(Un)Plugging Smart Cities with Urban Transformations: Towards Multi-Stakeholder City-Regional Complex Urbanity?

Dr Igor Calzada, MBA

University of Oxford, Urban Transformations & Future of Cities - COMPAS, 58 Banbury Road, Oxford OX2 6QS, UK igor.calzada@compas.ox.ac.uk

BIO: (50 words)

Dr Igor Calzada MBA www.igorcalzada.com/about is an interdisciplinary academic entrepreneur working as Lecturer, Research Fellow & Policy Adviser at the University of Oxford, Strathclyde & Vrije. His research interest concerns comparing social/economic/technologic/politically innovative processes in smart citiy-regions www.cityregions.org by paying attention to regional/metropolitan governance devolution cases through the application of qualitative/action research methods.

ABSTRACT: (150 words)

The author argues that the development of the so-called buzzword smart city and its use in planning inner cities are intimately bound up with required current urban transformations. In this attempt to deconstruct or *unplug* the buzzword, this paper shows a sample of the current EU smart city H2020 *universe* by focusing on four projects the author is engaged in. The conclusion of the article revolves around the necessity to *plug* stakeholders *in* by setting up a new, complex, multi-stakeholder, city-regional urbanity as a way to transit towards real smartness in cities and regions. To *plug in*, or connect, stakeholders, one should consider: the interdependencies among them; the need of democratic mechanisms to manage data; the need to scale up urban solutions to metropolitan/city-regional levels; the intent to provide comparative evidence-based data; and finally, the tendency to establish not only quantitative but also qualitative rankings and city dashboards that will enable adaptability rather than replicability.

KEYWORDS:

"Smart Cities"; "Urban Transformations"; "Multi-stakeholder"; "City-Regions".

WORD COUNT:

6,936

1 INTRODUCTION

The trouble with modern theories of behaviourism, is not that they are wrong but that they could become true. (Arendt)

We may wish for easier, all-purpose analyses, and for simpler, magical, all-purpose cures, but wishing cannot change these problems into simpler matters than organised complexity, no matter how much we try to evade the realities and to handle them as something different. (Jacobs)

It is noteworthy that although smart cities are already being built around us, they differ considerably from the simplistic, *one-size-fits-all*, *smart-city-in-the-box* mainstream approach (Townsend et al., 2011) that has been hegemonic so far. This idea mostly hearkens back to basic notions of deconstructing the governance interactions that actively require a holistic approach considering urban transformation trends occurring in our cities in a different manner. No two cities are the same, and while many of the challenges facing our cities today and in the future are similar, there is no single solution to these. Cities have long wished for a greater ability to sense and actuate, in order to provide basic services more efficiently, but this is far more easily said than done. The design of such smart systems is not easily undertaken, and must be done so with sustainability and adaptability in mind rather than replicability *wishful thinking*.

Based on a previously published Journal of Urban Technology paper entitled 'Unplugging: Deconstructing the Smart City', the authors argue that such reimagining and repositioning need to occur across smart city technologies by avoiding pragmatic approaches that wrongly are assumed to be non-ideological and commonsensical. Hence, the paper is structured in five sections. First, the concept of the smart city as both a buzzword and a fetish term will be presented. Second, the author shows how smart city policy agendas should be unpacked and plugged in again in a wider and inclusive perspective by suggesting the Unplugging framework, which consists of 10 transitions. Third, based on on-going, EU-funded smart city project's intervention, which consist of a whole smart-official universe, the author underlines the importance of integrating urban transformations and research findings as a strategy that would enable more emancipatory and empowering visions of smart cities beyond simplistic market ambitions of companies or the control desires of states (Kitchin 2015: 30). Finally, five final remarks are presented as the future research agenda of (un)plugging smart cities with urban transformations: urban governance interdependencies, data to decide, metropolitan and regional scaling-up, city-to-city learning and comparing smartness (benchmarking, dashboards and rankings). As a result, an unanswered question will be left at the end of the paper to provoke further and deeper policy and research debate regarding Horizon 2020 (Calzada, 2013): Should H2020 move towards multi-stakeholder city-regional complex urbanity?

2 CONTEXT

'Smart city' (Hollands 2008, Kitchin 2014, Albino 2015, and Batty 2015) has already become a *fetish* term to simplify complex urban debates in an uneven techno-deterministically-driven, hyper-connected society. Therefore, a mainstream wave of urban standardisation concerning the *one-size-fits-all*, *smart-city-in-the-box* paradigm has been dominating the EU policy agenda so far. Yet, this movement has failed to offer alternative, efficient policy tools to understand better and intervene in our daily urban realities while considering the whole range of stakeholders that determine whether or not a common solution is a 'smart' one for the city. Moreover, it is arguable that the smart city is already happening around us, but not in the way anticipated. Furthermore, the 'smart city' discourse has been shifted by academics in order to make proposals that produce realistic transitions in cities and to avoid a narrowly portrayed approach to governance and urbanisation processes.

Regarding the uneven techno-deterministically-driven society, surprisingly, it's a society that seems to embrace information and communication technologies (ICTs) enthusiastically as the key component of the infrastructure of modern cities and their internal governance strategies.

In academia, urban studies have a long tradition of critically examining the interface between space and digital technologies, and information studies have targeted the city as one of its principal domains of research. However, narratives and practices around notions of smartness have been largely absent.

Having said that, some could argue that the smart city exists (or is already happening around us), but not in the way it was anticipated. Two deeply researched main paradigmatic examples illustrate the way this trend has been orchestrated as a mainstream wave of urban standardisation: Masdar (Cugurullo 2013) in Abu Dhabi and Songdo (Shwayri 2012) in South Korea.

On the one hand, according to Cugurullo, behind the Masdar City project, there is a much bigger project aimed at capital accumulation, and little attention is paid to what is unrelated to the business plan. At the core of Masdar City lies a powerful mechanism fuelled by technology-driven capital flows pumped directly into the development to become part of it. Thus, there is little space for the social aspects of sustainable development and the social dimension of the city (2013: 34). To sum up, Masdar City is what Augé (2008) calls a non-place: a non-anthropological spatial entity bereft of an organic society.

On the other hand, according to Shwayri, Songdo is a clear case of building cities from scratch as a result of a persistent belief by governments that newly constructed cities can set their nations on a fast path to the future. Songdo, however, is built on inherent contradictions (2013: 52): the making of Songdo as eco-city has seen adverse effects by producing significant price contrasts that in effect only allow the affluent class to avail themselves of the newly emerging city.

Hence, we could argue that in some senses, the smart city narrative can be seen as a three-act Shakespearean tragegy. In the Act I, Songdo, Masdar and PlanIT Valley developments posited a utopian vision of the future, in which tech is the benign, all-powerful master. They were lifeless pilots, unrealistic models that existing cities were not interested in, but whose often unsuitable innovations they were nevertheless obliged to adopt, due to financial constraints. In the Act II, there is no route from these pilots to scaled-up long-term solutions. Their unviability, and the mode of financing – perpetual pilots – results in very little concrete interest. Tech companies respond to the lack of demand with layoffs. And in the Act III, two models are now emerging in a new transition (as it was argued in the article Unplugging): the city as platform model, as seen in Singapore and Dubai, and more open agile approaches to urban innovation. These are both bottom-up and entrepreneurial by assuming the urban society as a new city-regional complex urbanity.

