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Abstract: Renal cell carcinoma (RCC) ranks among the most prevalent malignancies in Western coun-
tries, marked by its notable heterogeneity, which contributes to an unpredictable clinical trajectory.
The insufficiency of dependable biomarkers adds complexity to assessing this tumor progression.
Imbalances of several components of the intrarenal renin–angiotensin system (iRAS) significantly
impact patient prognoses and responses to first-line immunotherapies. In this study, we analyzed the
immunohistochemical expression of the Mas-related G-protein-coupled receptor D (MrgD), which
recognizes the novel RAS peptide alamandine (ALA), in a series of 87 clear cell renal cell (CCRCCs),
19 papillary (PRCC), 7 chromophobe (ChRCC) renal cell carcinomas, and 11 renal oncocytomas (RO).
MrgD was expressed in all the renal tumor subtypes, with a higher mean staining intensity in the
PRCCs, ChRCCs, and ROs. A high expression of MrgD at the tumor center and at the infiltrative
front of CCRCC tissues was significantly associated with a high histological grade, large tumor
diameter, local invasion, and locoregional node and distant metastasis. Patients with worse 5-year
cancer-specific survival and a poorer response to antiangiogenic tyrosine-kinase inhibitors (TKIs)
showed higher MrgD expression at the center of their primary tumors. These findings suggest a
possible role of MrgD in renal carcinogenetic processes. Further studies are necessary to unveil its
potential as a novel biomarker for CCRCC prognosis and response to frontline therapies.

Keywords: renal cell carcinoma; MrgD receptor; alamandine; renin–angiotensin system; prognosis

1. Introduction

Renal cell carcinoma (RCC) ranks among the most frequently diagnosed malignancies
in Western countries [1–3]. Clear cell renal cell carcinoma (CCRCC) constitutes the pre-
dominant histological subtype, encompassing approximately 75–80% of cases, followed by
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papillary renal cell carcinoma (PRCC) at 10–15% and chromophobe renal cell carcinoma
(ChRCC) at 5% [4,5]. The renal oncocytoma (RO) is a benign tumor with an incidence of 5%
among all renal tumors [4,5]. CCRCC and PRCC are widely accepted to originate primarily
from the proximal convoluted tubule of the nephron, whereas ChRCC and RO appear to
stem from the intercalated cells of the distal nephron [4,5]. CCRCC, the most aggressive
RCC variant, manifests with 30% of cases being metastatic at diagnosis and an additional
30% of patients with localized disease progressing to metastatic stages [4,5].

Recent studies have identified a close correlation between specific genomic signatures
and the clinical aggressiveness of RCC [6], and a more accessible delineation of alterations
linked to tumor behavior and clinical outcomes is imperative for effective advancements in
managing RCC patients. In recent years, the exploration of novel prognostic biomarkers
and therapeutic modalities has gained momentum [5,7]. Thus, the study of the components
of the renin–angiotensin system (RAS) in renal tumors and the potential utility of drugs
targeting this peptidergic system have emerged as promising RCC research avenues [8–10].

The RAS is an endocrine peptidergic system crucial in kidney and cardiovascular
physiology [11]. In addition to this circulating system, local RASs exist, such as the in-
trarenal RAS (iRAS), which regulate long-term biological processes through paracrine and
autocrine mechanisms [8,11,12]. In physiological conditions, the angiotensin-converting en-
zyme (ACE)–angiotensin-II (Ang-II)–Ang-II receptor (AT1R) axis locally induces cell growth,
angiogenesis, and tissue repair, whereas the ACE2–angiotensin 1–7–(Ang 1–7)–MAS recep-
tor (MASR) pathway counterbalances these signals [11,13]. Imbalances in favor of the
first axis lead to cell proliferation, inflammation, and fibrosis of the kidney [11,13]. The
discovery of these pathophysiological phenomena has enhanced our understanding of
the effectiveness of ACE inhibitors (ACEis) and AT1R blockers (ARBs) in arresting the
progression of non-neoplastic kidney diseases such as diabetic nephropathy [11,13] and
broadened the focus on investigating the iRAS in renal carcinogenesis [14–18].

