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“Our ignorance can be divided into problems and mysteries. When we 

face a problem, we may not know its solution, but we have an insight, 

increasing knowledge, and an inkling of what we are looking for. 

When we face a mystery, however, we can only stare in wonder and 

bewilderment, not knowing what an explanation would even look 

like.” 

Noam Chomsky 

Abstract:  The collaboration between the areas of computation and the biological sciences in the last 

two decades has changed in essential ways the scope and methods of research in their shared field. 

In this chapter we describe two fundamental principles: Computational Equivalency; and the 

Suboptimal Paradigm of Evolution. These principles permeate current research in computation and 

biology. We illustrate these principles with three examples: animal behavior; plant behavior; and 

human interaction. These examples are described formally by means of computational languages. 

These descriptions are designed to provide the reader with a concrete framework where these and 

similar ideas could be studied, tested, and developed. The computational descriptions of these 

systems are simple and easily accessible to readers. This accessibility makes appropriate the 

introduction of these ideas in the traditional school curriculum. Our current students are the future 

custodians of our society. They need novel ideas to respond to the novel challenges of the modern 

society. 

• Keywords: Computational Models, Structured Complex Systems, Theory of the Mind, Animal

Behavior, Plant Behavior, Human Interaction, STEAM Education

1 - Introduction 

This chapter reviews some of the fundamental ideas behind the close cooperation between the 

formal sciences of theoretical computer science and numerical computation, and the biological 

sciences of plant science, neuroscience and behavior. It is intended as a general overview for an 

inquiring reader with a general scientific background. It places special interest in the description of 

real-living systems by means of computational systems. These systems are designed to be of easy 

comprehension by readers that are not necessarily trained in computational languages. For this 

purpose, we have selected two computational languages, Snap and Scratch, which use a simple 

graphical interface [1-4.]  

The simplified representation of living processes, and the description of their behavior with simple 

computations, makes possible the integration of these models in the curriculum of our schools. Our 
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society has recognized the need to update the current educational system in order to prepare our 

citizens to the challenges of the modern world. One important group of academic initiatives plans to 

integrate in the classroom, along with the traditional core subjects of mathematics and sciences, the 

new areas of technology, engineering and the arts. These initiatives are grouped under the labels of 

STEM or STEAM initiatives [5-9.] 

The chapter begins with a section dedicated to the introduction of two general principles of 

computation and evolutionary biology. These principles will serve as guides in the study and 

assessment of other novel ideas revealed in the chapter. These principles are: the Computational 

Equivalency of Systems; and the Suboptimal Paradigm of Evolution. 

The rest of the chapter is organized into three sections. The first case involves the simulation of the 

motion patterns of a small worm called c-elegans. The objective of this simulation is to identify the 

relationship between its simple neural system and the resulting complex behavior. The second 

example explores the study of the complex distribution of the sunflower seeds and its relationship 

with two concepts: the Fibonacci sequence, and the golden ratio. The objective of this study is to 

identify how a simple living structure can create a complex geometric pattern. Finally, the third 

example studies the simulation of the complex patterns in the dynamics of a pandemic using a small 

set of computational systems based on the intuitive ideas of how pandemics appear, expand, contract 

and disappear. 

In this chapter we will use several computational models to implement computational ideas and three 

living systems. We will use two programming environments: MIT’s Scratch, and Berkeley’s Snap. 

These two programming environments are the direct result of STEAM initiatives in the US. Although 

the ideas and systems of this chapter will be implemented with these programming environments, it 

is not necessary to have a background in programming to have a general understanding of these ideas 

and systems. Those with background in computer science will be able to follow in detail the technical 

aspects of the implementations. 

Snap and Scratch will be used to illustrate the concept of Computational Equivalency, some artificial 

c-elegance worms, a dynamic sunflower, and a collection of 100 citizens under study that will help 

device optimal policies to combat the spread of a pandemic. All programs referenced in this chapter 

are accessible in the links provided throughout the chapter. In addition, these links include animations 

of their dynamic processes. In this chapter will include static figures that are screen shots of these 

dynamic processes. These static figures cannot, of course, show the complete dimension of these 

dynamic systems. 

