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Abstract: Despite the increasing availability of genomic data and enhanced data analysis procedures,
predicting the severity of associated diseases remains elusive in the absence of clinical descriptors. To
address this challenge, we have focused on the KV7.2 voltage-gated potassium channel gene (KCNQ2),
known for its link to developmental delays and various epilepsies, including self-limited benign fa-
milial neonatal epilepsy and epileptic encephalopathy. Genome-wide tools often exhibit a tendency to
overestimate deleterious mutations, frequently overlooking tolerated variants, and lack the capacity to
discriminate variant severity. This study introduces a novel approach by evaluating multiple machine
learning (ML) protocols and descriptors. The combination of genomic information with a novel Variant
Frequency Index (VFI) builds a robust foundation for constructing reliable gene-specific ML models. The
ensemble model, MLe-KCNQ2, formed through logistic regression, support vector machine, random
forest and gradient boosting algorithms, achieves specificity and sensitivity values surpassing 0.95
(AUC-ROC > 0.98). The ensemble MLe-KCNQ2 model also categorizes pathogenic mutations as benign
or severe, with an area under the receiver operating characteristic curve (AUC-ROC) above 0.67. This
study not only presents a transferable methodology for accurately classifying KCNQ2 missense variants,
but also provides valuable insights for clinical counseling and aids in the determination of variant
severity. The research context emphasizes the necessity of precise variant classification, especially for
genes like KCNQ2, contributing to the broader understanding of gene-specific challenges in the field of
genomic research. The MLe-KCNQ2 model stands as a promising tool for enhancing clinical decision
making and prognosis in the realm of KCNQ2-related pathologies.

Keywords: epilepsy; neurodevelopmental disorder; KCNQ; prognosis; machine learning

1. Introduction

Either inherited or de novo mutations in the KCNQ2 gene can result in highly variable
phenotypes ranging from healthy normal to severe infantile epileptic encephalopathy [1].
Individualized therapies and genetic counseling are needed in these patients and fami-
lies and, therefore, early and correct identification of the potential phenotypic severity
of the variant is crucial. Rapid advances in genomic technologies have made research
and clinical sequencing more accessible [2,3], but identifying true phenotypically causal
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variants and assessing the prognosis remain challenging [4]. This challenge is particularly
pronounced for rare diseases and complex pathologies where genetic information alone is
often insufficient [4].

This study focuses on pathologies related to the KCNQ2 gene, which encodes the
voltage-gated potassium channel subunit KV7.2. Initially linked to self-limited neonatal
epilepsy (SeLNE) [5,6], de novo missense KCNQ2 mutations have also been associated
with a more severe phenotype referred to as developmental and epileptic encephalopathy
(KCNQ2-DEE) [7–13]. The clinical phenotype spectrum varies from early neonatal self-
limited seizures and normal neurodevelopmental to neonatal onset intractable seizures
with severe developmental delays with or, unusually, without convulsions [8,9,11,12,14–16].
Early diagnosis and effective treatment are crucial, and, for outcome predictions, an accurate
classification of KCNQ2 missense pathogenic variants is needed [11]. The effective treatment
and the genetic counseling involved in each case must start with the correct identification
of KCNQ2 pathogenic variants. To address this, computational tools, particularly machine
learning (ML), have been applied to predict the pathogenicity of protein variants [17].

Despite relative success in differentiating between severe disease-causing and tolerated
variants in some genes, existing tools are inconsistent in their predictions [18–20], with the
accuracy shown to be gene-dependent [21,22], and do not perform well for the KCNQ2
gene [13,23]. Existing variant effect predictors (VEPs) present limitations in accurately
classifying KCNQ2 missense variants and do not assess the severity of the associated
disease. Notably, these tools tend to mislabel more than 10% of KCNQ2 pathogenic variants
as tolerated and more than 10% of tolerated variants as pathogenic.

This study presents a significant advancement in the accurate classification of KCNQ2
missense variants, overcoming the limitations of existing tools. Accessible at https://
channels.bcb.eus/ (accessed on 21 June 2023), the developed MLe-KCNQ2 model, with its
high sensitivity and specificity, provides a valuable resource for clinicians and researchers.
Notably, this model can assist in anticipating the severity of KCNQ2 pathogenic variants, a
critical aspect for clinical decision making and for early initiation of intervention programs.
Our findings highlight the importance of considering gene-specific factors in developing
accurate ML models for variant classification. We find that leveraging a novel Variant
Frequency Index (VFI) to capture allelic frequency variation and structural information
provides a robust framework for enhancing the classification accuracy in the context of
KCNQ2 missense variants. The methodology of this study, rooted in gene-specific consider-
ations and ML techniques, establishes a transferable framework with broad implications
for genetic variant classification and clinical prognosis.

2. Results

We collected a well-balanced set comprising 554 KCNQ2 variants, where 285 were
characterized by a high likelihood of being tolerated due to their presence in populations
without manifestation of neurological symptoms, or being annotated as “benign” in differ-
ent databases (Supplementary Data). Figure 1 illustrates the spatial distribution of these
tolerated variants (green) along 269 variants labeled as “pathogenic” (red) within the KV7.2
3D structure modeled by AlphaFold2 [24]. Although most databases classify variants as
“pathogenic” or “benign”, we refer to these “benign” variants as “tolerated” to emphasize
the difference between variants which do not cause pathologies in patients and pathological
variants that are related to benign familial neonatal epilepsy or more severe manifestations.

