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ABSTRACT: Underwater recording remains a critical chal-
lenge in bioelectronics because traditional flexible electrodes
can not fulfill essential requirements such as stability and steady
conductivity in aquatic environments. Herein, we show the use
of elastic gels made of hydrophobic natural eutectic solvents as
water-resistant electrodes. These eutectogels are designed with
tailorable mechanical properties via one-step photopolymeriza-
tion of acrylic monomers in different eutectic mixtures
composed of fatty acids and menthol. The low viscosity of
the eutectics turns the formulations into suitable inks for 3D
printing, allowing fast manufacturing of complex objects.
Furthermore, the hydrophobic nature of the building blocks
endows the eutectogels with excellent stability and low water
uptake. The obtained flexible eutectogel electrodes can record real-time electromyography (EMG) signals with low
interference in the air and underwater.

Muscle movements and nerve activity in living beings
generate bioelectronic currents that can be moni-
tored in real-time, giving vital information for

healthcare and medical therapy.1 For instance, electro-
myography (EMG) measures activity in response to muscle
activation, which can be used to help detect neuromuscular
diseases.2 In the past decades, flexible electronic devices have
been developed for human biorecording, playing important
roles in clinical settings and our daily lives.3−6 However, their
application is usually limited to air as typical electrodes based
on hydrogels or organogels fail in aquatic environments.
Unstable signals are often associated with electrode swelling or
leakage of organic solvents underwater.7,8 Some fluoropol-
ymer-based ionic liquid gels or iongels have been recently
proposed to overcome this drawback because they show
neglected moisture absorption and can repel water molecules.9

For example, Wu and Yu designed water-resistant iongels by
free radical polymerization of acryloyloxyethyltrimethylammo-
nium bis(trifluoromethanesulfonyl) imide ([DMAEA-Q]-
[ T F S I ] ) i n b u t y l t r i m e t h y l a mm o n i u m b i s -
(trifluoromethanesulfonyl)imide ([N4111][TFSI]). These
iongels showed elastomeric behavior, self-healing properties,
and stable electrocardiography (ECG) recording in the aquatic
environment.10 Dong et al. have also investigated the
combination of a fluorine-rich ionic liquid monomer, 1-butyl-

3-vinylimidazolium bis(trifluoromethanesulfonyl)imide
([BVIm]TFSI), with ethylene glycol methyl ether acrylate
a n d 1 - b u t y l - 3 -me t h y l - 1H - im i d a z o l - 3 - i um b i s -
(trifluoromethanesulfonyl)imide ([BMIm]TFSI) ionic liquid
to fabricate antiswelling iongels for underwater movement
sensors.11 However, fluorine- and imidazolium-based ionic
liquids are frequently associated with cytotoxic effects and skin
irritation, limiting the broad application of these soft ionic
materials. Therefore, biosafe soft electrodes that can obtain
stable and reliable electrical signals underwater are needed.12,13

In this context, natural deep eutectic solvents (NADES)
have recently emerged as a new class of green electrolytes
sharing many properties of ionic liquids, such as high ionic
conductivity, low volatility, and good thermal stability.14

Unlike traditional ionic liquids, most NADES are biocompat-
ible, biodegradable, inexpensive, and simpler to manufacture,
making them an attractive alternative for bioelectronics.15
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These solvents are defined as mixtures whose components
present enthalpic-driven negative deviations from thermody-
namic ideality.16,17 These negative deviations are commonly
linked to strong interactions between the mixture components,
named hydrogen bond acceptor (HBA) and hydrogen bond
donor (HBD).18 Over the past few years, the available library
of NADES has been expanded considerably to incorporate
organic acids, sugars, alcohols, polyphenols, terpenes, and
terpenoids.19−22 Interestingly, some eutectic mixtures are
hydrophobic with very low water solubility, opening an
unparalleled opportunity for designing biocompatible and
cheap soft materials resistant to the aqueous environment.23