These programming environments use a graphical representation of the code. This allows readers to 

easily understand the processes involved in the behaviors of the living processes simulated. In 

addition, these computational environments provide researchers the opportunity to test, 

manipulate, and verify their ideas.  

 

2 – Master Guidelines in the Computational Study of Evolutionary Systems  

In this section we briefly introduce two principles that are relevant in the study of the computational 

behavior of living systems. We call the first principle the Computational Equivalency of Systems. Living 

systems exhibit behaviors of an apparent great external complexity. This leads to the intuition that a 



complex internal control system must be required to explain this phenomenon. This intuition is often 

incorrect and leads researchers in wrong directions. As we will see later in the examples of the motion 

patterns of the c-elegans, or the seed distribution of the sunflower, their external complex behavior 

seem to lead us to search for complex control structures. However, the simple neural system of the 

c-elegans precludes the existence of such complex computational control. Even more dramatically, 

the absence of a neural system in the sunflower elevates to the level of mystery the process by which 

a plant can compute the location of the seeds in order to create complex patterns of radial spirals.  

The concepts outlined in this chapter have their origins in ideas developed during the twentieth 

century in the areas of computation and information. First, we find the Theory of Computation, 

developed by Alan Turing. It established that complex tasks can be implemented through 

computation, and that computation can be formally studied and developed [10.] Secondly, in the area 

of Information Theory, Claude Shannon developed concepts and procedures to formally describe the 

tasks of communication and computation in terms of information [11.] A third area relevant to the 

topics of this chapter includes the Computational Theory of the Mind, developed by Hilary Putnam 

and his colleagues [12.] 

The principle of Computational Equivalency establishes that two systems are equivalent if they are 

functionally equivalent. If two systems behave equally under similar circumstances, regardless of 

their internal computational complexity, they are equivalent.  

Let us apply this principle to the patterns of the seeds in the sunflower. We are interested in 

researching the nature of the sunflower and the systems that controls it; we call this real system S0. 

We can first create a complex computational system, S1, because we assume that the real system is 

complex. This complex system could be based on a distribution of radial spirals with complex 

mathematical equations that reproduces the pattern of the real sunflower. Alternatively, as we will 

see later in the chapter, we can create a simple computational system, S2, because we assume that 

the real system could be simple. Let’s assume that the simple system also is able to reproduce the 

pattern of the real sunflower. Computationally, all three systems, the unknown real system S0, and 

the artificial systems S1 and S2, one complex, the other simple, are equivalent: the three systems 

produce the same pattern of seed distribution. Because the system we are trying to model is a 

sunflower, a plant, its computational capabilities are limited. Therefore, it is more likely that the 

simple artificial system S2 resembles more closely the real system S0, than the alternative complex 

artificial system S1. 

The following example introduces the computational capabilities of simple living systems. The goal of 

this example is to show that complex arithmetic operations, such as exponentiation and 

multiplication, could be implemented by very simple systems. We will limit the capabilities of these 

systems to count up, or increment, and count down, or decrement. We will note that it is unlikely 

that living systems implement exponentiation operations; the goal of this discussion is to introduce 

methodologies that show that it is possible.  

Returning to the idea of Computational Equivalency, we can observe that a plant, a tree for example, 

has some means of computation. For example, it can keep track of its age by adding each year one 

layer to its trunk. Humans can determine the age of the tree by counting the rings. We call this 

operation of adding one to an accumulated value ‘the operation increment.’ In a similar way we could 

imagine natural processes that would implement ‘the operation decrement.’ Increment and 



decrement are basic arithmetic operations. We could call them ‘counting up,’ and ‘counting down.’ 

Children learn these two operations first: they are able to recite 1, 2, 3, etc., or … 3, 2, 1. 

Let’s now think of other more complex arithmetic operations, such as addition, multiplication and 

exponentiation. Figure 1 shows three examples where these operations are implemented by systems 

that can only increment or decrement, count up, or count down. These three short scripts transform 

recursively a complex task into many simple operations. (In Snap and Scratch, only the color green 

blocks implement any arithmetic operations.) We can see that in these scripts, the only green blocks 

include the operations comparing, adding one, and subtracting one. 