We assessed the predictive capabilities of nearly 80 computational tools using this
dataset (Figure 2 and Supplementary Data) by plotting the percentage of correct assign-
ments for both tolerated and pathogenic variants. Notably, 35 tools annotated more than
90% of the pathogenic variants correctly, whereas only 5 achieved a similar performance
for tolerated variants. Remarkably, none of the tools concurrently annotated more than
90% of the tolerated and pathogenic variants correctly. In fact, the most sensitive tools
for detecting pathogenic variants (KCNQ2_Index [23], DeMag [26], and MAVERICK [27])
are the least sensitive for detecting tolerated ones, while the most sensitive for detecting

https://channels.bcb.eus/
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tolerated variants are the least sensitive for detecting pathogenic ones (CPT1 [28] and
GEMME [29]). Subsequently, we conducted an in-depth investigation into how various ML
algorithms and descriptors could enhance the concurrent improvement in accuracy scores
for both tolerated and pathogenic variants.
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Figure 1. Graphical distribution of the collected variants. (A) Distribution on the AlphaFold2 pre-
dicted structure of a KV7.2 channel tetramer, lateral (left) and upper view (right). The membrane is 
indicated with an orange square in the lateral view. Pathogenic and tolerated variants are colored 
in red and green, respectively. (B) Distribution along the main functional domains of the channel. 
Pathogenic variants are found most abundantly in the voltage-sensing domain (VSD), the pore, the 
first residues of the calmodulin (CaM) interaction domain and the transition between helices B of 
the CaM interaction domain and helix C of the subunit interaction domain (SID). Information about 
extracellular (light blue), transmembrane (pink) and cytoplasmic (orange) segments is shown at the 
bottom. (C) Overview of the study workflow. For phenotypic discrimination, a “Final_Dataset” was 
assembled from RIKEE (92 P, 1 T), LOVD3 (37 P, 6 T), ClinVar (81 P, 9 T), HGMD (59 P), and Ge-
nomAD (269 T), where P stands for “pathogenic” and T for “tolerated”. The training set contains 
206 P variants from the “Final_Dataset”, and 10 T variants from ClinVar and RIKEE. The test set 
consisted of 27 T and 62 P variants from the “Final_Dataset”, distinct from the training set. To bal-
ance the representation of T and P variants during training, 208 variants from PrimateAD [25] (152 
also present in GenomAD), labeled as T, were incorporated into the training set. 

We assessed the predictive capabilities of nearly 80 computational tools using this 
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Figure 1. Graphical distribution of the collected variants. (A) Distribution on the AlphaFold2
predicted structure of a KV7.2 channel tetramer, lateral (left) and upper view (right). The membrane
is indicated with an orange square in the lateral view. Pathogenic and tolerated variants are colored
in red and green, respectively. (B) Distribution along the main functional domains of the channel.
Pathogenic variants are found most abundantly in the voltage-sensing domain (VSD), the pore, the
first residues of the calmodulin (CaM) interaction domain and the transition between helices B of
the CaM interaction domain and helix C of the subunit interaction domain (SID). Information about
extracellular (light blue), transmembrane (pink) and cytoplasmic (orange) segments is shown at
the bottom. (C) Overview of the study workflow. For phenotypic discrimination, a “Final_Dataset”
was assembled from RIKEE (92 P, 1 T), LOVD3 (37 P, 6 T), ClinVar (81 P, 9 T), HGMD (59 P), and
GenomAD (269 T), where P stands for “pathogenic” and T for “tolerated”. The training set contains
206 P variants from the “Final_Dataset”, and 10 T variants from ClinVar and RIKEE. The test set
consisted of 27 T and 62 P variants from the “Final_Dataset”, distinct from the training set. To balance
the representation of T and P variants during training, 208 variants from PrimateAD [25] (152 also
present in GenomAD), labeled as T, were incorporated into the training set.
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Figure 2. (A) Representation of the percentage of correctly assigned labels for tolerated and pathogenic
variants by different tools. A perfect score will be placed on the top right corner (green filled circle).
The yellow filled circle corresponds to the assessment of the MLe-KCNQ2 tool described in this paper.
(Right) Zoom in of the area with correct assignments above 80%, labeling each corresponding tool.
(B) Receiver operating characteristic (ROC) curves showing the relationship between the observed
true and false positive rate for the best performing models highlighted in panel (A). Tables with the
values can be found in the Supplementary Materials (Tables S1–S4).

2.1. VFI Score Comparison

We begin our analysis by examining the impact that different definitions of the VFI
score to capture the effects of allelic variation tolerance on performance. Multiple definitions
can be derived by adjusting the standard deviation of the Gaussian kernel, but determining
the optimal definition for the given problem is challenging a priori. To ascertain the optimal
choice of parameters and to understand the sensitivity of the models’ performance to this
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specific value, we trained several algorithm versions. Each version utilized a VFI score
calculated with Gaussian kernels of varying standard deviations. The results suggest that
the introduction of additional noise by using wider kernels did not degrade the performance
significantly (Table 1). There was a slight trend towards a lower performance as the width
of the Gaussian kernels was increased, which means that as the weight assigned to positions
further away from the central amino acid increases, the performance tends to degrade
slightly. Nevertheless, concentrating most of the weight on only a few amino acids around
the central one comes at the expense of a less statistically robust score, potentially hindering
generalization to unseen data due to the smaller amount of observations used to derive it.

Table 1. Performance of trained models for discrimination between tolerated and pathogenic variants.
Performance scores for the best algorithm trained with each type of VFI score and pLDDT. LR stands
for logistic regression, SVM for support vector machine and RF for random forest.

Algorithm Used
AUC-ROC Balanced

Accuracy Sensitivity Specificity

Mean Sd Mean Sd Mean Sd Mean Sd

VFI (σ = 2) RF 0.987 0.009 0.946 0.022 0.943 0.034 0.951 0.036

VFI (σ = 3) LR 0.985 0.008 0.939 0.021 0.956 0.033 0.924 0.037

VFI (σ = 4) RF 0.982 0.011 0.930 0.026 0.937 0.040 0.923 0.040

pLDDT SVM 0.973 0.015 0.920 0.026 0.908 0.039 0.931 0.041

Regarding the choice of ML model, most tested algorithms demonstrated very sim-
ilar performances, with differences in the AUC-ROC scores of approximately 0.01–0.03
between them. The only exception to this pattern was the naive Bayes algorithm, as it
consistently exhibited a significantly lower performance across all tests. Despite the simi-
larity in performance, certain algorithms tended to outperform others in most instances. In
particular, logistic regression, support vector machine, random forest and gradient boosting
algorithms appeared to be the most suitable models for these types of tasks.

