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Abstract
Comparing combinatorial optimization problems is a difficult task. They are defined
using different criteria and terms: weights, flows, distances, etc. In spite of this appar-
ent discrepancy, on many occasions, they tend to produce problem instances with sim-
ilar properties. One avenue to compare different problems is to project them onto the
same space, in order to have homogeneous representations. Expressing the problems
in a unified framework could also lead to the discovery of theoretical properties or the
design of new algorithms. This paper proposes the use of the Fourier transform over
the symmetric group as the tool to project different permutation-based combinatorial
optimization problems onto the same space. Based on a previous study (Kondor, 2010),
which characterized the Fourier coefficients of the quadratic assignment problem, we
describe the Fourier coefficients of three other well-known problems: the symmetric
and non-symmetric traveling salesman problem and the linear ordering problem. This
transformation allows us to gain a better understanding of the intersection between
the problems, as well as to bound their intrinsic dimension.
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1 Introduction

The field of permutation-based combinatorial optimization includes a number of prob-
lems with very different formulations and meanings. For instance, although the lin-
ear ordering problem (LOP) (Martı́ and Reinelt, 2011), the traveling salesman problem
(TSP) (Laporte, 1992), the quadratic assignment problem (QAP) (Loiola et al., 2007) and
the permutation flowshop scheduling problem (PFSP) (Framinan et al., 2004) are usu-
ally defined over the permutation space via matrices, the meaning of the elements of
these matrices is different according to the problem. As an example, a problem can ad-
dress distances between cities, cope with flows between factories, or concern tasks on
machines. In spite of having a completely distinct definition, in practice, two instances
of two different problems could present very similar properties, or they could even turn
out to be the same instance (if they provide the same objective function values for the
solutions). In order to discover these similarities between instances, it could be useful
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to project all of these problems onto the same space. The Fourier domain seems to be
a suitable working framework to achieve this purpose, since any objective function is
univocally determined by its Fourier coefficients.

Indeed, Fourier analysis produces a decomposition of a given function into a sum
of smaller pieces, from which the original function can be recovered. Whereas its
real-line counterpart is universally-known in the area of applied mathematics (Körner,
1989), at the present time, this is not the case of the Fourier transform (FT) over the
space of permutations, namely, the symmetric group (Terras, 1985, 1999, 2012). Despite
being substantially less renowned than its real analogue, the FT over permutations has
recently been gaining attention in the computer science field, giving rise to new pro-
posals of applications and algorithms (Huang et al., 2009; Kondor, 2008), some of which
deal with areas such as object tracking or analyzing ranking data. A survey with ap-
plications of the generalized FT from the point of view of group representations can be
found at Rockmore (2004). Even though its employment has also reached the area of
combinatorial optimization (Kondor, 2010; Rockmore et al., 2002) and its boolean twin,
the Walsh transform, has also been considered (Christie, 2016; Goldberg, 1989), the use
of Fourier analysis still remains limited. However, the FT seems to offer a suitable space
for combinatorial optimization problems (COP) to be treated in a homogeneous way,
via their Fourier decomposition. The starting point of our research is the observation
of (Kondor, 2010; Rockmore et al., 2002), where it is proved that, for an objective func-
tion of a QAP, only four of its Fourier coefficients are non-zero. It should be noted that,
even though the classic Fourier coefficients of real-valued functions are scalars, in the
case of permutation-based functions, the coefficients are stored in matrices. Then, the
four Fourier coefficients that can be non-zero in the QAP are four matrices, and not just
four real values. The knowledge that only a few matrix coefficients of the QAP can
be non-zero can lead to a deeper understanding of the problem. The total number of
elements stored in the matrix Fourier coefficients grows factorially with the dimension
of the problem, while the number of elements stored in the non-zero matrix Fourier
coefficients of the QAP grows polinomially. So, for high dimensions, the family of QAP
functions is quite small in comparison with the whole set of permutation-based func-
tions (whose Fourier coefficients can take any value).

The work presented in this paper has a theoretical nature, although it could even-
tually lead to improvements in the resolution of permutation-based COPs. For in-
stance, Kondor (2010) designed a branch-and-bound algorithm for the QAP that fully
operates on Fourier space. Our first contribution is that we characterize the Fourier co-
efficients of the LOP and both the symmetric and the non-symmetric version of the TSP.
That is, given an LOP or a TSP function, we find properties that its Fourier coefficients
must necessarily fulfill. This characterization permits us to obtain relevant theoretical
information, which is our second contribution. On the one hand, we observe that the
LOP, the TSP and the QAP functions can be reparametrized using their Fourier repre-
sentation. Through this new representation, they can be defined using a lower number
of parameters than those given by the input matrices. This implies that their intrinsic
dimension is lower than the one suggested by their usual definition. On the other hand,
we approach the intersection between problems by studying whether we can find sets
of functions that are at the same time instances of two different problems.

The rest of the paper is organized as follows. Section 2 motivates the study pre-
sented in this paper, by outlining a variety of related research questions, implications
and uses. Sections 3 and 4 introduce the necessary mathematical background regarding
the FT and permutation-based COPs, respectively. In Section 5, we firstly summarize
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the results already present in the literature regarding the Fourier characterization of the
QAP. Secondly, we characterize the LOP and the TSP in Fourier space. Sections 6 and 7
are devoted to the study of the intrinsic dimensions of the COPs and the intersections
between problems, which can be approached thanks to the Fourier characterizations
found in Section 5. Section 8 gathers the conclusions.

2 Motivation

The FT works similarly to elementary landscape decomposition (Whitley et al., 2008;
Chicano et al., 2011), in the sense that both of them decompose the fitness function into
a sum of orthogonal components. The elementary landscape decomposition of a va-
riety of COPs has been extensively studied and, given a neighborhood, it produces a
decomposition of a fitness function into a sum of functions, which have the so-called
property of being elementary landscapes with respect to the given neighborhood. Each
of these elementary landscapes has a number of properties which explain the interest
that this kind of decomposition has generated (Whitley et al., 2008). For example, for
each of the elementary landscapes, given the function value of a solution, the average
value of the neighbors of the solution can be computed in O(1). Another interesting
property is the one that states that the objective function value of a local maximum or
minimum must be respectively greater or lower than the mean value of the objective
function. These properties, among others, can be exploited in the design of local search
or evolutionary algorithms (Benavides et al., 2021; Ceberio et al., 2019). However, both
decompositions differ in the fact that the first is associated with a specific neighbor-
hood. We have observed that the Fourier characterizations of the problems studied in
this paper have an interesting property. If the lowest coefficient is discarded, which is
the one that represents the mean of the function, the number of non-zero Fourier coef-
ficients coincides with the number of components of the elementary landscape decom-
positions found in the literature. For example, the QAP can be decomposed into three
elementary landscapes under the 2-exchange neighborhood (Chicano et al., 2011), the
LOP can be decomposed into two under the 2-exchange neighborhood (Ceberio et al.,
2019), the symmetric TSP is itself an elementary landscape under the 2-exchange and 2-
opt neighborhoods (Stadler, 1996) and the general TSP has two components under the
2-exchange and 2-opt neighborhoods (Stadler, 1996). We conjecture that the Fourier de-
composition could be related to elementary landscape decomposition, and that it could
be possible to find a neighborhood such that each of the Fourier components is an ele-
mentary landscape with respect to the given neighborhood. Regarding this topic, there
has also been proposed an optimization strategy for COPs which makes use of ele-
mentary landscape decomposition combined with multi-objectivization (Ceberio et al.,
2019). This same study could be undertaken considering the Fourier decomposition in-
stead of elementary landscape decomposition, which would lead to a general method
for multi-objectivizing COPs.

One of the benefits of characterizing COPs in Fourier space is that all of them are
expressed under the same framework. This can facilitate the comparison between dif-
ferent problems as well as the transfer of strategies and knowledge from one problem
to another. For instance, one may wonder what the relationship between problem com-
plexity and Fourier coefficients is. For example, in Elorza et al. (2022), taking the LOP
as a case study, it is shown that a Fourier coefficient is associated with a P problem,
whereas the other is associated with an NP-hard problem. Taking this into account, this
work analizes how the behaviour of constructive algorithms degrades as the Fourier co-
efficients transit from those of a P problem to those of an NP-hard problem. This kind
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of studies could help in the classification of instance difficulty for common algorithms,
as well as in the construction of easy or hard to solve instances.

Another relevant question arises when, instead of fitness functions, one considers
rankings of solutions of the search space. Many heuristic algorithms, such as local
search or evolutionary algorithms that use tournament or ranking selection operators,
do not make use of the exact value of the fitness function of each solution. Instead, they
operate using comparisons between the objective function values. The performance
of this type of algorithms depends solely on the ranking of the solutions. Therefore,
one may wonder what types of rankings are generated by different COPs (which is
a research question that has been approached in Hernando et al. (2019)). Thanks to
the Fourier characterization of the QAP, it has been proved that, for n = 4, the QAP
does not generate all possible rankings (Elorza et al., 2019). It could be useful to know
what types of rankings are generated by different Fourier coefficients. This information
could eventually be used to establish a matching between the Fourier coefficients of
problem instances and algorithms, in such a way that a given instance is assigned an
algorithm that solves it efficiently.

These are a number of uses that the Fourier characterization of COPs could have.
More generally, the FT that we are considering is the permutation version of the Walsh
transform, which operates on pseudo-Boolean functions. Therefore, it could be inter-
esting to see whether the studies that have been published for the Walsh transform,
such as the use of surrogate functions based on it (Swingler, 2020; Verel et al., 2018),
could be extended to permutations as well.

3 Fourier transform on the symmetric group

The following lines offer a brief overview of the FT, which is mainly based on Huang
et al. (2009). In addition, the interested reader may refer to Sagan (2013) for a deeper
insight into the precise algebraic concepts. Since this is a general introduction to the
subject, the most technical details, which are needed to prove part of the theorems of
Section 5, can be found in Appendix A.1.

The FT on the symmetric group, Σn, comes from a generalization of the well-
known transform on the real line to finite groups. Thus, in an initial encounter, it may
be useful to understand it in contrast with the real case. Given a function f : Σn −→ R,
the FT decomposes f into certain coefficients by means of a set of base functions (on the
real line, sines and cosines). When working with Σn, the base is composed of the irre-
ducibles of Σn, a set of functions whose image is invertible matrices. These are formally
defined in the context of the representation theory.