2.1. URBAN BUZZWORDS IN THE LAST 30 YEARS

The smart city seems to be the urban buzzword for the 2010s. However, as Jong et al. (2015) suggested in the graph shown in Fig. 1, over the last three decades, metropolitan areas around the world have been engaged in a multitude of initiatives aimed at upgrading urban infrastructure and services, with a view to creating better environmental, social and economic conditions and enhancing cities' attractiveness and competitiveness. As depicted in the graph, many new categories of cities have entered the policy discourse: sustainable cities, green cities, digital cities, smart cities, intelligent cities, information cities, knowledge cities, resilient cities, eco-cities, low carbon cities, liveable cities and even combinations, such as low carbon eco-cities and ubiquitous eco cities. The point is these terms often appear to be used interchangeably by policy makers, planners and developers. However, the question arises whether these categories nevertheless each embody distinct conceptual perspectives, which would have implications for how they are applied in policy.

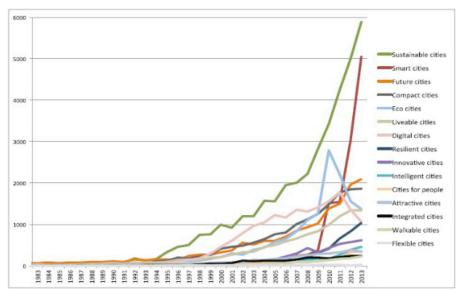


Fig. 1: Urban buzzwords in the last 30 years.

Source: De Jong, M., et al., (2015) Sustainable-smart-resilient-low carbon-eco-knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization, Journal of Cleaner Production (2015), http://dx.doi.org/10.1016/j.jclepro.2015.02.004

2.2. EVOLUTION OF THE SMART CITY TERM

Hence, we could argue that this mainstream wave of urban standardisation concerning the smart city paradigm has so far been dominating policy agendas since the mid-1990s:

As shown in Fig. 2, initially, since the 1960s, the different terms were used as described before.

Actually, it was in the mid-1990s, when the smart city term emerged in newspapers and media.

It was just after the recession boosted in 2008 when corporations begin to stake their claims. Back in 2008, when the smart city movement was taking its first steps, Robert G. Hollands (2008) asked for *the real smart city to stand up*. Since then, there has been an intense debate, as well as a number of projects self-proclaiming their smartness. It should also be said, great steps have been taken in some leading cities to explore how we turn digital innovation into public service improvements and entrepreneurial activities. However, comparative and city-to-city learning urban transformation applied research is required, as this paper will suggest in sections 4 and 5.

Since 2011, a critical discourse has gained momentum.

Yet, it should be said, this paradigm has failed to offer alternative and efficient policy tools to understand better and intervene in our daily urban realities, while also considering the whole range of stakeholders.

Particularly in the European Commission H2020 Framework Programme, the urban smartness is simplified, assuming that the technical system is an efficient interdependent bubble made up of three factors: mobility, energy, and ICTs.

As it has been pointed out before, this approach is known as the *one-size-fits-all*, *smart-city-in-the-box* paradigm. This paradigm is creating a new lexicon through which the development of cities is being forged with elements like urban apps, big data, intelligent infrastructure, city sensors, urban dashboards, Internet of Things (IoT), connected homes, smart meters, smart buildings and smart grids (Calzada 2016).

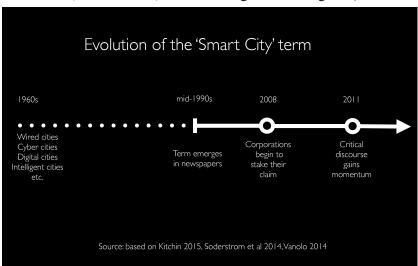


Fig. 2: Evolution of the 'Smart City' term.

Source: Karvonen, A. (2016), From the Sustainable to the Smart City: Complementary or Contradictory Urban Visions? Paper given in April 2016 at VuB.

Nevertheless, in this paper, a less dystopic and rather more constructive perspective will be provided in order to strike a balance between self-promotional examples by stressing the underlying pro-business bias and those biases underpinning sustainability and social innovation in a more democratic way. Actually, there is a wrong assumption that the smart city's economy should be increasingly driven by technology-inspired innovation and entrepreneurship that, in turn, will attract businesses and jobs, create efficiencies and save and raise the productivity and competitiveness of government and businesses (Caragliu 2009).

Smartness that is just in line with techno-economic growth will not develop further itself, provoking potential boomerang side-effect to the cause that has not been systemically anticipated before 2008 crisis (Calzada 2013). According to the Urban Transformations research portfolio funded by the ESRC (2016), the changing geographies of urban studies reflect the reordering of the global economy. The sheer scale of urbanisation in the global south, the tiger economy's maturity in Asia and the growth of the BRICs

undermines a conventional urban studies narrative that focuses on the metropolitan experiences of the global north. Thus, geo-economics is already requiring a systemically smart response to the geo-politics and geo-democratics. Considering cities as isolated technical systems is clearly insufficient for the urban challenges that they are already facing. Cities and regions are complex adaptive systems (Abbott 2016), combining spatiotemporal and behavioural structures that are affected by and affect individual and collective agents.

3 (UN)PLUGGING THE SMART CITY

Thus, this paper goes beyond the trend of hyper-connected societies. As such, while the creation of smart cities has many supporters, most notably governments that hope to address and manage the many issues cities face using ICT-based solutions and businesses that seek to profit from selling new smart city technologies and services, smart urbanism has not been universally welcomed (Kitchin 2015). As Vanolo (2016) argued recently, the reasons why the smart city is so popular in Europe are based mainly on a mix of various forces, to be found, first, in the availability of substantial European financial resources to fund the eco-restructuring of cities; second, in the tendency of the major private companies to invest in urban digitisation projects; third, in the construction of a persuasive rhetoric including salvation visions of technology; and finally, in the image of clean, liveable, technologically advanced cities far removed from the economic crisis. Albeit this article advocates that new tools and practices to facilitate co-operation and learning rather than mere replication must be experimented upon and found. As of yet, no national government has attempted to undertake an urban innovation programme on a scale which would influence the market. To some extent, it seems that the H2020 programme could wrongly follow Singapore's and India's large-scale programmes. These two programmes, Singapore's Smart Nation and India's 100 Smart Cities, seem to be repeating many of the mistakes seen with the *smart-city-in-the-box* paradigm (Masdar, Songdo and PlanIT Valley). It could be argued that sustainable business models have been largely absent, with the majority of projects occuring in the EU, including, pilots, testbeds and lighthouses. However, some European cities are particularly proactive in their pursuits of heterogenous smart initiatives, such as those embracing experimental unification of top-down and bottom-up approaches like Massive Small (Campbell 2011).

