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Abstract: Recognizing trust as a pivotal element for success within Human–Robot Collaboration
(HRC) environments, this article examines its nature, exploring the different dimensions of trust,
analysing the factors affecting each of them, and proposing alternatives for trust measurement. To do
so, we designed an experimental procedure involving 50 participants interacting with a modified
‘Inspector game’ while we monitored their brain, electrodermal, respiratory, and ocular activities. This
procedure allowed us to map dispositional (static individual baseline) and learned (dynamic, based
on prior interactions) dimensions of trust, considering both demographic and psychophysiological
aspects. Our findings challenge traditional assumptions regarding the dispositional dimension of
trust and establish clear evidence that the first interactions are critical for the trust-building process
and the temporal evolution of trust. By identifying more significant psychophysiological features for
trust detection and underscoring the importance of individualized trust assessment, this research
contributes to understanding the nature of trust in HRC. Such insights are crucial for enabling more
seamless human–robot interaction in collaborative environments.
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1. Introduction

Human–Robot Collaboration (HRC) has emerged as a critical area in the engineering
and social sciences domain. This paper ventures into this dynamic domain with a keen
focus on environments, where the collaboration pivots on the execution of routine tasks
involving the manipulation of components on recycling disassembly lines, as well as
management and classification of various electronic devices. We particularly explore the
performance of collaboration with robotic arms, capable of a spectrum of autonomous
actions under the guidance of a computer program.

In any kind of collaboration, including HRC, trust has been identified as a significant
factor that can either motivate or hinder cooperation, especially in scenarios characterized
by incomplete or uncertain information. Despite the ubiquitous understanding of the
concept of “trust”, its definition has proven to be complex due to the range of fields it
applies to and the individual context in which it is studied. Several perspectives contribute
to the understanding of trust, depending on the theoretical focus and the specific field
of study it is applied to. While interpersonal trust is the most studied, there is also an
increasing focus on the trust between humans and technology, which is essential in HRC.

This paper aims to delve into significant research questions about the function of trust
in HRC: (1) What are the fundamental factors influencing trust in HRC? (2) Is it possible to
identify demographic or contextual variables that affect the nature and dynamics of trust?
and (3) Can trust in HRC be measured using psychophysiological signals?

The paper is organized as follows: Section 1 introduces the concept of trust in HRC,
highlighting its general framework and outlining the major research questions this paper
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intends to explore; Section 2 provides a theoretical background, covering current research
and explaining the importance of defining trust in HRC; Section 3 describes the Materials
and Methods, with a detailed explanation of the experimental design and methodologies
used in the data analysis; Section 4 presents the Results, providing the empirical findings
form the experimental process; in Section 5, a comprehensive Discussion is included,
thoroughly exploring the implications of the research findings for trust in HRC; lastly,
Section 6 offers the Conclusion and provides answers to the research questions.

2. Background
2.1. Theoretical Foundations of Trust

Trust is a crucial determinant of effective collaboration, in both human-to-human and
human-to-machine interactions. Consequently, studies on trust modelling and measurement
span a variety of disciplines, including psychology, sociology, biology, neuroscience, eco-
nomics, management, and computer science [1–10]. These two approaches—(modelling and
measuring)—share common knowledge, but with differing purposes and considerations. Trust
modelling aims to depict human trust behaviour, extrapolating individual responses to a
universal level, whereas trust measurement encompasses various methods. These methods
include subjective ratings, which involve individuals’ personal assessments of trustworthi-
ness based on their perceptions and experiences, and objective, measurable approaches that
quantify involuntary body responses to varying trust-related stimuli. While subjective ratings
provide insights into individuals’ subjective perceptions of trust, objective measurements offer
quantifiable data that can be analysed and compared across different contexts.

The multidisciplinary nature of human trust research signifies that defining a unique
modelling approach is complex. Various disciplines offer distinct perspectives on trust with
specific views that, when integrated, offer a holistic perspective on the definition of trust.
Sociology views trust as a subjective probability that another party will act in a manner that
does not harm one’s interests amid uncertainty and ignorance [1], while philosophy frames
trust as a risky action deriving from personal and moral relationships between entities [3].
Economics defines trust as the expectation of a beneficial outcome of a risky action taken
under uncertain circumstances and based on informed and calculated incentives [4], and
psychology characterizes trust as a cognitive learning process shaped by social experiences
and the consequences of trusting behaviours [5]. Organizational management perceives
trust as the willingness to take risks and be vulnerable in a relationship, predicated on
factors like ability, integrity, and benevolence [6], and trust in international relations is
viewed as the belief that the other party is trustworthy, with a willingness to reciprocate
cooperation [7]. Within the realm of automation, trust is conceptualized as the attitude
that one agent will achieve another agent’s goal in situations characterized by imperfect
knowledge, uncertainty, and vulnerability [8], while in computing and networking contexts,
trust is understood as the estimated subjective probability that an entity will exhibit reliable
behaviour for specific operations under conditions of potential risk [9].