Definition 1 (Representation). ρ : Σn −→ GLm is a representation if it preserves the group
product, that is, ρ(σ1σ2) = ρ(σ1) · ρ(σ2) for all σ1, σ2 ∈ Σn. GLm is the set of invertible
complex-valued matrices. The size m of the matrices is also called the dimension of the repre-
sentation.
Example 1 (Trivial representation). The trivial representation, noted by ρ(n), is the constant
function ρ(n)(σ) = [1], for all σ ∈ Σn.
Example 2 (Permutation representation). The first-order permutation representation, noted
by τ(n−1,1), maps σ to its permutation matrix, that is, [τ(n−1,1)(σ)]ij = 1{σ:σ(j)=i}(σ). For
n = 3, the permutation representation τ(2,1) would be the following:

τ(2,1)(123) =

 1 0 0
0 1 0
0 0 1

 , τ(2,1)(213) =

 0 1 0
1 0 0
0 0 1

 , τ(2,1)(132) =

 1 0 0
0 0 1
0 1 0

 ,
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τ(2,1)(321) =

 0 0 1
0 1 0
1 0 0

 , τ(2,1)(231) =

 0 0 1
1 0 0
0 1 0

 , τ(2,1)(312) =

 0 1 0
0 0 1
1 0 0

 .
Two different operations, the equivalence and the direct sum, can be defined,

which allow new representations to be built from existing ones.

Definition 2 (Equivalence). Two representations, ρ1 and ρ2, are equivalent if there exists an
invertible matrix C such that

ρ2(σ) = C−1 · ρ1(σ) · C ∀σ ∈ Σn,

which is denoted by ρ1 ≡ ρ2.

Definition 3 (Direct sum). Given two representations, ρ1 and ρ2, their direct sum is the
representation ρ1 ⊕ ρ2 that satisfies

ρ1 ⊕ ρ2(σ) =

[
ρ1(σ) 0

0 ρ2(σ)

]
.

A representation is said to be reducible if it can be “decomposed” into smaller
pieces through the direct sum and the equivalence.

Definition 4 (Reducibility). A representation ρ is reducible if there exist two representations
ρ1 and ρ2 such that ρ ≡ ρ1 ⊕ ρ2. Otherwise, it is irreducible.

For a finite group G, the set of irreducible representations (up to equivalence) is fi-
nite. This implies that one can select a finite number of representations and build up the
rest from them, through the operations of equivalence and direct sum. In addition, in
the case of the symmetric group Σn, it has been proved that the number of inequivalent
irreducible representations is the number of partitions of n.

Definition 5 (Partition of a natural number). Let λ = (λ1, · · · , λk) be a tuple where the
elements, known as parts, are in decreasing order, that is λi ≥ λj for i < j. Then, λ is a
partition of n if the parts sum to n, that is

∑k
i=1 λi = n. This is denoted by λ ` n.

Example 3. The partitions of n = 6 are (6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1),
(2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1). These partitions can be graphically rep-
resented by the so-called Ferrer’s diagrams, by placing a λi number of squares in the i-th row.
The Ferrer’s diagrams corresponding to the partitions of n = 6 are illustrated as follows:

, , , , ,

, , , , , .

As previoulsy mentioned, if one chooses a set of (inequivalent) irreducible rep-
resentations of Σn, also called system of irreps, it can be used to reconstruct any rep-
resentation via the operations of equivalence and direct sum. In addition, the sys-
tem of irreps can be indexed by the partitions of n, taking the following shape:
{ρ(n), ρ(n−1,1), ..., ρ(1,1,··· ,1)}. The dimension dλ of each irreducible representation ρλ
depends on λ. It can be computed using a theorem named the Hook Formula (the
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reader is addressed to Sagan (2013) for further information). The specific set of irre-
ducible representations that is used in this paper is called Young’s Orthogonal Rep-
resentations (YOR), which is the canonical one (for further information, see Kondor
(2010)). The interesting property of these representations is that the matrices ρλ(σ) are
real-valued and orthogonal. Once a set of irreducibles {ρλ : λ ` n} is established, a
function f can be projected onto this base via the FT, which produces its Fourier coeffi-
cients.

Definition 6 (FT at a representation). The FT of a function f : Σn −→ R at a representation
ρ, also called Fourier coefficient at ρ, is defined as

f̂ρ =
∑
σ∈Σn

f(σ)ρ(σ). (1)

As can be seen from the definition, f̂ρ is a matrix whose dimension is the same as
the dimension of ρ(σ) (for any σ).

Definition 7 (FT of a function). Given a system of irreps, {ρλ : λ ` n}, the FT of a function
f is defined as the collection of the Fourier coefficients at each of the irreducibles of the system:

{f̂ρλ : λ ` n}.

Whenever we allude to Fourier coefficients without specifying the representations,
it can be assumed that it refers to irreducible representations. The FT of a function f

at irreducible ρλ is denoted by f̂ρλ . Even so, we may simplify this notation to f̂λ for
readability purposes and whenever this does not lead to ambiguity. Note again that,
unlike the real case, the coefficients are not simply numerical values, they are stored in
matrices, instead. Even so, several of the properties on the real line, such as invertibility
(Theorem 1), linearity and the convolution theorem still hold for the symmetric group.

Theorem 1 (Inverse FT). A function f can be computed in terms of its Fourier coefficients
according to the following formula:

f(σ) =
1

|Σn|
∑
λ`n

dλ Tr
[
f̂Tρλ · ρλ(σ)

]
,

where dλ is the dimension of the representation ρλ and Tr denotes the trace of a matrix.

Let us recall that the Fourier coefficients and the image of the irreducible represen-
tations are matrices, so, in this formula, f̂ρλ and ρλ(σ) are square matrices of dimension
dλ. The inversion theorem is important because it implies that there is a one-to-one
correspondence between functions and Fourier coefficients. A function f has certain
Fourier coefficients {f̂ρλ : λ ` n}, which can be computed via the FT. At the same time,
f can be recovered, via the inversion formula, from the set {f̂ρλ : λ ` n}. In other
words, the Fourier space offers an alternative way of representing functions defined
over the symmetric group.

4 Permutation-based combinatorial optimization problems

In the field of permutation-based combinatorial optimization, the aim is to optimize an
objective function f : Σn −→ R, that is, to find

argmin
σ∈Σn

f(σ),
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if we are minimizing.
Analogously, maximization problems could be defined, but they are not consid-

ered in this paper. Since we aim at comparing problems, all of the studied problems
must be expressed in the same terms. In this sense, we focus on the minimization ver-
sion of three different problems: the QAP, LOP and TSP.

4.1 QAP

In the QAP, a set of n facilities has to be assigned to n locations. The aim is to reduce the
cost of the flow between the facilities, which depends on the distances between their
locations. If A = [aij ] is the distance matrix, which measures the distance between
locations, and A′ = [a′ij ] is the flow matrix, which measures the flow between facilities,
then the QAP consists of minimizing the following function:

f(σ) =
∑
i6=j

aσ(i)σ(j) · a′ij , (2)

where σ(k) represents the location to which facility k is assigned. We assume in the rest
of the paper that the diagonal elements of A and A′ are zero.

As we will immediately see, the other two problems studied in this paper can be
reformulated as particular cases of the QAP, if the values of matrix A′ are properly
fixed.

4.2 LOP

The LOP is given by a square matrix A = [aij ] of size n, and consists of finding the
joint permutations of rows and columns that maximize the sum of the upper-diagonal
elements, or equivalently, minimize the sum of the lower-diagonal elements. Even
though the maximization version is the one usually found in literature, we consider the
minimization one, in which the problem consists of minimizing the following function:

f(σ) =

n−1∑
j=1

n∑
i=j+1

aσ(i)σ(j), (3)

where σ(k) denotes the number of the row/column of the original matrix which is
located in the k-th position.

By setting

a′ij =

{
1 if i > j

0 otherwise,

the objective function of the QAP becomes the objective function of the LOP.

4.3 TSP

The TSP consists of finding the shortest route that a traveling salesperson should take
to visit a number of cities once and then come back to the starting point. The distances
between the cities are given by a square matrix A = [aij ] of size n, where n is the
number of cities. The problem consists of minimizing the following function:

f(σ) = aσ(n)σ(1) +

n−1∑
i=1

aσ(i)σ(i+1), (4)
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where σ(i) denotes the number of the city visited in the i-th place. If A is a symmetric
matrix, the problem is called symmetric traveling salesman problem (STSP).

By setting

a′ij =

{
1 if j = i+ 1 or (i = n and j = 1)

0 otherwise,

the objective function of the QAP becomes the objective function of the TSP.

5 Characterizing problems in Fourier domain

Finding an accurate characterization of the Fourier coefficients of COPs is one of the
fundamental goals of our research. This means that we are interested in describing the
properties that all the objective functions associated with a certain problem, such as
the LOP, the TSP or the QAP, have in common. Characterizing the problems in Fourier
space could be interesting since we could compare different problems, with disparate
definitions, by looking at the similarities and differences between their Fourier coeffi-
cients.

In this vein, and having as a starting point the observations that have already been
made on the Fourier coefficients of the QAP (Kondor, 2010; Rockmore et al., 2002), we
study the Fourier representation of the LOP and the TSP. We find definite conditions
that the LOP and both the symmetric and non-symmetric TSP functions must satisfy
(Theorems 3, 4 and 5).

5.1 Characterization of the QAP (Kondor, 2010; Rockmore et al., 2002)

The starting point of our research is the work of Kondor (2010); Rockmore et al. (2002)
on the Fourier representation of the QAP. Thanks to these studies, the following theo-
rem can be stated:

Theorem 2 (FT of the QAP). If f : Σn −→ R is the objective function of a QAP instance,
that is, f is expressed as in (2), then its FT has the following properties:

1. f̂λ = 0, if λ 6= (n), (n− 1, 1), (n− 2, 2), (n− 2, 1, 1).

2. f̂λ has at most rank one for λ = (n− 2, 2), (n− 2, 1, 1).

3. f̂λ has at most rank two for λ = (n− 1, 1).

Let us introduce an example of how the Fourier coefficients of the QAP can be
obtained for a reduced dimension.

Example 4. Consider the QAP instance of dimension n = 3 whose input matrices are the
following:

A =

0 4 −2
5 0 1
8 3 0

 and A′ =

 0 −3 1
4 0 2
−5 3 0

 .
Then, the objective function f of this instance is calculated (according to Equation (2)) and
shown in Table 1.

The Fourier coefficients of f can be computed through Equation (1). A function defined
over Σ3 has three matrix Fourier coefficients: f̂(3), f̂(2,1) and f̂(1,1,1). In order to calculate them,
the values of the irreducible representations ρ(3), ρ(2,1) and ρ(1,1,1) are needed. The values of
these representations are shown in Table 2. ρ(3) is the trivial representation and ρ(1,1,1) is the
signature function.
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Table 1: Values of the objective function f of the QAP instance of Example 4.
σ f(σ)

[1 2 3] -12
[1 3 2] 13
[2 1 3] 13
[2 3 1] -5
[3 1 2] -29
[3 2 1] 26

Table 2: Values of the irreducible representations of Σ3, as shown in Huang et al. (2009).

