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Abstract 11 

Reading is an evolutionarily recent development that recruits and tunes brain circuitry connecting 12 
primary- and language-processing regions. We investigated whether metrics of the brain’s physical 13 
structure correlate with reading performance and whether genetic variants affect this relationship. To 14 
this aim, we used the ABCD dataset (N=9,013) of 9-to-10-year-olds and focused on 150 measures of 15 
cortical regional surface area (CSA) and thickness. Our results reveal that reading performance is 16 
associated with nine measures of brain structure including relevant regions of the reading network. 17 
Furthermore, we show that this relationship is partially mediated by genetic factors for two of these 18 
measures: the cortical surface area of the entire left hemisphere and, specifically, of the left superior 19 
temporal gyrus CSA. These effects emphasise the complex and subtle interplay between genes, brain 20 
and reading, which is a partly heritable polygenic skill that relies on a distributed network. 21 
  22 
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Main text 23 

Introduction 24 

Reading requires a brain system capable of integrating orthographic, phonological, and lexico-25 
semantic features of written words 1. The invention of reading approximately 5000 years ago does not 26 
provide enough time on an evolutionary scale to develop such a specific circuitry. Thus, reading 27 
recruits already available networks in the brain implicated in language and visual processing 2, 28 
including the inferior frontal gyrus (IFG), the superior temporal gyrus (STG), the inferior parietal lobe, 29 
and occipito-temporal regions (fusiform gyrus, inferior temporal gyrus; e.g. 3,4). The development of 30 
this reading network, which includes a dorsal (phonological) and a ventral (lexico-semantic) 31 
processing stream 5,6, is shaped by the literacy environment and genetic constraints. 32 

The most convincing evidence for the importance of environmental factors in developing this network 33 
is that learning to read requires instruction and that illiterate individuals do not show the landmark of 34 
the literate brain, a functionally defined region in the occipito-temporal gyrus that is specialized for 35 
word recognition 7,8. Furthermore, the development of reading skills is influenced by socioeconomic 36 
factors (caregiver education and home-literacy environment), reading instruction 37 
methodology/practice and the orthography of the language through which such skills are being 38 
learned 9,10. 39 

The reading network has also been investigated in individuals with developmental dyslexia (DD), 40 
which is defined as a reading disability despite normal intelligence, adequate education and lack of 41 
obvious sensory or neurological damage 11,12. Although many different deficits have been 42 
characterized in DD, there is a general agreement that DD involves phonologically-related reading 43 
processing deficits (e.g., 13,14. In spite of mixed literature on neuroanatomical markers of DD 15, 44 
several of the key regions that are important for reading show reduced volume or surface area in 45 
individuals with DD 16. This suggests that differences in the development of the reading network might 46 
contribute towards the reading deficits that characterise DD. 47 

Genetic variation explains a substantial component of reading abilities, with twin-based heritability 48 
(twin-h2) estimates of 0.66 for general reading performance (reading speed and accuracy) 17 and 49 
population-based heritability (SNP-h2) estimates of up to 0.50 for reading accuracy 18. The largest 50 
genome-wide association study (GWAS) of language and reading-related traits to date (N~34,000) 51 
has confirmed the heritability estimates for these traits, identifying a single genome-wide significant 52 
locus for word reading accuracy in chromosome 1 19. This study also highlighted a shared genetic 53 
component of reading-related measures with other cognitive components and the cortical surface 54 
area (CSA) of the banks of the left superior temporal sulcus 19. DD also has a complex genetic and 55 
environmental aetiology, with twin-h2 estimates of 0.40-0.60 20 and SNP-h2 estimates of 0.15-0.19 21,22. 56 
Another recent GWAS study with an unprecedented sample size (over 51,000 cases) identified 42 loci 57 
associated with self-reported dyslexia status at the genome-wide significant level, consistent with high 58 
polygenicity of the trait 21. Recently, the brain imaging genetics field has also been revolutionized by 59 
meta-analytic efforts 23 and large-scale datasets such as the UK Biobank 24,25, providing insights into 60 
the role genetics play in shaping brain structure. However, a mechanistic account of how these 61 
genetic effects contribute to the neurobiology of cognitive functions and human behaviour is still 62 
lacking. 63 