This principle of computational equivalency helps us understand how it is possible to observe complex 

behaviors in simple systems. It also points us in the direction of where we may find the answers to 

our research when analyzing the complex behavior of simple systems.  

 

Figure 1. Three complex arithmetic operations implemented with simple Increment and Decrement 

The second principle, the Suboptimal Paradigm of Evolution, establishes that the systems created in 

nature by the process of evolution by natural selection, are by nature suboptimal. Evolution proceeds 

invariably forward. New systems, new solutions, are obtained by modification and selection of old 

ones. Evolution cannot return to the past and start anew. This is the reason the forearm of vertebrates 

contains two main components, radius and ulna. A better solution would have been to have only one 

component, such as the humerus of the upper arm. The blind spot of the retina and many other 

examples illustrate this principle of the paradigm of suboptimal solutions [13, 14.] 

This principle leads us to the conclusion that the formal structural study of natural systems, in 

particular the brain, may suggest the implementations of cognitive tasks in ways that are not optimal. 

The structural study of the brain is very complex. With almost 100 billion neurons, each with 

thousands of synapses, the complete structural description of the human brain is not near. However, 

the functional behavior of the brain at higher levels of abstraction, such as behavior, memory and 

symbol manipulation are much simpler tasks. Therefore, a functional description of the systems of 

the brain, rather than their structural compositions, can provide, in the immediate future, insights 

that are directly applicable to areas such as education, psychology and medicine. By exploring and 

describing the functional capabilities of the brain, we would be able to harvest the cognitive power 



of systems designed by evolution to solve the problems of our evolutionary ancestors, and use them 

to solve our current challenges. 

The following sections of the chapter present three case studies. These are examples found in nature. 

They will be described by means of computational models using the environments Snap and Scratch. 

Table 1 summarizes the computational concepts and principles, fields of science, and the 

programming languages used in their study. 

Table 1. Summary of the case examples described in the chapter 

Case study Science Concepts & 
Computational Principles 

Computational Language 

C. elegans Animal behavior Suboptimal Paradigm  
Neural activity 

Scratch 

Sunflower Plant behavior Paradox of Complexity 
Fibonacci sequence, and 
the golden ratio 

Snap 

Pandemic behavior Human Behavior Computational 
Equivalency 
Dynamics of a pandemic 

Scratch 

 

3 – Brain, Neural Activity and Behavior: analysis of the motion of the c-elegans 

The first example of collaboration of computation and biology describes the connection between 

neural activity and the external behavior of a colony of c-elegans. It is inspired by the work of Dr. 

Cornelia Bargmann, 2012 Kavli Prize in Neuroscience. Dr. Bragmann and her team study the 

mechanisms used by c-elegans for the detection of volatile odorants, and how they affect the motion 

according to whether these chemicals are attractants, indicative of nutrition, or repellents, indicative 

of hostile environments [15-21.]  

The programs and animations corresponding to this example are accessible in this link 

(https://www.ehu.eus/gmm/springer-nature#MaterialoftheExample1). 

The motions used by c-elegans in its exploration of the environment are controlled by a simple 
neurological network. The simplicity of its connectome, the complete neuronal description of its 
brain, is the main reason of selecting c-elegans in this type of studies. However, the simple 
neurological control of its motion produces patterns of behavior, with turns and reversals with 
irregular frequencies that require the probabilistic analysis of these patterns. 
 
A first set of ideas to be tested by this example consisted in providing ever simpler motion control 
systems to a simulated c-elegans, in order to explore the patterns of behavior produced and their 
similarity to actual living creatures.  
 
In addition, some constraints were included in the prototypes. The simulated c-elegans would have 
only limited access to environmental conditions. In particular, for the purposes of moving in the 
environment, the model would be blind: it could only identify obstacles by collision. Initial prototypes 
provided results with very lifelike motion patterns that could be recognized as those of c-elegans or 
small insects. 

https://www.ehu.eus/gmm/springer-nature#MaterialoftheExample1


 
A second set of ideas to be tested by this example consisted in creating complex environments that 
would provide information on how powerful the controls systems were in solving maze traversing 
tasks.   
 