σ ρ(3)(σ) ρ(2,1)(σ) ρ(1,1,1)(σ)

[1 2 3] [1]
[
1 0
0 1

]
[1]

[1 3 2] [1]
[

1/2
√

3/2√
3/2 −1/2

]
[-1]

[2 1 3] [1]
[
−1 0

0 1

]
[-1]

[2 3 1] [1]
[
−1/2 −

√
3/2√

3/2 −1/2

]
[1]

[3 1 2] [1]
[
−1/2

√
3/2

−
√

3/2 −1/2

]
[1]

[3 2 1] [1]
[

1/2 −
√

3/2

−
√

3/2 −1/2

]
[-1]

Taking into account the values shown in Table 2 and the formula of the FT,

f̂(3) =
∑
σ∈Σ3

f(σ)ρ(3)(σ) =
∑
σ∈Σ3

f(σ) · [1] =

[−12] + [13] + [13] + [−5] + [−29] + [26] = [6].

f̂(2,1) =
∑
σ∈Σ3

f(σ)ρ(2,1)(σ) = −12 ·
[
1 0
0 1

]
+ 13 ·

[
1/2

√
3/2√

3/2 −1/2

]
+ 13 ·

[
−1 0

0 1

]

− 5 ·
[
−1/2 −

√
3/2√

3/2 −1/2

]
− 29 ·

[
−1/2

√
3/2

−
√

3/2 −1/2

]
+ 26 ·

[
1/2 −

√
3/2

−
√

3/2 −1/2

]
=[

23
2 − 37

2

√
3

11
2

√
3 − 3

2

]
.

f̂(1,1,1) =
∑
σ∈Σ3

f(σ)ρ(1,1,1)(σ) =
∑
σ∈Σ3

f(σ) · [sgn(σ)] =

− 12 · [1] + 13 · [−1] + 13 · [−1]− 5 · [1]− 29 · [1] + 26 · [−1] = [−98].
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This example does not have any coefficient equal to zero because, for a dimension of n = 3,
the Fourier coefficients of f (f(3), f(2,1) and f(1,1,1)) are the ones which are not necessarily zero
according to Theorem 2. However, if higher dimensions are considered, zero-valued matrices
appear among the coefficients. As an example, if a QAP objective function f with a space
dimension of n = 4 is considered, there are 5 possible Fourier coefficients: coefficients (4),
(3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1). Among these coefficients, coefficient (1, 1, 1, 1) must
satisfy f̂(1,1,1,1) = [0].

Taking these results already found in the literature as a basis, the next sections pro-
vide a step forward in detailing the Fourier coefficients of the LOP and the symmetric
and non-symmetric TSP.

5.2 Characterization of the LOP

The aim of this section is to enumerate the properties that the Fourier coefficients of any
LOP function must fulfill. These are given in Theorem 3. The proof requires a number
of intermediate steps, which are stated in the form of propositions.

The first step consists of reducing the problem. Kondor (2010) proved (by means
of the convolution theorem) that the Fourier coefficients of a QAP can be expressed
in terms of the distance data and the flow data. The statement of this result requires
the definition of a new concept: graph functions. The graph function associated with a
matrix A is defined as

fA(σ) = aσ(n)σ(n−1).

Kondor’s result is the following, which is stated without proof because it is already
given in Kondor (2010).

Proposition 1. (Kondor, 2010) If f : Σn −→ R is the objective function of a QAP instance,
that is, f is expressed as in (2), then its FT has the following properties:

1. f̂λ = 0, if λ 6= (n), (n− 1, 1), (n− 2, 2), (n− 2, 1, 1).

2. The values of coefficients λ = (n − 1, 1), (n − 2, 2) and (n − 2, 1, 1) can be factored in
terms of the coefficients of the graph functions of A and A′:

f̂λ =
1

(n− 2)!
f̂Aλ · f̂A′

T

λ .

Since the LOP is a particular case of the QAP, this factorization can be applied to
the LOP as well.

Proposition 2. If f : Σn −→ R is the objective function of an LOP instance, that is, f is
expressed as in (3), then its FT has the following properties:

1. f̂λ = 0, if λ 6= (n), (n− 1, 1), (n− 2, 2), (n− 2, 1, 1).

2. The values of coefficients λ = (n− 1, 1), (n− 2, 2) and (n− 2, 1, 1) can be factored as the
following product:

f̂λ =
1

(n− 2)!
f̂Aλ · f̂A′

T

λ , (5)

where fA is the graph function of A and

fA′ = 1{σ: σ(n−1)<σ(n)}.
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Proof. The LOP is a particular case of the QAP. By setting

a′ij =

{
1 if j < i

0 otherwise,

Equation (2) becomes the objective function of the LOP. Then,

fA′(σ) = a′σ(n)σ(n−1) =

{
1 if σ(n− 1) < σ(n)

0 otherwise,

which is the indicator function over the set {σ : σ(n − 1) < σ(n)}. At this point, the
result immediately follows from Propostion 1.

According to Proposition 2, if f is an LOP function, its FT is proportional to (the
proportionality constant being 1/(n − 2)!) the product of matrix f̂Aλ, whose values

depend on the instance, and matrix f̂A′
T

λ , which remains the same for any instance of
size n. The next step is to see the specific properties that f̂A′λ, the constant factor that
the Fourier coefficients of any LOP share, fulfills. This is in order to deduce how it
affects the whole set of LOP functions.

Mania et al. (2018) proved certain properties that the FT of the so-called Kendall
kernel satisfies. The following proposition is an immediate result of the exposition of
Mania et al. (2018), so the proof has not been included in this paper. To see the details,
the reader is refered to the aforementioned paper.

Proposition 3. The FT of fA′(σ) = 1{σ: σ(n−1)<σ(n)} satisfies

1. f̂A′λ = 0 if λ 6= (n), (n− 1, 1), (n− 2, 1, 1).

2. f̂A′λ has rank one for λ = (n− 1, 1), (n− 2, 1, 1).

Having stated Propositions 2 and 3, all the necessary pieces to prove Theorem 3
have been presented.

Theorem 3 (FT of the LOP). If f : Σn −→ R is the objective function of an LOP instance,
that is, f is expressed as in (3), then its FT has the following properties:

1. f̂λ = 0, if λ 6= (n), (n− 1, 1), (n− 2, 1, 1).

2. f̂λ has at most rank one for λ = (n− 1, 1), (n− 2, 1, 1). Having rank one is equivalent to
the fact that the matrix columns are proportional.

3. For λ = (n − 1, 1), (n − 2, 1, 1) and a fixed dimension n, the proportions among the
columns of f̂λ are the same for all the instances.

Proof. Taking into account Equation (5), it is clear that the Fourier coefficients of an LOP
function are the product of two matrices multiplied by 1/(n − 2)!. One of them, f̂Aλ,
depends on the values of the input matrixA. According to Proposition 3, the other one,

f̂A′
T

λ , has rank one for λ = (n− 1, 1), (n− 2, 1, 1) and is 0 for any other partition except
for λ = (n). A basic result of linear algebra states that, given two matrices A and B,

rank(AB) ≤ min{rank(A), rank(B)}.

11



This means that the rank of the product of two matrices is at most the lowest of the

ranks of both matrices. Hence, when multiplying matrices f̂Aλ and f̂A′
T

λ , the resulting
rank must be less than or equal to 1.

Secondly, to prove that the proportions among columns are fixed for a given di-
mension n, observe the following: If λ = (n − 1, 1) or λ = (n − 2, 1, 1), then f̂A′λ has

rank 1, and so does its transpose f̂A′
T

λ . This means that all the rows and columns are

proportional. Thus, we can write all the columns of f̂A′
T

λ proportionally to the first col-
umn, which we denote by v, while we denote the proportions by αi for i = 2, . . . , dλ.
Therefore,

f̂A′
T

λ =
[
v α2v · · · αdλv

]
.

If f̂Aλ is expressed as follows:

f̂Aλ =


wT

1

wT
2

· · ·
wT
dλ

 ,
where w1, · · · ,wdλ are arbitrary column vectors of length dλ, then

f̂λ =
1

(n− 2)!
· f̂Aλ · f̂A′

T

λ =
1

(n− 2)!
·


wT

1

wT
2

· · ·
wT
dλ

 · [v α2v · · · αdλv
]

=
1

(n− 2)!
·


wT

1 · v wT
1 · α2v · · · wT

1 · αdλv
wT

2 · v wT
2 · α2v · · · wT

2 · αdλv
...

...
...

wT
dλ
· v wT

dλ
· α2v · · · wT

dλ
· αdλv

 .

For λ = (n−1, 1), (n−2, 1, 1), all the columns of f̂λ are proportional to the first one

and its proportions are equal to those in f̂A′
T

λ . Let us recall that matrix f̂A′
T

λ does not
depend on the instance and is fixed for a given dimension n. This is the reason why the
proportions among columns are the same for any instance.

Note that there exist LOP functions with coefficients (n−1, 1) or (n−2, 1, 1) equal to
zero. For example, the constant function f(σ) = 1 is an LOP function with f̂(n−1,1) = 0

and f̂(n−2,1,1) = 0. In this case, the proportions among columns could be any number,
since 0 is proportional to 0 with any proportion factor. The constant proportions that
are mentioned in Theorem 3 are those of f̂A′ (n−1,1) and f̂A′ (n−2,1,1), which appear in
any LOP function f whose Fourier coefficients f̂(n−1,1) and f̂(n−2,1,1) are non-zero.

Having found such a precise condition, one may wonder whether the reciprocal is
true: if one defines a function f as the inverse of certain Fourier coefficients that satisfy
the conditions described in the theorem, will f be an LOP? To clarify this question, we
designed the following experiment for dimensions n = 3, 4, 5, 6:
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1. Generate a random LOP function g. Repeat this process until g has non-null
(n− 1, 1) and (n − 2, 1, 1) coefficients. Then, compute ĝλ for λ = (n− 1, 1),
(n− 2, 1, 1) and extract the column proportions.

2. Generate random Fourier coefficients f̂λ following the patterns shown in Theorem
3.

• For this purpose, firstly set f̂λ = 0, for λ 6= (n), (n− 1, 1), (n− 2, 1, 1).

• Generate a uniformly random number in the interval (−1, 1) for f̂(n).

• For λ = (n−1, 1), (n−2, 1, 1), build coefficient f̂λ in the following way: firstly,
generate a random column of size dλ (using a uniform distribution in (−1, 1)).
This is the first column of the matrix. The other columns are proportional to
the first, with the same proportions as in ĝλ, obtained in step 1.

3. Define function f as the inverse of the coefficient family {f̂λ : λ ` n} via the inverse
FT.

4. Check whether there exists an input matrix for the LOP such that the objective
function associated with that matrix is f .

The details for implementing the last step of the experiment are explained in Ap-
pendix B, where the problem is reduced to analyzing the solvability of a certain lin-
ear system. We run 1000 repetitions of the experiment for each of the dimensions
n = 3, 4, 5, 6. The result was, invariably, that the inverse function was an LOP.

This experiment indicates that, probably, for dimensions n = 3, 4, 5, 6, the implica-
tion stated in Theorem 3 is actually an equivalence. We hypothesize that this could be
generalized for any dimension n or, in other words, that Theorem 3 gathers the prop-
erties that exactly characterize the LOP in Fourier domain, as we express in the shape
of the following conjecture.

