genetic effects are minimal

at the beginning of the experiment, but they become higher over time. Moreover, we observe some regions

of origin with late deviations (e.g. genotypes in the Austria/Czechia (AT/CZ) region for the 2015 and 2016

trials) and others with early deviations (e.g. genotypes in the Germany (DE) region for the 2015 and 2016
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Figure 7.9: Results for the FIP platform, 2015 trial: (a) raw spatial distribution of the canopy height, and

estimated spatial trend obtained with the (b) two-stage and (c) one-stage approaches (t = 127, 134, 147

DOY). The colour scale is independently adjusted for each time point.

trials). Thus, the AUC (see Section 4.2.7) becomes a good indicator of genotype performance.

We finish this section by commenting on the comparison between the two approaches. We found small

differences between the one- and two-stage approaches for the three kinds of curves. Following the results

of the simulations and the PhenoArch data, the estimated first-order derivatives are the curves with the
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(c) Spatial trend one-stage approach

Figure 7.10: Results for the FIP platform, 2016 trial: (a) raw spatial distribution of the canopy height, and

estimated spatial trend obtained with the (b) two-stage and (c) one-stage approaches (t = 112, 130, 148

DOY). The colour scale is independently adjusted for each time point.

biggest differences (with special attention on the 2016 trial). A large amount of missing data characterised

phenoArch data. In contrast, time series curves at irregularly spaced time points characterise FIP data. In

general, the 2015 trial shows more consistent results between the two approaches than the 2016 and 2017

trials, which have more spaced measurement times. We believe that the one-stage approach outperforms
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Figure 7.11: Results for the FIP platform, 2017 trial: (a) raw spatial distribution of the canopy height, and

estimated spatial trend obtained with the (b) two-stage and (c) one-stage approaches (t = 103, 122, 135

DOY). The colour scale is independent for each time point.

the two-stage approach both in the presence of missing data and irregularly spaced time points. However,

further exploration in this direction is required (e.g., through simulated data).
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Figure 7.12: Results for the FIP platform, 2015 trial: Spatial distribution of the spatially corrected canopy

height with the (a) two-stage and (b) one-stage approaches (t = 127, 134, 147 DOY). The white areas denote

missing data. The colour scale is independent for each time point.

7.2.3 FIP results: Extracting time-independent attributes to characterise genotypes

In addition to characterising the genotypes, in this section, we aim to assess the genotype consistency across

trials. For that purpose, we extracted, for the 313 common genotypes to the three trials, the same three

features that we used for the PhenoArch analysis in Section 7.1.3, that is

1. maximum corrected canopy height (maxTrait) from the estimated genotype-specific trajectories (Fig-

ure 7.16),

2. maximum speed rate (maxSpeed) between 118 ≤ t ≤ 148 from the estimated first-order derivatives

for the genotype-specific trajectories (Figure 7.17). We are aware that more than one maxima point

can be obtained for the three trials, but for the sake of simplicity, we extract only one for the time

window common to the three trials in which the plants grew the most, and

3. area under the genotype-specific deviations (AUC; from Figure 7.18). For a fair comparison between
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Figure 7.13: Results for the FIP platform, 2016 trial: Spatial distribution of the spatially corrected canopy

height with the (a) two-stage and (b) one-stage approaches (t = 112, 130, 148 DOY). The white areas denote

missing data. The colour scale is independent for each time point.

trials, the AUC was calculated for the time interval 117 ≤ t ≤ 176, which is the common time window

where the genotypes were measured for the three trials (see Table 2.1). Nothing, however, precludes

focusing attention on a different time interval.

The two approaches are compared by bivariate scatter plots for each feature and trial, as shown in Figure

7.19. The bivariate scatterplots of the extracted genotype-specific attributes show that the genotypes cluster

according to their region of origin. Results for this platform are consistent with those previously presented

for the PhenoArch platform (Section 7.1): strongly correlated features, indicating small differences between

both approaches for the decision-making process. The results for the maxSpeed for the 2016 trial show

the highest difference (but with a high correlation between both approaches within a region of origin). For

each attribute, region of origin and trial, we identified the genotype with the maximum value (i.e., the "best"

genotype) for the two-stage (genotype numbers to the left and in bold) and the one-stage (genotype numbers

to the right) approaches. We found that in 9 of the 63 (= 3 attributes × 3 trials × 7 regions of origin)

comparisons, the genotype with the best performance is not the same for the two approaches (with the Great
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Figure 7.14: Results for the FIP platform, 2017 trial: Spatial distribution of the spatially corrected canopy

height with the (a) two-stage and (b) one-stage approaches (t = 103, 122, 135 DOY). The white areas denote

missing data. The colour scale is independent for each time point.

Britain (GB) region of origin and the maxSpeed attribute the least consistent). The most consistent region

of origin is Switzerland (CH): the same genotype (genotype 20) is identified by the two approaches, and the

same genotype has the best performance for the three attributes (except for the maxTrait in the 2016 trial).

Univariate analysis of each attribute using boxplots to compare regions of origin within trials with each

approach is shown in Figure 7.20 (for the 313 common genotypes to the three trials). These boxplots also

show regional clustering. For instance, for the maxTrait, three clusters of regions of origin are identified

(they are consistent through trials and for the two approaches): fast-growing genotypes (Austria/Czechia

(AT/CZ) and Poland(PL), eastern regions), medium-growing genotypes (Switzerland (CH) and Germany

(DE), central regions), and low-growing genotypes (Franc (FR), Great Britain (GB) and Sweden/Denmark

(SE/DK), western and northern regions). Small changes are observed between the one- and two-stage ap-

proaches for these comparisons, being the maxSpeed for the 2016 trial with the most different results.
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Figure 7.15: Results for the FIP platform: Evolution over time of spatially corrected canopy height with the

two-stage (grey lines) and one-stage (blue lines) approaches. Results are shown for all plants in the exper-

iment as shown for the raw data (green lines) in Figure 2.11. AT/CZ: Austria/Czechia; CH: Switzerland;

DE: Germany; FR: France; GB: Great Britain; PL: Poland; SE/DK: Sweden/Denmark.

7.2.4 FIP results: Use of time-independent attributes to characterise regional adaptation

While a deeper physiological analysis is beyond the scope of this thesis, we will use the extracted attributes

to highlight the potential benefit of an in-depth analysis of spline-based growth patterns. Here, we use the

regional groups shown in Figure 7.21, but a similar analysis could be done using individual genotypes. For

instance, for the 2017 trial, the observed height development follows a principally logistic growth curve:

stem elongation started after the plants were vernalised over winter (by means of cold exposure) and ended

around flowering. However, the height development plateaued between days 103 and 118 in all genotypes,

most likely due to a cold period in April (see available information for the mean temperature (blue line)

for this trial in Figure 2.15). When looking at the region-specific trajectories, this short and extreme phase

caused even rank changes in growth ( f̂ p in Figure 7.21): the regional groups showing most vigorous growth

before the stress (first local maxima point in f̂
′

p in Figure 7.21) stopped growth completely while those

which grew slowest could maintain some growth during the cold (first local minima following the first local

maxima). Such pattern may point to physiological adaptations to the different climatic regions of Europe

as the slow-growing northern types from Great Britain (GB), and Denmark and Sweden (SE/DK) showed
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Figure 7.16: For the FIP platform: Estimated region- and genotype-specific trajectories for all genotypes,

separately for each region of origin, trial and for both approaches. AT/CZ: Austria/Czechia; CH: Switzer-

land; DE: Germany; FR: France; GB: Great Britain; PL: Poland; SE/DK: Sweden/Denmark.

least response to cold while the fast-growing continental types from Poland (PL) and Austria and Czechia

(AT/CZ) stopped growing. Moreover, the genotypes from the southwest – France (FR) and Switzerland (CH)

– did not recover growth up to the same level as the more northern and eastern varieties did (compare first

and second local maxima point). A multi-year analysis shows that the region-specific average development

is consistent through trials, with changes through time. We highlight, e.g., the performance of the Poland

(PL) region, which consistently (for the three trials) started with moderate growth and finished with one of

the most higher recovery growth rates. Regional comparison of the results between the one- and two-stage

approaches shows slight differences.
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Figure 7.17: For the FIP platform: Estimated region- and genotype-specific first-order derivatives for all

genotypes, separately for each region of origin, trial and for both approaches. AT/CZ: Austria/Czechia; CH:

Switzerland; DE: Germany; FR: France; GB: Great Britain; PL: Poland; SE/DK: Sweden/Denmark.
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Figure 7.18: For the FIP platform: Estimated genotype-specific deviations for all genotypes, separately

for each region of origin, trial and for both approaches. AT/CZ: Austria/Czechia; CH: Switzerland; DE:

Germany; FR: France; GB: Great Britain; PL: Poland; SE/DK: Sweden/Denmark.
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Figure 7.19: For the FIP platform: For the 313 common genotypes for the three trials, bivariate scatter plots

with the extracted attributes at the genotype level. Each scatterplot depicts the comparison between the one-

and the two-stage approaches for one feature in one trial. Colours represent the regions of origin. Points

identified with text are the genotypes with the maximum feature value ("best" genotypes, one by region of

origin). Genotypes to the left and in bold stands for the two-stage approach. AT/CZ: Austria/Czechia; CH:

Switzerland; DE: Germany; FR: France; GB: Great Britain; PL: Poland; SE/DK: Sweden/Denmark.
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Figure 7.20: For the FIP platform: For the 313 common genotypes for the three trials, boxplots with the

extracted attributes at the genotype level by trial, region of origin and approach. Colours represent the

regions of origin. AT/CZ: Austria/Czechia; CH: Switzerland; DE: Germany; FR: France; GB: Great Britain;

PL: Poland; SE/DK: Sweden/Denmark.
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Figure 7.21: For the FIP platform: Region-specific growth curves, f̂ p, and region-specific first-order deriva-

tives, f̂
′

p, by trial (2015, 2016 and 2017) and for the one- and two-stage approaches. AT/CZ: Austri-

a/Czechia; CH: Switzerland; DE: Germany; FR: France; GB: Great Britain; PL: Poland; SE/DK: Swe-

den/Denmark.
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Chapter 8

Software developments

This thesis proposes different P-spline-based models to analyse spatio-temporal HTP data. This chapter

discusses and describes the software implementations that allow the practical use of these models. In

particular, for the first stage of the two-stage approach described in Chapter 4, we specifically use the

R-packages SpATS and statgenHTP (functions time points(), fitModels() and getCorrected())

to estimate the spatial model (4.2) at different measurement times (see Section 4.1.5). To estimate

the longitudinal and hierarchical psHDM (4.12) in the second stage of the two-stage approach (see

Section 4.2.5), we created new functions: fitSplinesModels(), predict.psHDM(), plot.psHDM()

and estimateSplineParameters(), and integrated them to the statgenHTP() package. Regard-

ing the one-stage approach presented in Chapter 5, we provide the user with one additional function,

fit3DSplineHDM(), to estimate the spatio-temporal psHDM (5.2) (see Section 5.3), which is publicly

available at https://gitlab.bcamath.org/dperez/htp_one_stage_approach). In what follows, we show the func-

tionalities of the code available and illustrate its usage by reproducing the results for the PhenoArch data

presented in Section 7.1. Data are available as "Supplementary Information" for the Perez-Valencia et al.

(2022) paper at https://www.nature.com/articles/s41598-022-06935-9#Sec17.

123

https://gitlab.bcamath.org/dperez/htp_one_stage_approach
https://www.nature.com/articles/s41598-022-06935-9#Sec17


8.1. statgenHTP R-package 124

8.1 statgenHTP R-package

The statgenHTP R-package (High Throughput Phenotyping (HTP) Data Analysis; Millet et al., 2022) is

part of a series of packages developed by the Biometris research group (Wageningen University & Research)

and collaborators to contribute to the knowledge transfer of specialised statistical methods in the context of

plant breeding experiments. statgenHTP (see a short overview in https://biometris.github.io/statgenHTP/

articles/Overview_HTP.html) provides a set of functions to

1. prepare and describe the data (tutorial 1, https://biometris.github.io/statgenHTP/articles/vignettesSite/

Intro_HTP.html),

2. detect outliers at the time point or at the plant levels (tutorials 2 and 4, https://biometris.

github.io/statgenHTP/articles/vignettesSite/OutlierSingleObs_HTP.html and https://biometris.github.

io/statgenHTP/articles/vignettesSite/OutlierSerieObs_HTP.html),

3. accurately separate the genetic effects from the spatial effects at each time point (tutorial 3, https:

//biometris.github.io/statgenHTP/articles/vignettesSite/SpatialModel_HTP.html),

4. model the temporal evolution of the genetic signal (tutorial 5, https://biometris.github.io/statgenHTP/

articles/vignettesSite/HierarchicalDataModel_HTP.html), and

5. estimate relevant parameters from modelled time courses (tutorial 6, https://biometris.github.io/

statgenHTP/articles/vignettesSite/ParameterEstimation_HTP.html).

As part of this thesis, we specifically collaborated with the understanding of some functions for the tutorial 3

(first stage of the two-stage approach), developed functions for the tutorial 5 (second stage of the two-stage

approach), and extended the functionalities of functions in the tutorial 6 (extraction of time-independent

attributes to characterise genotypes).

8.2 Two-stage approach R-functions

We start this section by introducing the data structure used for this kind of analysis. To illustrate, we use the

PhenoArch data, presented in Section 2.1 and later analysed in section 7.1

library(statgenHTP)

head(PhenoArchData)

timeNumber timePoint rowId colId plotId TrtGeno TrtPanel LeafArea

1 103 2017-04-13 26 24 c24r26 WD_GenoA01 WD_Panel1 0.003377735

2 103 2017-04-13 56 21 c21r56 WD_GenoA01 WD_Panel1 0.002489031

3 103 2017-04-13 3 28 c28r3 WD_GenoA01 WD_Panel1 0.002515396
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4 103 2017-04-13 24 20 c20r24 WD_GenoA01 WD_Panel1 0.003256119

5 103 2017-04-13 2 16 c16r2 WD_GenoA01 WD_Panel1 0.002871676

6 103 2017-04-13 24 21 c21r24 WD_GenoA02 WD_Panel1 0.002923092

PhenoArchData is a data frame of dimension 51088 × 8 (including missing data). The column

timeNumber corresponds to the DOYs related with the timePoint column (n = 31). The columns rowId

and colId indicate the row (R = 60) and column (C = 28) positions of each plant (plotId, with M = 1648)

in the grid. TrtGeno refers to the genotypes (L = 180, genotype by water regime combination), and

TrtPanel are the populations (K = 4, panel by water regime combination). Finally, the phenotype of

interest is the leaf area (LeafArea).

Results for the two-stage approach can be obtained with the functions in the statgenHTP R-package.

In the first stage, we fit the SpATS model (4.2) at each measurement time. To do so, we first need to create

an object of the class TP (see help(createtime points)), i.e., a list of standarised data frames where

each one contains the data for a single time point,

> PhenoTP <- createTimePoints(dat = PhenoArchData,

+ experimentName = "PhenoArch",

+ genotype = "TrtGeno",

+ timePoint = "timePoint",

+ plotId = "plotId",

+ rowNum = "rowId", colNum = "colId")

> summary(PhenoTP)

PhenoTP contains data for experiment PhenoArch.

It contains 31 time points.

First time point: 2017-04-13

Last time point: 2017-05-13

No check genotypes are defined.

With the above code, we are indicating where the different experiment information is located in the data

frame. Using object PhenoTP, we now can fit the SpATS model (with genotypes either as random or fixed

effects) at each measurement time point by using the fitModels() function. We note that with this function

two engines can be used: SpATS (Rodríguez-Álvarez et al., 2018) or ASReml (Butler et al., 2018). We focus

here in the SpATS engine development. The usage is as follows

> # Spatial model using SpATS (genotype as random)

> modPheno.ran <- fitModels(TP = PhenoTP,

+ trait = "LeafArea",

+ geno.decomp = c("TrtPanel"),
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+ what = "random")

> summary(modPheno.ran)

Models in modPheno.ran where fitted for experiment PhenoArch.

It contains 31 time points.

The models were fitted using SpATS.

> # Spatial model using SpATS (genotype as fixed)

> modPheno.fix <- fitModels(TP = PhenoTP,

+ trait = "LeafArea",

+ what = "fixed")

> summary(modPheno.fix)

Models in modPheno.fix where fitted for experiment PhenoArch.

It contains 31 time points.

The models were fitted using SpATS.

The previous code let us fit the SpATS model with genotypes as random (modPheno.ran object and

argument what = "random") or fixed effects (modPheno.fix object and argument what = "fixed").

Notice that if genotypes are modelled as random effects, we then can use the geno.decom option, which

allows considering a different genotypic variances according to the variable specified (in this case the pop-

ulation, TrtPanel). Additional fixed effects can also be included into the model through the argument

extraFixedFactors (e.g., for the FIP data, we used as extra fixed factor the lot effect).

We notice that the fitModels() function uses by default the PS-ANOVA formulation for the spatial

term fS(r, c) (see Section 3.2.2). This term is constructed using the function PSANOVA() from the SpATS

package as

PSANOVA(colNum, rowNum, nseg = nSeg, nest.div = c(2,2), center = TRUE)

where nSeg = c(number of columns, number of rows) and nest.div = c(2,2) indicates that

nested bases, with half the dimension in both directions (rows and columns), are used for the smooth-by-

smooth interaction component in fS(r, c) (see equation (3.26) and Lee et al., 2013). However, for the results

in Section 7.1, we slightly modify this function (not shown here but available in https://gitlab.bcamath.org/

dperez/htp_one_stage_approach) to set b2 = b3 = 8 (i.e., nSeg = c(5,5) and nest.div = c(1,1)) for

later fair comparison with the one-stage approach results.