In general terms, trust is perceived as a relationship where a subject (trustor) interacts
with an actor (trustee) under uncertain conditions to attain an anticipated goal. In this
scenario, trust is manifested as the willingness of the trustor to take risks based on a subjec-
tive belief and a cognitive assessment of past experiences that a trustee will demonstrate
reliable behaviour to optimize the trustor’s interest under uncertain situations [2].

This definition emphasizes several issues concerning the nature of trust:

• A subjective belief: Trust perception heavily relies on individual interactions and the
preconceived notion of the other’s behaviour.

• To optimize the trustor’s interest: Profit or loss implications for both the trustor and
trustee through their interactions reveal the influence of trust/distrust dynamics.

• Interaction under uncertain conditions: The trustor’s actions rely on expected be-
haviours of the trustee to optimize the anticipated outcome, but it may yield subopti-
mal or even prejudicial results.
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• Cognitive assessment of past experiences: Trust is dynamic in nature, initially influ-
enced by preconceived subjective beliefs but evolving with ongoing interactions.

Authors have proposed varying dimensions of trust to explain different elements of
trust development. Some differentiate between moralistic trust, based on previous beliefs
about behaviour, and strategic trust, based on individual experiences [10]. Other perspec-
tives delineate dispositional, situational, and learned trust as distinct categories, where
dispositional traits—such as age, race, education, and cultural background—influence an
individual’s predisposition to trust, situational factors acknowledge conditions influencing
trust formation (e.g., variations in risk), and learned trust reflects iterative development
shaped by past interactions [11]. Another approach categorizes the nature of trust into
three facets: Referents of Trust, which encompass phenomena to which trust pertains,
such as individual attitudes and social influences; Components of Trust, which encompass
the sentiments inherent in trust, including consequential and motivational aspects; and
Dimensions of Trust, outlining the evaluative aspects of trust, including its incremental
and symmetrical nature. To avoid ambiguity between the terms “Trust dimensions” and
“Dimensions of Trust”, we will use the denominations “Phenomenon-based”, “Sentiment-
based”, and “Judgement-based” [12]. Trust is also described as a combination of individual
trust (derived from own personal characteristics and conforming to logical trust and emo-
tional trust) and relational trust, referencing the dimensions of trust that rise from the
relationship with other entities [2].

Even if different authors use different classifications, it is possible to map similarities
between different approaches. Despite omitting minor particularities, Table 1 shows the
convergence of these classifications. For convenience, we will use the nomenclature defined
in [11]—dispositional, situational and learned trust—without loss of generality.

Table 1. A rough similarity map between trust dimensions among different authors.

Similarity Map of Trust Dimensions According to Different Authors

[10] [11] [12] [2]

Moralistic Dispositional Phenomenon-based Emotional
Situational Sentiment-based Relational

Strategic Learned Judgement-based Logical

In essence, trust relies on multiple complex factors, encompassing both individual and
relational aspects. Notwithstanding the diverse disciplinary perspectives and methodolo-
gies in researching trust, there is considerable consensus on the fundamental concept and
dimensions of trust. However, understanding, modelling, and measuring trust, particularly
in human-to-machine contexts, continue to pose considerable challenges.

Tackling these challenges requires an in-depth understanding of multifaceted trust
dynamics. The primary challenge lies in encapsulating the complexities of human trust
in a computational model, given its subjectivity and dynamic nature. Quantifying trust
is another significant obstacle, as trust is an internal and deeply personal emotion. The
novelty of trust in the Human–Robot Collaboration domain implies a lack of historical data
and testing methodologies to build the trust models upon. Furthermore, implementing
these models in real-world scenarios is another challenge due to constraints related to
resources, variability in responses and the need for instantaneous adaptation. Despite
these hurdles, the potential rewards of successfully modelling and measuring trust in
Human–Robot Collaborations—including enhanced efficiency, increased user acceptance
and improved safety—are immense.

2.2. Trust in Human–Robot Collaboration

Within the field of Human–Robot Collaboration, trust plays a crucial role and is con-
sidered a significant determining factor. Various studies, including [11,13], have dedicated
efforts to investigate and identify the factors that influence trust in this collaborative context.
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These factors have not only been structured within a single matrix but also classified based
on their origins and dimensions of influence, which are instrumental in facilitating trust
and designing experimental protocols.

Authors in [14] provide a series of controllable factors with correlation to trust:

• Robot behaviour: This factor relates to the necessity for robot companions to possess
social skills and be capable of real-time adaptability, taking into account individual
human preferences [15,16]. In the manufacturing domain, trust variation has been
studied in correlation to changes in robot performance based on the human operator’s
muscular fatigue [17].