An interesting observation is that, in the particular case of KCNQ2, the pLDDT score
generated by AlphaFold2 is highly correlated with the VFI scores obtained from allele
frequency data, and when plotted against sequence positions, the pattern generated is also
similar to the VFI score, as can be seen in Figure 3A. However, VFI has a higher resolution
compared to pLDDT, meaning that it exhibits a higher position-dependent variance, while
the overall pattern is very similar. Thus, we also tested whether replacing the VFI score with
pLDDT would have a significant impact on the model performance by training another set
of models using only pLDDT instead of VFI.

Models trained using pLDDT slightly underperformed compared to VFI models
(Table 1), but still achieved comparable results without utilizing allelic variation data. This
aspect may be desirable in cases of significant data scarcity. However, when VFI is employed
as a feature, pLDDT provides little additional information and is often disregarded by
the feature selection algorithm as a result of the high correlation between both features.
Considering these results, we selected the models trained using a VFI score with kernels of
a standard deviation of 2. Although the margin is small, these models achieve the highest
scores without using narrow kernels that would reduce their statistical robustness.
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Figure 3. (A) Comparison of VFI scores, which encode the tolerance to variants in each position in the
protein sequence, and the pLDDT score generated by AlphaFold2. (B) Beeswarm plot of the SHAP
scores for each feature used by the best performing algorithm. Each point represents the value of the
feature for a single variant, and the value of the feature is represented in a color scale. The SHAP
values indicate the extent to which they influence the prediction of the model. Positive SHAP values
indicate that this value of the feature influences the algorithm to make a positive prediction, whereas
negative values have the opposite effect. (C) Absolute values of the SHAP scores for each feature,
averaged over all samples in the training set. Higher values indicate a larger average influence on the
prediction of the model.

2.2. Model Analysis

To better understand the inner workings of our models, we examined the features
that had the biggest impact on their predictions, as well as the variants that were most
likely to be misclassified during cross-validation. For a detailed examination of individual
features, our focus was on the top-performing model among those trained—the logistic
regression model utilizing a VFI score with a standard deviation of 2. We quantified
feature importance through Shapley values, employing the SHAP package [30]. Shapley
values offer a reliable measure of feature importance with desirable properties, including a
solid theoretical foundation rooted in game theory, and model agnosticism, enabling us to
compare importance values across different models.

As depicted in Figure 3C, where the mean Shapley values are plotted, the VFI score
is the most relevant feature in determining the prediction of the classifier. Although
individual contributions from the remaining features are relatively modest, their collective
impact remains substantial in shaping the overall model outcome. This observation can
be partially attributed to the categorical nature of many features, which implies that they
do not have a significant effect on the majority of examples’ outcomes. Instead, their role
can be understood as adjustments to the VFI-based predictions, depending on the specific
properties of the mutation.
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This effect can be better observed in the beeswarm graph in Figure 3B, where we
can observe that, when the variant belongs to this category, many of these features play a
significant factor. However, given that the features are zero for the majority of examples and,
consequently, the SHAP values are very close to zero in such cases, the overall influence
of these features turns out to be relatively low when averaged over all variants. Some
examples of this are the p_to_np feature, which encodes whether the mutation transforms
a polar amino acid into a non-polar one, or the unknown_function feature, which encodes
whether the mutation occurs in the domain of the protein with an unknown function.

Although the examined metrics already give us a good estimation of the performance
of our algorithms, it is also of interest to investigate the cases where the algorithm fails. For
this purpose, we define an error as a case in which a variant present in the test set during a
cross-validation iteration is incorrectly classified. As the cross-validation procedure was
repeated 25 times, each variant will appear in the test set exactly 25 times, with different
sets of variants in the training set. This gives us a good method to estimate which variants
the algorithm is most prone to misclassify by computing the ratio of total misclassifications
and the total 25 predictions for every variant. For 16 variants, the error rate is above 50%:
6 pathogenic variants are predicted as tolerated and 10 tolerated variants are predicted
as pathogenic (Figure 4). Each of these variants has its own particular factors that make
them challenging to predict. For example, G256E is classified as a tolerated variant, yet
other variants at the same position, including G256W, G256V and G256R, are classified
as pathogenic. As a result, the VFI score is very low in this region and the model makes
confident predictions based on this factor. Situations like these, where the pathogenicity of
different variants in close regions is determined by intricate chemical differences, may be
challenging for models like this, as they rely on small datasets that are not able to capture
these relationships.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 4. Map of variants with the highest ratio of errors during cross-validation averaged over all 
trained algorithms. From highest to lower error, the variants were D488E (P), G256E (T), A501P (P), 
W91G (T), V225I (T), H357R (T), V108M (T), E140Q (P), A295S (T), V175L (P), V564L (T), R160Q (T), 
Q78K (T), L161P (P), P617S (T), R144Q (P). P stands for pathogenic, erroneously labeled as tolerated, 
and T stands for tolerated, erroneously labeled as pathogenic. (A) Distribution of these variants on 
the AlphaFold2-predicted structure of a KV7.2 channel tetramer, lateral (left) and upper view (right). 
The membrane is indicated with an orange square in the lateral view. Mislabeled pathogenic and 
tolerated variants are colored in red and green, respectively. (B) Distribution of the mislabeled var-
iants along the main functional domains of the channel. Information about extracellular (light blue), 
transmembrane (pink) and cytoplasmic (orange) segments is also shown. 

2.3. Ensemble Model 
Although the models trained with different VFI scores already obtain a satisfactory 

performance, we also examined whether ensemble models combining the predictions 
made by different algorithms could improve the overall performance further (Table 2). We 
used the algorithms trained with the best-performing version of the VFI score, in this case, 
those with a standard deviation of two (σ = 2), and tested multiple ensemble strategies to 
combine these algorithms. 

Table 2. Ensemble models for tolerated vs. pathogenic discrimination. Cross-validation and test set 
performance scores for ensemble models, trained by aggregating the best subset of models accord-
ing to the findings in Table 1. The single soft voting strategy obtained better performance. Combin-
ing more than four models in the ensemble caused the performance to regress. A similar perfor-
mance was observed when using the test set. 