After fitting the SpATS model by time point, we obtain the data frame with the spatially corrected leaf

area (see equation (4.4)) by using the getCorrected() function. This is the "new" data that is used as

input for the second stage of the two-stage approach
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# Extract longitudinal results from SpATS

# Spatially corrected phenotypic values (genotype as random)

> Pheno.cor.ran <- getCorrected(modPheno.ran)

> str(Pheno.cor.ran)

’data.frame’: 51088 obs. of 10 variables:

$ timeNumber : int 1 1 1 1 1 1 1 1 1 1 ...

$ timePoint : POSIXct, format: "2017-04-13" "2017-04-13" ...

$ LeafArea_corr: num NA NA 0.00259 NA 0.00306 ...

$ LeafArea : num NA NA 0.00287 NA 0.00326 ...

$ wt : num 5111567 5111567 5111567 5111567 5111567 ...

$ genotype : Factor w/ 180 levels "WD_GenoA01","WD_GenoA02",..: 1 1 ...

$ geno.decomp : Factor w/ 4 levels "Panel 1 - WD",..: 1 1 1 1 1 ...

$ rowId : Factor w/ 60 levels "1","2","3","4",..: 20 6 2 19 24 56 ...

$ colId : Factor w/ 28 levels "1","2","3","4",..: 12 13 16 1 ...

$ plotId : Factor w/ 1648 levels "c10r1","c10r10",..: 131 233 ...

# Spatially corrected phenotypic values (genotype as fixed)

> Pheno.cor.fix <- getCorrected(modPheno.fix)

> str(Pheno.cor.fix)

’data.frame’: 51088 obs. of 9 variables:

$ timeNumber : int 1 1 1 1 1 1 1 1 1 1 ...

$ timePoint : POSIXct, format: "2017-04-13" "2017-04-13" "2017-04-13" ...

$ LeafArea_corr: num NA NA 0.00257 NA 0.00306 ...

$ LeafArea : num NA NA 0.00287 NA 0.00326 ...

$ wt : num 5008998 5008998 5008998 5008998 5008998 ...

$ genotype : Factor w/ 180 levels "WD_GenoA01","WD_GenoA02",..: 1 1 ...

$ rowId : Factor w/ 60 levels "1","2","3","4",..: 20 6 2 19 24 56 ...

$ colId : Factor w/ 28 levels "1","2","3","4",..: 12 13 16 1 ...

$ plotId : Factor w/ 1648 levels "c10r1","c10r10",..: 131 233 367 ...

This new data (Pheno.cor.ran and Pheno.cor.fix) have two additional columns (regarding the original

one, PhenoArchData): LeafArea_corr (i.e., the spatially corrected leaf area) and wt (i.e., the weights

used to propagate error from the first to the second stage of the two-stage approach, see equation (4.5)).

The geno.decomp column is missing in the Pheno.cor.fix data because there is no decomposition of the

genotypic variance associated with the population effect. Note that the timeNumber column returned by

the getCorrected function is a simple enumeration of the timePoint column. Care must be taken when

dealing with non-equidistant time points (e.g., the FIP data) to keep the same time distance as in the original

timePoint column. In this example, we recalculate the timeNumber column with time in days of the year

(DOYs), that is

127



8.2. Two-stage approach R-functions 128

Pheno.cor.ran$timeNumber <- as.numeric(strftime(Pheno.cor.ran$timePoint, format = "%j"))

Pheno.cor.fix$timeNumber <- as.numeric(strftime(Pheno.cor.fix$timePoint, format = "%j"))

For more details on the correction for spatial trends, we refer the reader to the statgenHTP tutorial

3 (https://biometris.github.io/statgenHTP/articles/vignettesSite/SpatialModel_HTP.html). For the second

stage of the two-stage approach, we have developed a set of functions to fit (fitSplineHDM()), predict

(predict.psHDM()), plot (plot.psHDM()) and extract attributes (estimateSplineParameters()) from

the psHDM (4.6). Functions to fit and predict are supported with other (hidden) subroutines collected in the

source fitSplineHDMHelperFunctions. The notation in the R-documentation of these functions is based

on the paper by Perez-Valencia et al. (2022). In what follows, we illustrate their usage with the PhenoArch

data. For more details on the analysis of the temporal evolution of the genetic signal and further extraction

of time-independent attributes with these functions, we refer the reader to the statgenHTP tutorials 5 and 6

(https://https://biometris.github.io/statgenHTP/articles/vignettesSite/HierarchicalDataModel_HTP.html and

https://biometris.github.io/statgenHTP/articles/vignettesSite/ParameterEstimation_HTP.html).

8.2.1 fitSplineHDM function

We use the Pheno.cor.ran data frame, previously obtained in the first stage of the two-stage approach, to

fit the psHDM as follows

fit.psHDM <- fitSplineHDM(inDat = Pheno.cor.ran,

genotypes = NULL,

plotIds = NULL,

trait = "LeafArea_corr",

useTimeNumber = TRUE, timeNumber = "timeNumber",

pop = "geno.decomp",

genotype = "genotype",

plotId = "plotId",

weights = "wt",

difVar = list(geno = FALSE, plot = FALSE),

smoothPop = list(nseg = 8, bdeg = 3, pord = 2),

smoothGeno = list(nseg = 8, bdeg = 3, pord = 2),

smoothPlot = list(nseg = 8, bdeg = 3, pord = 2),

trace = FALSE)

In the example above, we fit the psHDM to the spatially corrected leaf area (trait =

"LeafArea_corr") as a function of time (we use the numerical time, i.e., the DOYs, as indicated in

the column timeNumber of the Pheno.cor.ran data frame). We assume a hierarchical data struc-

ture, with plants (plotId = "plotId") nested in genotypes (genotype = "genotype") and genotypes
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nested in populations (pop = "geno.decomp"). We use cubic (bdeg = 3) B-spline bases of dimension

bpop = bgen = bplant = 11 and second-order penalties (pord = 2) to represent fp, fg and fi in (4.7) as in

the data analysis, Section 7.1. We note that the fitSplineHDM() function uses as argument the number

of segments nseg instead of the number of B-spline basis functions, b (nseg = b− bdeg, that is, for our

example, if b = 11, then nseg = 8). We use the weights obtained after the spatial correction is performed

in the first stage (weights = "wt") to propagate the error to the second stage. With the difVar argu-

ment, the user can also specify if the genetic variation varies across populations (geno = TRUE) and the

plant variation changes across genotypes (plot = TRUE), as proposed in Section 4.2.3. Consequently, the

number of variance components will increase with the number of populations and/or genotypes, while the

number of coefficients will remain the same. If trace = TRUE, a report with changes in deviance and ef-

fective dimensions is printed by iteration. It is helpful to detect convergence problems. Finally, the fitting

process can also be performed for a subset of genotypes or plots. The user only needs to specify the desired

respective vectors in the genotypes and/or plotIds arguments of the function; in this example, we use the

information for all plants and genotypes (i.e., genotypes = NULL, plotIds = NULL).

The resulting object, in this case fit.psHDM, contains the following information

> names(fit.psHDM)

[1] "y" "time" "popLevs" "genoLevs" "plotLevs"

[6] "nPlotPop" "nGenoPop" "nPlotGeno" "MM" "ed"

[11] "vc" "phi" "coeff" "deviance" "convergence"

[16] "dim" "family" "Vp" "smooth" "popLevel"

[21] "genoLevel" "plotLevel"

• Information about the raw data structure (in this case about Pheno.cor.ran), e.g.,

fit.psHDM$popLevs, fit.psHDM$genoLevs and fit.psHDM$plotLevs are factors with the

names of the populations, genotypes and plants, respectively.

> fit.psHDM$popLevs

[1] Panel 1 - WD Panel 1 - WW Panel 2 - WD Panel 2 - WW

Levels: Panel 1 - WD Panel 1 - WW Panel 2 - WD Panel 2 - WW

• Information about the fitting process, e.g., fit.psHDM$vc and fit.psHDM$ed are, respectively, nu-

meric vectors with the (REML) variance component estimates and associated effective dimensions (or

effective degrees of freedom) for each random component of the model (one for each population level

and for intercept, slope and non-linear trend at genotype and plant levels).
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> fit.psHDM$ed

p1 p2 p3 p4 g.int g.slp g.smooth

8.749409 8.699878 8.598307 8.046305 167.205526 167.827410 834.213007

i.int i.slp i.smooth

1266.142602 1417.752826 3692.254299

• Three data frames with the estimated curves at each of the three-level hierarchy (population:

fit.psHDM$popLevel, genotypes: fit.psHDM$genoLevel and plants: fit.psHDM$plotLevel).