Among the family of natural hydrophobic eutectic solvents
(HES), those based on menthol and fatty acids are being
actively studied because of their biocompatibility, low viscosity,
and promising bioactive properties.24−26 It should be noted
that HES based on terpenes and monocarboxylic acids
generally exhibits small deviations from ideality. Therefore,
although often labeled as NADES, these systems do not
present negative deviations large enough to induce a significant
melting point depression.25 Regardless, their melting points are
below room temperature for a wide composition range.
Immobilizing these eutectic mixtures into polymer scaffolds
would lead to hydrophobic eutectogels that could broaden the
landscape of current biorecording.27 The concept of
eutectogels made of HES is still in an early stage of
development, and only a few systems have been reported so
far.28−31 These materials are mainly based on supramolecular
gelators and are unsuitable for electrode fabrication.32

Herein, we propose polyacrylate- and menthol-based
eutectic formulations as the first example of hydrophobic

eutectogels for underwater recording. Eutectic mixtures of this
natural terpene and lactic acid (Lac) or fatty acids with
increasing chain length, i.e., octanoic acid (Oct), dodecanoic
acid (Dodec), and oleic acid (OA) were combined with butyl
acrylate (BA), 2-ethylhexyl acrylate (2-EHA), and poly-
(ethylene glycol) diacrylate (PEGDA, Mw: 700 Da) to obtain
flexible eutectogels by one-step free radical photopolymeriza-
tion (Figure 1A). At this point, it is worth mentioning that,
despite being a water-soluble monomer, PEGDA was utterly
miscible in all the HES investigated, and it was included in our
synthetic blueprint due to its recognized biocompatibility.33

The molar compositions of the eutectic solvents are presented
in Table S1 of the Supporting Information (SI). All of the
eutectic mixtures were liquid at room temperature. FTIR
analysis confirmed their formation, which showed a slight
bathochromic shift in the carboxylic acid stretching region of
the organic acids, probably due to hydrogen bonding
interactions with menthol. This slight shift is in line with the
findings by Coutinho et al., who demonstrated that the
hydrogen-bonding networks established in these mixtures are
not significantly different in intensity to those present in the
pure compounds.25 As an example, the FTIR spectra of
Oct:Men (2:1 mol ratio) HES and its pure components are
shown in Figure S1.
We used photorheology to determine the optimal UV-

irradiation time to obtain self-standing eutectogels. For all the
formulations, at least 30 s of UV light exposure was needed to
achieve an efficient polymerization, resulting in stable
viscoelastic solids with storage modulus (G′) values higher
than viscous modulus (G′’), as shown in Figure S2 for
Oct:Men/PEGDA eutectogel (60:40 wt %). The photo-

Figure 1. (A) Scheme of the preparation of hydrophobic eutectogels based on organic acid/Men HES and acrylic fomulations. (B) Evolution
of elastic (G′) and loss (G′’) moduli vs. time obtained by photorheology for the main eutectogels formulations. C) Photo of a rook chess
piece made of Oct:Men/PEGDA eutectogel obtained by digital light processing 3D printing.
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polymerization kinetics was monitored by FTIR by following
the disappearance of the monomer double bond band (810
cm−1, C�C out-of-plane bending vibration) while the sample
was irradiated with UV light, obtaining full conversion in 1 min
(Figure S3).
Besides offering high miscibility in all the HES, PEGDA

endowed the materials with good flexibility and high G′ values
on the order of 105 Pa (Figure 1B and Figure S4). Frequency
sweeps revealed that all the HES/acrylic formulations were
robust cross-linked gels in the typical 0.1−100 rad/s range (G′
ranging 2 × 105-6 × 105 Pa) (Figure S5). We also investigated
the incorporation of BA and 2-EHA into the acrylic
formulations (HES: PEGDA: BA/2-EHA = 60:30:10 wt %),
as these long alkyl chain monomers lead to low glass transition
temperature (Tg) polymers that would allow modulating the
viscoelasticity of the networks. BA and 2-EHA monomers were
miscible in the HES, although their incorporation did not
significantly affect G′ values after photopolymerization, which
remained at around 105 Pa (see Figure 1B for Oct:Men-based
formulations).
Interestingly, eutectic mixtures based on menthol and fatty

acids featured low viscosity, turning the HES/acrylic
formulations into attractive inks for digital light processing
3D printing (DLP). This technique is precious in bioelec-
tronics because it allows fast and cost-effective manufacturing
of complex structured electrodes.34 Our eutectic formulations
allowed the production of 3D structures by DLP in a few
minutes with excellent printing fidelity (Figure 1C).
Next, we studied the mechanical properties of the hydro-