 
AUC-ROC Balanced  

Accuracy Sensitivity Specificity 

Mean Sd Mean Sd Mean Sd Mean Sd 
Cross-validation 0.993 0.005 0.961 0.021 0.966 0.031 0.956 0.030 

Test set 0.995 - 0.991 - 0.983 - 1.000 - 

There was a slight improvement in the accuracy for the ensemble models. In addition, 
we also found that a single soft voting strategy, where the scores obtained by individual 
models are aggregated through simple averaging, obtained a better performance than 
more stacked classifiers trained with the scores of the models as features. We also ob-
served that combining more than four models in the ensemble caused the performance to 

Figure 4. Map of variants with the highest ratio of errors during cross-validation averaged over all
trained algorithms. From highest to lower error, the variants were D488E (P), G256E (T), A501P (P),
W91G (T), V225I (T), H357R (T), V108M (T), E140Q (P), A295S (T), V175L (P), V564L (T), R160Q (T),
Q78K (T), L161P (P), P617S (T), R144Q (P). P stands for pathogenic, erroneously labeled as tolerated,
and T stands for tolerated, erroneously labeled as pathogenic. (A) Distribution of these variants
on the AlphaFold2-predicted structure of a KV7.2 channel tetramer, lateral (left) and upper view
(right). The membrane is indicated with an orange square in the lateral view. Mislabeled pathogenic
and tolerated variants are colored in red and green, respectively. (B) Distribution of the mislabeled
variants along the main functional domains of the channel. Information about extracellular (light
blue), transmembrane (pink) and cytoplasmic (orange) segments is also shown.
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2.3. Ensemble Model

Although the models trained with different VFI scores already obtain a satisfactory
performance, we also examined whether ensemble models combining the predictions made
by different algorithms could improve the overall performance further (Table 2). We used
the algorithms trained with the best-performing version of the VFI score, in this case, those
with a standard deviation of two (σ = 2), and tested multiple ensemble strategies to combine
these algorithms.

Table 2. Ensemble models for tolerated vs. pathogenic discrimination. Cross-validation and test set
performance scores for ensemble models, trained by aggregating the best subset of models according
to the findings in Table 1. The single soft voting strategy obtained better performance. Combining
more than four models in the ensemble caused the performance to regress. A similar performance
was observed when using the test set.

AUC-ROC Balanced
Accuracy Sensitivity Specificity

Mean Sd Mean Sd Mean Sd Mean Sd

Cross-validation 0.993 0.005 0.961 0.021 0.966 0.031 0.956 0.030

Test set 0.995 - 0.991 - 0.983 - 1.000 -

There was a slight improvement in the accuracy for the ensemble models. In addition,
we also found that a single soft voting strategy, where the scores obtained by individual
models are aggregated through simple averaging, obtained a better performance than more
stacked classifiers trained with the scores of the models as features. We also observed
that combining more than four models in the ensemble caused the performance to regress,
suggesting that the potential benefits of combining multiple models is limited. When
evaluating these models on the test set, we also observed a similarly high performance,
suggesting that the metrics estimated through cross-validation can be generalized to com-
pletely unseen data. Despite the limited size of the test set, these results, along with the
cross-validation estimates, validate the robustness of the model performance metrics.

2.4. Severity Prediction

Since the severity, future developments and clinical consequences are dramatically
different, from a clinical point of view, once a variant is identified as pathogenic, the correct
identification of pathogenic variants specifically associated with developmental and epilep-
tic encephalopathy (DEE) is also critical, along with their differentiation from pathogenic
variants related to self-limited neonatal epilepsy (SeLNE). We compiled a dataset (Sup-
plementary Data) comprising a subset of pathogenic variants, which were subsequently
classified as either severe or benign based on a bibliographical review (Figure 5). From
this dataset, we developed a model specifically tailored for the classification of pathogenic
variants into these two subgroups.

The training of this model followed the same steps outlined in the methodology
section. The only necessary adjustment for this learning task was the exclusion of certain
features, specifically the initial and final amino acids involved in the mutation. This
adjustment was made because we observed that models trained with these features had a
tendency to overfit to the training data, essentially memorizing specific mutation patterns
within the training set but failing to generalize beyond these examples. To address this,
we entirely removed these features. We observed that, while the training error increased,
the cross-validation error decreased, indicating that the inclusion of these features was
hindering generalization.
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Figure 5. Map of pathogenic variants according to severity. (A) Distribution of the collected variants
on the AlphaFold2-predicted structure of a KV7.2 channel tetramer, lateral (left) and upper view
(right). The membrane is indicated with an orange square in the lateral view. Severe, benign/severe
and benign variants are colored in red, dark purple and orange, respectively. (B) Distribution of these
variants along the main functional domains of the channel. Information about extracellular (light
blue), transmembrane (pink) and cytoplasmic (orange) segments is also shown. (C) Beeswarm plot of
the SHAP scores for each feature used by the best performing algorithm for severity discrimination.
Each point represents the value of the feature for a single variant, and the value of the feature is
represented in a color scale. The SHAP values indicate the extent of influence in the prediction of the
model. Positive SHAP values indicate a trend to make a positive prediction, whereas negative values
have the opposite effect. (D) Absolute values of the SHAP scores for each feature, averaged over all
samples in the training set. Higher values indicate a larger influence on the prediction of the model.

Upon inspecting the trained models, we discovered that the criteria used for classifying
variants as benign or severe differed significantly from the criteria used to determine
their pathogenicity. SHAP scores for the features used by the best-performing algorithm
revealed that no single feature dominated over all others in this case (Figure 5). Instead,
the algorithms relied on contextual information, such as whether the variant interacts with
calmodulin or is located in the selectivity filter of the channel. Interestingly, while the VFI
score was highly valuable for correctly classifying variants as pathogenic or tolerable, it
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seemed to provide little information in this case. In contrast, the pLDDT score appeared to
remain somewhat informative.

Following the strategy implemented for pathogenicity classification, individual al-
gorithms trained with different features and hyperparameters were aggregated through
an ensemble model that averaged the predicted scores of a subset of algorithms, selected
to maximize the cross-validation score of the ensemble model. The performance metrics
for the ensemble model, assessed through cross-validation on the independent test set
following the same evaluation strategy as the pathogenicity prediction model, are presented
in Table 3.