> head(fit.psHDM$popLevel)

timeNumber timePoint pop fPop fPopDeriv1 fPopDeriv2

1 103 2017-04-13 Panel 1 - WD 0.002726544 1.179289e-05 1.130232e-03

2 104 2017-04-14 Panel 1 - WD 0.003251929 9.874524e-04 8.210871e-04

3 105 2017-04-15 Panel 1 - WD 0.004598401 1.653967e-03 5.119424e-04

4 106 2017-04-16 Panel 1 - WD 0.006456815 2.011337e-03 2.027977e-04

5 107 2017-04-17 Panel 1 - WD 0.008519722 2.079909e-03 5.642507e-05

6 108 2017-04-18 Panel 1 - WD 0.010684835 2.307306e-03 3.983686e-04

That is, for the example above, the estimated population trajectories ( f̂ p, fPop) and their first ( f̂
′

p,

fPopDeriv1) and second-order derivatives ( f̂
′′

p , fPopDeriv1).

For a detailed description of the returned values see help(fitSplineHDM).

8.2.2 predict.psHDM function

We use the fit.psHDM object to predict the psHDM as follows

pred.psHDM <- predict(object = fit.psHDM,

newtimes = seq(min(fit.psHDM$time[["timeNumber"]]),

max(fit.psHDM$time[["timeNumber"]]),

length.out = 100),

pred = list(pop = TRUE, geno = TRUE, plot = TRUE),

se = list(pop = TRUE, geno = TRUE, plot = FALSE),

trace = FALSE)

In the code above, we use the fit.psHDM object to make predictions at the three levels of the hierarchy

(pred = list(pop = TRUE, geno = TRUE, plot = TRUE)) and to obtain standard errors at the pop-

ulation and genotype levels (se = list(pop = TRUE, geno = TRUE, plot = FALSE)). The original
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data is measured at 31 time points, but predictions are obtained at 100 time points in the same range as the

original time points (argument newtimes). We note that standard errors (argument se) at the plant level are

not calculated (plot = FALSE) due to the intensive computing memory and time that could be taken for

this calculation. As such, if it is not strictly necessary, we suggest the user set the standard errors at the plot

level as FALSE.

As a result, three data frames with predictions (and standard errors) at population

(pred.psHDM$popLevel), genotype (pred.psHDM$genoLevel) and plant (pred.psHDM$plotLevel)

levels are returned. When predictions are calculated on a denser grid of time points, an additional data

frame (pred.psHDM$plotObs) with the raw data will be returned; otherwise, the data frame at plant level

(pred.psHDM$plotLevel) will have an additional column (obsPlot) with the raw data.

> names(pred.psHDM)

[1] "newtimes" "popLevel" "genoLevel" "plotLevel" "plotObs"

As example, we show a portion of the data frame at the population level (without the timePoint column

for brevity).

> head(pred.psHDM$popLevel[,-c(2)])

timeNumber pop fPop fPopDeriv1 fPopDeriv2 sePop sePopDeriv1 sePopDeriv2

1 103.0000 Panel 1 - WD 0.00272654 0.00001179 0.00113023 0.00093024 0.0002376660 3.646313e-05

2 103.3030 Panel 1 - WD 0.00278058 0.00034009 0.00103655 0.00092015 0.0002353946 3.316423e-05

3 103.6061 Panel 1 - WD 0.00292979 0.00064001 0.00094287 0.00091540 0.0002334352 3.007650e-05

4 103.9091 Panel 1 - WD 0.00316559 0.00091153 0.00084919 0.00091596 0.0002316798 2.727176e-05

5 104.2121 Panel 1 - WD 0.00347937 0.00115467 0.00075551 0.00092172 0.0002300366 2.484603e-05

6 104.5152 Panel 1 - WD 0.00386252 0.00136942 0.00066183 0.00093249 0.0002284320 2.291997e-05

8.2.3 plot.psHDM function

This plot function provides five plot types (plotType) for objects of the class psHDM after fitting

(fitSplineHDM()) or predicting (predict.psHDM()). To illustrate the usage of function plot.psHDM(),

we use the object pred.psHDM obtained above. We can plot at each hierarchy level. We start by showing

how to obtain plots at population level

## Population-specific trajectories.

plot(pred.psHDM, plotType = "popTra",

xlab = "DOY", ylab = expression(tilde(y)[i](t)), themeSizeHDM = 20)
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If plotType = "popTra", estimated population-specific trajectories are depicted ( f̂ p(t)) separately for

each population (see Figure 8.1), and their 95% pointwise confidence intervals. Additionally, the grey lines

represent the observed trait that is used in the fitSplineHDM() function (i.e., ỹi, the spatially corrected leaf

area).

Panel 1 − WD Panel 1 − WW Panel 2 − WD Panel 2 − WW

103 110 118 126 133 103 110 118 126 133 103 110 118 126 133 103 110 118 126 133
0.0

0.1

0.2

0.3

0.4

0.5

DOY

y~
i(t

)

y~pgi(t) f̂ p(t)

Figure 8.1: For the PhenoArch platform: Estimated population-specific trajectories (blue lines) with 95%

pointwise confidence intervals (blue shaded areas). The grey lines represent the spatially corrected leaf area

at the plant level (first stage).

At genotype level we can visualise three plots

## Population and genotype-specific trajectories.

plot(pred.psHDM, plotType = "popGenoTra",

xlab = "DOY", ylab = expression(tilde(y)[i](t)),

themeSizeHDM = 20)

## First-order derivative of the population- and genotype-specific trajectories.

plot(pred.psHDM, plotType = "popGenoDeriv",

xlab = "DOY", themeSizeHDM = 20)

## Genotype-specific deviations.

plot(pred.psHDM, plotType = "genoDev",

xlab = "DOY", ylab = expression(tilde(y)[i](t)),

themeSizeHDM = 20)

If plotType = "popGenoTra" (see Figure 8.2(a)), estimated population ( f̂ p(t)) and genotype-specific

( f̂ p(t) + f̂ g(t)) trajectories are depicted for all genotypes separately for each population. Additionally,

95% pointwise confidence intervals are depicted for the estimated population trajectories. If plotType

= "popGenoDeriv" (see Figure 8.2(b)), first-order derivative of the estimated population ( f̂
′

p(t)) and

genotype-specific (( f̂ p(t) + f̂ g(t))′) trajectories are depicted for all genotypes separately for each popula-

tion, and 95% pointwise confidence intervals are depicted for estimated trajectories at the population level.
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Finally, if plotType = "GenoDev" (see Figure 8.2(c)), estimated genotype-specific deviations ( f̂ g(t)) are

depicted for all genotypes separately for each population.

We note that Figure 8.2 and Figure 7.5 (except (d)) are equivalent for the two-stage approach case.

However, estimated values in Figure 8.2 are calculated on a denser grid of time points and we additionally

present here 95% pointwise confidence intervals at population and genotype levels.

We finish the examples of the plot.psHDM() function by presenting the usage at the plant level

## Genotype- and plot-specific trajectories.

## As an example we used the same four genotypes used in Figure 7.5(d)

plot.genos <- c("WD_GenoA44", "WW_GenoA44", "WD_GenoB20", "WW_GenoB20")

names.genos <- c("Geno 44 - Panel 1 - WD", "Geno 20 - Panel 2 - WD",

"Geno 44 - Panel 1 - WW", "Geno 20 - Panel 2 - WW")

plot(pred.psHDM,

plotType = "genoPlotTra",

genotypes = plot.genos, genotypeNames = names.genos,

genotypeOrder = c(1,3,2,4),

xlab = "DOY", ylab = expression(tilde(y)[i](t)),

themeSizeHDM = 20)

If plotType = "genoPlotTra" (see Figure 8.3), estimated genotype ( f̂ p(t) + f̂ g(t)) and plant-specific

( f̂ p(t) + f̂ g(t) + f̂ i(t)) trajectories are depicted for all plants separately for a selection of genotypes.

Also, 95% pointwise confidence intervals are depicted for the estimated genotype-specific trajectories.

For this plotType, the user has the option to change the names (genotypeNames) and/or the order

(genotypeOrder) of the selected genotypes.

As for figures at the genotype level, Figure 8.3 and Figure 7.5(d) are equivalent for the two-stage ap-

proach case. Again, the difference is that estimated values in Figure 8.3 are calculated on a denser grid of

time points, and we additionally calculate 95% pointwise confidence intervals at the genotype level. Besides,

the grey lines in Figure 7.5(d) represent the raw leaf area, while in Figure 8.3 they represent the spatially

corrected leaf area.