phobic eutectogels by tensile and compression tests. The stress
vs. strain curves for Oct:Men HES formulations showed that
eutectogels made entirely of PEGDA possess a tensile strength
and elongation at breaks of ≈450 kPa and 19%, respectively
(Figure 2A). These self-standing eutectogels could be bent and

squeezed, showing excellent flexibility (Figure 2B). Further-
more, despite having good miscibility with Oct:Men, the
incorporation of BA produced a detriment in the mechanical
behavior of the eutectogel, probably due to incompatibilities
between the polymer and the eutectic solvent. Conversely,
Oct:Men/PEGDA-co-2-EHA eutectogels were more stretch-
able (33% maximum strain) with a good strength of ≈300 kPa.
Similar results were observed in compression mode, where
Oct:Men/PEGDA-co-2-EHA eutectogel outperformed the
mechanical parameters of comparable formulations (Figure
S6).
Considering a potential application in underwater recording,

high water resistance is a key-sought specification for gel
electrodes. Therefore, we evaluated the water uptake of the
hydrophobic eutectogels in saline media following their degree
of swelling over time (Figure 2C). The maximum water
absorption varied with the HES type in PEGDA formulations
as follows: Dodec:Men (68%)> OA:Men (64%)> Oct:Men
(59%)> Lac: Men (45%). This behavior suggests the
formation of gel networks with varied cross-linking densities,
probably because of differences in the HES/PEGDA
compatibility. However, although less prominent for long-
chain acids like Dodec and OA, a small HES leakage was
observed, affecting water swelling determination. Notably, the
incorporation of BA and 2-EHA in the PEGDA eutectogels
significantly improved the water resistance of the eutectogels,
reaching maximum swelling of 8% and 5% for Oct:Men/
PEGDA-co-BA and Oct:Men/PEGDA-co-2-EHA, respectively
(Figure 2C).
Previous reports have demonstrated that HES change at the

dynamic nanoscale when exposed to very low water contents,
causing phase segregation and variations in self-diffusion
coefficients, viscosity or conductivity.35 As a preliminary
study to elucidate the optimal HES for underwater recording,

Figure 2. (A) Stress vs. strain curves for eutectogels based on the Oct:Men eutectic mixture. (B) Photos of self-standing Oct:Men/PEGDA
eutectogel (left) and when it is compressed and bent (right), showing its flexibility. (C) Swelling curves in a saline buffer for different
PEGDA eutectogels, PEGDA-co-BA and PEGDA-co-2-EHA copolymerized eutectogels. (D) Ionic conductivity of the PEGDA-based
hydrophobic eutectogels swollen for 3 days in a saline buffer.
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we first studied their performance when embedded in a
swellable acrylate matrix of PEGDA, mimicking a wet and
saline environment. First, the chain length of the HBD was
observed to affect the ionic conductivity of the eutectogels.
Indeed, impedance spectroscopy analysis (EIS) revealed that
PEGDA control displays an ionic conductivity at 25 °C of 8.55
× 10−5 S·cm−1 while the HES having the shortest chain length,
Lac:Men/PEGDA, possesses a slightly higher value of 1.54 ×
10−4 S·cm−1 (Figure 2D). The conductivity is enhanced 1
order of magnitude for longer HBD, up to 7.96 × 10−4 S·cm−1

for OA:Men/PEGDA, 4.04 × 10−4 S·cm−1 for Oct:Men/
PEGDA, and 2.43 × 10−4 for Dodec:Men/PEGDA. If
analyzing in detail the impedance at 25 °C, the Nyquist plot
can be successfully fitted (0 < χ < 1) in most of the eutectogels
to a Randles circuit with a Warburg diffusion impedance in
series (Figure S7A). This system is commonly used when a
solution or a gel electrolyte is in contact with an electrode.
According to Shay and co-workers,36 we can assume the
resistor in series as the resistance due to the gel (RGEL) with
the electrode, and then the resistor (RCT) and capacitor (CDL)
correspond to the charge transfer resistance and double layer
capacitance created at the interface of an aqueous phase inside
of the solid phase. Finally, the Warburg element (ZW) refers to
the impedance arising from the diffusion of the ions in the gel
matrix. Table S2 shows the values for each element fitted.
Curiously, PEGDA control and Oct:Men/PEGDA eutectogel
present the highest resistance against the electrode (RGEL), as
well as the resistance electrolyte (RCT) with values of 33 and
621 kΩ and 19 and 183 kΩ for the control and eutectogel,
respectively. Indeed, both gels show the lowest values of the
capacitance of the double layer (CDL). Moreover, the
semicircle shape of the Nyquist plot of PEGDA control