• Reliability: An experiential correlation between subjective and objective trust measures
was demonstrated through a series of system–failure diagnostic trials [18].

• Level of automation: Consistent with task difficulty and complexity and corresponding
automation levels, alterations in operator trust levels were noted [19].

• Proximity: The physical or virtual presence of a robot significantly influences human
perceptions and task execution efficiency [20].

• Adaptability: A robot teammate capable of emulating the behaviours and teamwork strate-
gies observed in human teams has a positive influence on trustworthiness
and performance [21].

• Anthropomorphism: Research in [22] showed that anthropomorphic interfaces are
prone to greater trust resilience. However, the uncanny valley phenomenon described
in [23] states that a person’s reaction to a humanlike robot would suddenly transition
from empathy to repulsion as it neared, but did not achieve, a lifelike appearance.

• Communication: Trust levels fluctuated based on the transparency and detail encapsu-
lated within robot-to-human communication [24,25].

• Task type: The task variability was recorded to influence interaction performance,
preference, engagement, and satisfaction [26].

Less controllable dimensions of trust include dispositional trust that is influenced
exclusively by human traits and the organizational factors linked to the human–robot
team [11,13]. These factors exhibit limited flexibility as they depend directly on the indi-
vidual or the organizational culture. On the other hand, situational trust is controllable
and heavily dependent on various factors, such as the characteristics of the task being
developed, making it possible to manipulate it based on the experiment’s objective [11,13].

Moreover, trust manifests through brainwave patterns and physiological signals,
making their use in assessing trust crucial [27,28]. Biologically driven, these elements foster
a more symbiotic interaction, allowing machines to adapt to human trust levels.

Notably, trust in HRC is dynamic and influenced by a myriad of factors. Under-
standing the various dimensions of trust and the controllable and uncontrollable factors
encompassed allows for the creation of experimental protocols and strategies to enhance
trust, a hypothesis evident in studies looking into the triad of operator, robot, and en-
vironment [13]. The importance of fostering and maintaining trust in the HRC domain
is clear, especially considering the complexity of trust in the ever-evolving landscape of
human–robot interaction.

2.3. Trust Measuring Using Different and Combined Psychophysiological Signals

Studies on trust have traditionally been situated within the context of interpersonal
relationships, primarily utilizing various questionnaires to evaluate levels of trust [29–31].
However, due to the arrival of automatic systems and the decreased cost of acquiring and
analysing psychophysiological signals, focus has shifted towards examining these types of
signals in response to specific stimuli in a bid to lower the subjectivity and potential biases
associated with questionnaire-based approaches. Recent studies, like [9,32–34], have been
centred on the usage of psychophysiological measurements in the study of human trust.

The choice of these psychophysiological sensors can differ, depending on which
human biological systems (central and peripheral nervous systems) they are applied to.
A common pattern has emerged from studies in which EEG is the most used signal to
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measure central nervous system activity, with fMRI closely behind it—the latter being more
extensively used in the context of interpersonal trust [35]. EEG analysis is increasingly
being utilized in human–robot interaction evaluation and brain–computer interfaces [36],
as it provides the means to create real-time non-interruptive evaluation systems enabling
the assessment of human mental states such as attention, workload, and fatigue during
interaction [37–39]. Additionally, attempts have been made to study trust through EEG
measurements which only look at event-related potentials (ERPs), but ERP has proven to
be unsuitable for real-time trust level sensing during human–machine interaction due to
the difficulty in identifying triggers [33,39].

Similarly, sensors measuring signals from the peripheral nervous system, notably
ECG (electrocardiography) and GSR (galvanic skin response), have been frequently used in
assessing trust [35]. GSR, a classic psychophysiological signal that captures arousal based
on the conductivity of the skin’s surface, not under conscious control but instead modulated
by the sympathetic nervous system, has seen use in measuring stress, anxiety, and cognitive
load [40]. Some research revealed that the net phasic component, as well as the maximum
value of phasic activity in GSR, might play a critical role in trust detection [33].

In contrast, the use of single signals most commonly involves only EEG, succeeded by
fMRI [35]. However, some studies have proposed that combining different psychophys-
iological signals (like GSR, ECG, EEG, etc.) improves the depth, breadth, and temporal
resolution of results [41,42]. Interestingly, pupillometry has been recently highlighted as a
viable method for detecting human trust, revealing that trust levels may be influenced by
changes in partners’ pupil dilation [43–45].

In short, the current state of the art exhibits an increasing trend towards the use of
psychophysiological signals emanating from both central and peripheral nervous sys-
tems. Also, it showcases an interest in combining these signals to create more robust trust
detection mechanisms with an improved breadth and depth of results.