Over the last decade, there has been an increase in studies on the brain imaging genetics of reading 64 
performance, mostly examining the association between a wide range of neuroimaging phenotypes 65 
and candidate genes for reading (see 26 for a review), as well as a few genome-wide studies 27. 66 
Functional studies so far have relied on small samples (range: 33-427 participants 26) and have 67 
produced mixed findings, reflecting the challenging task of characterizing the reading phenotype and 68 
combining it with informative task designs, as well as the difficulty in transferring those functional 69 
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designs into larger datasets. Structural imaging studies have had larger sample sizes (range: 56-70 
1,717 26), but these are still too small to robustly identify the expected small genetic effects, given the 71 
polygenicity of both reading 19 and brain phenotypes 25. Moreover, reading itself is a complex ability 72 
that can be measured through different constructs. For instance, word reading fluency measures both 73 
reading accuracy and speed and is used as a proxy for skilled reading, whereas other tasks such as 74 
nonword reading tap into the phonological decoding component 28. These differences in the 75 
behavioural measures may also have contributed to the mixed results in the imaging literature 29,30. 76 
Hence, these studies provide the groundwork to understand the link from genetic variation to brain 77 
phenotypes and reading, but systematicity in the analytical approaches is lacking as, until now, only a 78 
handful of phenotypes and genetic loci have been considered.  79 

It is critical to use large datasets to identify robust and scalable brain correlates of reading to perform 80 
genetic analyses and to seek replicable results. The goal of the present study was twofold: (A) to 81 
identify brain correlates of reading in the developing brain; and (B) to examine whether genetics 82 
influence brain-reading associations (see Figure 1). To address these goals we used three 83 
complementary analytical approaches, namely (1) conducting a regression analysis in the Adolescent 84 
Brain Cognitive Development (ABCD) dataset of 9-to-10-year-old US children (N=9,013) to define 85 
structural cortical measures consistently associated with reading performance (goal A; Figure 1). (2) 86 
examining the genetic architecture of reading-related cognitive and brain measures by estimating the 87 
heritability of these traits using the ABCD and other publicly available datasets (goal B); and (3) 88 
exploring the shared genetic influences on brain and reading through genetic correlation and 89 
polygenic scoring combined with mediation analyses (goal B).  90 

In sum, we expect to reliably identify brain-behaviour associations within the known reading network, 91 
and to take advantage of the large ABCD dataset to unravel other more subtle but reliable 92 
associations that have not been detected in smaller datasets 31. As the reading network is mostly left-93 
lateralized 32, we first consider regional measures of the left-hemisphere cortical thickness (CT) and 94 
CSA. However, in a second stage we look at the homotopic right-hemisphere regions of interest to 95 
check for hemispheric specificity. As speech comprehension ontogenetically precedes literacy 33, we 96 
hypothesize that hub regions of the speech processing network such as the IFG or STG will be 97 
associated with reading performance. Moreover, if genetic effects mediate this effect, they are likely to 98 
act upon those regions, more than on other regions such as the ventral occipito-temporal cortex, 99 
which is a highly plastic and environmentally malleable area 8. 100 

Results 101 

Left hemisphere structural correlates of reading performance 102 

To identify reliable cortical structural correlates of reading in the developing brain (Figure 1A) we 103 
performed a regression analysis using the ABCD study dataset (N=9,013, Supplementary Fig.1). 104 
Since the ABCD dataset is a population-based dataset, we have focused on reading performance, 105 
treating it as a quantitative trait (see Supplementary Fig.1 for trait distribution). Variable definitions and 106 
descriptive statistics are shown in Supplementary Tables 1 and 2.  107 

In a first baseline model we assessed the effect of covariates (Equation 1), in which fixed effects 108 
explained 18.26% of the variance in reading (marginal R2). Age was a strong predictor for reading 109 
performance (std beta=0.2, se=0.01, F(1,8449.37)=537.7, p=2.27e-115), despite the relatively narrow 110 
age range in the sample (see Supplementary Table 2), whereas sex was not a significant predictor 111 
(see Supplementary Fig.2 and Supplementary Table 3). Socioeconomic factors were also strong 112 
predictors, with higher caregiver education and higher household income being associated with better 113 
reading performance. The first four genetic components were also associated with reading 114 
(Supplementary Table 3, Supplementary Fig.2).  115 