Alamandine (ALA) is a recently discovered new member of the RAS [19]. The binding
of this peptide to the Mas-related G-protein-coupled receptor D (MrgD) exerts similar physi-
ological actions to the Ang 1–7–MASR pathway, leading to antifibrotic and antiproliferative
effects in local contexts [19–21]. Nevertheless, the existing literature on the expression of
MrgD in tumor tissues and the role of the ALA–MrgD axis in cancer development and
progression remains notably limited [22–24].

Given the observed imbalances of various components of the main axes of the iRAS
in RCC, which significantly impact patient prognoses [14,25–28], imbalances could be
expected in the MrgD expression within this tumor. Hence, this pilot study aimed to
analyze the immunohistochemical (IHC) expression of this receptor in a series of 124 renal
tumors. We analyzed both the tumor center and the infiltration front to explore potential
heterogeneity in MrgD expression in RCC. Considering the prominence of CCRCC as the
most prevalent subtype among RCCs [4,5], our study also investigated the association
between MrgD and tumor progression and its impact on the prognosis of CCRCC patients.

2. Results
2.1. The Expression of the MrgD Receptor Exhibits Variability Based on the Specific Subtype of
Renal Tumor

We first tested the MrgD receptor expression at the non-tumor part of the kidney. This
protein was expressed with a varied intensity at the cytoplasm and the membrane of cells
along the tubules of the nephron. Thus, the staining was moderate/intense at proximal
tubules, whereas it was weak/negative at tubules from the distal nephron and negative at
glomeruli (Figure 1).

Based on observations in the non-tumor renal tissue, the staining pattern of the renal
tumors was classified into two groups: tumors with moderate or intense cytoplasmic and
membranous staining were considered to be positive cases, whereas tumors not stained
with the MrgD receptor and those showing only weak staining were grouped as negative.
Significant differences in the staining pattern existed between tumor subtypes. Thus, the
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expression of MrgD was negative in more than 80% of CCRCCs and positive in more than
half of PRCCs, 60–80% of ChRCCs, and 80–100% of ROs (Figures 2 and 3).
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Figure 1. Distribution of MrgD immunostaining in non-tumor renal tissue. Hematoxylin–eosin and 
MrgD immunostaining of the non-tumor kidney. (a) Renal cortex includes glomeruli (asterisk), 
proximal convoluted tubules (red arrow), and tubules of the distal nephron (black arrow). (b) Unlike 
glomeruli, tubular cells express MrgD with a granular cytoplasmic or membranous staining pattern. 
Whereas proximal tubules are intensely stained with MrgD antibody, distal nephron tubules dis-
play weak/negative staining. Original magnification, ×400. 
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half of PRCCs, 60–80% of ChRCCs, and 80–100% of ROs (Figures 2 and 3). 

We additionally assessed differences in MrgD receptor expression between the tumor 
center and the infiltrating front within each tumor subtype. No significant differences 
were observed between these locations within CCRCCs (Chi-square test, p = 0.637), PRCCs 
(p = 0.962), ChRCCs (p = 0.135), or ROs (p = 0.138) (Figure 3). 

 
Figure 2. MrgD immunostaining pattern in kidney tumors. MrgD immunostaining pattern in dif-
ferent renal tumor subtypes [clear cell renal cell carcinoma (CCRCC), papillary renal cell carcinoma 

Figure 1. Distribution of MrgD immunostaining in non-tumor renal tissue. Hematoxylin–eosin
and MrgD immunostaining of the non-tumor kidney. (a) Renal cortex includes glomeruli (asterisk),
proximal convoluted tubules (red arrow), and tubules of the distal nephron (black arrow). (b) Unlike
glomeruli, tubular cells express MrgD with a granular cytoplasmic or membranous staining pattern.
Whereas proximal tubules are intensely stained with MrgD antibody, distal nephron tubules display
weak/negative staining. Original magnification, ×400.
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Figure 2. MrgD immunostaining pattern in kidney tumors. MrgD immunostaining pattern in different
renal tumor subtypes [clear cell renal cell carcinoma (CCRCC), papillary renal cell carcinoma (PRCC),
chromophobe renal cell carcinoma (ChRCC), and renal oncocytoma (RO)]. Original magnification,
×250. H&E: Hematoxylin–eosin.