3.1 BEYOND HYPER-CONNECTED SOCIETIES

There is a wrong belief that complex open systems can be disassembled into neatly defined problems that can be solved or optimised through computation. This is what Morozov calls solutionism as the expansion of technological development, which includes reductions in the cost of connectivity, has increased the deployment of information-centric schemes (Ahlgren et al. 2012). Thus, smart cities represent a set of hyperconnected societies that enthusiastically embrace ICTs as a key component of the infrastructure of modern cities. However, the social adoption of technology and technological evolution occur at highly dissimilar rates, suggesting significant socio-technical misalignment (Calzada 2015).

3.2 BEING DIGITALLY CONNECTED/PLUGGED IN IS NO GUARANTEE OF BEING SMART

Thus, the notion of unplugging lies in two notions:

The first notion means the fact of being digitally connected or plugged in is no guarantee of being smart as Evans suggested in 2002 (Calzada 2015: 36). In urban planning, there is a well-established notion of wicked problems. They aren't solvable due to technical limits or a lack of data; rather, they aren't solvable because they are big and complex and so wracked with political conflicts that stakeholders can't even agree what success looks like or how to measure it. Yet the smart city promised that, given enough data and enough processing power, we could directly compute solutions to any problem (Rae 2015). This shows a lack of understanding of how cities work, and, at worst, it was a disaster in the making.

The second notion is a consequence of the first one; as Williams noted in 1983, technology is never neutral, and it has the potential and capacity to be used socially and politically for quite different purposes. This idea is explicitly advocated by Kitchin when he refers to data (2015: 17) by arguing that the data within these systems are not neutral and objective in nature. Instead, they are situated, contingent and relational, framed by the ideas, techniques, technologies, people and contexts that conceive, produce, process, manage, analyse and store them.

3.3 (UN)PLUGGING THE SMART CITY: 10 TRANSITIONS

In order to overcome the reductionist mainstream smart city direction from a critical urban transformational perspective, the author of this paper suggested in an previous article, which ranks as the seventh most-read article in the *Journal of Urban Technology*, to use of a 10-transition-based framework entitled Unplugging. With Unplugging, instead of merely accepting the technology or refusing it totally, it suggests implementing a transition in 10 different dimensions, as shown in Table 2.

	1 WHO	2 HOW	3 SYSTEMS	4 GOVERNANCE	5 INFORMATION	6 FOCUS	7 SPACE	8 DESIGN	9 SOCIO- POLITICAL PROCESSES	10 POLITICAL ECONOMY
UNPLUGGING the SMART CITY	Social & Digital Divide	Individualism vs Collectivism	Socio- Technical Systems	Master Planning vs. Emergent Plan and Top Down vs. Bottom Up	Overload vs Scarcity	Social Netking vs Social Capital	Context Collapse	Ambient Commons	Control & Normative vs Free & Emergent	Profitable vs Non- Profitable

Fig. 3: Unplugging: Deconstructing the Smart City. 10 Transitions/Dimensions

Unplugging is defined (Calzada et al. 2015) as a subtle notion of contestation of the dominant mode of urban governance that demands some transitions to overcome the social tensions and misalignments caused by hyper-connected societies. Nevertheless, this methodological proposal presents another virtuality: instead of aligning with dystopian and techno-sceptic pure visions of the smart cities, it lies in the constructive notion of the social innovation by identifying real cases that firmly embrace this novel trend—a novel trend that offers a corrective to the smart city mainstream in favour of a transition towards the judicious use of digital technologies, thus enabling the construction of a more economically and socially sustainable democratic citizenship. Here in a nutshell are the 10 transitions/dimensions that could be foreseen regarding the smart city projects:

- (1) [The Who Dimension] Will the smart city evolve into an urban sphere in which dwellers have the right to decide whether to be connected? Will unplugging be a right or a privilege? To what extent is it possible to foresee a transition of smart cities from the high to the low social and digital divides towards more democratic, participatory and equal smart cities?
- (2) [The How Dimension] How will the transition between individual and collective entities be organised? Will we witness new hybrid configurations by experimenting with unplugging? Can the function of the smart city be understood as a proxy for a community? Is the city a social interface in which the citizens will be able to self-design their social, everyday, life needs?
- (3) [The System Dimension] To what extent is it possible that dwellers can be less passive in deciding the role of urban technology systems? Will these devices serve the citizens more than the citizens serve the devices? Will the transition from an artificial system to an embedded system be understood as an opportunity for adding value to citizens' experiences?
- (4) [The Governance Dimension] How will the smart city avoid technocratic, dominant, top-down governance? Are there experimental governance schemes that embrace bottom-up, emergent strategic planning and are considered to be real possibilities? Is the bottom-up innovation perspective simply wishful thinking?
- (5) [The Information Dimension] How realistic is it to combine open access, civilian, deliberative systems within a confidential, espionage-obsessed paradigm? In the big data era, is it possible to transition from controlled to open data-driven models?
- (6) [The Focus Dimension] Are open, democratic communities of individuals facing a transition from a business-led and techno-deterministic approach to socially innovative, community-driven cities? Do we notice the difference between simple social interactions and trusting human ties?
- (7) [The Space Dimension] Will we observe changes in which context-collapsed information will be contextualized to enhance social interactions? To what extent can context collapse enable new opportunities for social capital?
- (8) [The Design Dimension] Will technological devices be designed based on people's needs rather than on corporate or infrastructure interests? How can design and user interactions be improved to anticipate an ambient commons for citizens?
- (9) [The Socio-Political Processes Dimension] Will the socio-political establishment experience a shift towards free and community-driven processes? What are the boundaries for establishing these processes in

the urban arena?

(10) [The Political Economy Dimension] Finally, will the political economy of the smart city be altered as a consequence of changes in stakeholder power relationships?

The main aim of the paper is to present a way in which we could unfold the real practices and consequences of the smart city initiatives (Calzada et al. 2015) rather than providing a taxonomy of definitions (Albino et al. 2015, Caragliu et al. 2009, ARUP 2011 and 2014). According to some widely spread critical perspective about smart cities (Buck & While 2015, Campbell 2012, Gabrys 2014, Glasmeier & Christopherson 2015, Greenfield 2013, Hajer & Dassen 2014, Hollands 2008 and 2014, Kitchin 2015, Luque-Ayala and Marvin 2015, Marvin et al. 2015, Shelton et al. 2015, Soderström et al. 2014, Townsend 2015, Vanolo 2014, and Vitanen et al. 2014), despite the significant political, economic and social consequences, research on smart technologies to date has focused on their technical components. Albeit, there has been limited discussions of the social and geographical dimensions of urban processes.

In this context, smart city discourse, at least in the EU (Caragliu 2011 and European Parliament 2014), has changed for the better since 2008. City leaders around the world have a much more informed understanding of what smart technologies can do. But little can be said about smart interventions by considering holistic frameworks. It is why this paper advocates deconstructing, from the policy perspective, which are the interactions among stakeholders while unpacking processes driven by smart technologies. It is just after unplugging when we could certainly build the smartness in cities—not just by adding another layer more by adapting the hardware to the software (Calzada et al. 2016), rather than vice versa. It is after that when joint smart and sustainable policy agendas could make complete sense of the particular smart urban challenges with relevant transformative consequences.