We next tested the effect of 150 left-hemisphere measures on reading performance: the global 116 
measures of total CSA and mean CT, and 74 regional measures for CSA and CT using the Destrieux 117 
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parcellation 34. For each regional measure, we included an absolute model (Model 1, Equation 2) 118 
without adjustment for global brain measures, and a second model (Model 2, Equation 3) that 119 
assessed the relative regional expansion/thickening after accounting for global measures 120 
(Supplementary Table 4). The global measures included in Model 2 were mean left-hemisphere CT 121 
for regional CT measures and total left-hemisphere CSA for regional CSA measures. We focused our 122 
analysis on regions that were consistently associated with reading in both models. Considering both 123 
models allowed us to assess global and local brain effects of each imaging measure 35,31. 124 

The strongest association was observed with total CSA (Likelihood Ratio Test between nested 125 
models with and without variable of interest: χ2(1)=115.11; q-value=1.27e-24). This was reflected in 126 
69 out of 74 of the regional CSA measures being significantly associated with reading in Model 1 127 
(Figure 2A, Supplementary Table 4), although the majority of these (67/69) were no longer significant 128 
after adjusting for total CSA (Model 2), suggesting that in those regions the association with reading 129 
performance was driven by total CSA. Nevertheless, two regional CSA measures were significantly 130 
associated with reading in both models: the CSA of the lateral STG, which was consistently positively 131 
associated with reading (Model 1: χ2(1)=96.14;q-value=8.99e-21 and Model 2: χ2(1)=16.65, q-132 
value=0.002; Figure 2A,C), and the CSA of the superior parietal gyrus (SPG), which showed a 133 
positive relationship to reading that was shifted to negative after adjustment (Model 1: χ2(1)=9.48; tq-134 
value=0.005 and Model 2: χ2(1)=9.63; q-value=0.036). This reversal in the direction of effect reflects 135 
that although a larger overall CSA of the SPG is related to better reading performance, the relative 136 
size of CSA in this region is negatively associated with it. 137 

CT of six regions was consistently associated with reading performance (Figure 2B, Supplementary 138 
Table 4). The postcentral gyrus and three occipital regions (occipital inferior gyrus and sulcus, 139 
occipito-temporal medial lingual gyrus, occipito-temporal lateral fusiform gyrus) were consistently 140 
associated with reading. Two superior frontal regions (middle frontal gyrus, superior frontal gyrus) 141 
showed a negative association, and the extent of the relation increased when adjusting for mean CT 142 
(Model 2), indicating that relatively thinner CT in these regions is associated with better reading 143 
performance. 144 

Effect sizes were comparable across the three analysed subsets (Supplementary Fig.3). There was 145 
no significant correlation between CT and CSA beta estimates for reading in any of the analyses we 146 
ran (see Supplementary Fig.4). This suggests that the effects CSA and CT measures may have on 147 
reading are independent. Furthermore, there was no interaction with age or sex for either of the brain 148 
measures associated with reading (neither in Model 1 or 2, see Supplementary Table 5), which 149 
suggests that the effect we observed is stable across sexes at this relatively narrow developmental 150 
timepoint. 151 

The specificity of the observed associations was assessed through sensitivity analysis by adjusting for 152 
additional cognitive variables that were correlated with reading performance (Supplementary Fig.5, 153 
Supplementary Table 6), namely fluid intelligence, matrix reasoning and/or picture vocabulary. Total 154 
CSA, CSA of the lateral STG, CT of the occipital inferior gyrus and sulcus and CT of the occipito-155 
temporal lateral fusiform gyrus were significantly associated with reading performance across all of 156 
these analyses, while the associations were weaker and no longer significant for the other five 157 
measures after adjusting for some of the additional cognitive measures, suggesting that the 158 
association we observed with reading may be part of a more general cognitive effect in those specific 159 
regions (see Supplementary Table 6, Supplementary Fig.6). 160 

To establish whether the observed associations were left-hemisphere specific, we also explored the 161 
effect of homotopic right-hemisphere measures on reading, which were imperfectly correlated with the 162 
left-hemisphere measures (Pearson’s r ranging from 0.38 to 0.8 for the regional measures, see 163 
Supplementary Fig.7). The right total CSA was associated with reading (χ2(1)=109.924; p=1.16e-25) 164 
to a similar extent as the left CSA. At the regional level, the association was robust to adjustment for 165 
global measures (Model 2) for three measures (see Supplementary Fig.8). The CT of the right 166 
occipito-temporal lateral fusiform gyrus was consistently associated with reading performance (Model 167 
1: χ2(1)=8.93; p=0.003 and Model 2: χ2(1)=8.10; p=0.005), while for the other two measures the 168 
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direction of the associations reversed when adjusting for global measures: the CSA of the right SPG 169 
reversed the direction of effect after adjustment for total right CSA (Model 1: χ2(1)=8.47; p=0.004 and 170 
Model 2: χ2(1)=5.05; p=0.024) and the CT of the right superior frontal gyrus was negatively associated 171 
in both models and the association became stronger after adjustment for mean right CT (Model 1: 172 
χ2(1)=10.01; p=0.002 and Model 2: χ2(1)=35.57; p=2e-9). 173 