We additionally assessed differences in MrgD receptor expression between the tu-
mor center and the infiltrating front within each tumor subtype. No significant differ-
ences were observed between these locations within CCRCCs (Chi-square test, p = 0.637),
PRCCs (p = 0.962), ChRCCs (p = 0.135), or ROs (p = 0.138) (Figure 3).
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than CCRCCs. Chi-square test was used for data analysis.

2.2. The Expression of MrgD in CCRCC Varies Depending on the Tumor’s Aggressiveness

The data obtained from the CCRCC tumors were categorized based on pathologi-
cal parameters closely linked to tumor aggressiveness, such as WHO/ISUP histological
grade, size, local invasion (pT), the presence or absence of affected lymph nodes (N) and
metastases (M), and tumor necrosis. The association between MrgD and clinical variables
such as patients’ sex, age, and 5-year cancer-specific survival (CSS) was also analyzed. Data
from patients with advanced CCRCC were also stratified depending on their response to
antiangiogenic therapy, classified by the MASS and RECIST criteria.

The initial statistical analysis revealed no correlation between MrgD expression at
the tumor center or front and the patients’ age (tumor center: Spearman rho, r = 0.099,
p = 0.361; tumor front: r = 0.145, p = 0.219) or gender (tumor center: chi-s, p = 0.679; tumor
front, p = 0.568).

2.2.1. MrgD Expression Is Higher in High-Grade CCRCCs

We categorized the cases into low (G1–G2) and high histological grade (G3–G4).
High-grade CCRCCs showed significantly elevated MrgD staining compared to low-grade
tumors, at both the tumor center and the infiltrating front (Figure 4).

2.2.2. MrgD Staining Is More Intense in Large (>7 cm) Tumors

CCRCCs were classified into two groups: tumors of 7 cm or smaller and those larger
than 7 cm. The MrgD staining exhibited increased intensity in larger CCRCCs compared to
smaller ones. This difference was statistically significant both at the tumor center and at
the periphery (Figure 5).

2.2.3. MrgD Expression Is Higher in Non-Organ-Confined CCRCCs

The tumors were classified into two groups: organ-confined (pT1–pT2) vs. non-organ-
confined tumors (pT3–pT4). The MrgD staining was more intense in non-organ-confined
cases, which was significant at the tumor center (Figure 5).

2.2.4. MrgD Expression Is Significantly Higher in Metastatic CCRCCs

Tumors that invaded locoregional lymph nodes (N1) exhibited increased MrgD stain-
ing intensity at both tumor regions compared to those without lymph node invasion (N0).
Likewise, MrgD expression was elevated in CCRCCs with distant synchronous metastasis
(M1) in contrast to tumors without. However, CCRCCs with necrotic areas displayed
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no significant differences in MrgD expression when compared with non-necrotic cases
(Figure 5).