Conjecture 1. If f is an LOP function with non-null (n − 1, 1) and (n − 2, 1, 1) Fourier
coefficients, and a function g satisfies the conditions mentioned in Theorem 3, that is,

1. ĝλ = 0, for λ 6= (n), (n− 1, 1), (n− 2, 1, 1).

2. ĝ(n−1,1) is 0 or rank-one with the same column proportions as f̂(n−1,1).

3. ĝ(n−2,1,1) is 0 or rank-one with the same column proportions as f̂(n−2,1,1).

Then, g is the objective function of an LOP instance.

5.3 Characterization of the TSP

As for the previous case, we find conditions that the Fourier coefficients of non-
symmetric and symmetric TSP functions have to meet, which are stated in Theorems
4 and 5. The proofs require more steps than in the case of the LOP, so, for readability
purposes, they are developed in Appendix A.2.

Theorem 4 (FT of the TSP). If f : Σn −→ R is the objective function of a TSP instance, that
is, f is expressed as in (4), then its FT has the following properties:

1. f̂λ = 0, if λ 6= (n), (n− 2, 2), (n− 2, 1, 1).
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2. f̂λ has at most rank one for λ = (n− 2, 2), (n− 2, 1, 1). Having rank one is equivalent to
the fact that the matrix columns are proportional.

3. For λ = (n − 2, 2), (n − 2, 1, 1) and a fixed dimension n, the proportions among the
columns of f̂λ are the same for all the instances.

Theorem 5 (FT of the STSP). If f : Σn −→ R is the objective function of an STSP instance,
that is, f is expressed as in (4) and its input matrix A is symmetric, then its FT has the following
properties:

1. f̂λ = 0, if λ 6= (n), (n− 2, 2).

2. f̂λ has at most rank one for λ = (n− 2, 2). Having rank one is equivalent to the fact that
the matrix columns are proportional.

3. For λ = (n− 2, 2) and a fixed dimension n, the proportions among the columns of f̂λ are
the same for all the instances.

As for the reciprocal implication, we have proceeded in a similar fashion to the
case of the LOP. We generated random Fourier coefficients satisfying the properties of
Theorems 4 and 5, applied the inverse FT to them and checked whether the resulting
function was a TSP or an STSP, respectively. We repeated this process, both for the TSP
and for the STSP, 1000 times and for dimensions n = 3, 4, 5, 6. The results were always
positive: the function obtained in the experiments was the corresponding TSP or STSP.
So we hypothesize, again, that Theorems 4 and 5 hold the exact characterization of
the TSP and the STSP. Therefore, as for Conjecture 1 in the case of the LOP, equivalent
conjectures can be stated for the TSP and the STSP:

Conjecture 2. If f is a TSP function with non-null (n− 2, 2) and (n− 2, 1, 1) Fourier coeffi-
cients, and a function g satisfies the conditions mentioned in Theorem 4, that is,

1. ĝλ = 0, for λ 6= (n), (n− 2, 2), (n− 2, 1, 1).

2. ĝ(n−2,2) is 0 or rank-one with the same column proportions as f̂(n−2,2).

3. ĝ(n−2,1,1) is 0 or rank-one with the same column proportions as f̂(n−2,1,1).

Then, g is the objective function of a TSP instance.
Conjecture 3. If f is an STSP function with a non-null (n − 2, 2) Fourier coefficient, and a
function g satisfies the conditions mentioned in Theorem 5, that is,

1. ĝλ = 0, for λ 6= (n), (n− 2, 2).

2. ĝ(n−2,2) is 0 or rank-one with the same column proportions as f̂(n−2,2).

Then, g is the objective function of an STSP instance.

6 Intrinsic dimensions of COPs

This section concerns the intrinsic (or parametric) dimension of COPs, which is the
minimum number of parameters needed to define an instance of a problem. Note that
n, the length of the permutations used to codify the solutions, is a different type of
dimension.

Thanks to the Fourier inversion formula (see Theorem 1), we know that a function
can be recovered from its Fourier coefficients, which means that we have an alternative
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representation of the function in Fourier domain. In general, the number of parameters
needed to define a permutation-based function in Fourier domain would be n!, which
is the same number needed to define the function by choosing the value that it takes
at each permutation. However, as has been observed, the Fourier coefficients of the
problems analyzed have some special properties or, in other words, they have to meet
certain restrictions. This means that (given a solution dimension n), if one wants to
define an LOP, a TSP or a QAP instance in Fourier space, many of the parameters that
were tunable for general functions now remain fixed. This idea can be captured by the
concept of intrinsic dimension.

Although the term of intrinsic dimension has been used in other optimization sce-
narios, we have not found it specifically applied to combinatorial optimization. For
instance, in the field of Bayesian optimization, Wang et al. (2016) observe that there are
problems in which most dimensions do not significantly change the value of the objec-
tive function, and this can be exploited in the optimization strategy. The authors define
the effective dimensionality of a function as the number of dimensions that contribute
to the value of a function f : Rp −→ R. This notion is not exactly the one that we are
considering, as it is straightforwardly related with the dimension of the solutions. In
our case, we refer to COPs, and to the intrinsic dimension of these problems, which we
define as follows.

Most combinatorial optimization problems are defined by means of a subset of
parameters of size pn when the solution dimension is n. A value for each of the pn
parameters produces a different instance and, therefore, a different function f . Given a
COP with a set of solutions of size n, X , it is possible to define a function F that assigns
to each set of parameters the generated objective function in the COP.

F : Rpn −→ {f | f : X −→ R is a function, i.e., an instance of the COP}.

For example, in the case of the LOP, F would map the elements of the entry matrix to
the function that assigns to each permutation the sum of the lower-diagonal elements
of the matrix when the rows and columns are jointly reordered. Then, the COP given
by F can be reparametrized to

G : Rkn −→ {f | f : X −→ R is a function, i.e., an instance of the COP}

if there exists a function φ : Rpn −→ Rkn such that F (a) = G(φ(a)), for any vector
of parameters a ∈ Rpn . φ(a) would be the new vector of parameters, which has kn
elements. If such a φ exists, then the COP given by F , which depends on pn param-
eters, can be expressed by kn parameters through G, which means that the COP has
an alternative representation which depends on a different number of parameters (if
kn 6= pn). Then, the intrinsic dimension of a COP would be the lowest dimension kn for
which there exists a reparametrization of F .

The number of parameters needed to define any instance using the standard rep-
resentation (for example, via input matrices, as in the case of the LOP, TSP or QAP) is,
by default, an upper bound of the instrinsic dimension of the problem. However, if
we reparametrize the problems using the Fourier domain, the number of parameters
needed changes, and so does the upper bound of the intrinsic dimension, as we will
immediately see. Table 3 lists the dimensions of the irreducibles ρ(n), ρ(n−1,1), ρ(n−2,2)

and ρ(n−2,1,1), which are the ones needed to compute the FT of the COPs studied in this
paper.

Intrinsic dimension of the LOP. The only non-zero coefficients of the LOP are those
indexed by λ = (n), (n − 2, 1, 1) and (n − 1, 1). Taking into account Table 3 and the
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Table 3: Dimensions of the irreps dλ according to the partitions of n (Kondor, 2010).
λ dλ

(n) 1

(n− 1, 1) n− 1

(n− 2, 2) n(n−3)
2

(n− 2, 1, 1) (n−1)(n−2)
2

fact that the ranks of coefficients λ = (n − 2, 1, 1) and (n − 1, 1) are 1, that is, all the
columns are proportional to the first one in both coefficient matrices, the number of
possible tunable values is just the number of rows. Thus, the intrinsic dimension of the
LOP is, at most:

1 +
(n− 1)(n− 2)

2
+ (n− 1) =

n(n− 1)

2
+ 1.

Intrinsic dimension of the TSP. The only non-zero coefficients of the TSP are those
indexed by λ = (n), (n − 2, 1, 1) and (n − 2, 2). Again, taking into account Table 3 and
that the ranks of coefficients λ = (n−2, 1, 1) and (n−2, 2) are 1, the number of possible
tunable values is just the number of rows of the coefficient matrices. Thus, the intrinsic
dimension of the TSP is, at most:

1 +
(n− 1)(n− 2)

2
+
n(n− 3)

2
= (n− 1)(n− 2).

Intrinsic dimension of the STSP. For the STSP, coefficient λ = (n−2, 1, 1) is also zero.
Therefore, the intrinsic dimension of the STSP is, at most:

1 +
n(n− 3)

2
=

(n− 1)(n− 2)

2
.

Intrinsic dimension of the QAP. The only non-zero coefficients of the QAP are those
indexed by λ = (n), (n−2, 1, 1), (n−1, 1) and (n−2, 2). Once again, taking into account
Table 3 and knowing that the rank of coefficient λ = (n− 1, 1) is at most 2, and the rank
of coefficients λ = (n− 2, 1, 1) and (n− 2, 2) is at most 1, the intrinsic dimension of the
QAP would be upper bounded by the following expression (note that in this case, the
proportions among columns are not fixed):

1 + 2(n− 1) + 2(n− 1− 2) +
n(n− 3)

2
+
n(n− 3)

2
− 1 +

(n− 1)(n− 2)

2
+

(n− 1)(n− 2)

2
− 1 = 2n2 − 2n− 7.

To sum up, Table 4 gathers the number of parameters needed to define the dif-
ferent COPs considering both the usual representation (via input matrices) and the
Fourier representation. In the case of the LOP, the number of parameters when the
problem is reparametrized using the Fourier space is approximately half of the number
of parameters needed with the usual representation. This is significantly lower. In the
case of the ATSP and the STSP, the difference is not so remarkable, but it is still notice-
able. In the case of the QAP, the difference is fixed, only of 7 parameters. As can be
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seen, we have obtained lower bounds for the intrinsic dimensions of the problems than
those suggested by their usual parametrization. In this sense, it has been proven that
any instance of the COPs studied in this paper can be defined by a lower number of
parameters than the number of elements that appear in the input matrices.

Table 4: Number of parameters needed to define the different COPs considering both the usual representa-
tion (via input matrices) and the Fourier representation. The COPs taken into account are the LOP, TSP, STSP
and QAP.

COP Usual representation Fourier representation

LOP n2 − n n2−n
2 + 1

TSP n(n− 1) (n− 1)(n− 2)

STSP n(n−1)
2

(n−1)(n−2)
2

QAP 2(n2 − n) 2(n2 − n)− 7

The following three examples show how certain instances that are codified differ-
ently in the usual representation give rise to the same objective function. In addition,
the second matrix of each of the examples has the same number of non-zero values as
the number of parameters of the Fourier representation.