8.2.4 estimateSplineParameters function

This function extracts parameter estimates from fitted splines on a specified interval. It can be used with

class objects obtained with the different methods in the statgenHTP package. For this example, we will

focus on curves obtained from the P-splines hierarchical data model. That is, we can use objects obtained

from fitSplineHDM() (fitted curves in the fit.psHDM object) or predict.psHDM() (predicted curves in

the pred.psHDM object) functions. We use in this example the predicted curves. Although we have available
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Panel 1 − WD Panel 1 − WW Panel 2 − WD Panel 2 − WW

103 110 118 126 133 103 110 118 126 133 103 110 118 126 133 103 110 118 126 133
0.0

0.1

0.2

0.3

0.4

DOY

y~
i(t

)

f̂ p(t) + f̂ pg(t) f̂ p(t)

(a) Estimated population- and genotype-specific trajectories
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(b) Estimated population- and genotype-specific first-order derivatives
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(c) Estimated genotype-specific deviations

Figure 8.2: For the PhenoArch platform: (a) Estimated population (orange lines) and genotype (blue lines)

specific trajectories with 95% pointwise confidence intervals at population level (orange shaded areas),

(b) Estimated population (orange lines) and genotype (blue lines) specific first-order derivatives with 95%

pointwise confidence intervals at population level (orange shaded areas), and (c) estimated genotype-specific

deviations for all genotypes.
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Geno 44 − Panel 1 − WD Geno 44 − Panel 1 − WW Geno 20 − Panel 2 − WD Geno 20 − Panel 2 − WW
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Figure 8.3: For the PhenoArch platform: For the four genotypes used in Figure 7.5(d) (as illustration), esti-

mated genotype (red lines) and plant (dotted blue lines) specific trajectories with 95% pointwise confidence

intervals (red shaded areas) at genotype level. The grey lines represent the spatially corrected leaf area at

the plant level (first stage).

information at population, genotype and plant levels, this function only extracts information at genotype and

plant levels. However, we are generally interested in the genotype level. For instance, in Section 7.1.3, we

extracted three features: maxTrait, maxSpeed and AUC. We use the function plot.splineEst() to plot

the boxplots with the estimates in Figure 8.4. The code is as follows

## Estimate maximum spatially corrected leaf area.

paramArch1 <- estimateSplineParameters(x = pred.psHDM,

what = "max",

fitLevel = "geno",

estimate = "predictions")

plot(paramArch1, plotType = "box")

## Estimate maximum speed rate.

## We are interested on a local maximum (before timeNumber 130).

paramArch2 <- estimateSplineParameters(x = pred.psHDM,

what = "max",

fitLevel = "geno",

estimate = "derivatives",

timeMax = 130)

plot(paramArch2, plotType = "box")

## Estimate area under the curve (AUC).

paramArch3 <- estimateSplineParameters(x = pred.psHDM,

what = "AUC",

fitLevel = "genoDev",

estimate = "predictions")
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plot(paramArch3, plotType = "box")
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(c) AUC

Figure 8.4: For the PhenoArch platform: Boxplots with the extracted attributes at the genotype level by

population (panel by water regime) (a) maxTrait, (b) maxSpeed, and (c) AUC.

With the code above, we calculate: (i) for each genotype trajectory (fitLevel = "geno" and estimate

= "predictions") in Figure 8.2(a) the estimated maximum (what = "max") spatially corrected leaf area,

i.e., the maxTrait, as depicted in Figure 8.4(a) (see also the Figure 7.7 left); (ii) for each first-order derivative

of the estimated genotype-specific trajectory (fitLevel = "geno" and estimate = "derivatives") in

Figure 8.2(b), the estimated maximum (what = "max") speed rate (maxSpeed) of the spatially corrected

leaf area before t = 130 (timeMax = 130), as depicted in Figure 8.4(b) (see also the Figure 7.7 centre); and

(iii) for each genotype deviation curve (fitLevel = "genoDev" and estimate = "predictions") in

Figure 8.2(c) the AUC (what = "AUC"), as shown in Figure 8.4(c) (see also the Figure 7.7 right). Objects

paramArch1 and paramArch2, additionally contain information about the time point at which the maximum

points occur.

8.3 One-stage approach R-functions

Following the same ideas than for the two-stage approach, for the one-stage approach, we have devel-

oped one function to fit HTP data with the (3D) spatio-temporal psHDM (5.2). The function, named

fit3DSplineHDM(), is available on https://gitlab.bcamath.org/dperez/htp_one_stage_approach). We are

still working on the implementation of the previous functions to predict, plot and extract attributes. Func-

tion to fit is supported with other subroutines collected in the source fitSplineHDMHelperFunctions().

We illustrate their use with the PhenoArch data. All the notation used in these functions are based on the

paper by Perez-Valencia et al. (2023).
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8.3.1 fit3DSplineHDM function

We use the original data set PhenoArchData to fit the spatio-temporal psHDM as follows

fit.3DpsHDM <- fit3DSplineHDM(response = "LeafArea",

time = "timeNumber",

pop="TrtPanel", geno="TrtGeno", plant="plotId",

col = "colId", row = "rowId",

data = PhenoArchData,

smooth.3D = list(nseg = c(5,5,5), bdeg = 3, pord = 2),

smooth.pop = list(nseg = 8, bdeg = 3, pord = 2),

smooth.geno = list(nseg = 8, bdeg = 3, pord = 2),

smooth.plant = list(nseg = 8, bdeg=3, pord = 2),

smooth.rc = list(nseg = 8, bdeg = 3, pord = 2),

trace = FALSE)

In the code above, we fit the spatio-temporal psHDM (5.2) to the raw leaf area (trait = "LeafArea") as

a function of time (we use the numerical time, i.e., the DOYs, as indicated in the column timeNumber of the

PhenoArchData data frame). We assume a hierarchical data structure, with plants (plant = "plotId")

nested in genotypes (geno = "TrtGeno") and genotypes nested in populations (pop = "TrtPanel"), and

the experimental design effects of rows (row = "rowId") and columns (col = "colId"). We use cubic

(bdeg=3), B-spline basis of dimension bpop = bgen = bplant = brow = bcol = 11 and b1 = b2 = b3 = 8,

and second-order penalties (pord=2) to represent fp, fg, fi, fr, fc and fST in (5.3) as in the data analysis,

Section 7.1. Similarly to the fitSplineHDM() function, fit3DSplineHDM() uses as argument the number

of segments nseg instead of the number of B-spline basis b (for our example, if b = 8, then nseg = 5). If

trace = TRUE, a report with changes in deviance and effective dimension is printed by iteration.

The resulting object, fit.3DpsHDM, contains different information about the data structure, the fitting

process, and eight lists with data frames with: estimated curves (i.e., estimated trajectories and devia-

tions, as well as their first and second-order derivatives) at each of the three-level hierarchy (population:

fit.3DpsHDM$eta_pop; genotypes: fit.3DpsHDM$eta_geno and fit.3DpsHDM$eta_geno_dev; and

plants: fit.3DpsHDM$eta_plant and fit.3DpsHDM$eta_plant_dev), estimated curves for the row and

column effects (rows: fit.3DpsHDM$eta_row, and cols: fit.3DpsHDM$eta_col), and the fitted values

(fit.3DpsHDM$fitted_values), ŷi.

> names(fit.3DpsHDM)

[1] "y" "time" "l.plant" "l.geno" "l.pop"

[6] "n.plants_p_pop" "n.geno_p_pop" "n.plants_p_geno" "n.row" "n.col"

[11] "MM" "ed" "tot_ed" "vc" "phi"

[16] "coeff" "eta_pop" "eta_geno_dev" "eta_geno" "eta_plant"
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[21] "eta_plant_dev" "fitted_values" "eta_row" "eta_col" "spatial"

[26] "deviance" "convergence" "dim" "dim.com" "family"

[31] "smooth"

To convert the lists to data frames (for an easy manipulation for, e.g., plotting), we use the auxiliar function

list.to.df()

> fit.3DpsHDM.df <- list.to.df(object = fit.3DpsHDM)

> names(fit.3DpsHDM.df)

[1] "pop.tra" "geno.tra" "plant.tra" "fitted.values" "plant.obs"

[6] "rows" "cols"

As a result, the object fit.3DpsHDM.df contains the above mentioned lists with esti-

mated curves in seven data frames: population curves (fit.3DpsHDM.df$pop.tra), geno-

type curves (fit.3DpsHDM.df$geno.tra), plant curves (fit.3DpsHDM.df$plant.tra and

fit.3DpsHDM.df$plant.obs for the raw data), row curves (fit.3DpsHDM.df$rows), column

curves (fit.3DpsHDM.df$cols) and fitted values (fit.3DpsHDM.df$fitted.values). For instance,

the data frame at the population level would be

> head(fit.3DpsHDM.df$pop.tra)

eta_pop eta_pop_deriv1 eta_pop_deriv2 pop timepoint

1 0.003313289 0.0001389505 1.223948e-03 Panel 1 - WD 103

2 0.004006409 0.0011894837 8.771185e-04 Panel 1 - WD 104

3 0.005576647 0.0018931875 5.302892e-04 Panel 1 - WD 105

4 0.007677174 0.0022500621 1.834599e-04 Panel 1 - WD 106

5 0.009962941 0.0022814615 7.464538e-06 Panel 1 - WD 107

6 0.012304219 0.0024571794 3.439712e-04 Panel 1 - WD 108

where eta_pop ( f̂ p) are the estimated population trajectories, and eta_pop_deriv1 ( f̂
′

p) and

eta_pop_deriv2 ( f̂
′′

p ) are their first and second-order derivatives. All the resulting curves (at the three hi-

erarchy levels) can be used to compare the results with those obtained previously for the two-stage approach,

and to extract attributes for genotype characterisation. Although we are still working on the implementation

of functions to plot and extract attributes, here, we reproduce Figure 7.5 for the results with the one-stage

approach

# Rename datasets

data.raw.plant <- fit.3DpsHDM.df$plant.obs

data.plant <- fit.3DpsHDM.df$plant.tra

data.geno <- fit.3DpsHDM.df$geno.tra
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data.pop <- fit.3DpsHDM.df$pop.tra