2.2.5. MrgD Expression Is Associated with Worse Cancer-Specific Survival (CSS)

MrgD positivity at the tumor center was associated with poorer 5-year CSS in CCRCC
patients (Figure 6). A similar trend was observed at the tumor front, although it did not
reach statistical significance (Figure 6).
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Figure 4. MrgD expression according to tumor grade. Immunostaining at the tumor center and front
of low- and high-grade CCRCCs (a). Original magnification, ×400. H&E: Hematoxylin–eosin. MrgD
staining intensity both at the center (b) and front (c) of tumors was grouped as negative and positive.
MrgD staining was more intense in high-grade CCRCCs. Chi-square test was used for data analysis.
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RECIST (m,n) criteria. MrgD staining intensity was grouped as negative and positive. Chi-square 
test was used for data analysis. N0: No lymph node metastasis; N1: lymph node metastasis; M0: no 
distant metastasis; and M1: distant metastasis. 
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Figure 5. Immunohistochemical staining of MrgD based on CCRCC tumor size (a,b),
local invasion (pT; c,d), lymph node (N; e,f), distant metastasis (M; g,h), and tumor necrosis (i,j).
Results were also categorized depending on patients’ response to therapy with TKIs, according
to MASS (k,l) and RECIST (m,n) criteria. MrgD staining intensity was grouped as negative and
positive. Chi-square test was used for data analysis. N0: No lymph node metastasis; N1: lymph node
metastasis; M0: no distant metastasis; and M1: distant metastasis.

A univariate analysis was conducted to assess the individual correlation between
MrgD and pathological variables with patients’ survival. The univariate Cox regression
model demonstrated that grouped grade (G1/2 vs. G3/4), tumor diameter, pT stage (organ-
confined vs. non-organ-confined), lymph node invasion (pN), distant metastasis (pM),
and MrgD expression correlated with a poorer 5-year CSS (Supplementary Table S1). The
variables that reached statistical significance (p < 0.05) in the univariate analysis were
included in the multivariate Cox regression model. To prevent mathematical bias, tumor
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diameter was omitted from the analysis because local invasion (pT) encompasses this
variable. The logistic model resulting from a backward Wald stepwise elimination of
variables with a 0.1 stay criterion identified pT (confined vs. non-confined), pN (negative vs.
positive), and pM (negative vs. positive) as independent prognostic factors for CSS (Table 1).
Grade and MrgD expression were not identified as independent predictors in this model.
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Figure 6. Kaplan–Meier curves for cancer-specific survival according to immunohistochemical
staining of MrgD. Patients with negative expression are compared to those with positive expression:
(a), tumor center (log-rank, p = 0.031); (b), tumor front (p = 0.089).

Table 1. Predictive model (Cox regression) for cancer-specific survival prediction by MrgD and patholog-
ical variables in CCRCC patients. Selected independent variables were MrgD (negative vs. positive) at
tumor center and front, and pathological variables such as WHO/ISUP grade (low- vs. high-grade),
confined (pT1–pT2) vs. non-confined (pT3–pT4), lymph node invasion (pN, no vs. yes), and distant
metastases (pM, no vs. yes). ExpB with confidence interval (CI, inferior and superior) is also included.
Variables resulting from the backward Wald stepwise method are highlighted in bold.

Tumor Center Tumor Front

Cancer-Specific Survival Variables p ExpB Inf Sup p ExpB Inf Sup

Multiple Cox regression

MrgD 0.959 0.96 0.24 3.76 0.714 0.77 0.19 3.07
Grade 0.367 1.76 0.51 6.00 0.228 2.51 0.56 11.2

pT 0.053 2.53 0.99 6.51 0.270 1.89 0.61 5.86
pN 0.197 2.88 0.58 14.4 0.170 3.10 0.62 15.6
pM 0.003 5.55 1.77 17.4 0.005 5.83 1.71 19.9

Final step of Wald method
pT 0.028 2.82 1.12 7.10 - - - -
pN 0.069 3.08 0.91 10.4 - - - -
pM 0.001 6.97 2.48 19.6 0.001 13.43 4.75 37.9

2.2.6. MrgD Expression Is Associated with Worse Response to Antiangiogenic Therapy

We categorized the data from the IHC study of MrgD based on the MASS and RECIST
criteria for responses to TKIs in patients with advanced CCRCC. A gradual increase in MrgD
expression was observed at the tumor center among patients with favorable, indeterminate,
and unfavorable responses (Chi-s, p = 0.013; Figure 5). A similar significant gradient was
noted in the same tumor area among patients with a partial response, those with stable
disease, and non-responder patients with progressive disease (Chi-s, p = 0.013; Figure 5).
Categorized by the MASS criteria, the expression of MrgD at the tumor margins showed a
similar gradual expression, although it was not statistically significant (Chi-s, p = 0.2).