Figure 2 shows the block-type programming code that implements the motion control of two 

simulated c-elegans inside a maze. The complete control system consists of two parallel scripts. The 

script on the left controls the motion of the c-elegans in the absence of collision. It is based on a 

relatively short forward motion before randomly turning. The simple repetitive sequence of short 

forward motion interrupted by random left or right turns constitutes the complete control of motion 

in the absence of collision. The numerical values of the forward motion, 4 steps, and the random 

turns, +/- 30 degrees, were determined by trial and error. In addition, by simulating multiple c-elegans 

with different sets of parameters, one could compare their performance, and in a process analogous 

to evolution by natural selection, select those that outperformed their competitors. 

The script on the right is the complete motion control for the case of collision. The strategy to follow 

when encountering a wall (represented by the blue-grey color) consisted in moving straight back a 

short distance from the wall, and turn a set angle. These two parameters were also set by trial and 

error and are candidates to modification and selection according to performance or fitness. 

 

Figure 2. Control systems for the motion of simulated c-elegans 

 

Figure 3 represents a computer screen shot of a simulation already in progress. Two c-elegans, 

represented by two small blue dots move inside a maze with 16 separate compartments. To aid in 

the analysis, two traces, blue and pink, were created to mark the progress of the simulated creatures. 

It can be observed that, perhaps against intuition, the simple motion control system provides great 

ability to navigate throughout the maze, often colliding against the walls, but also able to move from 

compartment to compartment in the maze. 

These simulations allow us to visualize the complex external behavior created by a simple control 

system. It also allows the probabilistic study of parameter sets for the controls, and how these affect 

the overall performance: Is it possible to find all 16 compartments of the maze is a given time period? 

What are the tradeoffs between speed and collision? Etc.  



 

Figure 3. Two c-elegans in a maze: comparing the performance of motion parameters 

 

4 – Computation without a Brain: Sunflower, Fibonacci sequence and Golden Ratio  

The example described in this section studies the seed distribution of the sunflower, with its complex 

and aesthetic patterns, and its relationship to computational systems. Because the seed distribution 

of a sunflower is very complex and it has direct relation to two mathematical ideas (the Fibonacci 

sequence, and the golden ratio) it will be used to illustrate the phenomenon called the Paradox of 

Complexity. This paradox establishes that complex behavior is often the result of simple controls 

systems [22-28.] 

The programs and animations corresponding to this example are accessible in this link 

(https://www.ehu.eus/gmm/springer-nature#MaterialoftheExample2). 

Figure 4 shows the pattern of seed distribution of a sunflower. It can be seen by simple inspection 

two sets of spiral curves, one turning right, the other turning left. A closer inspection also shows that 

the patterns of spirals appear with different curvatures. In addition to the aesthetic symmetry of the 

patterns created, the numbers of spirals, left and right, follow the sequence of the Fibonacci 

sequence: 21, 34, 55, etc. 

https://www.ehu.eus/gmm/springer-nature#MaterialoftheExample2


 

Figure 4. Sunflower patterns and count of different types of spirals (21 green, 55 red, 34 pink) 

The Fibonacci sequence follows a simple rule: each number in the sequence is obtained by adding the 

two preceding numbers. The first two numbers of the sequence are zero and one. This simple rule 

generates the sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, etc. 

The distribution of the seeds in the sunflower also presents a particular geometric property that 

involves the golden ratio. The golden ratio is an irrational number with the value 1. 61803… 

The history of the golden ratio [29-31] is full of interesting facts. It involves the study on the part of 

the ancient Greeks of the dimensions of the pentagon and the dodecahedron. It also represents an 

ideal ratio between quantities in architecture, human proportions, etc. 

The golden ratio is also equal to the limit of the ratio of two consecutive numbers of the Fibonacci 

sequence. The higher in the sequence (21/13, 34/21, 55/34, 89/55, etc.) the closer the ratio 

approximates the irrational golden ratio. 