# Other plot parameters

ntime <- length(unique(data.raw.plant$timepoint))

min.t <- min(data.raw.plant$timepoint)

max.t <- max(data.raw.plant$timepoint)

p <- ggplot() +

geom_rug(data = data.raw.plant,

aes(x = timepoint, y = NULL),

color = "gray", length = unit(0.01, "npc")) +

scale_x_continuous(breaks = round(seq(min.t, max.t, length.out = 5), 0)) +

facet_grid( ~ pop)

# Estimated population- and genotype-specific trajectories

my.cols <- c("1" = "blue", "2" = "orange")

p + geom_line(data = data.geno,

aes(timepoint, eta_geno, group = geno, color = "1")) +

geom_line(data = data.pop,

aes(timepoint, eta_pop, group = pop, color = "2"),

size = 1) +

scale_color_manual(values = my.cols,

labels = c(expression(hat(bolditalic(f))[p] +

hat(bolditalic(f))[g]),

expression(hat(bolditalic(f))[p]))) +

labs(x = "DOY",

y = expression(paste("Leaf area (",m^2, "plan",t^{-1},")")),

color = "")

Panel 1 − WD Panel 1 − WW Panel 2 − WD Panel 2 − WW

103 110 118 126 133 103 110 118 126 133 103 110 118 126 133 103 110 118 126 133

0.0

0.1

0.2

0.3

0.4

DOY

Le
af

 a
re

a 
(m

2  p
la

nt
−1

)

f̂ p + f̂ g f̂ p

Figure 8.5: For the PhenoArch platform: Estimated population (orange lines) and genotype (blue lines)

specific trajectories for all genotypes (see Figure 7.5(a)).
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# Estimated population and genotype-specific first-order derivatives

p + geom_line(data = data.geno,

aes(timepoint, eta_geno_deriv1, group = geno, colour = "1")) +

geom_line(data = data.pop,

aes(timepoint, eta_pop_deriv1, group = pop, color = "2"),

size = 1) +

scale_color_manual(values = my.cols,

labels = c(expression(hat(bolditalic(f))*minute[g]),

expression(hat(bolditalic(f))*minute[p]))) +

labs(x = "DOY",

y = "First-order derivative",

color = "")
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Figure 8.6: For the PhenoArch platform: Estimated population (orange lines) and genotype (blue lines)

specific first-order derivatives for all genotypes (see Figure 7.5(b)).

# Genotype-specific deviations

ggplot(data = data.geno) +

geom_line(aes(timepoint, eta_geno_dev, group = geno, colour = "1")) +

scale_color_manual(values = my.cols,

labels = c(expression(hat(bolditalic(f))[g]))) +

labs(x = "DOY",

y = expression(paste("Leaf area (",m^2, " plan",t^{-1},")")),

color = "")

# Estimated genotype and plant-specific trajectories

# We choose four genotypes as illustration

geno.sub <- c("WD_GenoA44","WD_GenoB20","WW_GenoA44","WW_GenoB20")

geno.sub.names <- c("Geno 44 - Panel 1 - WD","Geno 20 - Panel 2 - WD",

"Geno 44 - Panel 1 - WW","Geno 20 - Panel 2 - WW")

140



141 Chapter 8. Software developments

Panel 1 − WD Panel 1 − WW Panel 2 − WD Panel 2 − WW

103 110 118 126 133 103 110 118 126 133 103 110 118 126 133 103 110 118 126 133

−0.05

0.00

0.05

0.10

DOY

Le
af

 a
re

a 
(m

2  p
la

nt
−1

)

f̂ g

Figure 8.7: For the PhenoArch platform: Estimated genotype-specific deviations for all genotypes (see

Figure 7.5(c)).

geno.sub.order <- c(1,3,2,4)

# Subset the datasets

data.plant.sub <- droplevels(data.plant[data.plant$geno %in% geno.sub,])

data.raw.sub <- droplevels(data.raw.plant[data.raw.plant$geno %in% geno.sub,])

data.geno.sub <- droplevels([$geno %in% geno.sub,])

# Rename the genotypes

data.plant.sub$geno <- factor(data.plant.sub$geno[drop=TRUE], labels = geno.sub.names)

data.raw.sub$geno <- factor(data.raw.sub$geno[drop=TRUE], labels = geno.sub.names)

data.geno.sub$geno <- factor(data.geno.sub$geno[drop=TRUE], labels = geno.sub.names)

# Order the genotypes

data.plant.sub$geno <- factor(data.plant.sub$geno,

levels = levels(data.plant.sub$geno)[geno.sub.order])

data.raw.sub$geno <- factor(data.raw.sub$geno,

levels = levels(data.raw.sub$geno)[geno.sub.order])

data.geno.sub$geno <- factor(data.geno.sub$geno,

levels = levels(data.geno.sub$geno)[geno.sub.order])

# Plot the desired genotypes

my.cols <- c("1" = "blue", "2" = "gray", "3" = "black")

ggplot() +

geom_line(data = data.raw.sub,

aes(timepoint, obs_plant, group = plant, color = "1")) +

geom_line(data = data.plant.sub,

aes(timepoint, eta_plant, group = plant,

linetype = "One-stage", color = "2"),

show.legend = FALSE) +

geom_line(data = data.geno.sub,

aes(timepoint, eta_geno, group = geno,

linetype = "One-stage", color = "3"),
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size = 0.8, show.legend = FALSE) +

geom_rug(data = data.raw.sub,

aes(x = timepoint, y = NULL),

color = "gray", length = unit(0.01, "npc")) +

scale_x_continuous(breaks = round(seq(min.t, max.t, length.out = 5), 0)) +

scale_color_manual(values = my.cols,

labels = c("Raw data",

expression(hat(bolditalic(f))[p] +

hat(bolditalic(f))[g] +

hat(bolditalic(f))[i]),

expression(hat(bolditalic(f))[p] +

hat(bolditalic(f))[g]))) +

labs(x = "DOY",

y = expression(paste("Leaf area (",m^2, " plan",t^{-1},")")),

color = "") +

facet_grid( ~ geno)

Geno 44 − Panel 1 − WD Geno 44 − Panel 1 − WW Geno 20 − Panel 2 − WD Geno 20 − Panel 2 − WW
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Figure 8.8: For the PhenoArch platform: For the four genotypes used in Figure 7.5(d) (as illustration),

estimated genotype (black lines) and plant (grey lines) specific trajectories. The blue lines represent the raw

leaf area (see Figure 7.5(d)).

Similarly, to extract time-independent attributes to characterise genotypes (as we did in Section 7.1.3),

we use the following code (we specifically obtain three features: maxTrait from Figure 8.5, maxSpeed from

Figure 8.6 and AUC from Figure 8.7)

# Function to extract features

features <- function(x) {

maxTrait = max(x$eta_geno)

xx = x[x$timepoint < 131, ]

maxSpeed = max(xx$eta_geno_deriv1)

Area = MESS::auc(x$timepoint, x$eta_geno_dev,
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type = "spline", absolutearea = FALSE)

pop = unique(x$pop)

geno = unique(x$geno)

res <- data.table::data.table(maxTrait = maxTrait,

maxSpeed = maxSpeed,

AUC = Area,

pop = pop, geno = geno,

key = c("geno","pop"))}

# It is performed for each genotype

data.geno.s <- split(data.geno, data.geno$geno)

geno.feat <- lapply(data.geno.s, features)

geno.feat <- data.table::data.table(do.call("rbind", geno.feat), key = "geno")

Once the features are calculated, we plot bivariate scatterplots of the extracted genotype-specific attributes

in Figure 8.9. These results for the one-stage approach are the same that we compare with the two-stage

approach in Figure 7.7.