3. Discussion

MrgD belongs to the large family of Mas-related G-protein-coupled receptors [20].
Discovered at the beginning of this century [29], limited information is available regarding
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its expression and function in most tissues. Despite its identification as a component of the
RAS [19], few data exist on its expression in the kidney beyond studies conducted in cell
lines [20] and mRNA detection in human renal tissue [22]. In this study, we present the IHC
characterization of MrgD in both non-tumor and tumor tissues from the excised kidneys
of RCC patients. As reported for other components of the iRAS [10,11], we detected this
receptor at the membrane and cytoplasm within tubular cells from both proximal and
distal nephrons.

Knowing that these are the topographic origins of the main renal tumors [4,5], the
presence of this receptor could be expected in CCRCC, PRCC, ChRCC, and RO tissues.
Indeed, it was expressed in tumor cells from both the center and the invading front of the
four renal tumor subtypes. Interestingly, the mean expression of MrgD in CCRCC was
significantly lower than in the rest of the analyzed tumor subtypes. Although this could
suggest a less relevant role of this novel RAS receptor in the most frequent and aggressive
kidney tumor [4,5], primary CCRCCs with a worse prognosis significantly increased its
expression. The MrgD staining was more intense in tumors with a high histological grade,
larger size, lymph node involvement, and synchronous distant metastasis. Furthermore,
patients’ 5-year CSS was worse when this receptor was highly expressed at the center
of the primary tumor. Apart from its prognostic implications, our observations revealed
an association between MrgD expression and a poorer response to TKIs, antiangiogenic
drugs that represent the first therapeutic line for advanced CCRCC together with immune
checkpoint inhibitors (ICIs) [30].

The association between imbalances of the iRAS and renal tumor aggressiveness
remains an ongoing area of investigation [10]. The most significant advancements have
been documented concerning the classical axis of the RAS. Preclinical studies revealed an
upregulation of AT1R in tumor cells [14], as well as an increased expression of ACE in
tumor vessels [25,26], in CCRCCs with a poorer prognosis. Furthermore, cancer-associated
fibroblasts (CAFs) and tumor-infiltrating immune cells such as myeloid-derived suppressor
cells (MDSCs) express the AT1 receptor and ACE [31–33]. These cells can create immuno-
suppressive microenvironments conducive to tumor invasion [34], which is enhanced
by the stimulation of the Ang-II–AT1R signaling pathway and inhibited by the use of
ARBs in combination with ICIs [31–33]. Aligning with this, retrospective studies have
indicated that CCRCC patients receiving ACEis and ARBs exhibit a better response to
TKIs and ICIs [9,15–18]. This accumulated evidence suggests a significant pro-tumor role
of the classical axis of the RAS in renal cancer [10], which impacts directly on cancer
immunity [33].

The role of non-classical pathways of RAS in renal carcinogenesis remains more
controversial. Khanna et al. [35] reported that Ang1–7 inhibits tumor growth and that
high ACE2 mRNA levels are associated with a better survival, which corroborates the
theory of counterbalancing effects of the ACE2–Ang1–7–MasR axis in other proliferative
disorders [10,12]. However, other authors have demonstrated pro-invasive effects of
Ang1–7 in RCC cell lines and xenografts [36,37] and a higher ACE2 protein expression in
high-grade CCRCCs [26].