Example 5. Let A and B be the following input matrices of two LOP instances:

A =


0 4 7 10
1 0 8 11
2 5 0 12
3 6 9 0

 and B =


0 3 5 7
0 0 3 5
0 0 0 29
0 0 26 0

 .
Then, both of the instances have the same objective function.
Example 6. Let C and D be the following input matrices of two TSP instances:

C =


0 2 5 6
3 0 4 8
7 3 0 5

11 4 2 0

 and D =


0 0 −2 2
0 0 0 7
0 0 0 0

22 19 12 0

 .
Then, both of the instances have the same objective function.
Example 7. Let E and F be the following input matrices of two STSP instances:

E =


0 3 1 5
3 0 4 7
1 4 0 2
5 7 2 0

 and F =


0 0 8 9
0 0 0 0
8 0 0 5
9 0 5 0

 .
Then, both of the instances have the same objective function.

7 Intersection between COPs

Characterizing COPs in Fourier space opens up the possibility of comparing problems
that originally have completely distinct representations, by looking at their Fourier co-
efficients. In this section, we specifically study the intersections between the LOP, TSP
and QAP.

17



Once a COP is understood as a set of functions, we can view the intersection be-
tween two COPs as the subset composed of the functions that belong to both sets. It
is understood that a function f belongs to two different COPs if there exist instances
of both problems that provide the same objective function values as f . As previously
mentioned, the LOP and the TSP are particular cases of the QAP. Thus, the intersection
between the LOP and the QAP is the LOP, while the intersection between the TSP and
the QAP is the TSP.

In order to analyze the intersection between the LOP and the TSP, let us consider
the characterization of the Fourier coefficients of these problems. On the one hand, if a
function is an LOP, it must have all the Fourier coefficients equal to zero, except for the
ones indexed by λ = (n), (n− 2, 1, 1) and (n− 1, 1). On the other hand, if the function
is at the same time a TSP, it must have all the Fourier coefficients equal to zero, except
for the ones indexed by λ = (n), (n − 2, 1, 1) and (n − 2, 2). Then, in this case, the
only non-zero coefficients that both problems share are those indexed by λ = (n) and
(n− 2, 1, 1). Thus, the intrinsic dimension of this intersection is, at most,

1 +
(n− 1)(n− 2)

2
.

However, it is necessary, for this intersection not to be trivial, that the proportions
between the columns of coefficient (n− 2, 1, 1) of the LOP and the TSP (see Theorems 3
and 4) are the same. We have experimentally checked that this happens for dimension
n = 4, but the same does not hold for n = 5, 6, 7, 8, 9, 10. Then, for dimensions n =
5, 6, 7, 8, 9, 10, we can assure that, for a function that belongs both to the LOP and the
TSP, coefficient (n − 2, 1, 1) must be zero. This means that, for these dimensions, the
functions that belong to the intersection of the LOP and the TSP are only composed
of coefficient (n), which implies that they must be constant functions. Based on this
observation, we conjecture that, for n > 4, the intersection between the LOP and the
TSP is trivial, in the sense that it is composed of constant functions.

In the case of the intersection between the LOP and the STSP, the only Fourier
coefficient that both problems have in common is the one corresponding to λ = (n).
Therefore, we can conclude that the only functions that belong at the same time to both
problems are the constant functions. The intrinsic dimension in this case is 1.

8 Conclusions

Based on Kondor (2010), we have proposed a framework from which COPs can be
studied: the Fourier domain. We have characterized the LOP and the TSP in this little-
known space, and we have also included the characterization of the QAP of Kondor
(2010) in order to further analyse and compare the three COPs. In the case of the STSP,
the FT has two non-zero Fourier coefficients, while, in the case of the LOP and the TSP,
there are three non-zero Fourier coefficients and, finally, in the case of the QAP, there
are four. As the dimension, n, grows, so does the number of Fourier coefficients of a
function, and, for the COPs that we have studied, the number of functions that can be
generated with those two, three or four non-zero coefficients is minimal in comparison
with the whole set of permutation-based functions.

One of the consequences of the Fourier characterizations of the COPs considered
in this paper is that the intrinsic dimensions of the problems are lower than the di-
mensions suggested by their usual parametrization, which means that they can be de-
fined by a lower number of parameters. In addition, the FT allows us to express the
different problems using the same representation, instead of having disparate defini-
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tions depending on how the input matrices are interpreted. This can have a number
of advantages. Firstly, it is easier to compare instances of different problems, and we
have made an example of this by studying the intersection between problems. We
have proved that the intersection between the LOP and the STSP is trivial, and have
bounded the intersection between the LOP and the TSP, which we conjecture, based on
empirical evidence, that it is also trivial for n > 4. To the best of our knowledge, this
topic has not been addressed before. Nevertheless, it is true that this issue has already
been approached from a different point of view. Many heuristic algorithms do not take
into account the exact objective function value of the solutions, but only a compari-
son between them. This is the reason why the intersection between problems has been
studied in terms of rankings of the solutions of the search space (Hernando et al., 2019).
As future work, we would like to study the connection between rankings and Fourier
coefficients, and use this information to analyze the intersection of rankings between
the LOP and the TSP. We believe that this can be relevant because, if two problems A
and B share many rankings, then algorithms that are efficient for problem A, and which
do not take into account the exact objective function value, would also perform well on
B.

Future work may also envision developing the characterization theorems pre-
sented here (Theorems 2, 3, 4 and 5), and prove Conjectures 1, 2 and 3. That is, we
would like to prove that a function whose Fourier coefficients have the shapes de-
scribed in the theorems must necessarily be a QAP, an LOP or a TSP. It could be in-
teresting to add new problems to our research, such as the PFSP. Another possible re-
search line would be the one that relates Fourier coefficients to problem complexity.
Regarding this topic, many relevant research questions arise. For instance, one may try
to determine the minimal Fourier structure of a COP so that it results in an NP-hard
problem.
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Appendix

This appendix has two sections. Section A contains the proofs of the theorems stated
in Section 5.3. Section B explains how to code the functions needed to carry out the
experiments mentioned in Section 5.

A Proofs of Section 5.3

This appendix contains the proofs of Theorems 4 and 5, which characterize the Fourier
coefficients of the TSP. Part of the mathematical background about the FT and the COPs
has already been introduced in Sections 3 and 4, respectively. However, more technical
background is needed for the mathematical proof of the theorems.
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A.1 Further mathematical notation and details on the FT

Regarding the FT, let us recall that the Fourier coefficients of a function are indexed by
the partitions of n. In addition, for a given partition λ ` n, the rows and columns of
f̂λ are indexed by standard tableaus of shape λ (a standard tableau is a Young tableau
in which numbers 1, 2, · · · , n are placed exactly once and in increasing order both from
left to right and from top to bottom). For example, the standard tableaus of shape
λ = (2, 1) are just the following two:

1 2
3

1 3
2

Apart from Young tableaus, there also exist Young tabloids, which, intuitively, are
Young tableaus in which the elements in the same row are not sorted. Young tabloids
have a slightly different representation:

1 2
3

1 3
2

2 3
1

We assume that, for a given partition λ ` n, its Young tabloids are sorted in a
certain way, t1, t2, · · · (to see the particular ordering we refer the reader to the appendix
of Huang et al. (2009)).

The permutation representation at partition λ ` n is denoted as τλ, that is,

τλ(σ)ij =

{
1 if σ(tj) = ti

0 otherwise.
(6)

For a detailed definition of τλ, see Huang et al. (2009).
The formulas below show the decompositions of the permutation representations

for certain partitions in terms of the irreducible representations:

τ(n) ≡ ρ(n)

τ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1)

τ(n−2,2) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) (7)
τ(n−2,1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1)

That is, the left-sided representations are equal to the direct sums of the right side
when a change of basis is applied. In matrix terminology, this is the same as saying that
there exists an invertible matrix Cλ, such that

τλ(σ) = Cλ

⊕
µ≥λ

kλµ⊕
i=1

ρµ(σ)

C−1
λ .

This decomposition implies that the FT of a function f at τλ can be computed in
terms of the FT at ρµ, with µ ≥ λ:

f̂τλ = Cλ

⊕
µ≥λ

kλµ⊕
i=1

f̂ρλ

C−1
λ .
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A.2 Characterization of the TSP: Proof

The aim of this section is to prove Theorems 4 and 5 (previously stated in section 5.3),
following the line of thought of the proof for the LOP. This means that the steps for
proving the theorem remain the same. Firstly, we observe that the FT of a TSP function
is proportional to the product of two matrices, one depending on the instance and the

other one (f̂A′
T

λ ) being constant. Secondly, we analyse the constant factor f̂A′λ and see
how its particular shape affects the Fourier coefficients of the TSP.

Even though this process is very similar to the one followed with the LOP, this
time the proof is not as straightforward, because, even though in the case of the LOP
the constant factor has already been analyzed in the literature, we have not found the
analogue for the TSP. So, unlike in the previous section, we have to carry out the entire
analysis of the constant factor.

Proposition 4. If f : Σn −→ R is the objective function of a TSP instance, that is, f is
expressed as in (4), then its FT has the following properties:

1. f̂λ = 0, if λ 6= (n), (n− 1, 1), (n− 2, 2), (n− 2, 1, 1).

2. The values of coefficients λ = (n− 1, 1), (n− 2, 2) and (n− 2, 1, 1) can be factored as the
following product:

f̂λ =
1

(n− 2)!
f̂Aλ · f̂A′

T

λ ,

where fA is the graph function of A and

fA′(σ) =


1 if σ(n− 1) = σ(n) + 1

or
(σ(n− 1) = 1 and σ(n) = n)

0 otherwise.

(8)

Proof. The TSP is a particular case of the QAP. By setting

a′ij =

{
1 if j = i+ 1 or (i = n and j = 1)

0 otherwise,

Equation (2) becomes the objective function of the TSP. Then,

fA′(σ) = a′σ(n)σ(n−1) =


1 if σ(n− 1) = σ(n) + 1

or
(σ(n− 1) = 1 and σ(n) = n)

0 otherwise.

At this point, the result immediately follows from Propostion 1.

Let us proceed with the analysis of f̂A′λ as defined in Proposition 4. This analysis
is not too complex, but it requires many calculations. For the sake of clarity, the analysis
of f̂A′λ has been divided into a number of propositions (Propositions 6, 7, 8, 9 and 10)
and corollaries (Corollaries 1 and 2).

The first step in the computation of f̂A′λ consists of computing f̂A′ρ(n)
.
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Proposition 5. Given fA′ defined as in Proposition 4, the FT of fA′ at irreducible ρ(n) is

f̂A′ρ(n)
= [n · (n− 2)!] . (9)

Proof. ρ(n) = 1, therefore,

f̂A′ρ(n)
=
∑
σ

fA′(σ) · ρ(n)(σ) =
∑
σ

fA′(σ).