(Figure S7B) and Oct:Men/PEGDA eutectogel (Figure 3A,
left) confirms a semi-infinite-length diffusion process.37 On the
opposite, Lac:Men/PEGDA, Dodec:Men/PEGDA, and
OA:Men/PEGDA eutectogels present minimal values of
resistance and some orders of magnitude larger CDL if
compared with the Oct:Men eutectogel. Furthermore, the
Nyquist plot shows finite space diffusion, denoted by a
diffusive straight line (Figures S7C, D and 3A, right). It is
worth pointing out that these changes in the impedance could
be attributed to the structural variation of the polymerized
eutectogels, as was highlighted in other works.38 However, the
disturbance of the hydrogen bonding interactions between
menthol and the fatty acid, making the water or other salts act
as a second HBD in the eutectogel matrix, could also be a
contributing factor.35 We hypothesized that the HES could
form micelles when the eutectogels are swollen, creating many
negatively charged points and giving rise to a double-layer
capacitance effect. This behavior is expected to be more
remarkable for longer, more lipophilic fatty acids (Figure 3B).
The micellization could enhance the ionic conductivity but
disrupt the matrix’s continuity, forming phase-segregated
domains with a detrimental effect on recording the signal
from the muscle to the electrode interface.39 To prove our
hypothesis, EMG studies were performed on the forearm using
a two-electrode configuration (Figure S8A). First, we evaluated
the impedance on the skin at 50 Hz, which was similar for all
the eutectogels in a dry state (Figure S8B). Interestingly, it
dropped 1 order of magnitude after swelling for 3 days in a
saline buffer. We know from previous studies that 50 Hz is a
crucial frequency to determine differences in the performance
of cutaneous electrodes, as it is a midpoint for the clinically
relevant bandwidth of EMG (5−400 Hz) biosignals.40,41 In

Figure 3. (A) Nyquist plot of Oct:Men/PEGDA (left) and OA:Men/PEGDA (right), obtained by EIS (dot line), and its fitting plot using the
equivalent circuit (continuous line). (B) Scheme of the internal structure of the eutectogel in a dry and a swollen state. The HES forms van
der Wals interactions between the hydrophobic acrylate matrix and the alkane chain of the HBD. On the opposite side, when the eutectogel
is swollen, water makes the HES forms micelles and interrupt the hydrogen bond interaction with menthol, forming phase segregated
domains. C) Normalized SNRHES/SNRAg/AgCl of HES/PEGDA eutectogels after 1, 2, and 3 days of swelling in saline buffer.
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this case, all of the electrodes performed equally according to
skin impedance values. Second, we tested a forearm movement
of extension-contraction, as indicated in Figure S9A, for a
whole cycle of swelling, i.e., when the eutectogel was dried and
swollen for 1, 2, and 3 days. Moreover, the signal-to-noise
(SNR) ratio was calculated for each day (Table S3),
considering the signal-to-base values, as indicated in Figure
S9B. To obtain more reproducible data, all the measurements
of the eutectogels were normalized to the performance of a
commercial Ag/AgCl electrode for each day. Figure 3C shows
normalized SNRHES/SNRAg/AgCl as a function of the swelling
time. After 3 days of swelling, long-chain HBD-containing
eutectogels, i.e., OA:Men/PEGDA and Dodec:Men/PEGDA,
show 18 and 23% decay, respectively, in the SNR value
compared with day 2. However, for short-chain HBD, as in
Lac:Men/PEGDA, the signal is maintained equally during the
3 days of swelling. It is worth mentioning that the Lac:Men/
PEGDA is the only eutectogel that, after 1 day of swelling, lost
a 25% SNR, despite subsequently recovering the original SNR
quality. This initial decay could be attributed to a partial
leakage of the HES due to the water-solubility of Lac.
Remarkably, Oct:Men/PEGDA is exclusively improved by
10% compared to day 2 and almost 50% compared to day 1,
outperforming substantially the others HES.
After evaluating the optimal HES and elucidating the