# ggpairs for extracted features

library(GGally)

ggpairs(data = geno.feat[,-c("geno")],

aes(color = pop),

upper = list(continuous = wrap("cor", size = 10)),

diag = list(continuous = wrap("densityDiag", alpha = 0.6, color = NA)))
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Figure 8.9: For the PhenoArch platform: Scatterplots matrix with the extracted attributes at the genotype

level. The lower off diagonal depicts bivariate scatterplots, the diagonal shows the conditional densities

of each attribute per population (panel by water regime combination), the upper off diagonal indicates the

bivariate Pearson correlation (marginal and by region; “***” p-value < 0.001, “**” p-value < 0.01, “*” p-

value < 0.05, “.” p-value < 0.10 and “” otherwise), the last column displays the boxplots of each attribute per

population, the last row depicts the conditional histograms of each attribute per population, and the bottom

right barplot shows the number of genotypes per population.
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Chapter 9

Conclusions

This dissertation “Spatio-temporal modelling of high-throughput phenotyping data” collects the research

work done during these last years. Here discuss the contributions, limitations, and challenges that guided

the research and outline directions for future work.

HTP data impose a significant challenge due to the complexity/dimensionality and size of the problem.

As mentioned in the Introduction, one of the key challenges of this research area includes an in-depth explo-

ration of the methodological path to be followed and its implications. In an effort to pose a comprehensive

overview for discussion, in this thesis, we proposed two methodological paths, which compromise the loss

of information and the computational complexity. To enhance computational complexity, we first explored

decomposing the required spatio-temporal analysis of HTP data into two stages (Chapter 4), following the

work by Kar et al. (2020), Roth et al. (2021), and van Eeuwijk et al. (2019). In the first stage, we used a two-

dimensional spatial model; in the second stage, we used a hierarchical longitudinal model. Subsequently,

and to leverage all the information shared by the correlation data structure, we proposed to fit the spatio-

temporal effects using a three-dimensional model (Chapter 5), in a similar vein to the work by Verbyla et al.

(2021). Additionally, to allow for statistical flexibility, we promoted P-splines-based models.

All the details of our two-stage approach are described in Chapter 4. In the first stage, we correct the

“raw” HTP data for (nuisance) spatial variation and obtain spatially corrected time-series at the resolution

of plants or plots with reduced between replicates/plots variability. The second stage consists of a temporal

analysis with a hierarchical curve data model to jointly estimate curves at each hierarchy level (population,

genotype, and plant or plot) and their first-order derivatives. Apart from this work, van Eeuwijk et al. (2019)

also proposed a two-stage approach for analysing HTP data, where they first correct for spatial variation and

then focus on estimating and further processing the temporal dynamic of the genetic effects. In that paper,

spatially adjusted genotypic means are carried to the temporal analysis. In contrast, our proposal allows

keeping the data resolution for the second stage at the experimental unit. Also, in the second stage, we
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jointly model the whole sample of spatially corrected curves, while in van Eeuwijk et al. (2019) analyses are

done separately per genotype. Our hierarchical approach thus allows borrowing strength across plant/plot

curves to more efficiently estimate genotype and population trajectories. This is particularly important in

the presence of incomplete data. When choosing a two-stage approach, one might also choose, as done

by Roth et al. (2021), to first model the longitudinal variation at a plant or plot level and subsequently

apply a spatial correction to extracted features. In that paper, a P-spline model is first fitted separately for

each plot time-series, from which the timing of key stages (among other features) are extracted. These

intermediate traits are then processed to obtain spatially adjusted genotypic means for further analyses. We

feel that both options - with the spatial or the temporal analysis first - represent valid alternatives. The

choice for one or another methodological path will depend on the relative magnitudes of the various spatial,

temporal and spatio-temporal genetic and non-genetic processes and may be difficult to assess beforehand.

A study of the proposal that best suits particular situations represents an interesting area of study. Another

important consideration when working with stage-wise approaches is propagating uncertainty from stage to

stage. Here, we accomplished this by weighting the second stage with the inverse of the estimated variance

associated with the spatially corrected trait. In the HTP context, the weighting has been shown to improve

results (Buntaran et al., 2020; Roth et al., 2021).

In Chapter 5, we proposed a one-stage spatio-temporal P-spline-based hierarchical approach to model

genetic and non-genetic variation in HTP data. From a modelling perspective, the simultaneous modelling

of spatial and temporal genetic and non-genetic variation in a one-stage model serves to share information on

common spatial variability across measurement times, and therefore overcomes the loss of information given

by stage-wise approaches. Yet, one-stage approaches have the limitation of being very computationally de-

manding, especially when the number of observations and/or the parameters to be estimated is very large.

To address this issue, we used the (two-dimensional) SpATS model as the base model and extended it to the

(three-dimensional) spatio-temporal case, considering a three-level hierarchical data structure (populations,

genotypes within populations, and plants within genotypes). To make our proposals computationally afford-

able, we combined different specialised methods that take advantage of the sparse model matrices structure

(Boer & van Rossum, 2022), the array data structure (Currie et al., 2006), and the non-standard form of the

variance-covariance matrix (Rodríguez-Álvarez et al., 2019; Rodríguez-Álvarez et al., 2015). This allowed

for efficient computation, even with large datasets.

From both approaches, we obtained estimated curves at the three hierarchy levels and their derivatives,

and showed how to calculate from these curves new phenotypic traits, attributes that we called intermediate

traits (see Sections 4.2.7 and 5.5). We note that the decision about what summary statistics (intermediate

traits such as maximum, minimum, average values and area under de curves) to derive from the models will

ultimately depend on the species, the biological phenotypic trait analysed, the applied treatments and/or the

range of phenological stages at which the measurements were taken. Although we did not cover it in this

thesis explicitly, these new phenotypic traits and the estimated curves can be used for selection purposes
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in plant breeding, i.e., to differentiate between genotypes. For instance, estimates for intermediate-level

traits can be used as genotypic covariates in models for target traits of commercial interest (e.g., yield

and quality parameters), as described by van Eeuwijk et al. (2019). Target traits can be understood as

functions of biological (e.g., leaf area for the PhenoArch data and canopy height for the FIP data) and

intermediate phenotypic traits for either or both biological and statistical reasons. For instance, yield can

be interpreted as a target trait that can be modelled as a function of yield components, where the yield

components may represent biological and intermediate level phenotypic traits. For instance, in Roth et al.

(2021) intermediate traits obtained from modelling HTP data are included into genotype-by-environment

interaction analyses, and Moreira et al. (2020) discuss using information obtained from HTP time-series

traits for genomic selection and detecting QTL and causal variants.

An important matter in this thesis was to select and combine appropriate (spatial and longitudinal) sta-

tistical methods to be used in our modelling approaches. For the two-stage approach, we decided to use

the SpATS model, and hierarchical P-splines were used for the second stage. Conversely, for the one-stage

approach, we used a spatio-temporal and hierarchical P-spline-based model. That is, we decided to be

consistent throughout our proposals and follow the same modelling philosophy. However, our two-stage

approach can be flexible regarding the choice of methods used. For instance, the separable autoregressive

model (Gilmour et al., 1997) represents a clear alternative for the spatial component, while for the longitu-

dinal part, hierarchical functional principal component analysis can be used (Xu et al., 2021). We believe

that our P-spline-based two-stage approach is attractive both computationally and for interpretation, and the

HTP data we analysed in this thesis and other projects show that it works well (see Millet et al., 2022, and

https://eppn2020.plant-phenotyping.eu/ for more examples). As far as one-stage approach is concerned, the

choice and combination of methods is not straightforward. For instance, Verbyla et al. (2021) combined two

models (in only one stage), with one capturing genetic effects through a factor analytic model and the other

accounting for spatio-temporal non-genetic residual effects using smoothing splines. They showed that the

two models impact each other in the sense that the entire approach might properly represent the correlations

present in the data, and then the fitted process must be a simultaneous process rather than independent. Be-

sides, model selection for the involved methods, such as factor analytic models, can introduce complexity

and increased computing time to the fitting process. Instead, the authors proposed exploring random re-

gression spline models for genetic effects. In our proposal, we decided to model phenotypic variation as an

additive decomposition of the (longitudinal and hierarchical) genetic and (spatio-temporal) non-genetic ef-

fects with independent residuals. Although we avoid complications associated with model selection issues,

identifiability problems must be carefully addressed.

In Chapter 6, we conducted a simulation study to evaluate the performance of our two methods and

compare their results. To replicate data commonly encountered in HTP experiments, we proposed a simu-

lated spatio-temporal and hierarchical data structure that enabled us to evaluate results at higher hierarchy

levels, such as population and genotype levels. Analyses of the results at each hierarchical level gave us a

147

https://eppn2020.plant-phenotyping.eu/


148

broader view of the performance of our methods. Our main findings indicated that, for most simulated situa-

tions, the two approaches performed similarly, except for non-nested B-spline bases. Notably, the one-stage

approach outperformed the two-stage approach when estimating first-order derivative curves and smaller

bases resulted in better performance for both approaches. While our simulation study provided valuable

insights, we acknowledge the importance of integrating biological understanding into the problem. In a

previous attempt, we simulated data (plant trajectories) by combining statistical-genetic and crop-growth

models as described in Bustos-Korts et al. (2019). However, keeping the three-level hierarchical structure

was problematic. For this first attempt, additional curves with the average field conditions for each genotype

were considered as the "typical genotypic curves”, but lacked benchmarks for population curves still per-

sisted. To address the hierarchical data structure issue, we resorted to simulating data from the population

to the plant level. Moving forward, it is desirable to develop alternative simulation strategies that consider

both statistical and biological perspectives.