3. Materials and Methods

The study of the dynamics that determine trust is a topic of great interest, although
there is limited collected data available for analysis to draw conclusions from. In our
case, the objective of the experimentation is to design and implement a process that can
identify in real time if there has been a breach of trust between the operator and their robot
companion (cobot) and to understand the factors that cause these variations in trust and
identify the biological reactions related to it.

To minimize the inclusion of excessive variables that could occlude the true nature
of trust, we imply that the cobot is a non-humanoid robotic arm with limited interaction
capabilities. Thus, the only interaction with the human counterpart is reduced to the
effectivity and performance of the tasks under its control. Additionally, in order to avoid
contextual randomness, we decided that every participant should interact with the system
in a similar environment, and thus, we determined that the experimental study would
focus solely on the dispositional and learned dimensions of trust.

Consequently, in the context of this research, trust is defined as the predictability of the
human that the robot will exhibit appropriate behaviour, following the established guide-
lines for the performance of its work in an orderly manner, without failure or errors that
could be interpreted as dangerous to the person, the robot itself, or its work environment.

Our strategic planning for the experimental process aimed to achieve the
following objectives:

• Systematically collect a diverse array of relevant psychophysiological signals, empha-
sizing signal cleanliness and minimizing signal randomness;

• Investigate the influence of human traits on various aspects of human–machine trust,
specifically in the context of dispositional and learned trust dimensions;

• Examine the role of the system’s capabilities, especially predictability and reliability,
in shaping the evolutionary process of trust.
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In the following subsections, the conceptual design of the experimentation, as well as
the equipment and method used for this research, are described in detail.

3.1. Conceptual Design of the Experiment

Considering the objectives to be satisfied and to expose participants to different trust
stimuli towards machines, this experimental stage has been designed as a game following
a variant of the Prisoner’s Dilemma, known as the Inspection Game. These types of games
are mathematical models that represent a non-cooperative situation where an inspector
must identify whether his counterpart adheres to the established guidelines or, on the
contrary, shrinks work duties. In this case, the participants take the role of the inspector,
and their mission is to detect if their robotic counterpart is carrying out their job adequately.

Simplicity has been kept to a maximum during the design of this experiment; thus,
participants interact with a single screen that provides them with the sensor feedback. The
trust decision process is implemented via a single command button. Participants are exposed
to 120 iterations during an approximate time of 30 min. However, the first 20 iterations are part
of the learning and familiarization process and, thus, only 100 iterations per participant are
considered in the experimental analysis.

Unknown to the participants, two experimental models were performed. Both had the
same trustworthiness (the virtual sensor provided a correct answer 75 out of the 100 iterations),
but in one of the cases the machine worked perfectly during the first 20 iterations, whereas
the second model presented 50% success rate during the same first 20 iterations.

3.2. Experimental Sample

The experimental sample must be selected according to the population in which it is
desired to validate the experimentation. The experimentation was conducted with a total
of 55 individuals, of which only 51 are considered valid (the remainder were lost due to
purely technical reasons such as poor data recording).

In this case, since the final objective is still oriented to an industrial work environment,
the target population is very broad, since it covers all individuals of active working age. To
refine the profile of the desired sample, its implications within the broader research context
must be considered. Specifically, the demographic distribution of the sample has a direct
impact on the collection of human traits and their eventual influence in the dispositional
dimension of trust.

Taking into account these considerations, three factors are determined with which to
compose the selected sample: Gender (Male/Female), Age (Under and over 40 years old)
and Role in the work team (Technical/Non-technical). The first two belong to the category
of human traits, while the third falls into the scope of the work environment. Figure 1
shows the distribution of the final 51 participants in this experimental stage according to the
indicated categories, revealing balanced samples, with the exception of the age segment.
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3.3. Equipment Used

Given the specific objectives of this experimental phase, it may be prudent to consider
acquiring a maximal number of psychophysiological signals possible to subsequently discrimi-
nate which ones are truly significant for the study of trust. However, this approach presents
two significant challenges. Firstly, the acquisition of a multitude of signals for subsequent treat-
ment without prior consideration could pose serious logistical problems for the experimental
design and significant difficulties in their subsequent analysis. Secondly, the consideration
of signals that, due to their acquisition methods, could be incompatible with real activity in
industrial environments and would not align with the approach of this research.

After analysing the different bibliographic sources referring to previous studies, as
well as the signals used during their execution and the acquisition systems used in each
case, it is determined that the most appropriate signals to propose are those linked to:

• Brain activity (EEG): Rigid headband with twelve dry electrodes for the reading of
brain activity in anterior frontal regions AF[7-8], frontopolar Fp[1-2], frontal F[3-4],
parietal P[3-4], parieto-occipital PO[7-8] and occipital O[1-2]. The numbers in brackets
are referring to specific locations on the scalp where the electrodes are placed for the
reading of brain activity based on the International 10–20 system for EEG.