mechanism that commanded the material, we selected a
more hydrophobic matrix to embed the eutectic solvent,
therefore improving the water insensitivity at the same time as
improving stretchability. Hence, 2-EHA-containing formula-
tions, in combination with the Oct:Men HES, turn them into
the most promising system for further evaluating their
performance in underwater recording. For the underwater
EMG recording, electrodes were 3D printed in square shapes
of 289 mm2, placed in the forearm, and fixed with a wristband.
Then, the whole forearm was immersed in a recipient filled
with water. Resting and contraction muscle movements were
performed and recorded (Figure 4A). It is worth mentioning
that the planar gold electrode had the same electroactive area
as the printed eutectogels; therefore, its performance is
comparable. Figure 4B shows a comparative EMG recording
underwater after 3 days of swelling for a long, optimal, and
short-chain HBD-composed eutectogel, i.e., OA:Men/
PEGDA-co-2-EHA, Oct:Men/PEGDA-co-2-EHA, and Lac:-
Men/PEGDA-co-2-EHA. Interestingly, Oct:Men/PEGDA-co-
2-EHA and Lac:Men/PEGDA-co-2-EHA eutectogels show
clear muscle activation signals and reduced artifacts. Both of
them possess similar performance to the bare metal electrode.
Conversely, OA:Men/PEGDA-co-2-EHA display more artifacts
with indistinct signaling, not associated with muscle activation
or relaxation. Then, the SNR ratio was calculated and
compared after 1 and 3 days of swelling (Figure 4C and
Table S4). Lac:Men/PEGDA-co-2-EHA (18.57 ± 1.16 dB, day
1, 5.73 ± 3.29 dB, day 3) and Oct:Men/PEGDA-co-2-EHA
(6.70 ± 1.58 dB day 1, 20.22 ± 3.49 dB, day 3) eutectogels
display higher SNR values after 1 and 3 days than both
commercial gold electrode (7.45 ± 2.83 dB, day 1, 5.73 ± 3.29
dB, day 3) and OA:Men/PEGDA-co-2-EHA (9.72 ± 4.98 dB
day 1, 6.39 ± 2.38 dB, day 3), as expected from the above-
discussed studies with PEGDA-based eutectogels. A more
hydrophobic acrylate matrix could increase the nanophase
domains, promoting the micellization effect with more
hydrophobic HES. Moreover, Oct:Men/PEGDA-co-2-EHA is
the only eutectogel that shows an increase above 30% of the

SNR performance comparing day 1 against day 3. The results
confirm our hypothesis and set eight carbons as the maximum
chain length of the fatty acid to obtain hydrophobic electrodes
that do not form nanophases without detrimental biorecording
potential.
To conclude, we have demonstrated the use of hydrophobic

soft eutectogels based on fatty acids and menthol as electrodes
for underwater recording. Hydrophobic eutectogels were
obtained by photopolymerization of acrylic monomers within
the HES. The mechanical, viscoelastic, and water-swelling
behaviors of the eutectogels were investigated and tuned by
using different acrylates. Furthermore, the HES/acrylic
monomer formulations are suitable inks for 3D printing,
allowing for fast manufacturing of complex objects. Among the
series of HES explored, long-chain fatty acids, such as Dodec
and OA, could undergo a micellization phenomenon when
swollen in a saline medium, improving the ionic conductivity
of the gels. However, this phase segregation negatively affects
the signal recording in the EMG measurements. Interestingly,
micellization after swelling seems to not occur in eutectogels
based on the Oct:Men solvent, probably because of its shorter

Figure 4. (A) Schematic representation of the position of the
electrode on the forearm (left) and photos of the muscle rest and
activation in the underwater set up (right). (B) Raw data of EMG
recordings on the forearm underwater and (C) SNR of short,
optimal, and large HBD-composed eutectogels and its comparative
with planar gold electrode.
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aliphatic chain. Therefore, this eutectogel showed the best
performance in underwater recording, compared with a
standard gold electrode, increasing the SNR after 3 days.
Overall, this study represents the first example of biobased and
fluorine-free gel electrodes working in an aqueous environ-
ment. It is envisioned that hydrophobic eutectogels will open
up new perspectives for designing low-cost solid electrolytes
for wearable devices and bioelectrodes.
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