Table 3. Severity model. Cross-validation and test set performance scores for the ensemble model
trained for the prediction of severity. Cross-validation scores are reported with predictions made
based on a prediction threshold of 0.5. Test set scores are reported after the threshold was modified to
optimize the balanced accuracy of the model on the training set, which balances the sensitivity and
specificity of the model.

AUC-ROC Balanced
Accuracy Sensitivity Specificity

Mean Sd Mean Sd Mean Sd Mean Sd

Cross-validation 0.732 0.071 0.603 0.057 0.879 0.068 0.327 0.135

Test set 0.675 - 0.667 - 0.683 - 0.652 -

When evaluating the model through cross-validation, it becomes apparent that the
model exhibits a discernible bias toward the severe class. This bias is a consequence of
the dataset’s imbalance, which, in this instance, could not be rectified by incorporating
supplementary datasets. To correct this bias, the threshold used to predict a label was
modified to optimize the balanced accuracy of the model on the training set, and this
optimized threshold was then used to assign labels to variants in the test set. As a result, we
can see that predictions for the test set do not show a significant bias towards either class.

However, it is noteworthy that the AUC-ROC for the test set falls slightly below the
expected value derived from cross-validation. Unlike the previous model, where significant
deviation between both performance estimations was not observed, potential data leakage,
stemming from the fact that the training data used for cross-validation were also employed
for feature and hyperparameter selection, might be contributing to a slight overestimation
of the model’s performance.

Overall, the model achieves a reasonable performance on a very challenging prediction
task, but the limitations arising from data scarcity, class imbalances and a lack of highly
informative features are clear. Despite these limitations, our model demonstrates the
potential of ML models to provide valuable supplementary information for the prognosis,
complementing traditional medical knowledge.

3. Discussion

The KCNQ2 gene encodes for the KV7.2 K+ channel, which modulates neuronal ex-
citability. Mutations in the KCNQ2 gene cause highly diverse phenotypes ranging from
normal, familial neonatal seizures to early onset developmental and epileptic encephalopa-
thy. SeLNE is characterized by seizures in newborns that begin between 2 and 8 days of life
and usually spontaneously vanish within 1 to 6–12 months. Other mutations in the same
gene can induce DEE, characterized by more severe seizures and moderate to profound
motor impairment and intellectual disability [1]. Since individualized therapies and genetic
counseling are needed in these patients and families, a rapid and correct identification of
the pathogenicity of the variant is crucial.

The aim of this work was to develop a tool for the prognosis of KCNQ2 gene missense
variants with practical applicability in a clinical setting. In the initial phase, we constructed
an ensemble model capable of distinguishing between tolerated and deleterious KCNQ2
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variants, accurately predicting over 95% of both tolerated and pathogenic variants con-
currently. We established a user-friendly web page interface (https://channels.bcb.eus/
accessed on 21 June 2023) for accessing predictions on any amino acid substitution in the
KV7.2 protein or any single nucleotide variant in the KCNQ2 gene. Additionally, predictions
for all substitutions on the KV7.2 protein can be downloaded. Our model is not intended to
replace clinical judgment but rather to inform and complement clinical decision making
through objective and quantifiable data.

3.1. Comparison with Other Tools

MLe-KCNQ2 exhibits superior accuracy in classifying KCNQ2 missense variants
compared to over 80 tested tools. Among the unsupervised methods not trained on disease-
causing variants [31,32], a noteworthy performance was observed in models relying on
multiple sequence alignment (MSA) of homologous and orthologous KV7 proteins, such as
GEME [29] and EVE [33]. This underscores the significance of sequence conservation as
a crucial feature for pathogenicity predictions [34–36]. An alternative strategy is to train
models using deep mutational scanning data from a few proteins to generate cross-protein
transfer models for variant interpretation of unseen proteins, as is achieved in CPT-1 [28].
More complex artificial intelligence methods could also be employed, for example, deep
learning techniques. Although there are already a number of studies that have worked
with neural networks, one major drawback of deep learning is that it requires an immense
amount of data. AlphaMissense [37] uses a model similar to AlphaFold2 [24], which
is initially pre-trained for single-chain protein structure predictions and subsequently
fine-tuned for variant effect predictions. Another deep learning approach implemented
in ESB1b uses a protein language model trained in millions of protein sequences with
millions of parameters [38]. Transfer learning offers an opportunity to leverage the power
of deep learning in situations where data are limited [4]. This emerging approach may be
implemented in the context of variant effect prediction by training a model using data from
a well-studied gene (X) and then refining the model with data from a less-studied gene (Y).
The resulting model may perform very well on Y because the “lessons” learned in modeling
X transfer well to Y [39]. However, these and other computational tools inaccurately predict
a significant proportion of tolerated variants at highly conserved positions as pathogenic,
often failing to identify truly pathogenic variants at less conserved positions [36].

Certain supervised methods (i.e., trained on clinical data), specifically KCNQ_Index [23]
and DeMag [26], which heavily rely on allelic frequency and structural descriptors, respec-
tively, along with VEST4 [40], VARITY [41] and the more recent MAVERICK tool [27], demon-
strate a superior performance compared to unsupervised methods in classifying KCNQ2
missense variants. However, these tools mislabel more than 10% of KCNQ2 pathogenic
variants as tolerated and vice versa, limiting their clinical utility [42,43].

For model training, we tested multiple algorithms proven effective in diverse ML
applications, including logistic regression, support vector machine, and tree ensemble
models like random forest and gradient boosting methods. No significant performance
differences were observed between these algorithms, with simple linear models such as
logistic regression slightly outperforming more complex models like gradient boosting
algorithms [44]. Crucially, the effectiveness of ML models for pathogenicity prediction
hinges on the quality of the features characterizing each variant and the data used for
model training.