Analyses with real HTP data in Chapter 7 were also used to evaluate and compare the performance of

the one- and two-stage approaches. For the first stage of the two-stage approach, spatially corrected traits

with data from the two HTP platforms showed essentially identical results when modelling genotypes as

fixed or random effects. Although genotypic fixed effects are recommended for stage-wise approaches (to

avoid double-shrinkage), we use random genotypic effects at the first stage for several reasons: (i) genotypes

are considered as a random sample, (ii) identifiability problems are avoided (Brumback & Rice, 1998), (iii)

random effects improve precision compared to fixed effects (Piepho et al., 2008), (iv) shrinkage of the

genotypic BLUPs is counteracted by the inclusion of the residual component into the correction, and (v)

heritability can be computed for each measurement time. We propagated the error (through weights), when

going from the first to the second stage. Regarding the estimated spatial trends, they varied more smoothly

in time when using the one-stage approach. This is a consequence of the fact that for the first stage of

the two-stage approach, analysis is performed separately for each time point, and as such, the information

on spatial heterogeneity is not shared across time. We obtained estimated curves at the three hierarchy

levels as the final results of our approaches. The results at the genotype level follow the simulation results,

i.e., minor differences between the two approaches were detected, except for the first-order derivatives for

the genotype-specific growth curves. Nevertheless, highly correlated results were obtained between the

two approaches when we extracted important time-independent features from these curves, which can be

used in posterior analysis (e.g., genotype selection). In our approach, genotypes are modelled as random

effects to avoid identifiability problems. However, we acknowledge the potential risk of double-shrinkage in

these subsequent analyses with the extracted time-independent characteristics. Using de-regression methods

(see, e.g., de Oliveira et al., 2018; Garrick et al., 2009) to obtain unshrunken genotypic BLUPs in our setting

would be worth exploring. The FIP experiment (with the three trials) also allowed for an interesting analysis

to characterise regional adaptation and to assess genotype consistency across trials with our approaches.

Most interestingly, we find a clustering by regions of origin that varies over time, strengthens the potential
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of the analysis that can be performed with data collected with these HTP platforms.

In Chapter 8 we outlined the functionalities of the code implemented during the course of this project.

The implementation of the new advances in the R statistical environment is expected to facilitate the use of

the proposed approaches by practitioners and researchers from diverse fields. Our objectives are threefold:

to transfer knowledge and technology, to aid in the development of these research areas, and to ensure

the reproducibility of scientific results. To make our proposals accessible to practitioners, we made the

implemented R-functions publicly available in the statgenHTP R-package (https://CRAN.R-project.org/

package= statgenHTP, Millet et al., 2022) for data analysis with the two-stage approach. Additionally,

we made the code and data required to reproduce the analyses and results of the two-stage approach paper

(Perez-Valencia et al., 2022) available at https://gitlab.bcamath.org/dperez/htp_two_stage_approach, and for

the one-stage approach paper (Perez-Valencia et al., 2023), at https://gitlab.bcamath.org/dperez/htp_one_

stage_approach. We plan to include the one-stage approach functions in the aforementioned package soon

to simplify accessibility.

Before proceeding, fairness requires us to mention some limitations of our work. We proposed P-spline-

based approaches, which means that as the number of plants and/or B-spline basis dimensions increase,

so does the number of parameters to be estimated, and, consequently, the computational time. Typically,

computational times are within an acceptable range (in contrast to, e.g., Verbyla et al., 2021). For the

experiments analysed in this thesis (PhenoArch and FIP with three trials), estimation for the two-stage

approach took around 1 minute and 20 seconds, and for the one-stage approach, computation times were

around 25 minutes and one and a half hours without any convergence issues. Nevertheless, the approaches

may not scale well to experiments where the number of plants (and associated basis dimension) is very large

(due to the size of the system of equations to be solved). Regarding the number of B-spline basis functions,

our recommendation (for both approaches) is to use the same value for the three hierarchy levels and the

row and column random effects (for the one-stage approach), even if this increases computation. Regarding

the number of B-spline basis functions used for the three-dimensional surface (in the row, column and time

directions for the one-stage approach), we suggest keeping them relatively small to enable the solution to

run on standard computers. The final numbers does not seem to significantly impact results (estimated

curves), provided they are large enough to capture the underlying patterns. However, the estimated first-

order derivatives have shown to be more sensitive to the number of basis functions.

We finish this thesis by highlighting some opportunities for future work arising from our research. Al-

though we could explore a more general one-stage approach, our current formulation of the spatio-temporal

psHDM (5.2) and its implementation (code) is very specific. For instance, we only consider the spatio-

temporal smooth function and random effects for rows and columns as non-genetic effects, but the proposal

can be extended by taking into account other experimental factors as we did in the first stage of the two-stage

approach. Furthermore, while we have focused in this thesis on data with a nested structure, the proposed

149

https://CRAN.R-project.org/package=statgenHTP
https://CRAN.R-project.org/package=statgenHTP
https://gitlab.bcamath.org/dperez/htp_two_stage_approach
https://gitlab.bcamath.org/dperez/htp_one_stage_approach
https://gitlab.bcamath.org/dperez/htp_one_stage_approach


150

modelling framework can be extended to accommodate more complex structures, such as data with crossed

levels of grouping (Brumback & Rice, 1998) (e.g., when modelling genotype-by-treatment or genotype-by-

environment interactions are of interest). For instance, for the PhenoArch data a crossed-effect structure, to

explicitly modelling the genotype-by-treatment interaction, would be more appropriate. Analyses with both

simulated and real data have highlighted that the most controversial results are for the first-order deriva-

tives curves. Although derivatives estimation is out of the scope of this thesis, they are important to extract

relevant information on genotype performance. Improvements in this area are gaining attention (see, e.g.,

Hernández et al., accepted, 2023; Simpkin et al., 2018) and show that it is worth exploring in this direction.

From a plant breeding perspective, the development of HTP experiments has opened up opportunities to

search for new definitions and extensions of the notion of heritability as a function of time. Such defini-

tions will allow for heritability dynamics that are not possible with definitions for traditional experiments

(see, e.g., Rodríguez-Álvarez et al., 2018). For instance, Xu et al. (2021) propose a functional measure ob-

tained through HFPCA. Regarding the correlation structure at the genotype level, we assumed the identity

matrix times the P-spline matrix for the genotypes as the variance-covariance matrix, but other more inter-

esting variance-covariance structures, such as kinship relationships (instead of the identity matrix) between

genotypes, can also be explored (Schmidt et al., 2019; van Eeuwijk et al., 2019). However, we warn of com-

putational complications, even when mathematically it is straightforward. It is worth noting that our current

analyses focus on individual trials, and then we believe that the kinship matrix would be better suited for

subsequent analyses (e.g., Moreira et al., 2020, for the integration of genetic and phenomic information).

Moreover, the results of our approaches (more specifically, the estimated genotype deviations) can be ex-

ploited to calculate such kinship matrices. Last but not least, extensions of our approaches would include

considering correlations between intercepts and slopes at genotype and plant levels and explicitly imposing

constraints on the non-linear/smooth random effect coefficients (Brumback, 2010; Currie, 2014) at genotype

(for each population) and plant levels (for each genotype).

All in all, we believe this thesis represents a promising starting point for the analysis of spatio-temporal

and hierarchical HTP data. The two proposed approaches represent a good compromise between flexibility,

accuracy, adequacy, computational efficiency and interpretability. Our results demonstrate the feasibility

of our proposals on standard computers, providing valuable descriptions of the genetic (and non-genetic)

variation in the temporal dimension and useful summary statistics for breeding purposes. We believe they

represent powerful tools for routine application in phenotyping experiments with dense time series. In our

experience, obtaining results from stage-wise approaches is computationally simpler. However, one-stage

approaches will always represent a fully efficient choice (see, e.g., Damesa et al., 2017; Schulz-Streeck et al.,

2013) since they simultaneously incorporate all sources of variation in a single model. This also means that

one-stage approaches can fully account for the variance-covariance structure of the observed data, avoiding

substantial loss of valuable information (e.g. spatial heterogeneity across time). Besides, in our work with

the analysis of different HTP data, we have observed that the one-stage approach performs better in the
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presence of missing data (since it borrows strength across plant curves; more exploration in this direction

is required using simulated data). Although the size and complexity/dimensionality of the data and models

in this framework are a big challenge for single-stage approaches, our proposal is not only competitive but

also novel, providing the groundwork for more sophisticated models. We believe a good practice would be

to use a two-stage approach as a starting point to establish the basis for a model in one stage.
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