In the next section, the author will briefly present an initial overview of the current list of smart city EU projects, and then a list of on-going smart city EU projects in which the author is or has already been involved including STEEP, STEP UP, SMARTCITYREGIONS and REPLICATE. The author's participation has occurred at different levels: as a member of advisory boards, a lecturer, a WP leader, and a PI.

4 PLUGGING SMART CITIES WITH URBAN TRANSFORMATIONS IN THE EU.

FP7	SCC1 2014	SCC1 2015	Smart Cities Support
			Actions
CITyFiED	GrowSmarter	REPLICATE	CITYkeys
(www.cityfied.eu)	(www.grow-smarter.eu)	(www.replicate-project-eu)	(<u>www.citykeys-project.eu</u>)
CITY-zen	REMOURBAN	Sharing Cities	ESPRESSO
(www.cityzen-	(www.remourban.eu)	(www.sharingcities.eu)	(www.espresso.ru.unikl.de)
smartcity.eu)	Tringulum	SmartEnCity	SCIS
SINFONIA	(www.triangulum-	(https://eu-	(www.smartcities-
(www.sinfonia-	project.eu)	smartcities.eu/content/vitoria-	infosystem.eu)
smartcities.eu)		tartu-and-sonderborg-join-	
		<u>h2020-smartencity-project</u>)	
STEEP			
(www.smartsteep.eu)		SMARTER TOGETHER	
		(https://ec.europa.eu/inea/en/h	
STEP UP		orizon-2020/funded-	
(www.stepupsmartcities.		projects/smart-cities)	
<u>eu</u>)			
SMARTCITYREGIONS			
-MARIECURIE			
(www.smartcityregions.o			
<u>rg</u>)			

EU Project	Cities involved	Timeframe & Title	Funding Institution
EU-H2020-SCC- 1st Lighthouse: REPLICATE	 Bristol (UK) St. Sebastian (ES) Florence (IT) Laussane (CH) Essen (DE) Nilüfer (TR) Bogotá (CO) Guangzhou (CN) 	< 2015-2020 > REnaissance of PLaces with Innovative Citizenship And TEchnology	EU-H2020-SCC-Lighthouse www.replicate-project.com
EU-Marie Curie Actions-Cofund- Regional Programmes: SMART CITY- REGIONS	 Bristol (UK) Glasgow (UK) Bilbao (ES) Barcelona (ES) 	< 2015-2016 > Comparing Smart City-Regional Governance Strategies: Bilbao, Barcelona, Bristol & Glasgow	EU-FP7 Marie Curie Actions- Cofund BilbaoMetropoli-30/Bizkaia Province Council
EU-FP7-314679 STEP UP Smart City Plan	 Glasgow (UK) Riga (LT) Gothenburg (SE) Ghent (BE) 	< 2014-2015 > Energy Planning for Cities *MSc Master in Global Sustainable Cities	EU-FP7 www.stepupsmartcities.eu/
EU-FP7-314277- STEEP Smart City Plan	Bristol (UK)St. Sebastian (ES)Florence (IT)	< 2014-2015 > Systems Thinking for comprehensive city Efficient Energy Planning	EU-FP7 http://www.smartsteep.eu/

Fig. 4 Smart City EU Projects' Overview and Involvement.

Here some findings after working in the projects detailed in Fig. 5:

It is obvious that the smart city concept has rapidly risen to prominence within the policy and governance discourses of urban development and is on its way to becoming the leading driver of urban sustainability and regeneration initiatives (de Jong et al. 2014: 12).

However, as we have seen in the so-called *one-size-fits-all, smart-city-in-the-box* paradigm with Masdar and Songdo, rather than being constructed on tabula rasa according to the centralised plans of multinational technology corporations, smart city interventions are always the outcomes of, and awkwardly integrated into, the existing social and spatial constellations of urban governance and the built environment (Shelton et al. 2015: 14).

In the case of the two projects funded by the European Commission 7th FP, STEEP and STEP UP, interdependencies have been the unresolved issue so far.

- In the case of STEEP (Systems Thinking for Efficient Energy Planning), partners spent months utilising the STEEP open-source methodology. As part of this process, a list of 50 KPIs was identified, against which the plan will be measured. Nonetheless, along the development of the Energy Master Plan for districts for the three partner cities, St Sebastián (Spain), Florence (Italy) and Bristol (UK), the adoption of the system-thinking methodology in combination with open-data sourcing to achieve carbon reduction targets and overcome the barriers to energy efficiency has shown the lack of vision and the urgent requirement for further interdependent actions among the stakeholders. This fact should remind us that the actions of citizens have less to do with individuals exercising rights and responsibilities and more to do with operationalizing the cybernetic functions of the smart city (Gabrys 2014:38).
- In the case of STEP UP, a number of projects have been developed in each partner city. In Glasgow, the Commonwealth Games Athletes' Village and the Future City Glasgow programme awarded by Innovate UK and Clyde Waterfront as the biggest regeneration project ever undertaken in Scotland were developed. In Ghent, two initiatives were developed: a Car Free City Centre of approximately 35 hectares and a renewal project called Ledeberg Alive. In Gothenburg, a new sustainable urban district called Kvillebäcken was established, and two initiatives were implemented in parallel: Congestion Charge and New Travel Habits. Finally, in Riga, two interventions were undertaken: a smart card as a transport, social and education policy instrument and a new building complex in the Torknakalns district.
- Regarding SMARTCITYREGIONS, this project understands 'smart cities' as, in essence, entrepreneurial cities that respond immediately and efficiently-in imaginative, novel ways-to continuous, complex, socio-technical changes caused externally by global market dynamics and internally by unequal stakeholders' power relations. Indeed, this project compares strategically and ethnographically four specific city-region cases located in two European nation-states: Bristol and Glasgow in the UK and Bilbao and Barcelona in Spain. This project focuses initially on how each case study has produced a particular discourse of 'smartness'. Through this analysis, a stakeholder analysis and its unique configuration are provided. Thus, a comparative analysis will proceed with multilevel governance and stakeholder analysis. It is noteworthy that scales of multilevel governance pluralise with intensifying patterns of European connectivity and accelerating economic restructuring. This gives rise to the notion of city-regional governance in nation-states. This may involve new concepts and narratives, mobilisation of different knowledge, and imaginative thinking about new governance strategies and use of institutions while employing more informal collaborative networks among regional stakeholders. Thus, in this paper, smart city-regional governance entails opening up and pressing for significant new ideas about democratic legitimacy and political inclusion. Additionally, 'smartness' should be taken as an outcome of regional urban transformations in governance, reconciling seeming contradictions between established growth agendas and a rising concern with a broader range of qualitative parameters, such as societal and territorial cohesion. Nevertheless, considering the nation-state's limited capacity to manage conflicting patterns of urban growth and decline, political demands regarding devolution of metropolitan and regional powers should be smartly taken into account. This common trend remains crucial in four cases. While local governments increasingly are in charge of their own economic destiny, this paper compares city-regions to understand better stakeholders' dynamics in each sociocommunitarian location. Socially and politically innovative processes are occurring at all scales, from neighbourhood participation interventions (micro) to city-regional strategic logics (macro). Hence, this paper establishes the 'smart city-region' term both as a unit of analysis and a mode of production among stakeholders. However, one must acknowledge the particular histories, unique geographies and diverse power relations among stakeholders in different city-regions. This comparative analysis of the four cases

will enhance two dimensions of the 'smartness' for each city-region. On the one hand, the focus will be on the metropolitan governance dynamics and the stakeholder interactions. On the other hand, it will tackle a special consideration for the devolution dynamics between the city-region and each referential nation-state. An analysis for the four cases follows:

- o For a long time, Barcelona¹ has been investing and promoting itself as the first Spanish Smart City, the fourth in Europe and the 10th in the world. At present, due to a new city mayor—Ada Colau, who represents a radical new citizen platform called 'Barcelona in Common'—an initial smart city strategy has been shifted towards an 'open source' strategy.
- o In 2013, Glasgow² won £24m of funding from the UK Technology Strategy Board (TSB) to explore ways to use technology and data. At present, the strategy is being reviewed based on the demonstrator project, which focuses on four main areas of urban infrastructure: health, energy, transport and public safety. The question here is whether the 'urban governance' model has integrated the city-regional scale as suggested by The Scottish City Alliance.
- o By contrast, Bristol³ received £3m from the UK TSB, but its approach has followed 'open innovation' principles by its flagship operational organisation called 'Bristol is Open'. The university is playing a remarkable role in engaging stakeholders at the metropolitan level. However, how the city-regional devolution affects Bristol's smart-city strategy remains uncertain.
- Finally, the recently launched lighthouse project called REPLICATE, funded by the European Union's Horizon 2020 Research and Innovation programme grant agreement No. 691735, shows the following challenge from the urban transformation perspective: the project advocates innovative approaches to citizenship, with the aim of involving citizens as stakeholders at all stages of the activities to co-create appropriate solutions and services which celebrate and work successfully with the characteristics and context of each metropolitan area in each lighthouse and follower city.

5 UNANSWERED QUESTION: TOWARDS MULTI-STAKEHOLDER CITY-REGIONAL COMPLEX URBANITY?

After presenting on-going EU projects, in this section, the paper concludes that despite the fact that smart city projects are indistinctively using the brand of the smartness, a deeper analysis is required by contrasting their findings with the cutting-edge research compiled by the ESRC Urban Transformations portfolio (ESRC 2016). In this portfolio, projects regarding specific interventions on big data (Bright 2016), economic evolution of the transformations in cities (Martin 2016), urban living labs (Bulkeley 2016), and neighbour and local development (Perry 2016) are showcased. Thus, in this last section, the author advocates that smartness in European cities should be critically complemented with an holistic urban transformation action research perspective (Calzada 2013, Evans 2014, Harvey 1997 and Sennett 2012). A research perspective that could be summarised by two major urban challenges:

The first challenge reflects the changeable governance dynamics of our current urban societies. In our social systems, order is not sufficient. What is required is order entering upon novelty, so that the massiveness of order does not degenerate into mere repetition or replication, and so that novelty is reflected upon the background of the system. Actually, the nature, configuration, and interdependencies of stakeholders are entirely modifying these days. According to Ostrom (2010), beyond the markets (private sector) and nation-states (public sector), there is a vast polycentric governance of complex economic systems. And so, communities are able to devise ways to govern the commons to assure its survival for their needs and future generations. Thus, if we apply these findings to the current stage of the smart city discourse and practices, we would be able to suggest a reconsideration of the private-public partnership as the only possible way to deal with urban governance. The author will suggest considering the multi-stakeholder approach via the Penta Helix framework that will be presented.

The second challenge is related to the pervasive metropolitan and regional scale of the inadequate cooperation between cities, and, indeed, the smart cities programmes they run. However, due to devolution being a key issue in some European countries (UK, Spain, Italy, France, Germany and so on), the sharing of technology, data and expertise is vital to their successful deployment.

³ http://www.bristolisopen.com

¹ http://smartcity.bcn.cat/en/smart-city-areas.html

² http://futurecity.glasgow.gov.uk

In these final sections, the paper presents five intertwined research lines in order to leverage the transitions that smart cities require to align them with a systemic interpretation of the current urban challenges that are meant to be tackled in the upcoming years. The article is presented as a proposal for a further research agenda on smart urban transformations by leaving open the following question: Towards multi-stakeholder city-regional complex urbanity?

5.1 MULTI-STAKEHOLDERS' INTERDEPENDENCIES: THE HIDDEN URBAN GOVERNANCE DRIVER

If the crisis in 2008 underlined an evidence-based economic fact, it was that visions of smart cities are very diverse. Actually, how they dovetail with local and global economies, and how they unfold in practice, vary between places (Kitchin 2015:3). But who is benefitting from the smart city investments? (Glasmeier and Christopherson 2015). Who pays the bill at the end of the day? Some authors alert us to the fact that the design of an intervention has significant implications for its usability and accessibility and that each design gesture has an intended community. The assumption behind many smart city projects is that everyone owns a smart phone and knows how to operate it at maximum performance. Consequently, technology audits are necessary to reveal just how flexible, usable and accessible these technology designs are for different targeted stakeholders. So, to understand from smart city interventions, we need thoughtfully designed, rigorous comparative research by considering three main elements uniquely in each particular location: First, technology has reemerged as a prominent debate for urban development as long as we reconsider the different role of specific stakeholders in the given location. Second, around the power relations and topics of discussion, the dominance of green growth and ecological modernisation will be such a recurrent subject. Third, a total reconfiguration of urban partnerships should be encouraged in our cities.

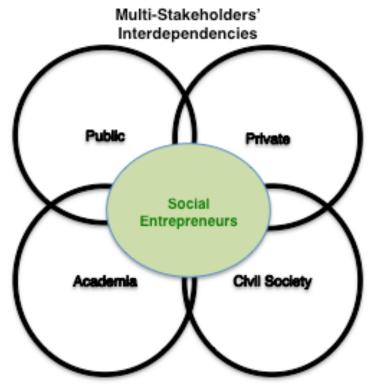


Fig. 5 Multi-Stakeholder' Interdependencies.

According to some findings in the STEEP, STEP UP and SMARTCITYREGIONS, and by considering the results of the Urban Governance and Its Discontents International Conference organised by the Future of Cities Programme at the University of Oxford in 2016 (Oxford City Debates 2016), the potential, conflictive and deliberative stakeholders' interactions should be deeply considered before and during each smart city intervention. Actually, this is one of the main innovative aspects of the REPLICATE H2020 lighthouse project. As Harvey (1997) pointed out, the smart city and new urbanism movements build an image of the community and a rhetoric of place-based civic pride and conciousness for those who do not need it while abandoning those that do to their underclass fate. In order to overcome this gap in the smart city discourse,

this paper suggests using the Penta Helix multi-stakeholder framework (Calzada 2013), which consists of the private sector, public sector, academia, civic society and social entrepreneurs. As has been said before, some signals show this direction. Especially, there are significant attempts (Saunders et al. 2015 and Smart Retro Project 2015) coming from the social innovation field to uncover the hidden urban governance engine that could be defined as the way multi-stakeholders' interdependencies operate in diverse smart cities.