According to the definition of fA′ in Equation (8),
∑
σ fA′(σ) is the number of per-

mutations σ ∈ Σn such that σ(n − 1) = σ(n) + 1 or (σ(n) = n and σ(n − 1) = 1).
The condition σ(n− 1) = σ(n) + 1 or (σ(n− 1) = 1 and σ(n) = n) can be understood
as mapping two elements (n − 1 and n) to fixed values, while the rest are mapped to
arbitray values. The pairs of values to which n− 1 and n can be mapped are listed:

σ(n) = 1 and σ(n− 1) = 2,

σ(n) = 2 and σ(n− 1) = 3,

... (10)
σ(n) = n− 1 and σ(n− 1) = n,

σ(n) = n and σ(n− 1) = 1.

There are n possible mappings and, in each of them, the remaining (n−2) elements
can have any possible order. This means that the number of permutations that satisfy
system (10) is

f̂A′ρ(n)
= [n · (n− 2)!] .

At this point, and before proceeding with the exposition, let us note that the FT
is linear and that, for any constant function c, ĉρλ = 0 for each λ 6= (n). So, when a
function f is translated (that is, f is transformed to a function h = f + c, being h the
new function), its FT remains the same for any partition except for λ = (n) (that is,
f̂ρλ = ĥρλ for λ 6= (n)). So we could translate fA′ and its non-trivial Fourier coefficients
would remain the same.

Instead of working with fA′ , in what follows, the analysis is carried out with a
translation of fA′ , h = fA′ + c. We adjust our constant c, such that ĥρ(n)

= 0. Even
though this choice may initially seem unclear, it is elucidated later in Proposition 10.
For the time being, probably it suffices to observe that this choice eventually makes the
mathematical reasoning easier. Taking into account Equation (9), it is immediate to see
that the function h with ĥρ(n)

= 0 is the following:

h(σ) = fA′(σ)− 1

n− 1
. (11)

Directly studying ĥρλ is not an easy task. Instead, we compute ĥτλ and deduce the
properties of ĥρλ by means of the decompositions of Equation (7). The computation
of ĥτλ is quite straightforward, but requires a high number steps based on elementary
combinatorics.

FT at τ(n) From the fact that τ(n) = ρ(n) = 1, it obviously follows Proposition 6.

Proposition 6. The FT of h at irreducible τ(n) is zero.
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FT at τ(n−1,1) Before computing ĥτ(n−1,1)
in Proposition 7, it is convenient to have a

look at representation τ(n−1,1). Its definition is based on the standard tabloids of shape
(n− 1, 1), which are the following

2 3 · · · n

1

1 3 · · · n

2

1 2 · · · n

3
· · ·

· · · 1 2 · · · n− 1

n

τ(n−1,1) is given by

τ(n−1,1)(σ)ij =

{
1 if σ(τj) = τi

0 otherwise.

Note that there is a one-to-one correspondence between each of the tabloids of
shape (n − 1, 1) and the element in the second row. Therefore, the tabloids can be
indexed by their second-row element. With this ordering, t1 and t2 would be the fol-
lowing:

t1 =
2 3 · · · n

1
and t2 =

1 3 · · · n

2

The condition σ(t1) = t2 means that we are checking whether

σ(2) σ(3) · · · σ(n)

σ(1)

=
1 3 · · · n

2

This is equivalent to checking if σ(1) = 2. So τ(n−1,1) can also be formulated as

τ(n−1,1)(σ)ij =

{
1 if σ(j) = i

0 otherwise.
(12)

Proposition 7. The FT of h at irreducible τ(n−1,1) is zero.

Proof. The FT of h at representation τ(n−1,1) is

ĥτ(n−1,1)
=
∑
σ

h(σ) · τ(n−1,1)(σ).

Remember that a representation maps permutations to matrices, and τ(n−1,1)(σ)

is an (n−1)× (n−1) matrix, so ĥτ(n−1,1)
is an (n−1)× (n−1) matrix too. Each element of
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matrix ĥτ(n−1,1)
is

[ĥτ(n−1,1)
]ij =

∑
σ

h(σ) · [τ(n−1,1)(σ)]ij .

Using the definition of h (Equation (11)),

[ĥτλ ]ij =
∑
σ

(
fA′(σ)− 1

n− 1

)
· [τλ(σ)]ij

=
∑
σ

fA′(σ) · [τλ(σ)]ij −
1

n− 1

∑
σ

[τλ(σ)]ij . (13)

Considering the definition of τ(n−1,1) of Equation (12),
∑
σ[τ(n−1,1)(σ)]ij is the

number of permutations such that σ(j) = i, that is, (n − 1)!. Therefore, the second
term of the subtraction is

1

n− 1

∑
σ

[τ(n−1,1)(σ)]ij =
(n− 1)!

n− 1
= (n− 2)!. (14)

To compute
∑
σ fA′(σ) · [τ(n−1,1)(σ)]ij , notice that for each permutation σ,

fA′(σ) · [τ(n−1,1)(σ)]ij

can take either one of two values. If fA′(σ) = 1 and [τ(n−1,1)(σ)]ij = 1,

fA′(σ) · [τ(n−1,1)(σ)]ij = 1,

otherwise it is 0. So ∑
σ

fA′(σ) · [τ(n−1,1)(σ)]ij

is the number of permutations σ such that fA′(σ) = 1 and [τ(n−1,1)(σ)]ij = 1. A permu-
tation σ satisfies fA′(σ) = 1 and [τ(n−1,1)(σ)]ij = 1 if and only if (see equations (8) and
(12), which define fA′ and τ(n−1,1)) it satisfies the following system of equations:{

σ(n− 1) = σ(n) + 1 or (σ(n− 1) = 1 and σ(n) = n),
σ(j) = i.

(15)

The number of permutations that satisfy these conditions depends on the values
of indices i and j.

• If j 6= n− 1, n,
the possible values of σ that satisfy the first condition of system (15) have al-
ready been listed in (10). In addition, system (15) imposes σ(j) = i, so this ad-
ditional condition makes us discard two of the possibilities listed in (10), because
σ(n), σ(n− 1) 6=i. Consequently, there are (n−2) possible pairs of values that σ(n)
and σ(n− 1) can take. For each of these possibilities, we are fixing three elements:
σ(n), σ(n−1) and σ(i). Hence, the number of permutations that satisfy system (15)
is ∑

σ

fA′(σ) · [τ(n−1,1)(σ)]ij = (n− 2) · (n− 3)! = (n− 2)!.
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• If j = n,
system (15) is simplified:{

σ(n− 1) = σ(n) + 1 or (σ(n− 1) = 1 and σ(n) = n),
σ(n) = i.

(16)

σ(n) = i is fixed and so is σ(n− 1). Then, the number of permutations that satisfy
system (16) is the number of permutations that fix two elements:∑

σ

fA′(σ) · [τ(n−1,1)(σ)]ij = (n− 2)!.

• If j = n− 1,
this case is analogous to the previous case, where j = n; then,∑

σ

fA′(σ) · [τ(n−1,1)(σ)]ij = (n− 2)!.

We have just seen that, regardless of the values of i and j,∑
σ

fA′(σ) · [τ(n−1,1)(σ)]ij = (n− 2)!.

Taking (14) into account,

[ĥτ(n−1,1)
]ij =

∑
σ fA′(σ) · [τ(n−1,1)(σ)]ij −

1

n− 1

∑
σ[τ(n−1,1)(σ)]ij =

(n− 2)!− (n− 2)! = 0.

FT at τ(n−2,2) A Young tabloid of shape λ = (n− 2, 2) can be exactly determined by
the elements in the second and third row. For example, the following tabloid

1 2 · · · n−2

n−1 n

can be identified by the unordered tuple {n − 1, n}. The permutation representation
can be expressed as

τ(n−2,2)(σ)ij =

{
1 if σ({j1, j2}) = {i1, i2}
0 otherwise,

(17)

where the indices i = {i1, i2} and j = {j1, j2} are unordered tuples.
Proposition 8. The FT of h at irreducible τ(n−2,2) can be indexed by unordered tuples and
takes the following values depending on the row i = {i1, i2} and the column j = {j1, j2}:

• If {j1, j2} ∩ {n− 1, n} = ∅,

[ĥτ(n−2,2)
]ij =


2(n− 3)!

n− 1
if |i1 − i2| ≡ 1 (mod n)

−4(n− 4)!

n− 1
if |i1 − i2| 6≡ 1 (mod n).
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• If {j1, j2} ∩ {n− 1, n} = {n− 1} or {n},

[ĥτ(n−2,2)
]ij =


(3− n)(n− 3)!

n− 1
if |i1 − i2| ≡ 1 (mod n)

2(n− 3)!

n− 1
if |i1 − i2| 6≡ 1 (mod n).

• If {j1, j2} ∩ {n− 1, n} = {n− 1, n},

[ĥτ(n−2,2)
]ij =


(n− 3)(n− 2)!

n− 1
if |i1 − i2| ≡ 1 (mod n)

−2(n− 2)!

n− 1
if |i1 − i2| 6≡ 1 (mod n).

Proof. To compute ĥτ(n−2,2)
as specified by Equation (13), we compute again the two

terms of the subtraction separately.∑
σ[τ(n−2,2)(σ)]ij is the number of permutations such that σ(j1) = i1 and σ(j2) =

i2, or, σ(j1) = i2 and σ(j2) = i1. There are 2 · (n − 2)! permutations satisfying this
condition, then

1

n− 1

∑
σ

[τ(n−1,1)(σ)]ij =
2 · (n− 2)!

n− 1
. (18)

To compute
∑
σ fA′(σ)[τ(n−2,2)(σ)]ij , we have to count the number of permutations

for which fA′(σ) = 1 and [τ(n−2,2)(σ)]ij = 1, that is, how many permutations satisfy
the following system of equations:{

σ(n− 1) ≡ σ(n) + 1 (mod n),
σ({j1, j2}) = {i1, i2}.

(19)

The number of permutations that satisfy these equations depends on the values of
indices i and j. We list the values of

∑
σ fA′(σ) · [τ(n−2,2)(σ)]ij , which depend on certain

conditions over the indices. Even though there are 6 distinct cases, we only prove the
first and second, since the rest of them are computed similarly.

• If {j1, j2} ∩ {n, n− 1} = ∅,

– If |i1 − i2| ≡ 1 (mod n),

the condition for a permutation σ to satisfy σ(n−1) ≡ σ(n)+1 (mod n) restricts
the pairs of values that σ(n− 1) and σ(n) can hold. All the n possible pairs of
values that σ(n − 1) and σ(n) can take are listed in Equation (10). However,
the additional condition of system (19), that is σ({j1, j2}) = {i1, i2}, discards
some of these pairs, since we have the restrictions σ(n− 1) 6= i1, i2 and σ(n) 6=
i1, i2. Assume, without loss of generality, that i2 ≡ i1 + 1 (mod n). Then, the
discarded pairs are

σ(n) ≡ i1 − 1 (mod n) and σ(n− 1) = i1,

σ(n) = i1 and σ(n− 1) ≡ i2 (mod n),

σ(n) = i2 and σ(n− 1) ≡ i2 + 1 (mod n).
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So we are left with (n − 3) different possible values of σ(n − 1) and σ(n). In
addition, σ({j1, j2}) = {i1, i2} has also two possibilities, that is σ(j1) = i1 and
σ(j2) = i2, or σ(j1) = i2 and σ(j2) = i1. So we have 2 · (n − 3) possible com-
binations of values for σ(n − 1), σ(n), σ(j1) and σ(j2). For each combination,
the rest of the (n − 4) elements can be reordered arbitrarily. This implies that
the number of permutations that satisfy system (19) is∑

σ

fA′(σ)[τ(n−2,2)(σ)]ij = 2 · (n− 3) · (n− 4)!.