• Galvanic skin response (GSR): Electrodes positioned on the index and ring fingers of
the non-dominant hand. In state excitement, sweat glands are activated, varying the
electrical resistance of the skin. An applied low-voltage current between both points
allows for the detection of these variations.

• Respiration (RSP): Elastomeric band located at the height of the diaphragm. Issues
small electrical signals when varying its extension, so it is possible identify inhalation
and exhalation cycles. These provide information about the respiratory frequency,
tidal volume, and characteristics of the respiratory cycle.

• Pupillometry (PLP): Glasses equipped with eye tracking sensors which enable the
identification of the fixation point of the gaze or eye movement refixation saccades. In
addition to the direction of the gaze, they also provide information about the diameter
of the pupil of each eye, which allows for the derivation of other parameters such as
blinking frequency.
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3.4. Experimental Process

In order to ensure that the experimental phase aligns with the established objectives,
it is imperative to define a set of guidelines during execution that endorse the accurate
execution of the process. The tasks earmarked for experimentation are delineated below:

• Participants reception: Participants are briefed about the project and the experimen-
tation, ensuring they are informed about the purpose, the physiological signals that
will be collected, and the treatment they will receive. They are assured of data privacy
through pseudo-anonymization and told of their right to opt out anytime. Once they
consent, they provide demographic data and complete a technology trust survey.
They are then familiarized with the experimental setup and equipment to capture
psychophysiological signals (see Figure 2). Participants are instructed to minimize
movement during the experiment for data quality control.
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• Biocalibration: The biocalibration phase ensures the equipment is accurately tuned to the
individuals’ varying physiological responses. This adjustment considers that, without con-
text, a specific value cannot conclusively indicate high or low intensity. This phase helps
define the participant’s normal thresholds in varied states of relaxation and excitement.
After equipping the participants with the measuring gear, they perform tasks designed to
both stimulate and soothe their signals, thereby minimizing uncontrolled disturbances.

• Familiarization: The familiarization stage aims to ensure that participants completely
understand their tasks and possible implications during the experiment. In this
phase, participants repetitively interact with the machine to understand its workings,
ensuring they can easily express their trust or mistrust. Unlike the experimental stage,
they are made aware of the sensor’s performance, helping them form trust-based
responses. This process also helps them become accustomed to the screens displaying
crucial information during the interaction process.

• Experimental process: During the experiment, participants interact with the machine
and gauge the sensor’s trustworthiness. They are presented with a system state (“well
lubricated” or “poorly lubricated”) and the default action matches the system state.
They only interact if choosing to disregard the sensor. They are then informed of the
real machine state and the result of their decision. This cycle repeats a hundred times
with varying patterns unknown to the participants (see Figure 3).
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• Informal interview: A brief interview follows the experimental phase for each partici-
pant to assess their experience, identify disruptions, and understand areas of future
improvement. It is especially important for participants presenting anomalies in signal
visualization or behaviour. It helps filter data from those negatively affected by con-
ditions like discomfort with measuring instruments or misunderstanding their tasks.
This interview also aids in understanding participants’ perception of the system’s
reliability and identifying personal traits influencing their perception.

4. Results

The following section comprises the experimental results, divided according to the
research interests and main findings.

4.1. Factors Affecting Dispositional Trust

We utilized information from a concise affinity survey during the participants’ ori-
entation to identify potential factors influencing their natural inclination to trust in a
human–robot environment. These data were collected before any interaction with the de-
signed experiment, ensuring they remain unaffected by procedural biases in the experiment
and reflect the individuals’ intrinsic perspectives on trust in robot collaboration.

Additionally, each participant provided demographic information, including gender,
age, and the technological intensity of their work role, along with a self-assessment of
their trust in robots. At this stage, we investigated potential relationships between these
variables and the ex-ante self-assessed trust in robots.

Figure 4 presents descriptive charts (histogram, probability density function—PDF—,
cumulative distribution function—CDF—, and boxplot chart) illustrating dispositional trust
across three dimensions of interest: gender (male versus female), age (juniors—younger
than 40 years old—versus seniors—older than 40 years old), and work profile (highly
technical versus non-technical).

Figure 4 highlights differences among the analyzed demographic groups. For instance,
both the histogram and PDF reveal a noteworthy peak at the 70–80% trust level for females,
and a similar peak is observed for juniors. This pattern is absent in their respective
counterparts (males and seniors). The boxplot chart also indicates that senior individuals
exhibit a slightly superior mean trust level compared to their younger counterparts.