5.2 URBAN DATA TO DECIDE

The second remark is a concern. In the context of the smart city, the data that are generated are the products of choices and constraints shaped by a system of thought, technical know-how, public and political opinion, ethical considerations, the regulatory environment and funding and resourcing (Kitchin 2015: 21). Thus, how can a sensor, a smartphone or a commercial transaction have politics? The UrbanData2Decide project (Bright 2016) found that, in public decision-making processes, stakeholders have opposite positions and advocate different solutions but have difficulty providing details about what the different positions are based on and what the consequences can be.

According to Batty (2012: 18), there are some new functionalities for urban data to decide: the acquisition of data from multiple distributed sources, the management of data streams, the integration of heterogeneous data into a coherent database, data transformations, definition of new observables, methods for distributed data mining and network analytics, the management of extracted models, tools for evaluating the quality, visual analytics, simulation and prediction methods and finally, incremental and distributed strategies needed to overcome the scalability issues that emerge when dealing with big data. Regarding the last idea about big data, it should be completed with the statement made by Rae et al. (2015), when they argue that the debate on big data often lacks clarity, direction and reason. In their attempt to define big data, the authors conclude that there is an indefinite definition of big data so far. However, according to the findings of the EU projects presented before, interdisciplinary interventions are required to tailor open and big data platforms in each project. As such, the multi-stakeholders' interdependencies should be linked to data issues insofar as platforms will be developed on the basis of tackling the following urban transformations (2012: 35): housing booms and busts in large cities, impacts of changes in energy on urban transportation systems and mobility, the fracturing of transport networks, synthesis of different urban data sets, the impact of climate change on cities in Europe, the participation of citizens in the development of plans for smart cities and the impact of immigration phenomena in a global world.

In addition to all these functionalities and urban transformations, this paper underlines that data management should strongly fit the idea of governance that extends in this way to the many functions that we envisage being coordinated in the smart city. This relatively new prospect is part of the wider debate about the metropolitan and regional devolution of governance in the information age. Hence, as we can observe, multistakeholders' interdependencies, urban data to decide and metropolitan and regional scalability for smart cities are firmly intertwined.

5.3 SCALABILITY: METROPOLITAN & REGIONAL SCALES

According to the latest policy report by Habitat III Policy Unit (LSE Cities 2016), there is an expansion of metropolitan areas that is producing at the same time a growing gap between these and intermediary cities by posing additional challenges to urban and national governance. This trend should be included in smart city interventions. So far, the smart city perspective has been understood and sold as a means to show better cities, just considering city centres and centric districts in the major metropolitan areas. However, as we have discovered in some on-going interventions in St. Sebastian, Florence, Bristol, Glasgow, Ghent, Riga, Gothenburg, Bilbao or Barcelona, among others, a realistic revision of the implementation of smart city interventions is required by incorporating the idea of strengthening decentralisation processes that could reinforce metropolitan- and also regional-scale governance (2016: 22). And here is where the smart city should become a smart metropolitan or city-regional entity by enhancing the institutional instrumentarium, as Noveck (2015) suggests, by reviewing and improving the public services (WEF 2016). Similarly, Martin (2016) pays attention to the role of city-regions in national development as a driver of urban growth and the way economic evolution in cities requires the scaling-up of policy solutions. Indeed, García-Ayllon and Miralles (2015) have even contributed a model of territorial analysis that consists of more than 50 indicators in the following areas: revitalisation of the urban system, R&D, crisis of rural, access to transport, access to ICT, sustainable energy, disaster risk prevention and management of natural resources, management of cultural resources, sustainability of regional and economic resources, governance and landscape management. Thus, we can observe that despite the fact that numerous protocols are appearing worldwide to develop these processes within smart cities, the real challenge for the future is to make the leap from the urban scale to the metropolitan and city-regional scales and deploy and scale-up these policies in an integrated manner between the urban, the metropolitan and the city-regional domains.

5.4. BENCHMARKING: COMPARING SMARTNESS & CITY-TO-CITY CO-CREATION

There is a lack of comparative analysis and a dearth of knowledge about the range of urban, metropolitan and regional contexts within which forms of smart and digital urbanisation are emerging internationally. In this attempt, the author of this paper carried out a four-year comparative benchmarking between eight cityregions (www.cityregions.org). The main conclusions have been published in an article entitled 'Benchmarking Future City-Regions beyond Nation-States' in the RSRS open access journal (Calzada 2015). If we dare to suggest a comparative basis for smartness, according to Anthopoulus et al. (2015) we could be overwhelmed with the number of approaches we would find (IBM, ITU, UN-Habitat, ISO, etc.). Given the broadness of this field, it is not surprising that many benchmarking approaches have been developed. Nonetheless, few of them mention the distinctiveness of cities (Barbenhön et al. 2016), a fact that is very significant at this stage of the evolution of the smart cities. As Branchi et al. (2014: 62) stated, the history of a city cannot be detached from that of its citizens, who are the ones who have determined the city's location, spatial configuration, growth and development. These comprise the key aspects that should set the basis to compare smartness and city-to-city learning processes in the future.

5.5. VISUALISATION: RANKINGS & CITY-DASHBOARDS.

Finally, as we have suggested so far, including stakeholders' interaction seems to be particularly necessary, insofar as the data that cities will deal with require a vast amount of sectoral information that would cover not only the local scale but also the metropolitan and the city-regional scales. As such, urban indicators are recurrent quantified measures that can be tracked over time to provide a picture of stasis and change with respect to urban phenomena. Nevertheless, we should advocate the usage of benchmarking and the visualisation of the indicators in rankings and city-dashboards in a more contextual way. Rather than cities being understood as mechanical systems that can be disassembled into their component parts and fixed, or steered and controlled through data levers, cities are conceived as consisting of multiple, complex, interdependent systems that influence each other in often unpredictable ways. As a consequence, as we said in the second section, governance is seen as being complex and multi-level in nature, and the effects of policy measures are perceived as diverse and multifaceted, and neither is easily reducible to performance metrics and targets (Kitchin 2015: 25).

This paper aimed to (un)plug in or unpack the term 'smart city' in the light of some EU projects' findings. It attempted to overcome the smart city trend as a fetish buzzword in the hands of indistinctive place branding (Cleave et al. 2016) in order to embrace the merger of sustainable and smart policy agendas in the direction of the sharing cities paradigm (McLaren et al. 2015). In this endeavour, it suggests five alternatives for developing a further research and policy agenda from the urban transformations perspective: the stakeholders' interdependencies, the need for urban data need to focus on local specificities rather than global features, the requirement of the territorial scale-up, comparing smartness via benchmarking and cityto-city co-creation processes and holistic visualisation tools.

6. REFERENCES

ABBOTT, JOHN. (2016). Modeling Cities and Regions as Complex Systems: From Theory to Planning Applications. Urban Policy and Research, DOI: 10.1080/08111146.2016.1212921.

ALBINO, VITO, BERARDI, UMBERTO & DANGELICO, ROSA MARIA (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives, Journal of Urban Technology, 22:1, 3-21, DOI: 10.1080/10630732.2014.942092. 2015.