– If |i1 − i2| 6≡ 1 (mod n),
This case is very similar to the previous one, but, since |i1 − i2| 6≡ 1 (mod n),
the pairs of values of σ(n) and σ(n − 1) discarded due to the condition
σ({j1, j2}) = {i1, i2} are different:

σ(n) ≡ i1 − 1 (mod n) and σ(n− 1) = i1,

σ(n) = i1 and σ(n− 1) ≡ i1 + 1 (mod n),

σ(n) ≡ i2 − 1 (mod n) and σ(n− 1) = i2,

σ(n) = i2 and σ(n− 1) ≡ i2 + 1 (mod n).

Therefore, the number of permutations satisfying system (19) is∑
σ

fA′(σ) · [τ(n−2,2)(σ)]ij = 2 · (n− 4) · (n− 4)!.

• If {j1, j2} ∩ {n− 1, n} = {n− 1} or {j1, j2} ∩ {n− 1, n} = {n},

– If |i1 − i2| ≡ 1 (mod n) ,∑
σ

fA′(σ)[τ(n−2,2)(σ)]ij = (n− 3)!.

– If |i1 − i2| 6≡ 1 (mod n),∑
σ

fA′(σ)[τ(n−2,2)(σ)]ij = 2 (n− 3)!.

• If {j1, j2} = {n− 1, n},

– If |i1 − i2| ≡ 1 (mod n),∑
σ

fA′(σ)[τ(n−2,2)(σ)]ij = (n− 2)!.

– If |i1 − i2| 6≡ 1 (mod n), ∑
σ

fA′(σ)[τ(n−2,2)(σ)]ij = 0.

ĥτ(n−2,2)
is computed by subtracting the two terms in Equation (13). The first term

is
∑
σ fA′(σ) · [τ(n−2,2)(σ)]ij and the second has been calculated in (18). The subtraction

immediately leads to the statement of our proposition.
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Corollary 1. ĥτ(n−2,2)
is a rank-one matrix.

Proof. We have already computed the value of ĥτ(n−2,2)
in Proposition 8. Rows and

columns are indexed by unordered tuples i = {i1, i2} and j = {j1, j2}, respec-
tively. Notice that there are only two different rows in ĥτ(n−2,2)

, depending on whether
|i1 − i2| ≡1 (mod n) or |i1 − i2| 6≡ 1 (mod n). It is easy to check that a row given by
|i1 − i2| ≡ 1 (mod n) is 2/(3− n) times a row given by |i1 − i2| 6≡ 1 (mod n).

Let us see it by differentiating column cases. Assume that i = {i1, i2} is an index
such that |i1 − i2| ≡ 1 (mod n) and i′ = {i′1, i′2} is such that |i′1 − i′2| 6≡ 1 (mod n).

• If {j1, j2} ∩ {n− 1, n} = ∅,

[ĥτ(n−2,2)
]i′j = −4(n− 4)!

n− 1
=

2

3− n
· 2(n− 3)!

n− 1
=

2

3− n
· [ĥτ(n−2,2)

]ij .

• If {j1, j2} ∩ {n− 1, n} = {n− 1} or {j1, j2} ∩ {n− 1, n} = {n},

[ĥτ(n−2,2)
]i′j =

2(n− 3)!

n− 1
=

2

3− n
· (3− n)(n− 3)!

n− 1
=

2

3− n
· [ĥτ(n−2,2)

]ij .

• If {j1, j2} = {n− 1, n},

[ĥτ(n−2,2)
]i′j = −2(n− 2)!

n− 1
=

2

3− n
· (n− 3)(n− 2)!

n− 1
=

2

3− n
· [ĥτ(n−2,2)

]ij .

This implies that all the rows in ĥτ(n−2,2)
are proportional and, in consequence,

ĥτ(n−2,2)
is rank-one.

FT at τ(n−2,1,1) A Young tabloid of shape (n − 2, 1, 1) has the following representa-
tion:

1 2 · · · n−2

n−1

n

It can be exactly identified by the elements in the second and third row, which can
be represented, for instance, with the tuple (n − 1, n). The permutation representation
for partition λ = (n− 2, 1, 1) can then be expressed as

τ(n−2,1,1)(σ)ij =

{
1 if σ(j1) = i1 and σ(j2) = i2

0 otherwise,
(20)

where the indices are ordered tuples i = (i1, i2) and j = (j1, j2).

Proposition 9. The FT of h at irreducible τ(n−2,1,1) can be indexed by ordered tuples and takes
the following values depending on the row i = (i1, i2) and the column j = (j1, j2):
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• If {j1, j2} ∩ {n− 1, n} = ∅,

[ĥτ(n−2,2)
]ij =


(n− 3)!

n− 1
if |i1 − i2| ≡ 1 (mod n)

−2(n− 4)!

n− 1
if |i1 − i2| 6≡ 1 (mod n).

• If j1 = n and j2 6= n− 1, or j1 6= n and j2 = n− 1, or j1 = n and j2 = n− 1,

[ĥτ(n−2,2)
]ij =



− (n− 2)!

n− 1
if j1 = n, j2 6= n− 1 and i2 ≡ i1 + 1 (mod n)

(n− 3)!

n− 1
if j1 = n, j2 6= n− 1 and i2 6≡ i1 + 1 (mod n)

− (n− 2)!

n− 1
if j1 6= n, j2 = n− 1 and i2 ≡ i1 + 1 (mod n)

(n− 3)!

n− 1
if j1 6= n, j2 = n− 1 and i2 6≡ i1 + 1 (mod n)

(n− 2)(n− 2)!

n− 1
if j1 = n, j2 = n− 1 and i2 ≡ i1 + 1 (mod n)

− (n− 2)!

n− 1
if j1 = n, j2 = n− 1 and i2 6≡ i1 + 1 (mod n).

• If j1 = n− 1 and j2 6= n, or j1 6= n− 1 and j2 = n, or j1 = n− 1 and j2 = n,

[ĥτ(n−2,2)
]ij =



− (n− 2)!

n− 1
if j1 6= n− 1, j2 = n and i1 ≡ i2 + 1 (mod n)

(n− 3)!

n− 1
if j1 6= n− 1, j2 = n and i1 6≡ i2 + 1 (mod n)

− (n− 2)!

n− 1
if j1 = n− 1, j2 6= n and i1 ≡ i2 + 1 (mod n)

(n− 3)!

n− 1
if j1 = n− 1, j2 6= n and i1 6≡ i2 + 1 (mod n)

(n− 2)(n− 2)!

n− 1
if j1 = n− 1, j2 = n and i1 ≡ i2 + 1 (mod n)

− (n− 2)!

n− 1
if j1 = n− 1, j2 = n and i1 6≡ i2 + 1 (mod n).

Proof. We proceed as in the proofs of Propositions 7 and 8, by computing ĥτ(n−2,1,1)
with

Equation (13). In the subtraction,
∑
σ[τ(n−2,1,1)(σ)]ij is the number of permutations

such that σ(j1) = i1 and σ(j2) = i2. There are (n − 2)! permutations satisfying this
condition, then
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1

n− 1

∑
σ

[τ(n−2,1,1)(σ)]ij =
(n− 2)!

n− 1
. (21)

Regarding
∑
σ fA′(σ) · [τ(n−2,1,1)(σ)]ij , note that fA′(σ) · [τ(n−2,1,1)(σ)]ij = 1 if and

only if σ satisfies the following system of equations:
σ(n− 1) ≡ σ(n) + 1 (mod n),
σ(j1) = i1,
σ(j2) = i2.

(22)

Similarly to the proofs of Propositions 7 and 8, there are different cases. Since all
the cases can be calculated using basic combinatorics, we only develop the third and
forth as an example (we skip the first and second ones because they are very similar to
those explained in the proof of Proposition 8).

• If {j1, j2} ∩ {n− 1, n} = ∅,

– If |i1 − i2| ≡ 1 (mod n),∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij =
(n− 3)!

n− 1
.

– If |i1 − i2| 6≡ 1 (mod n),∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = −2(n− 4)!

n− 1
.

• If j1 = n and j2 6= n− 1, system (22) becomes
σ(n) + 1 ≡ σ(n− 1) (mod n),
σ(n) = i1,
σ(j2) = i2.

(23)

– If i2 ≡ i1 + 1 (mod n),
System (23) is incompatible because

σ(j2) = i2 = i1 + 1 = σ(n) + 1 ≡ σ(n− 1) (mod n).

Then, j2 = n− 1, which is a contradiction. Therefore,∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = 0.

– Otherwise,
σ(n), σ(n− 1) and σ(j2) are fixed and the rest of the elements can be arbitrar-
ily reordered. So the number of permutations that satisfy system (23) is the
number of permutations that fix 3 elements, that is,∑

σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = (n− 3)!.

• If j1 6= n− 1 and j2 = n,
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– If i1 ≡ i2 + 1 (mod n), ∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = 0.

– Otherwise, ∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = (n− 3)!.

• If j1 = n− 1 and j2 6= n− 1,

– If i1 ≡ i2 + 1 (mod n), ∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = 0.

– Otherwise, ∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = (n− 3)!.

• If j1 6= n and j2 = n− 1,

– If i2 ≡ i1 + 1 (mod n), ∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = 0.

– Otherwise, ∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = (n− 3)!.

• If j1 = n and j2 = n− 1,

– If i2 ≡ i1 + 1 (mod n), ∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = 0.

– Otherwise, ∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = (n− 3)!.

• If j1 = n− 1 and j2 = n,

– If i1 ≡ i2 + 1 (mod n),∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = (n− 2).

– Otherwise, ∑
σ

fA′(σ) · [τ(n−2,1,1)(σ)]ij = 0.
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The result stated in the proposition follows from subtracting the value calculated
in (21) to

∑
σ fA′(σ) · [τ(n−2,1,1)(σ)]ij , as indicated by Equation (13).

Corollary 2. The rank of ĥτ(n−2,1,1)
is 2.

Proof. A way of proving that a matrix has rank 2 is by showing that the linear space
spanned by its columns has dimension 2. We take this path by defining two column
vectors v and w which can generate any of the columns of ĥτ(n−2,1,1)

. Before defining
v and w, note that, independently of the size of ĥτ(n−2,1,1)

, there are only 7 different
columns, determined by the following conditions on j = (j1, j2):

1. {j1, j2} = ∅.