The availability of high-quality datasets of classified variants [41] is essential for
evaluating the performance of any ML method [31]. While most tools rely on datasets from
ClinVar [45] or HGMD [46], these datasets exhibit a notable imbalance for KCNQ2 variants,
predominantly comprising pathogenic labels [47]. To mitigate this bias, we meticulously
curated a compendium of 554 missense variants with a balance of tolerated (285 variants)
and pathogenic (269 variants) variants. Given the incomplete penetrance of KCNQ2-related
disorders [1], some variants labeled as “tolerated” in our dataset may warrant reevaluation
as “pathogenic”.

https://channels.bcb.eus/
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For KCNQ2, we identified the Variant Frequency Index (VFI) score as the most informa-
tive feature. This score, designed to indicate tolerance to variation at each position within
the amino acid sequence, is derived from variant population data accessible in gnomAD.
Additionally, conventional features such as the evolutionary conservation of residues and
the functional domains where mutations are located provided valuable information, en-
hancing the model’s accuracy beyond the primary descriptor. Despite the pivotal role of
the VFI score in our primary models, its inclusion was found not to be essential for devel-
oping well-performing models, as similar information appeared embedded in the pLDDT
score provided by AlphaFold2. In fact, both VFI- and pLDDT-trained models consistently
demonstrated sensitivity and specificity scores above 90% throughout cross-validation.

Our final model, designed as an ensemble of different algorithms and trained with
varying features and hyperparameters, achieved specificity and sensitivity scores exceeding
95% in both cross-validation and independent test set estimations. This high accuracy
indicates the model’s potential utility in clinical decision making.

3.2. Clinical Implications

Although MLe-KCNQ2’s predictions provide a robust foundation for discriminating
between tolerated and pathogenic variants, clinicians are advised to interpret the output
cautiously. As highlighted by Stead [48], predictions, including those from our models
and other top-performing tools such as KCNQ2_Index, DeMag, MAVERICK, VARITY,
GEMME and CPT1, may not capture every scenario. For instance, none of the models,
including the best-performing ones, accurately predicted the D488E mutation as pathogenic.
A patient carrying this mutation experiencing seizures two months after birth exhibited
delayed development and remained seizure-free for more than four years at the time of
the report [49]. This conservative substitution, involving a negatively charged residue
replaced by another negatively charged residue, is conserved across several fish species,
and removing a large stretch of amino acids containing this residue results in protein
variants with similar electrophysiological properties as the wild type [50]. This residue is
located in a region predicted by AlphaFold2 to adopt an alpha helical disposition, and is
flanked by A501, where the hard-to-predict pathogenic variant A501P maps. Interestingly,
this mutation linked with severe encephalopathy has been found to be inherited from
healthy parents [51]. The impact of these variants in health suggests that this putative helix
performs an essential unknown role. Thus, some variants disrupt functions that are not yet
fully understood.

No genome-wide or KCNQ2-specific tool has been designed to assist in assessing the
severity of a KCNQ2 variant. In addressing this gap, we investigated the ability of ML to dis-
criminate pathogenic variants according to disease severity [13]. We curated a high-quality
dataset with variants confidently labeled as pathogenic_benign or pathogenic_severe by
reviewing the literature. Consequently, we developed MLe-KCNQ2, the first supervised
model classifying KCNQ2 pathogenic variants based on severity.

3.3. Phenotypic Discrimination

While the model excels in predicting pathogenicity, challenges arise in discriminating
between different phenotypes. Except for pLDDT, which yielded informative results,
models trained for this task did not utilize the most effective features for pathogenicity
prediction. Instead, they relied on contextual features related to the mutation’s location in
the amino acid sequence. The limited data availability for this task, combined with a lack
of features to accurately discriminate between severe and benign cases, presents challenges
in developing models with an accuracy comparable to pathogenicity prediction models.

Despite these limitations, we achieved a balanced accuracy of approximately 67% on
the test set, a comparable performance to that obtained to predict gain or loss of function
for potassium [52], sodium or calcium channel variants [53]. While it may not entirely meet
the criteria for clinically reliable predictions, it suggests that our model could offer valuable
information when combined with additional clinical data. For pathogenic variants in the
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neuronal sodium channel α1 subunit gene (SCN1A), the time of onset has been found to
contribute to discriminating between Dravet syndrome and GEFS++ [54]. Another clinical
feature likely to contribute to increasing predictive power is the mode of inheritance (de
novo vs. familial), as inherited cases are often associated with milder phenotypes.

3.4. Limitations

Among other limitations, in this work, only KCNQ2 missense variants are considered,
excluding frameshift, premature stops and nonsense variants. The model cannot inform
whether a mutation predicted as pathogenic involves gain- or loss-of-function. Another
difficulty arises because some pathogenic variants may have a range of penetrance and
magnitude of effects [55]; the same mutation can cause no effect in one carrier and SeLNE in
another, or can cause different phenotypes even in two carrying brothers. These difficulties
make it advisable to consider complementary information. Another limitation derives from
variant reclassifications that regularly occur in clinical databases such as ClinVar [4] (see
Supplementary Data).

Further improvements are likely to arise by updating the VFI metric with additional
genomic data from large-scale sequencing efforts [2,56]. The gnomAD database used to
compute the VFI index incorporated about 200,000 samples at the time of this analysis and
included 412 out of the 5972 theoretically possible missense variants, which represents
about 7% coverage. Due to this limited coverage, the chosen resolution for VFI analysis
was 31 codons, i.e., a running average with the preceding 15 residues and the following
15 residues. Segments that exhibit fewer missense variants than expected are flagged
as genetically intolerant, indicating that mutations within that gene segment tend to be
evolutionary excluded from the gene pool and are significantly enriched for pathogenic
missense variants [2]. The size of the running average window should decrease with larger
datasets, improving the resolution and its usefulness for predicting potential hotspots
within a protein.

AlphaFold2’s output offers the most likely structure that will appear in the PDB
database. The confidence metrics for the 3D AlphaFold2 proposal for the KV7.2 channel
structure (pLDDT) turned out to be a very useful feature for pathogenic predictions of
missense variants. This parameter evaluates the local distances on all atoms in a model,
including validation of stereochemical plausibility [57]. Thus, mobile regions, underrep-
resented in the PDB database, are expected to score low. Lower values may correspond
to disordered or mobile regions, whereas larger values correspond to residues modeled
with a high accuracy. Nevertheless, the relationship between this parameter and flexibility
should be treated with caution [24]. Our data suggest that this parameter is useful for the
identification of sites with different tolerances for missense mutations [37].