The ALA–MrgD pathway has also been described as a counter-regulator of the classical
axis [20]. For instance, ALA inhibits fibrosis in the heart [19], liver [38], and lungs [39]
by suppressing TGF-β1-induced fibroblast activation [21]. However, initial studies on
cancer have yielded conflicting results. Thus, the binding of ALA to MrgD in pancreatic
cancer cell lines induces an antiproliferative effect by inhibiting the BRAF–MKK–ERK and
PI3K–AKT pathways and activating FoxO1 [24]. Conversely, in non-small-cell lung cancer,
ALA stimulates cell growth and MrgD is expressed more intensely in more aggressive
tumors [22,23], which aligns with our results for CCRCC.

We also observed inter-tumor heterogeneity when examining four renal tumor sub-
types, which agrees with our previous studies on other RAS components [26,27]. Within
tumors originating in the proximal tubule, the mean expression of MrgD in PRCC was
significantly higher than that in CCRCCs. In addition, its expression in tumors from the
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distal nephron (ChRCC and RO) was higher than that in proximal-nephron-derived ones.
Furthermore, a higher expression of this receptor was observed in RO, a benign tumor.
Taken together, these findings suggest a heterogeneous role of the ALA–MrgD pathway,
depending on the tumor type and subtype.

Concerning CCRCC, it is also crucial to consider the existing high genotypic and
phenotypic intratumoral heterogeneity (ITH) [40] when interpreting the divergent results
described within non-canonical RAS pathways [26,34–36]. For instance, the antagonistic
effects of Ang1–7–Mas signaling could be associated with the use of cell lines and xenograft
models derived from distinct tumor cell subpopulations, as suggested by Sobczuk et al. [36].
Therefore, to determine whether this ITH is reflected in the spatial distribution of the MrgD
receptor, we examined its expression at the tumor center and margins. Consistent with a
previous report where we studied the (pro)renin receptor [27], MrgD staining displayed
uniformity across both tumor areas. This discovery implies that the inherent heterogeneity
of CCRCC might not impact its IHC analysis, favoring the potential use of MrgD as a
prognostic biomarker.

In summary, this pilot study demonstrates the MrgD expressions in the four more
prevalent renal tumors. Furthermore, the results in CCRCCs show that the expression
of this receptor is increased at both the center and at the invasive front of tumors with a
worse prognosis and unfavorable response to TKIs. These outcomes must be validated in a
larger CCRCC series to unveil the true potential of this protein as a biomarker for prognosis
and response to frontline therapies. Furthermore, studies in cell lines and animal models
will be pivotal to shed light on the role of this novel ALA–MrgD pathway in RCC hall-
marks. Additionally, investigating the possible involvement of MrgD in CCRCC through
RAS-independent mechanisms will be important, given its affinity for other endogenous
ligands but also its constitutive activity, which has been detected in renal (HEK293) [41]
and tumor (HeLa) cell lines [42]. All these efforts will aim to comprehend the potential of
MrgD as a novel therapeutic target in RCC.

4. Materials and Methods
4.1. Patients

A total of 113 RCCs surgically removed at Basurto University Hospital between
2012 and 2016 were collected for the study: 87 CCRCCs (mean age: 61.7 years, 60 male
and 27 female patients) (Table 2), 19 PRCCs (mean age: 53.5 years, 15 male and 4 female
patients), 7 ChRCCs (mean age: 63.9 years, 6 male and 1 female patient), and 11 ROs (mean
age: 63.4 years, 4 males and 7 females).

Samples from the tumor center and the infiltrating front were included in tissue
microarrays (TMAs) for further IHC analyses. Two samples of the non-tumor renal tissue
were also included in each TMA.

4.2. MASS and RECIST Response Criteria for Patients with Metastatic CCRCC

In the studied series, 23 patients experienced metastasis (10 synchronous and 13 metachronous),
16 of whom were treated with antiangiogenic drugs, specifically TKIs. As this series falls
within the TKI era, immune checkpoint inhibitors were only administered to a limited
number of patients following the progression on TKI treatment.