To validate these perceptions, and considering the non-normal distribution of data,
we conducted a Mann–Whitney U test to check for disparities in the data distribution of the
different gender, age, and role collectives. Table 2 presents the results of the tests, indicating
that, while differences may exist, demographics alone are not significant enough to explain
such disparities.

Table 2. Results of the Mann–Whitney U-test for dispositional trust between different demographics.

Demographic Segments Statistic Test p-Value

Gender Female (X0)−Male (X1) 322.0 X0 > X1 0.5265
X0 < X1 0.4810

Age Junior (X0)−Senior (X1) 247.5 X0 > X1 0.8685
X0 < X1 0.1357

Role Non-Technical (X0)−Technical (X1) 372.0 X0 > X1 0.1570
X0 < X1 0.8475
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4.2. Factors Affecting Perceived Trust

After the experimental session, we instructed the participants to assess the system’s
trustworthiness. It is important to note that, regardless of the interaction model the par-
ticipants experimented with, the system behaved correctly 75% of the time, resulting in a
consistent objective trust level across all cases which allowed us to compare results.

Once more, we examined the distribution of perceived trust and explored the influence
of demographic factors on this variable, mirroring the analysis conducted for dispositional
trust. However, given that these assessments were ex post, we also considered the impact
of the interaction model to which participants were exposed. Figure 5 and Table 3 provide
a summary of these results.
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Table 3. Results of the Mann–Whitney U-test for perceived trust between different demographics.

Demographic Segments Statistic Test p-Value

Gender Female (X0)−Male (X1) 352.5 X0 > X1 0.3025
X0 < X1 0.7041

Age Junior (X0)−Senior (X1) 282.5 X0 > X1 0.6685
X0 < X1 0.3388

Role Non-Technical (X0)−Technical (X1) 293.0 X0 > X1 0.6956
X0 < X1 0.3110

Exp. Model Model-0 (X0)−Model-1 (X1) 270.5 X0 > X1 0.8539
X0 < X1 0.1505

Similarly to dispositional trust, Figure 5 shows some possible differences regarding
the demographic data distribution such as higher trust values for senior participants and
the subjects exposed to the experimental Model-1. However, the results of the conducted
Mann–Whitney test compiled in Table 3 show that these divergences are not significant
enough to explain such disparities.
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4.3. Influence of Past Iteraction in Trust Dynamics

The experimental process exposed participants to a series of interactions with an
overall 75% reliability. Two experimental models were conceived to alter the sequence in
which participants faced the test. Both models alternated between a fully reliable scenario
and a chaotic sequence where only 50% of the readings were correct. Model-0 began with
trustworthy iterations, while Model-1 presented chaotic iterations first. This setup allows
us to investigate whether the order in which participants faced the test influences the
propensity to trust.

To integrate the interaction results, we counted the times participants chose to trust
the sensor’s reading on each experimental stage and divided the result by the number
of interactions on that stage, obtaining the trust rate for each stage. These results were
aggregated according to the experimental model they interacted with. Figure 6 shows the
distribution of trust rates among the different models and experimental stages, along with
the mean trust rate for each case.
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To verify the impact of past interactions on the conformation of trust, we decided to
perform a statistical test on the trust rate distributions among the different experimental
models for both the case of perfectly working sensors and for the randomly working sensor
scenarios. Since Figure 6 shows that the trust rate distribution does not follow normality, we
conducted the Mann–Whitney U-test to check the significance of the trust rate differences
among experimental models. Table 4 shows the results of these tests, emphasizing those
with statistical significance.

Table 4. Results of the Mann–Whitney U-test for trust dynamics between different models and
experimental stages.

Stage Segments Statistic Test p-Value

Correct sensor Model-0 (X0)−Model-1 (X1) 2231.0 X0 > X1 0.9979
X0 < X1 (*) 0.0020

Random sensor Model-0 (X0)−Model-1 (X1) 4692.0 X0 > X1 (**) 1.920 × 10−9

X0 < X1 1.000
(*) Results presenting statistical significance. (**) Results presenting very strong statistical significance.
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4.4. Universality of Trust Detection Models

Deciphering trust in the intricate human–robot dynamics requires many variables. The
physiological signals captured during the experiment, including 12 detailed signals related
to brain activity (EEG), skin conductance response (GSR), respiratory band extension (RSP),
and pupil diameter variations (PLP), offer a variety of information to train a suitable model.
However, there are some considerations to ponder in order to choose the most suitable
approach. We analyzed three distinct yet complementary approaches in creating a trust
detection model.

The General Approach involved constructing an expansive dataset comprising all
participants’ data and iterations. This method allowed us to leverage a broad dataset,
providing a comprehensive overview of general trust trends. However, it introduced the
challenge of potential information leaks between the training and test sets, as participant-
specific information was included in both sets. Under this approach, a single model covers
all the trust detection needed for every participant.