As final commentary on the golden ratio, it is the most irrational number of all possible irrational 

numbers. An irrational number cannot be expressed as a ratio of two integers, or as a finite sum of 

ratios, but it can be approximated by them. The more elements of the approximation that are 

included, the better the approximation. In this sense, the golden ratio is the irrational number that 

requires more elements of the approximation for the same accuracy. 

All these commentaries regarding the patterns of distribution of seeds in the sunflower and their 

relationship to the Fibonacci sequence and the golden ratio seem to anticipate a very complex system 

controlling the sunflower in order to create such patterns.  

We present first a computational implementation of a simulated sunflower. Figure 5 shows the 

complete, and very simple, computational system that distributes 800 seeds in a pattern the 

replicates natural sunflowers. The complete control includes only two scripts. The script on the left 

creates in a loop 800 distinct seeds. The only relevant process is that after one seed is created, a 

simple rotation of 360/1.61803 degrees is implemented, and the process of creation and rotation is 

repeated. The expression is presented in this form for clarity, to signify that the turn is a complete 



circle divided by the golden ratio. This first script distributes the stems from which the seeds will 

grow.  

The second script, which is even simpler, is the pattern of movement of each seed after it has been 

created. The motion is a simple constant movement forward. One can think that this motion 

represents the motion of each stem as it is pushed outward when the seeds grow in size. 

 

Figure 5. Complete computational control of the seed distribution in sunflowers 

 

Figure 6 shows a screen shot of the process of seed distribution of the sunflower. All seeds are created 

at the center of the flower. The orientation of each seed is determined by a turn of 222.5 degrees 

(360/golden ratio) from the previous seed. After the seeds have been created, their motion consists 

of a simple uniform and rectilinear forward movement. 

 

Figure 6. Screen shot of the dynamic distribution of the seeds of a sunflower 

There are several conclusions that can be derived from this process. There are also some fundamental 

questions. The first conclusion is that it is possible to construct a dynamic distribution of seeds in a 

way that replicates the complex patterns of real sunflowers with a very simple computational system. 

This illustrates the Paradox of Complexity, or the counterintuitive fact that a complex behavior 

requires a simple generative system. The second conclusion is that this phenomenon of complex 

behavior with simple generative systems could be norm in nature, rather than the exception. This last 

conclusion may direct new research in novel directions where the hypotheses to be examined are 

based on simple control systems, rather than complex ones. 

A fundamental question remains: how did the sunflower arrive to ‘discover’ the golden ratio, the most 

irrational of all irrational numbers in the world of mathematics? To help address this question it may 



be useful to turn to the fundamental principles of evolutionary biology. The 13-year and 17-year 

periodical cicadas also point to an apparent mathematical puzzle in nature [32, 33.] How did these 

cicadas arrive to ‘discover’ the mathematically complex concept of prime numbers, such as 13 and 

17? The evolutionary answer suggests that different cicadas evolved to live underground different 

number of seasons. Those who evolved to live underground a prime number of years found that, 

when they emerged in the springtime, encountered less competition, which favor their reproduction. 

In a similar way, during evolutionary time, different types of sunflowers evolved to distribute their 

seeds with a different angle of turn. The angle of turn that provided an optimum size for growth 

produced the largest seeds. This may have attracted more birds that would feed on them, and carry 

in their digestive systems the seeds that would expand their geographical reach often and far. 

 

5 – Complex systems ruled by simple norms: Pandemics and policies of confinement and social 

distancing 

The worldwide pandemic caused by Covid19 has made familiar to the general population some of the 

strategies that can be used to delay and even reverse its expansion. Two of the most widely used 

strategies include confinement, requiring the citizens to remain isolated in their homes, and social 

distancing, eliminating contact and prolonged close proximity [34-38.]  

The programs and animations corresponding to this example are accessible in this link 

(https://www.ehu.eus/gmm/springer-nature#MaterialoftheExample3). 

Technical journals and websites have offered computer simulations that analyze the effects of such 

policies and their effects in the general population. Even the general media, such as the New York 

Times or the Washington Post, offered in their online publications simulation models that the readers 

could manipulate in order to compare the effects of alternative confinement and social distancing 

policies.  