ANTHOPOULOS, LEONIDAS, JANSSEN, MARIJN & WEERAKKODY, VISHANTH (2015). Comparing Smart Cities with Different Modelling Approaches, IW3C2. Florence.

ARUP (2011). Smart Cities: Transforming the 21st City Via the Creative Use of Technology. Arup, London.

ARUP (2014). Delivering The Smart City: Governing Cities in the Digital Age, London.

BATTY, MICHAEL, AXHAUSEN, KAY, FOSCA, GIANNOTTI, POZDNOUKHOV, ALEXEI, BAZZANI, ARMANDO, WACHOWICZ, MONICA, OUZOUNIS, GEORGIOS, PORTUGALI, YUVAL (2012). *Smart cities of the future.* The European Physical Journal Special Topics 214, 481-518.

BATTY, MICHAEL (2015). Data About Cities: Redefining Big, Recasting Small, paper delivered for the Data and the City Workshop. National University of Ireland, Maynooth.

BARBEHÖN, MARLON & MÜNCH, SYBILLE (2016). The 'the distinctiveness of cities' and distinctions in cities: boundaries of belonging in comparative perspective, Urban Research and Practices.

BRANCHI, PABLO, FERNÁNDEZ-VALDIVIELSO, CARLOS & MATIAS, IGNACIO (2014). *Analysis Matrix for Smart Cities. Future Internet.* 6, 61-75; doi: 10.3390/fi6010061.

BRIGHT, JONATHAN (2016). *UrbanData2Decide: Integrated Data Visualisation and Decision Making Solutions to Forecast and Manage Complex Urban Challenges* < Accessed 5th May 2016 http://www.urbantransformations.ox.ac.uk/project/urbandata2decide-integrated-data-visualisation-and-decision-making-solutions-to-forecast-and-manage-complex-urban-challenges/

BUCK, NICK & WHILE, AIDAN (2015). Competitive urbanism and the limits to smart city innovation: The UK Future Cities initiative. Journal of Urban Studies. DOI: 10.1177/0042098015597162.

BULKELEY, HARRIET (2016). Governance of Urban Sustainability Transitions: Advancing The Role of Living Labs < Accessed 5th May 2016 http://www.urbantransformations.ox.ac.uk/project/governance-of-urban-sustainability-transitions-advancing-the-role-of-living-labs >

CALZADA, IGOR & COBO, CRISTOBAL (2015). <u>Unplugging: Deconstructing the Smart City</u>, <u>Journal of Urban Technology</u>. DOI: 10.1080/10630732.2014.971535.

CALZADA, IGOR (2013). <u>Critical Social Innovation in the Smart City era for a City-Regional European Horizon 2020.</u> Journal of Public Policies & Territory P3T. Vol 2, Nº 6, Social Innovation & Territory. Winter. pp. 1-20. 2013.

CALZADA, IGOR (2015). *Benchmarking Future City-Regions beyond Nation-States*, RSRS Regional Studies Regional Science, 2:1, 350-361, DOI: 10.1080/21681376.2015.1046908.

CALZADA, IGOR (2016). Comparing Smart City-Regional Governance Strategies in Bristol, Glasgow, Bilbao & Barcelona, paper was given at the Oxford Programme for the Future of Cities conference on 'Urban Governance and its Discontents' Panel 2 – Governing the city: where do infrastructure, democracy and social justice meet? on 18th February at the University of Oxford (UK). DOI: 10.13140/RG.2.1.2091.9448.

CALZADA, IGOR (2016). Comparing EU Cities on Smart City-Regional Governance, paper was given at the 7th Annual Smart Energy UK & Europe 2016 Conference on 29th January in London (UK). DOI: 10.13140/RG.2.1.2354.0887.

CALZADA, IGOR & MCADAM, GAVIN. (2016). Smartness for Prosperity: Brazil & UK, Policy report commissioned by Future Cities Catapult in collaboration with MACI Innovation in Projects and published by Translokal – Academic Entrepreneurship for Policy Making – Publishing, Donostia. ISBN: 978-84-942752-9-6.

CALZADA, IGOR (2016). Keynote Speaker. *The Identity of the European Cities,* Summer School organised jointly by Bilbao Metropolitan Agency and St Sebastian Strategic Plan Office, 11-12nd July into the Miramar Palace Summer School. (Basque Country-Spain)

CALZADA, IGOR (2016). Comparing Smart Cities in Brazil & UK: Smartness & Prosperity, at the Environmental Governance for Sustainable Urban Transformation Workshop that will take place in Brazilia (Brazil) on 4-8th July funded by Newton Fund and the British Council.

CALZADA, IGOR (2016). Keynote Speaker. (*Un)Plugging Smart Cities with Urban Transformations*. In: Schrenk, M.; Popovich, V. V.; Zeile, P.; Elisei, P., Beyer, C. (Eds.): Smart me up! How to become and how to stay a Smart City, and does this improve quality of life? Proceedings of REAL CORP 2016, 21st International Conference on Urban Planning and Regional Development in the Information Society GeoMultimedia. Hamburg (Germany), 2016.

CARAGLIU, ANDREA, DEL BO, CHIARA & NIJKAMP, PETER (2009). Smart Cities in Europe, paper given at th 3rd Central Conference in Regional Science, CERS.

CASBARRA, CLAUDIA, AMITRANO, CRISTINA, ALFANO, ANNUNZIATA & BIFULCO, FRANCESCO (2014). Smart City Governance for Sustainability. Human and Social Sciences at the Common Conference.

CAMPBELL, KELVIN (2011). Massive Small: The Operating Programme for Smart Urbanism. Urban Exchange.

CAMPBELL, TIM (2012). Beyond Smart Cities: How Cities Network, Learn and Innovate, Earthscan: Oxon.

CLEAVE, EVAN, ARKU, GODWIN, SADLER, RICHARD & GILLILAND, JASON (2016). The role of place branding in local and regional economic development: bridging the gap between policy and practicality, Regional Studies, Regional Science, 3:1, 207-228.

CITIE (CITY INITIATIVES FOR TECHNOLOGY, INNOVATION AND ENTREPRENEURSHIP: THE NORTHERN POWERHOUSE ANALYSIS), (2016)

CURUGULLO, FEDERICO (2013). How to Build a Sandscastle: An Analysis of the Genesis and Development of Masdar City. Journal of Urban Technology, 20:1, 23-37, DOI: 10.1080/10630732.2012.735105.

DE FILIPPI, FRANCESCA (2016). MiraMap: A We-government Tool for Smart Peripheries in Smart Cities. IEEE. DOI: 10.1109/ACCESS.2016.2548558.

EUROPEAN PARLIAMENT (2014). Mapping Smart Cities in the EU.

ESRC, Urban Transformations portfolio by the University of Oxford < Accessed on 5th May 2016 www.urbantransformations.ox.ac.uk >

EVANS, YARA (2014). Daniel P. O'Donoghue, Urban Transformations: centre, peripheries, and systems. Urban Research & Practice, 9:1, 104-106, DOI: 10.1080/17535069.2016.1138681.