With the available data becoming more abundant, ML algorithms will systematically
generate improved outputs, and new interesting applications are expected to follow. We
suggest further work on the dataset for missense variants of KCNQ2 by incorporating
unseen variants from the gnomAD database or recently reported studies. Designing new
features for variant characterization, such as the change in the number of hydrogen donor
or acceptor sites, would improve classification metrics as proposed in [58]. Advances
in protein structure prediction (e.g., AlphaFold2) as well as cryo-EM technologies could
lead to the design of more complex 3D features that could lead to a breakthrough in the
prediction of variant pathogenicity.

3.5. Conclusions

MLe-KCNQ2 stands as a significant advancement in the clinical diagnosis of KCNQ2-
related pathologies. Its high specificity and sensitivity, coupled with its potential extension
to other genes, position it as a valuable tool for genetic diagnoses and hold promise for
unveiling new aspects of pathogenic landscapes within the broader context of genetic
research. In addition, an analysis of the pathogenic landscape could help to identify
previously unknown domains within the protein sequence and to discover new functions
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and possible new pathways for treatments. Our model could thus aid clinicians and
researchers in interpreting missense mutations in the KCNQ2 gene, facilitating clinical
diagnosis and enabling the early selection of personalized therapies for developmental
KCNQ2-related disorders.

4. Materials and Methods
4.1. DATASET

Isoform 1 of the KCNQ2 gene encodes a transcript with 872 codons, which could
result in 7582 single base substitutions, leading to 5972 single amino acid missense vari-
ants (excluding 266 substitutions that introduce a stop codon). To date, more than 1400
KCNQ2 variants have been annotated in the ClinVar database (https://www.ncbi.nlm.
nih.gov/clinvar/) (accessed on 21 June 2023), making it an invaluable source of data for
the development of algorithms capable of distinguishing neutral and pathogenic variants.
Recent work [33,59] has also demonstrated that models trained through unsupervised
and self-supervised methods can achieve a remarkable performance, even in the absence
of pathogenicity data, where the complete set can then be used for evaluation without
circularity issues. However, biases still exist due to the uneven representation of certain
families of proteins in the datasets they are trained on, as well as heuristic criteria used to
generate labels for self-supervised training. As a result, the accuracy may not be adequate
for clinical effectiveness. Therefore, specialized models that account for the unique features
of individual genes are necessary [60].

As a first step to produce a high-quality dataset, we investigated RIKEE (https://
www.rikee.org) (accessed on 21 June 2023), a high-quality database curated by a panel of
highly recognized active experts in the KCNQ2 pathology field, updated up to 2015. More
than 700 KCNQ2 missense variants are already annotated in ClinVar [45] (i.e., ~10% of
potential missense variants), which are distributed according to their pathogenicity, thus
serving as an excellent source of information for the development of predictive models.
Additional data were gathered from HGMD [61] and the Global Variome Shared (LOVD)
databases [62], supplemented by an exhaustive bibliographic search. In cases where
variants were found in multiple databases, an additional filter was imposed to ensure that
variants with conflicting interpretations or of uncertain significance were not included. The
Final_Dataset contained 269 variants labeled as “pathogenic”. A total of 92 were found in
RIKEE, 37 in LOVD3, 81 in ClinVar and 59 in the HGMD database. A total of 285 variants
were labeled as “tolerated”, and 1 was found in RIKEE, 6 in LOVD3 and 9 in ClinVar
labeled as “Benign” or “Benign/Likely benign”. The remaining variants were found in the
non-neuronal dataset of GnomAD [56] with an extrapolated prevalence of more than 3 per
million. In sum, the Final_Dataset consisted of 285 tolerated and 269 pathogenic variants
distributed along all KV7.2 functional domains (Figure 1). After that, clinical labels were
binarized, with tolerated and pathogenic variants equal to 0 and 1, respectively.

The “training dataset” included 206 variants labeled as “pathogenic” from the “Fi-
nal_Dataset”. Due to the close evolutionary proximity between humans and primates,
protein variants that are tolerated in these species are likely to also be tolerated in hu-
mans [25,63]. Following this criterion, we categorized KCNQ2 variants commonly found
in primates as tolerated in humans and incorporated them into the training of our predic-
tive models.

Because the examples in the primate dataset were labeled based on heuristics and thus
were more prone to labeling errors, we constructed the test set for the final performance
estimation purely from the data obtained through ClinVar and other databases in order to
generate an unbiased test set for a reliable estimation of the true performance of the model.

We reviewed the literature for the description of 274 pathogenic variants. Those that
were described as “self-limiting” were labeled as “pathogenic_benign”, whereas those char-
acterized by developmental and/or encephalopathy were labeled as “pathogenic_severe”.
The final_severity_set included 62 variants labeled as “benign”, 32 labeled as “benign/severe”
when there were reports for both benign and severe phenotypes, and 180 labeled as “se-

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.rikee.org
https://www.rikee.org
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vere”. For model building, “benign/severe” and “severe” classes were combined into the
“severe” label.

4.2. Variant Characterization

Variants were characterized using a set of features related to physico-chemical changes
and biological-evolutive and structural features. The features related to physico-chemical
changes were assigned based on the initial and final amino acids involved in the mutation.
For each variant, the charge, hydrophobicity, molecular weight, polarity, aromaticity and
mean solvent accessibility of the initial and final amino acids were computed, and the
differences between the initial and final values were used as features. Given that some
pathogenic mutations in the dataset are located at the start codon, we also included a
feature indicating whether the mutation occurred in the first position, thus allowing the
model to easily classify these cases.