The familiarization of the general public with this type of computational tools is welcome because 

they describe the modern tools that experts use in assessing the effects of their decisions. The 

objective of this section is to promote the study of these tools in schools. The curriculum of our school 

systems continues teaching traditional subjects such as Euclidean and Cartesian geometry, 

arithmetic, basic algebra and trigonometry. However, the last decades have produced large sets of 

numerical methods that allow us to approach very complex systems, such as pandemics, that were 

outside the possibility of analysis only a few years ago. One could argue that these new mathematical 

tools are of great importance, but also of great cognitive complexity, and could not be studied in the 

school environment. In this section we describe one such system of analysis of pandemic and, with 

its illustration and description, we convey the message that its cognitive complexity is within the 

capacities of our students, and therefore it should be included in the current school curriculum. This 

philosophy to modernize the current school curriculum reflects the main goal of STEAM initiatives 

around the world.  

We will illustrate these ideas by describing how a simple programming environment such as MIT’s 

Scratch performs all the operations required to solve the apparent complex problem of a pandemic. 

https://www.ehu.eus/gmm/springer-nature#MaterialoftheExample3


We begin by describing the major characteristics of the simulation. We will represent a community 

of 100 citizens under study as a set of 100 circles that may freely move on a stage that represents 

their community. We will color code the citizens in order to represent their health status: blue means 

healthy, pink means infected, and green means recovered. This is represented in Figure 7. 

 

Figure 7. Screen-shot of the evolution of infected persons in a social group 

Initially, 99 citizens will have a healthy status, blue color. One of the citizens will be infected with the 

virus, pink color. As the citizens move about their town, they may get in contact with each other. In 

that case, a healthy citizen will become infected by the virus if the contact is with a carrier person. 

From the moment a citizen becomes infected, it enters a period of recovery, and its status is changed 

to pink color. After the period of recovery is completed, the health status changes to recovered: green 

color. However, during the recovery period the infected citizen will transmit the virus to those citizens 

with whom they enter in contact. For simplicity, in this simulation, recovered citizens cannot get 

infected again, nor can they infect other people. 

The simulation includes an orange graph, see Figure 7, that represents the total number of infected 

citizens throughout the period of pandemic. One of the parameters that is studied in this simulation 

is the percentage of citizens that is required to be in confinement (stay-at-home.) By changing the 

value of this parameter, the simulation will reflect the corresponding evolution, orange graph, of the 

number of infected people at any time. The goal of the confinement policy is to flatten the curve so 

that at any time the total number of infected people is below the resources available in hospitals and 

the health system in general. 

Figure 8 shows the process of initializing all the citizens in the simulation. The first 99 citizens are 

created with a health status of healthy. Two additional variables are set: the time of being sick is 

initialized to zero, and time to recover in the event of becoming sick is set to 100. Finally, in this script, 

a single citizen is created with a health status of sick and the corresponding pink color. This citizen 

will be patient-0 and the origin of the pandemic. 



 

Figure 8. Code to initialize the program to simulate a pandemic 

In Figure 9 we observe that when the 99 health citizens are created, they are positioned randomly 

somewhere in the geography of their city. Later, we select randomly whether they are confined or 

not, according to the level stablished by the analyst. This value is represented by the variable stay-at-

home%. 

 

Figure 9. Code to setup the program and determine the persons that will stay at home 

After this process of initialization, the life of the citizens is simulated as the interactions of 100 

individual citizens that move in the geography of their city or stay at home. Figure 10 shows that each 

citizen follows a repetitive set of three phases. First, if the citizen is free to move (is not a stay-at-

home person) it will follow the script to take a step, to move about. Then, the functions of check if 

healthy or check if sick are implemented. 

 

Figure 10. Simple three phase process of a citizen 

 

The left script of Figure 11 shows that when a person is free to move, they will move with a random 

pattern (take-a-step function.) Free-to-move citizens are susceptible to be infected if in their paths 



they get in contact with an infected person. A stay-at-home person also can infect others, or be 

infected by persons, that happen to visit him in his confinement. These possibilities and their 

consequences are controlled by the functions check healthy and check sick.  