In the Leave-One-Out Approach, we addressed the risk of information leaks by train-
ing algorithms using the complete dataset, excluding participant-specific information.
While this approach maintained a substantial amount of data, it sacrificed personalized
information crucial for trust detection, leaving out precise data that could contain the most
valuable information. This approach created a specific classifier for each left-out participant
and the results were later aggregated.

The Individual Approach focused on the uniqueness of trust reactions. By exclusively
utilizing each participant’s individual dataset, this method created personalized algorithms
for each individual. Despite having the smallest dataset for training, the Individual Ap-
proach allowed for the detection of specific trust nuances in each participant. As in the
previous case, a specific model was created for every participant.

In summary, we created over 100 distinct models through an iterative process involv-
ing the use of a pipeline grid search to explore various algorithms, including K-Nearest
Neighbors, Support Vector Machines, and Random Forests, and fine-tunning the corre-
sponding hyperparameters to optimize the algorithmic result.

Table 5 presents key metrics, including minimum, mean, and maximum F1 scores,
obtained with each training model, showcasing the strengths and nuances of each approach.

Table 5. F1 scores.

Minimum Mean Maximum

General Approach - 0.6172 -
Leave-One-Out 0.6098 0.6207 0.6326

Individual Approach 0.6363 0.7661 0.9219

4.5. Universality of Signals Used for Trust Detection

During the experiment, we recorded a large variety of signals, including brain activity,
electrodermal response, respiration, and pupillometry. However, whether these signals are
valuable to detect general variations of trust is unclear. We seek to discern whether these
signals exhibit consistent patterns applicable to the detection of trust variations in all the
participants or whether they may be referred to as key elements to detect trust variations in
certain individuals.

To analyze this issue, we systematically computed the frequency with which each
signal contributed to the general analysis approach and, concurrently, how frequently
it featured in individualized models. Figure 7 succinctly encapsulates the outcomes,
providing insights into the role of each signal in both general and individualized trust
detection models.
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5. Discussion

Throughout this article, we have presented the different dimensions of trust (dispo-
sitional, situational, and learned) and outlined the experimental process undertaken to
determine the factors influencing them.

The literature consulted indicates a marked influence of personal factors on disposi-
tional trust. Nevertheless, our empirical results contradicted conventional expectations by
unveiling the absence of statistically significant correlations between these customary de-
mographic indicators and the participants’ dispositional trust in automated systems. Since
our analysis focused on gender, age, and occupational role, we suggest further analysis of
the potential influence of unexplored demographic aspects. Variables such as social status,
educational background, and nationality may wield significant results. Their potential
significance in shaping dispositional trust cannot be disregarded, and further studies are
needed to analyze their impact.

To analyze the evolution and dynamics of learned trust, we designed two experimental
models with similar iterations arranged in different orders, thus allowing for the detection
of variations in trust evolution dynamics. As indicated by statistical tests, the behavior
of both groups is disparate. Specifically, participants who start with a series of iterations
exhibiting random behavior (participants interacting with Model-1) experience a higher
dynamic variation compared to their counterparts (participants interacting with Model-0),
thus exhibiting higher trust levels when the system functions properly and lower trust
levels when the system’s performance is erratic. In this context, it could be argued that the
initial iterations with the system significantly influence the trajectory of future iterations.
Drawing an analogy with classical mechanics, it can be asserted that the initial iterations
are critical in determining the level of “trust inertia” individuals have towards automated
systems and their future interactions.

Regarding the third component of trust, situational trust, its influence is not directly
covered by the experimentation and analysis conducted in this research. However, a small
portion of it is reflected in the link between post-trust perception and the interaction model
to which each participant has been subjected. This is justified by considering that this
combination incorporates elements that are external to the individual into a static value
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of trust and, therefore, cannot correspond to dispositional (individual) trust or learned
(dynamic) trust. The analyses performed highlight a low significance in the link between
these elements. This is mainly because this factor is not the main focus of the study, and
thus, the experimental process is not designed to emphasize its influence.

Regarding mathematical models aimed at trust detection, we designed a common
model for all participants using the generalist approach. The Leave-One-Out approach
is also suitable, in general terms, for any individual and, in this regard, allows the same
universalization as the general model. These models offer a moderate performance, achiev-
ing an F1 score close to 0.61–0.62. On the other hand, individualized models show much
higher performance than these approaches, achieving F1 values that surpass those of the
previous models in all cases, reaching an average F1 score of 0.76 and even reaching oc-
casional values of 0.92 on this score. This indicates that, compared to generalist models,
individualized models offer better performance in detecting trust violation and recovery
situations. However, the implementation of this approach faces other challenges, such as
the need to train independent algorithms for each subject.