Correlations among these nine reading-associated measures showed two independent clusters 174 
reflecting the type of measurement: one for the CSA measures and the other for CT measures 175 
(Supplementary Fig.7a). After correction for global measures, the correlations showed an overall 176 
decrease in the strength of the effect, indicating that they are mostly independent of each other and 177 
therefore not likely to reflect the same relationship with reading performance (see Supplementary 178 
Fig.7b). After this adjustment, the direction of some correlations was reversed, which may reflect the 179 
complex relationship between the regional and global measures: e.g. a weak negative correlation 180 
between the CSA of the lateral STG and the CSA of the SPG, and weak negative correlations 181 
between the CT of the superior and frontal gyri with the rest of the CT measures. 182 

In sum, a set of nine cortical structural measures are associated with reading performance in this 183 
sample consistently before and after correcting for global measures. Sensitivity analyses support that 184 
several of these effects are specific to reading when controlling for other cognitive measures, and that 185 
the associations are mostly left-hemisphere specific. 186 

Genetic architecture of reading-related cognitive and brain measures 187 

As a first step to investigate whether genetics affect the identified brain-behavioural associations, we 188 
established whether our traits of interest were heritable (Figure 1B.2). Heritability was estimated for 189 
reading, related cognitive measures and reading-associated brain measures (as defined in 190 
Supplementary Tables 2 and 3) using different methods and datasets: in the ABCD dataset SNP-h2 191 
was estimated using genome-based restricted maximum likelihood (GREML 36) in a set of unrelated 192 
individuals of European ancestry (N=4,716) whereas summary statistics of GWASes from publicly 193 
available datasets were used to compute SNP-h2 through linkage-disequilibrium score regression 194 
(LDSC 37) (see Supplementary Table 7). The heritability measures across all traits and methods are 195 
reported in Supplementary Table 8 and Supplementary Fig.9. 196 

Reading had a SNP-h2 of 0.14 in the ABCD dataset (see Supplementary Table 8), which was 197 
nominally significantly different from 0 , while the remaining cognitive measures were low to 198 
moderately heritable, ranging from 0.09 for WISC-V to 0.25 for vocabulary (95%CI [0.1;0.4]; corrected 199 
p=0.01). All nine brain structural measures associated with reading were also heritable 200 
(Supplementary Fig.9b), with the CT of the postcentral gyrus having the highest estimate (SNP-201 
h2=0.32, 95%CI [017;0.46], corrected p=2.26e-5), and the inferior occipital gyrus and sulcus having 202 
the lowest (SNP-h2=0.11). All were nominally significantly different from zero, although four (two 203 
regional CSA and two occipital CT measures) did not survive the correction for the 21 tested 204 
measures (Supplementary Table 8). After the adjustment for global brain measures, most regional 205 
estimates were lower (Supplementary Table 8; Supplementary Fig.9b), and only two CT measures 206 
were nominally (CT of middle frontal gyrus) or significantly (CT of the postcentral gyrus) different from 207 
zero. 208 

SNP-h2 estimates from summary statistics from GWASes were moderate for word reading, dyslexia, 209 
educational attainment and cognitive performance, consistent with original GWAS reports 210 
(Supplementary Tables 7 and 8; 19,22,38). All of the SNP-h2 (LDSC) estimates for brain measures, 211 
derived from the UK Biobank, were significantly different from zero (all corrected p-values<0.05; see 212 
Supplementary Table 8), ranging from 0.31 (total CSA) to 0.12 (CT of the occipital inferior gyrus and 213 
sulcus). 214 

In sum, these analyses support that reading and reading-associated cognitive and brain measures 215 
have a modest genetic component that partly explains part of the variation in these traits. 216 
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Shared genetic influences on brain and reading 217 