2. j1 = n− 1, j2 6= n.

3. j1 6= n− 1, j2 = n.

4. j1 = n− 1, j2 = n.

5. j1 = n, j2 6= n− 1.

6. j1 6= n, j2 = n− 1.

7. j1 = n, j2 = n− 1.

However, it is easy to see that, actually, there are only 3 types of columns, if we
consider proportional columns to be equivalent.

1. Columns satisfying {j1, j2} = ∅ are proportional to z defined as

zi =


1 if |i1 − i2| ≡ 1 (mod n)

− 2

n− 3
if |i1 − i2| 6≡ 1 (mod n).

2. Columns satisfying j1 = n− 1 and j2 6= n, or j1 6= n− 1 and j2 = n, or j1 = n− 1
and j2 = n are proportional to v defined as

vi =


1 if i1 ≡ i2 + 1 (mod n)

− 1

n− 2
if i1 6≡ i2 + 1 (mod n).

3. Columns satisfying j1 = n and j2 6= n− 1, or j1 6= n and j2 = n− 1, or j1 = n and
j2 = n− 1 are propotional to w defined as

wi =


1 if i2 ≡ i1 + 1 (mod n)

− 1

n− 2
if i2 6≡ i1 + 1 (mod n).

It could seem, then, that the columns of ĥτ(n−2,1,1)
are spanned by three vectors,

namely v, w and z; but z is a linear combination of v and w. Indeed,

z = (v + w) · n− 2

n− 3
.
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It follows that ĥτ(n−2,1,1)
is rank-2, since its columns can be expressed as linear

combinations of 2 vectors: v and w.

Proposition 10 (FT of the indicator fA′ ). The FT of fA′ as defined by Equation (8) satisfies

1. f̂A′ρ(n)
6= 0,

2. f̂A′ρ(n−1,1)
= 0,

3. f̂A′ρλ has rank one for λ = (n− 2, 2), (n− 2, 1, 1).

Proof. 1. We have seen this in Proposition 6.

2. We know that ĥτλ = 0 for λ = (n) (Proposition 6) and for λ = (n−1, 1) (Proposition
7). We can see, thanks to the decompositions of the permutation representations
of Equation (7), that ĥτ(n−1,1)

is equivalent to the direct sum of ĥρ(n)
and ĥρ(n−1,1)

.
Since ĥτ(n−1,1)

= 0 and ĥρ(n)
= 0, we conclude that ĥρ(n−1,1)

= 0.

3. In the previous step, we have seen that ĥρ(n)
= 0 and ĥρ(n−1,1)

= 0, then the de-
composition of ĥτ(n−2,2)

is reduced to:

ĥτ(n−2,2)
≡ ĥρ(n)

⊕ ĥρ(n−1,1)
⊕ ĥρ(n−2,2)

⇐⇒ ĥτ(n−2,2)
≡ ĥρ(n−2,2)

⊕ 0⊕ 0.

We have proved in Corollary 1 that ĥτ(n−2,2)
is rank-one, then, since the only non-

zero component of ĥτ(n−2,2)
is ĥρ(n−2,2)

, it has to be rank-one too.

The only non-zero components in the decomposition of ĥτ(n−2,1,1)
in terms of the

irreducible representations are ĥρ(n−2,2)
and ĥρ(n−2,1,1)

, that is

ĥτ(n−2,1,1)
≡ 0⊕ 0⊕ 0⊕ ĥρ(n−2,2)

⊕ ĥρ(n−2,1,1)
.

ĥρ(n−2,2)
has rank 1 and ĥτ(n−2,1,1)

rank 2 (see Corollary 2). Then, ĥρ(n−2,1,1)
must

have rank one too.

f̂A′ρλ = ĥρλ , except for λ = (n), which means that their rank properties are the
same, for any coefficient λ 6= (n). This concludes our proof.

Having proved Propositions 4 and 10, the proof of Theorem 4 in section 5.3 follows
the same pattern as the proof of Theorem 3 presented in section 5.2. This is why we
have omitted this proof. On the other hand, to prove Theorem 5, it suffices to take
into account two pieces of information. The first element to take into account is the
characterization of the Fourier coefficients of the TSP given in Theorem 4. Secondly,
Rockmore et al. (2002) proved that if the distance matrix of the QAP is symmetric, the
objective function is built from (n), (n − 1, 1), and (n − 2, 2) components. This implies
that in the case of an STSP function f , f̂λ = 0 if λ = (n− 2, 1, 1).

B isLOP and isTSP functions

In this section, the details of the code of the experiments mentioned in Section 5 are
explained.
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B.1 isLOP function

The aim of isLOP is to check whether a function f : Σn → R corresponds to an LOP
or not. Given a set of objective function values, it specifically checks whether there
exists a matrix A such that f is the objective function of an LOP. Assume that there
exists a certain ordering among the permutations of size n, which means that they are
indexed from 1 to n!. Then, we can write Σn = {σ1, σ2, σ3, . . . , σn!}. Our question can
specifically be phrased as follows: given certain objective function values v1, v2, . . . , vn!,
does a matrix A = [aij ] ∈ Rn×n exist such that the LOP function f obtained with input
matrix A satisfies f(σl) = vl, for l = 1, . . . , n!? This is the same as wondering whether
there exists A such that

vl = f(σl) =

n−1∑
j=1

n∑
i=j+1

aσl(i)σl(j), l = 1, 2, . . . , n! (24)

Equation (24) can be expressed as a linear system, by performing a few operations:

vl =

n−1∑
j=1

n∑
i=j+1

aσl(i)σl(j) =

n∑
s=1

n∑
t=1

mst(σl)ast, (25)

with mst(σl) =

{
1 if σ−1

l (s) > σ−1
l (t)

0 otherwise.

Equation (25) can be further transformed by mapping the double indices st to a
single index r, by using the following relation:

r = t+ (s− 1) · n.

So, by setting ãr = ast and m̃lr = mst(σl), Equation (25) can be rewritten as a linear
system:

vl =

n2∑
r=1

m̃lrãr, (26)

with

m̃lr =

{
1 if σ−1

l (s) > σ−1
l (t)

0 otherwise.
(27)

Since ã1, ã2, . . . , ãn2 are the unknown variables, by defining M̃ = [m̃lr] and v =
[v1v2 · · · vn!]

T , one can know if the system defined by Equation (24) has a solution (that
is, if the given values v1, v2, . . . , vn! are the objective function values of an LOP) by
knowing if the following linear system is solvable:

M̃x = v.

Note that M̃ ∈ Rn!×n2

is not square. A way of tackling this problem is by finding
the least-squares solution. Thus, we solve the problem

min
x∈Rn2

||M̃x− v||.
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If there exists x such that the norm is 0, then we have found the coefficients of
the input matrix of the LOP, and the answer is positive. This works theoretically, but,
since the problem is solved computationally, one has to establish a threshold to check
whether the norm is approximately 0. If the norm definitely is non-zero, v1, v2, . . . , vn!

cannot be the objective function values of an LOP. Algorithm 1 summarizes the pro-
cedure. A given ordering among permutations is assumed (we used the one given by
SnFFT Julia package (Plumb et al., 2015)).

Algorithm 1 Pseudocode of isLOP
Input: v1, v2, . . . , vn!

Output: isLOP
Build matrix M̃ = [m̃lr], as described by Eq. (27)
Solve r = minx∈Rn2 ||M̃x− v||
isLOP = (r == 0)
return isLOP

B.2 isTSP function

isTSP is the twin function of isLOP, and it checks whether a function f : Σn → R cor-
responds to a TSP or not. Assume again that there exists a certain ordering among
the permutations of size n, so Σn = {σ1, σ2, σ3, . . . , σn!}. Then, our question can
specifically be phrased as follows: given certain values v1, v2, . . . , vn!, does a matrix
A = [aij ] ∈ Rn×n exist such that the TSP function f obtained with input matrix A satis-
fies f(σl) = vl, for l = 1, . . . , n!? This is the same as wondering whether there exists A
such that

vl = f(σl) = aσl(n)σl(1) +

n−1∑
i=1

aσl(i)σl(i+1), l = 1, 2, . . . , n! (28)

Similarly to the case of the LOP, Equation (28) can be expressed as a linear system,
by performing a few operations:

vl = aσl(n)σl(1) +

n−1∑
i=1

aσl(i)σl(i+1) =

n∑
s=1

n∑
t=1

mst(σl)ast, (29)

with mst(σl) =

{
1 if σ−1(s) + 1 ≡ σ−1(t) (mod n)

0 otherwise.

Equation (29) can be further transformed by mapping the double indices st to a
single index r, by using the same relation as for isLOP:

r = t+ (s− 1) · n.

So, by setting ãr = ast and m̃lr = mst(σl), Equation (29) can be rewritten as a linear
system:

vl =

n2∑
r=1

m̃lrãr, (30)

with
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m̃lr =

{
1 if σ−1(s) + 1 ≡ σ−1(t) (mod n)

0 otherwise.
(31)

Since ã1, ã2, . . . , ãn2 are the unknown variables, by defining M̃ = [m̃lr] and v =
[v1v2 · · · vn!]

T , one can know if system (28) has a solution (that is, if the given values
v1, v2, . . . , vn! are the objective function values of a TSP) by knowing if the following
linear system is solvable:

M̃x = v.

Note that M̃ ∈ Rn!×n2

is not square. A way of tackling this problem is by finding
the least-squares solution. Thus, we would like to solve the problem

min
x∈Rn2

||M̃x− v||.

However, this cannot be directly solved, unlike the case of the LOP (see section
B.1), because matrix M̃ is never full-rank. This happens because there are many per-
mutations that represent the same solution, e.g, for n = 4, (1234) and (3412). So, there
are many rows of M̃ that are repeated. In order to solve the least-squares problem, the
repeated rows have to be removed. Before removing them, however, it is necessary to
check if permutations representing the same solution share the same objective function
value. If this does not happen, then we can assure, without solving the least squares,
that v1, v2, . . . , vn! cannot be generated by a TSP. In this intermediate step, one has to
take into account whether we are considering the symmetric or the non-symmetric TSP,
because the number of equivalent permutations depends on the case. After having re-
moved the redundant rows, if the objective function values are consistent (that is, if
equivalent solutions share the same objective function values), then the least squares is
solved on the reduced matrix.

Algorithms 2 and 3 summarize the procedure. A given ordering among permu-
tations is assumed again (the one given by SnFFT Julia package (Plumb et al., 2015)),
and permutation to index(τ) is the function that returns the index of τ according to
the given ordering. In Algorithm 3, representative(σ) is a function that computes
a representative of the equivalence class of σ. That is, among all the permutations
that encode the same solution as σ, a single one is chosen to represent the whole
group. Note that this function varies depending on whether we are working with the
symmetric or the non-symmetric version of the TSP and, what is more, this is the only
part of isTSP that differs between the symmetric and the non-symmetric cases.
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