The center script of Figure 11 shows the process by which a healthy person becomes infected by the 

virus and its consequences. It was described earlier that only healthy persons can be infected in this 

simulation. That will occur when they get in touch with an infected person (touching color pink.) In 

that case, the health status of the person will be changed to sick, and its color will change from blue 

to pink. The period of recovery will then start. Also, the health authorities will receive information of 

this case (change sick by 1) and this will update the orange graph that represents the current number 

of infected citizens. 

The right script of Figure 11 shows the process followed by the infected persons. Every period of 

analysis, the total time the person has been sick or in recovery is updated (change time sick by 1.) 

When the time being sick surpasses the recovery period, the health status of the person is changed 

to ‘recovered’.  

This is also represented graphically in the simulation by changing its color from pink to green. In 

addition, the health authorities will receive information of this case (change sick by -1) and this will 

update the orange graph that represents the current number of infected citizens. 

 

Figure 11. Definitions of the three main phases: take-a-step, check-healthy, check-sick 

A feature of this program allows the user to modify the parameter of stay-at-home. The range of 0% 

(all citizens are free to move) to 100% (all citizens must remain at home) allows the user to see the 

consequences of the policy by assessing the graph of infected citizens. Figure 12 shows the different 

patterns of the evolution of the pandemic when the stay-at-home policy values are 20% and 70%. 



 

Figure 12. Simulation of the evolution of infected citizens for different of stay-at-home policies 

 

6 - Conclusion 

The study of nature and its biological systems has always been a priority endeavor of the human race. 

The creation of evolutionary biology in the 20th century provided a set of guidelines and paradigms to 

frame research questions in ways that would lead to successful results of investigation. 

Computational Theory, and the Computational Model of the Mind provided the tools to study the 

cognitive and computational processes of living creatures. 

In this chapter we have presented two fundamental principles and three concrete examples that 

illustrate how the formal and biological sciences can collaborate to address old problems with novel 

approaches that will lead to successful discoveries. 

A first conclusion is that, in areas of cognitive and brain research, there is greater possibility of reward 

in studying the functional nature of a systems than in the study of their internal neural structures. 

Evolution responds by nature to a paradigm of suboptimal solutions. Evolution constantly moves 

forward, even if this implies undoing early changes. If the motion of the c-elegans can be described 

by a simple computational process, which is functionally equivalent to that of the real c-elegans, such 

computational model should be adopted. The internal details of its implementation have no effect in 

the study of higher-level systems. An exponential operation can be obtained by many methods that 

are functionally equivalent. The details on how the system obtains the result have no consequence in 

a larger system of which it is a part. 

A second conclusion of this work is that the computational complexity of natural processes will be 

determined by the complexity of its computational control, and not by the complexity of the behavior 

exhibited. This, in turn, suggests that research questions should be framed in terms of the assessed 

computational complexity of the living system. If a sunflower has little potential for computation, the 

processes involved in controlling its behavior will be simple, regardless of the overwhelming evidence 

of its external complexity. 

Finally, complex, non-linear systems, with large number of interacting parts, are susceptible to formal 

study by abstracting the essential elements of each part. Traditional formal sciences were designed 

with the existing lack of computational power of their time. Having made computational power 

readily available at a very low cost, current formal sciences address the study of complex systems by 

focusing on their accurate description, assuming access to almost limitless computational power. The 



study of a real pandemic with very large number of components, complex policies, and multiple 

possible alternatives is only a few levels of complexity above the simple model that was described in 

this chapter, which was designed to serve as an introduction to these paradigms. 

Core Messages: 

• The Computational Model of the Mind, and Evolutionary Biology have 

downgraded century-old mysteries to mere problems. 

• The principle of computational equivalency helps us understand how 

simple systems create complex behaviors. 

• The paradigm of suboptimal solutions promotes the study of the 

functional nature of a system. 

• Natural processes should be defined by the complexity of their 

computational control, and not by the complexity of the behavior 

exhibited. 

• Complex systems are susceptible of formal study by abstracting the 

essential elements of each part. 

• Graphical programming environments allow the description of real-living 

systems with a computational format that is of easy comprehension by 

readers, where they can test, manipulate, and verify their ideas. 
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