GABRYS, JENNIFER (2014). Programming environments: environmentality and citizen sensing in the smart city. Environment and Planning D: Society and Space 32, no. 1:30-48.

GARCIA-AYLLON, SALVADOR And MIRALLES, JOSE LUIS (2015). New strategies to improve governance in territorial management: evolving from smart cities to smart territories, International Conference on Sustainable Design, Engineering and Construction.

GLASMEIER, AMY and CHRISTOPHERSON, SUSAN (2015). *Thinking about smart cities*. Cambridge Journal of Regions, Economy and Society 8, no. 1: 3-12.

GOLDSTEIN, BRETT & MELE, CHRISTOPHER (2016). Governance within public-private partnerships and the politics of urban development. Space and Polity, 20:2, 194-211, DOI: 10.1080/13562576.2016.1157968.

GREENFIELD, ADAM (2013). Against the Smart City (The City is Here for You to Use) (New York: Do Projects).

HAJER, MAARTEN & DASSEN, TON. (2014). Smart about cities: visualising the challenge for 21st Century Urbanism, naio19 publishers/pbl publishers.

HARVEY, DAVID (1997). The new urbanism and the communitarian trap. Harvard Design, Magazine, 1.3, 68-69.

HOLLANDS, ROBERT (2014). Critical Interventions into the Corporate Smart City. Cambridge Journal of Regions, Economy and Society (doi: 10.1093/cjres/rsu011).

HOLLANDS, ROBERT (2008). Will the real smart city please stand up? Intelligent, progressive or entrepreneurial. City 12, no. 3: 303-320.

JACOBS, JANE (1961). The Death and Life of Great American Cities, Vintage.

JONG, MARTIN DE, JOSS, SIMON, SCHRAVEN, DAAN, ZHAN, CHANGJIE & WEIJNEN, MARGOT (2015). Sustainable-smart-resilient-low carbon-eco-knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. Journal of Cleaner Production, 1-14.

KARVONEN, ANDREW & VAN HEUR, BAS (2014). Urban Laboratories: Experiments in Reworking Cities, International Journal of Urban and Regional Research. 38(2) 379-392, DOI: 10.1111/1468-2427.12075. 2014.

KARVONEN, ANDREW (2016). From the Sustainable to the Smart City: Complementary or Contradictory Urban Visions? Paper given in April 2016 at VuB. Brussels.

KITCHIN, ROB (2014). The real-time city? Big data and smart urbanism. GeoJournal 79:1-14.

KITCHIN, ROB and LAURIAULT, TRACEY and MCARDLE, GAVIN (2015). Knowing and governing cities through urban indicators, city benchmarking and real-time dashboards. Regional Studies, Regional Science 2(1):6–28.

KITCHIN, ROB (2015). Making sense of smart cities: addressing present shortcomings. Cambridge Journal of Regions, Economy and Society 8, 131-136.

LUQUE-AYALA, ANDRÉS and MARVIN, SIMON (2015). Developing a critical understanding of smart urbanism. Urban Studies 52, no. 12: 2105-2116. DOI: 10.1177/0042098015577319. 2015.

LSE CITIES (2016). Habitat III Policy Unit 4: Urban Governance, Capacity and Institutional Development, Policy Paper, London. MARTIN, RON (2016). Structural Transformation, Adaptability and City Economic Evolutions. < Accessed on 5th May 2016 http://www.urbantransformations.ox.ac.uk/project/structural-transformation-adaptability-and-city-economic-evolutions >

MARVIN, SIMON, LUQUE-AYALA, ANDRÉS & MCFARLANE, COLIN (2015). Smart Urbanism: Utopian Vision or False Dawn? Routledge. 2015.

MCLAREN, DUNCAN, and AGYEMAN, JULIAN (2015). Sharing Cities: A Case for Truly Smart and Sustainable Cities. MIT.

NOVECK, SIMONE (2015). Smart Citizens, Smarter State: The Technologies of Expertise and the Future of Governing, Harvard University Press.

OSBORNE CLARKE (2015). Smart Cities in Europe: Enabling Innovation.

OSTROM, ELINOR (2010). Beyond markets and states: polycentric governance of complex economic systems. American Economic Review (American Economic Association) 100(3):641-672. DOI: 10.1257/aer.100.3.641.pdf

OXFORD CITY DEBATES, *Urban Governance and its Discontents International Conference 2016* by the University of Oxford, Future of Cities Programme < Accessed on 5th May 2016 http://www.oxfordcitydebates.com/ >

PERRY, BETH (2016). Jam and Justice: Co-Producing Urban Governance for Social Innovation, < Accessed on 5th May 2016 http://www.urbantransformations.ox.ac.uk/project/jam-and-justice-co-producing-urban-governance-for-social-innovation >

RAE, ALASDAIR & SINGLETON, ALEX (2015). Putting big data in its place: a Regional Studies and Regional Science perspective. Vol. 2, No. 1, 1-5. DOI: 10.1080/21681376.2014.990678.

SATYAM, AMITABH & CALZADA, IGOR (2016). *The Smart City Transformations*. Bloomsbury Academic and Professional Publishing.

SAUNDERS, TOM & BAECK, PETER (2015). Rethinking Smart Cities from the Ground Up. NESTA. 2015.

SENNETT, RICHARD (2012). *The Stupefying Smart City*. In: LSE Cities, London School of Economics, Eds.: Burdett Ricky, Rode Philipp. London, pp.16-17,

SHELTON, TAYLOR, ZOOK, MATTHEW & WIIG, ALAN (2015). The 'actually existing smart city', Cambridge Journal of Regions, Economy and Society.

SHWAYRI, SOFIA (2013). A Model Koreak Ubiquitous Eco-City? The Politics of Making Songdo, Journal of Urban Technology, 20:1, 39-55, DOI: 10.1080/10630732.2012.735409.

SMART RETRO PROJECT by Demos Helsinki (2015). Nordic Cities Beyond Digital Disruption. A novel way to develop cities.

SÖDERSTRÖM, OLA, PAASCHE, TILL, and KLAUSER, FRANCISCO (2014). Smart cities as corporate storytelling. City 18: 307-320

TOWNSEND, ANTHONY (2015). Can Engineers Build Inclusive Smart Cities?, Delft University of Technology's 173rd Dies Natalis.

UK GOVERNMENT FOREIGN & COMMENWEALTH OFFICE, WILTON PARK (2016). Disrupting Cities Through Technology. (Report)

VANOLO, ALBERTO (2014). Smartmentality: The Smart city as disciplinary strategy. Urban Studies 51, no. 5: 883-898. 2014. VITANEN, JENNI (2013) & KINGSTON, RICHARD (2014). Smart cities and green growth: outsourcing democratic and environmental resilience to the global technology sector. Environment and Planning A 46, no. 4: 803-819. WEF (WORLD ECONOMIC FORUM) (2016). Inspiring Future Cities & Urban Services. Shaping the Future of Urban Development & Services Initiative.

To cite this article:

Calzada, I. (2016), (Un)Plugging Smart Cities with Urban Transformations: Towards Multi-stakeholder City-Regional Complex Urbanity?, URBS, Revista de Estudios Urbanos y Ciencias Sociales Journal.