Biological-evolutive features included the topological and functional domains affected
by the mutation, as well as the evolutionary conservation value across species of the
substituted residue, which was computed as the Shannon entropy for every position in the
multiple sequence alignment [64]. In addition, information about the empirically observed
human variation in the KCNQ2 gene was incorporated through a descriptor inspired by the
missense tolerance ratio score (MTR) [2], which is a measure of the tolerance to missense
variation within a region of a gene, computed based on the number of variants observed
in aggregated datasets such as ExAC and GnomAD [65]. Rather than only using data
available for every amino acid in the sequence, MTR performs these variant counts in
windows of 31 amino acids to prevent excessive variability in regions where the number of
observed variants is low.

Despite its effectiveness, we observed a few limitations in the original MTR score
definition. A notable drawback arises in cases of methionine and tryptophan, which lack
synonymous mutations. In such instances, the MTR score is automatically reduced to
1, resulting in the loss of information regarding positions associated with these amino
acids. We have devised an alternative metric, which we call the Variant Frequency Index
(VFI). Initially, we calculate the position-wise tolerance of an amino acid sequence using
the formula:

f =
[missenseobserved]

N·[missensepossible]

where N is the total number of sequences in the dataset and [missenseobserved] and [missense-
possible] denote the number of observed and possible missense variants at that position,
respectively. Subsequently, the position-wise missense variant frequency is constrained
between 0 and 1 through a rational function:

F =
f

f + α

where α serves as a coefficient that allows modulation of the curvature of the score by
establishing the threshold at which F = 0.5. The data for this score were calculated based
on data from versions 2 and 3 of GnomAD, merged in such a way that redundant data
were discarded.

Similar to the approach taken by MTR, instead of directly using the tolerance as the
score, we opted to aggregate information from neighboring positions in the amino acid
sequence. However, we aimed to enhance the resolution of the score by assigning greater
weights to positions closer to the central position during aggregation. In this context, we
interpreted the sequence-position-dependent tolerance score (F) as a noisy signal of the
true tolerance. Our goal was to denoise this signal by aggregating local information. This is
commonly accomplished by applying a discrete convolution over the sequence, where the
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form of the kernel determines the way in which the convolution aggregates information,
resulting in a score of the form:

VFI(n) = ∑m
j=1 K(j)·F(n − j + m/2)

The sliding window may be interpreted as a convolution with a rectangular kernel,
but other functional forms can be used. To compute the VFI score, we made use of the
Gaussian kernel, which is one of the most commonly used kernels and also satisfies the
desired property of assigning more weight to positions closer in the sequence. The specific
form of the kernel is thus given by:

K(n) =
1√

2πσ2
e
−n2

2σ2

Finally, we also made use of structural features, including the location within the
structural landscape of KCNQ2 and the secondary structure of the mutated amino acid,
which was predicted through the PROTEUS2 metaserver [66]. We also made use of the
pLDDT score provided by the AlphaFold2 [24] prediction, which is a measure of the
confidence or reliability of the predicted protein structure. Motivated by the similarity
between the profiles of the pLDDT and VFI scores for the KCNQ2 gene, we explored
whether this score could serve as a valid alternative to VFI-like measures, whose accuracy
is limited by data availability.

4.3. Model Definition, Training and Optimization

To find the best possible model for variant effect prediction, multiple ML algorithms
were tested. In previous studies, logistic regression, support vector machine and ran-
dom forest have proven to be useful in variant pathogenicity predictions, as well as in
unbalanced class scenarios [44]. In addition, other powerful algorithms such as K-nearest
neighbors, linear discriminant analysis, gradient boosting and Gaussian processes were
also considered as potential candidates. For gradient boosting in particular, multiple
implementations with slight differences among them exist. In this work, three different
implementations of this algorithm were tested, namely LightGBM, CatBoost and XGBoost.

For each of these algorithms, a pipeline for optimal feature and hyperparameter
selection was implemented. First, optimal features were selected based on a forward
greedy search approach, where features were iteratively added one at a time, selecting
the feature that optimized the performance of the model at each step. The search was
stopped when the performance of the algorithm did not improve for over 10 steps, and
the subset of features that achieved the maximum performance throughout the search
process was selected for further analysis. Second, optimal hyperparameters were selected
based on a random grid search over a predefined search space, where a random set of
hyperparameter combinations was tested, and the subset with the highest performance
was selected. The search space for each hyperparameter was selected based on a visual
inspection of validation curves for individual hyperparameters. For both the feature
and hyperparameter selection steps, the performance of the models was evaluated by
performing a stratified 5-fold cross-validation and measuring the AUC-ROC averaged over
each split.

After selecting the optimal features and hyperparameters for each algorithm, their
performance was estimated by repeated 5-fold cross-validation, where the cross-validation
procedure was repeated 25 times by shuffling the dataset, thus generating different splits at
each iteration. Performance metrics were measured for each split, and the final performance
was evaluated by considering the average and the standard deviation of each of these
metrics over all splits. This allowed us to obtain more robust estimates of the performance
of our models, as they were evaluated under many possible data splits.

It is important to note that the performance estimates obtained through repeated
cross-validation are biased by the fact that the evaluation was performed on the same data
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that were used for feature and hyperparameter selection, which may lead to overestimation
of the model’s capability to generalize to unseen data. To validate that our estimates are
reliable, we evaluated our models on the unseen test set we previously set aside (89 variants)
after re-fitting each model to all training data. In every case, the performance metrics on
the test set fit within the ranges estimated by repeated cross-validation, suggesting that
despite the bias, this procedure provides reliable estimates of the true performance of the
models for this problem.

In order to enhance the overall efficiency and mitigate bias in individual models, we
implemented ensemble models that aggregate the predictions from these models into a
unified prediction. Various strategies for model ensembling exist, such as hard voting,
where the most commonly predicted label is selected, and soft voting, which involves
averaging the predicted probabilities from the individual models and selecting the class
with the highest average probability as the final prediction. An alternative approach is to
train an additional algorithm that takes the predicted probabilities from multiple models
for each variant as inputs and learns to classify variants based on these probabilities.

To determine the most effective ensembling approach for this problem, we adopted a
similar philosophy to that used to find optimal individual models. Employing a greedy
approach, we iteratively added models to the ensembles, and then selected the subset
of models that optimized the ensemble’s performance, measured through 5-fold cross-
validation. Ultimately, the ensembling strategy that exhibited the best performance was
chosen as the final model.
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