The influence of the different psychophysiological signals in the proposed prediction
models must also be considered. Variables such as pupil dilation or changes in breathing
patterns play a fundamental role in implementing personalized trust detection models,
but lack significance in the generalist model. Conversely, signals like brain activity in the
parietal–occipital lobe (electrodes PO7 and PO8) contribute to the generalist model but
have very little influence on personalized models. Although the cause of these phenomena
has not been studied in detail, it can be inferred that signals included in the generalist
model exhibit similar behavior in most individuals, but these changes are not necessarily
the most sensitive to variations in trust situations.

Having outlined the scope of the results obtained, it is important to acknowledge that
while this research may not fully capture the entirety of trust dynamics, it offers valuable
insights that could have a significant impact if implemented in industrial environments.

The findings of our study underscore the significance of initial interactions in shaping
the trajectory of trust dynamics in Human–Robot Collaboration (HRC). While it is essential
to recognize the critical role of first interactions in trust formation, it is equally crucial to
acknowledge the potential challenges posed if the machine’s trustworthiness diminishes
over time. Monitoring trust variations in real time may offer insights into detecting deterio-
rating robot behavior. By incorporating mechanisms to detect and respond to changes in
trust, developers can proactively address potential issues and maintain user confidence
in robotic systems. These responses to changes in trust may include automatic modifica-
tions in robotic behavior, such as reduced operation speed, increased safety distance, and
additional communication and feedback channels, such as alarms or flashing lights.

Additionally, another noteworthy aspect to consider is how the robot’s behavior
might adapt if it receives indications that it is not trusted by the human user in its actions.
This feedback loop could serve as a basis for extending trust models and developing
more sophisticated algorithms for adaptive robot behavior. By incorporating feedback
mechanisms that allow robots to adjust their actions based on user trust levels, we could
potentially enhance the overall user experience and foster stronger collaboration between
humans and robots in various contexts.

In summary, our study has clarified the intricate interplay of factors influencing trust
in HRC, emphasizing the importance of initial interactions, the need for the real-time
monitoring of trust dynamics, and the potential for adaptive robot behavior. These insights
offer valuable guidance for developers and researchers seeking to design reliable, robust,
and trusted human–robot collaborative environments.
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6. Conclusions

To conclude our study, we need to review the core research questions that guided our
research regarding the nature of trust in Human–Robot Collaboration.

First, we aimed to identify the fundamental factors affecting trust in HRC environments.
We addressed this issue with an extensive literature review that revealed three distinct di-
mensions of trust: dispositional, situational, and learned. This review also stressed several
demographic aspects that influence the dispositional dimension of trust.

The second question aimed to identify specific variables that could influence the previ-
ously disclosed dimensions of trust. To answer this issue, we created a specific experimental
process that allowed us to identify potential factors affecting dispositional and learned
trust. The literature suggested a marked influence of personal factors such as gender,
age, and occupational roles on dispositional trust. However, contrary to conventional
expectations, our empirical findings did not reveal any statistically significant correlations
between these traditional demographic markers and participants’ dispositional trust in
automated systems. This unexpected result prompted us to delve further into broader
demographic factors—social status, educational background, and nationality—which were
not explicitly considered in our initial study. On the other hand, the study proved that
the first iterations between humans and robots play a crucial role the evolution of trust
dynamics. Presumably, this points out that the learned dimension of trust is more sensible
and susceptible to change than the other dimensions.

The third and final research question aimed to identify crucial human signals for
measuring trust in HRC and understand their contributions to the development of trust
detection models. Following previous works detailed in the literature review, our explo-
ration into psychophysiological signals encompassed brain (EEG), electrodermal (GSR),
respiratory (RSP), and ocular (PLP) activities. We focused on three different approaches,
varying from generic to individualized trust models. Results revealed the difficulty of
extrapolating a general model of trust. On the one hand, the individualized models worked
better than the general model, and, on the other hand, several individually significant
psychophysiological signals showed very particular responses and, thus, proved irrelevant
in the general model. This issue emphasizes the very complex and personal nature of trust.

Our study effectively addresses the research questions, shedding light on the intricate
interplay of factors influencing trust, the temporal dynamics of trust evolution, and the optimal
human signals for trust measurement in HRC. However, it is worth mentioning that while
our research provides valuable insights into the complex dynamics of trust in Human–Robot
Collaboration, there are areas that remain inconclusive. For example, our discussion does
not address the potential implications of feedback mechanisms on robot behaviour based
on the trust levels perceived by human inspectors. Incorporating such feedback into our
trust detection models could enhance the adaptability of robots in response to changing
trust dynamics, thus optimizing collaboration and performance in human–robot interaction
scenarios. Nevertheless, we are confident that this research will empower the design of future
reliable, robust, and trusted human–robot collaborative environments.
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