To evaluate the response assessment to systemic therapy, both the MASS (Morphol-
ogy, Attenuation, Size, and Structure) [43] and RECIST (Response Evaluation Criteria in
Solid Tumors) criteria [44] were employed. According to the MASS criteria, patients with
advanced CCRCC were categorized into three groups, depending on favorable (n = 10), in-
determinate (n = 3), or unfavorable (n = 3) response to treatment. Based on RECIST, patients
were stratified as having a partial response (n = 4), stable disease (n = 9), or progressive
disease (n = 3).
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Table 2. Pathological and clinical characteristics of CCRCC patients.

CCRCC Patients (n = 87) Average (Range)

Age (range) 61.7 (36–82)

Sex (male/female) 60/27

Follow-up (months) 88.6 (2–132)

Survival (n) (n)
Alive 62

Dead of disease 20
Dead by other causes 5

Diameter (n)
≤7 cm 67
>7 cm 21

WHO/ISUP grade (n)
Low (G1–G2) 47
High (G3–G4) 40

Necrosis (n)
No 61
Yes 26

Local invasion (pT) (n)
Organ-confined (pT1–pT2) 69

Not confined (pT3–pT4) 18

Lymph node invasion (N) (n)
No 81
Yes 6

Synchronous metastasis (M) (n)
No 77
Yes 10

4.3. Immunohistochemistry

The immunostaining of formalin-fixed and paraffin-embedded tumor tissues was per-
formed with a rabbit polyclonal antibody specific for MrgD (ref. HPA031346; Sigma-Aldrich,
St. Louis, MO, USA) at a 1/50 dilution. The antibody’s specificity had been previously vali-
dated [45]. The immunostaining process followed standard procedures using an automated
immunostainer (Dako Autostainer Plus, Dako-Agilent, Glostrup, Denmark). Antigen re-
trieval was conducted in a low-pH buffer (K8005, Dako) at 95 ◦C for 20 min. The samples
were incubated with the primary antibody at room temperature for 50 min, then washed
and treated with a secondary anti-rabbit antibody (K8021, Dako) for 20 min. The EnVision-
Flex detection system, combined with an HRP enzyme-labeled polymer (SM802, Dako),
was used. A positive reaction was visualized using diaminobenzidine (DAB) solution
(DM827, Dako) followed by counterstaining with hematoxylin (K8008, Dako).

The slides were examined under light microscopy for staining assessment. Two inde-
pendent observers evaluated the slides, and in cases of discrepancies, samples underwent
re-evaluation to reach a final consensus.

Each TMA contained two cores of non-tumor renal tissue serving as controls. We
defined the MrgD staining observed in proximal tubules as moderate or intense, while
the staining in the distal nephrons and glomeruli was categorized as weak and negative,
respectively (see Figure 1). In the same way, we defined MrgD staining in a tumor core
as weak, moderate, or intense when at least 10% of the tumor cells in that core showed
weak, moderate, or intense staining, as in the control samples, and we defined the staining
as negative when it did not reach 10% of the core [46]. Finally, the staining pattern was
categorized in two groups: tumors with moderate or intense cytoplasmic and membranous
staining were considered to be positive cases, whereas tumors with weak or negative
staining were grouped as negative.
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4.4. Statistical Analysis

The statistical analysis was performed with SPSS® 28.0 (IBM Corp., Armonk, NY, USA).
We applied the Spearman Rho test to assess whether the IHC data obtained from tumor

tissues were correlated to patients’ age (which is a quantitative variable). The association be-
tween qualitative variables such as the categorical MrGD expression (negative vs. positive),
patients’ sex, the pathological variables of the CCRCC patients (described in Table 2), and
response to TKIs, was tested using the Chi-square (χ2) test. To evaluate the association
between MrgD and the CSS of the CCRCC patients, Kaplan–Meier curves and log-rank tests
were carried out. Finally, to evaluate the independent effects of this protein or pathological
variables on CSS, we used univariate and multivariate analyses (Cox regression model
together with the backward Wald method).
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