Having established that genetic variation explains part of the variance of the reading-associated brain 218 
measures, we explored the extent to which genetics contribute to the brain-behaviour associations 219 
(Figure 1B.3). To this end, we first computed genetic correlation estimates. Then, we followed up the 220 
most promising brain measures with polygenic score (PGS) analyses. Finally, we conducted a 221 
mediation analysis to examine whether CSA measures mediate PGS effects of cognitive performance 222 
on reading.  223 

Genetic correlation 224 

Genetic correlation (rg) is the proportion of variance that two traits share due to genetic variance. We 225 
estimated genetic correlations across cognitive traits and brain measures using LDSC. Bivariate 226 
GREML analysis was not considered as it was not well-powered to detect genetic correlations 227 
between brain measures and reading in the unrelated European ancestry ABCD subset (see 228 
Supplementary Fig.10). 229 

There was no evidence of genetic correlation that survived multiple testing comparison (Bonferroni 230 
corrected for 36 measures) between any of the brain measures and educational attainment, cognitive 231 
performance, developmental dyslexia or word reading (Supplementary Fig.11a, Supplementary Table 232 
9). We further analyzed the two measures showing the strongest association to reading using PGS: 233 
total CSA and the CSA of the lateral STG. 234 

GWAS signals are normally interpreted as the effect a genetic variant has on a given phenotype. 235 
However, recent evidence points out that they can also measure confounds such as population 236 
stratification or indirect genetic effects, i.e. such as effects of parental genotypes that may influence 237 
the individual’s environment and are also correlated with their genotype 39. We thus compared the rg 238 
estimates between brain imaging measures (population-based GWAS) and cognitive measures 239 
(cognitive function and years of schooling) from sibling-based and population-based GWASes 39. Total 240 
CSA and sibling-based cognitive function had a positive genetic correlation; while several CT 241 
measures had nominally significant negative genetic correlations with sibling-based and/or population-242 
based educational attainment and cognitive function (see Supplementary Table 10, Supplementary 243 
Fig.11b). 244 

Polygenic scores 245 

PGS are individual level predictors derived from the sum of effect alleles at a SNP, weighted by the 246 
regression coefficient describing each SNP’s level of association with a trait. PGSes can also be used 247 
to study the genetic relationship between two traits by making predictions across traits 40. 248 

We first used GWASes for word reading, educational attainment and cognitive performance to define 249 
the PGS that best predicted reading in the ABCD dataset (unrelated European ancestry subset). The 250 
PGS for cognitive performance (PGSCP) at the p-value threshold of 0.05 explained the largest amount 251 
of variance in reading performance (ܴ߂ଶ=3.6%, estimate=0.1909, se=0.015; corrected p=8.73e-37; 252 
Supplementary Figs. 12-15). Therefore, we used this best PGS to perform cross-trait prediction in 253 
brain measures. 254 

This PGSCP was a significant predictor of the left CSA brain measures associated with reading, 255 
explaining up to 0.75% of the variance of the total CSA (estimate=0.089, se=0.013, corrected p=4e-256 
11), and up to 0.56% of the CSA of the lateral STG (estimate=0.076, se=0.014, corrected p=3e-07). 257 
These results indicate that genetic effects that affect cognitive performance also influence CSA 258 
measures associated with reading. The regional prediction was significantly diminished and no longer 259 
significant when including the total CSA as a covariate in the regression analysis (ܴ߂ଶ=8.35e-05, 260 
estimate=0.015, se=0.112, corrected p=0.5300.707), suggesting that the genetic effect is shared 261 
between the total CSA and the CSA of the lateral STG (Figure 3). 262 
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Mediation analysis 263 

The relation between reading performance, total CSA, the CSA of the lateral STG and PGS of 264 
cognitive performance was further explored through a set of mediation analyses that are summarized 265 
in Table 1. The effect of PGSCP on reading was partially mediated by the CSA measure (total or STG), 266 
the indirect effect of total CSA explaining 4.9% of the total PGS-reading effect, and the CSA of the 267 
lateral STG explaining 4.2% of it (Figure 4).  268 

When adjusting the CSA measures with each other, the indirect effect was no longer significant, which 269 
again supports that the genetic effect is common to both CSA measures (Table 1). For sensitivity, we 270 
also repeated the mediation analyses adjusting reading for general intelligence measures and picture 271 
vocabulary, after which the mediated effect was diminished but remained significant (total CSA: 3.3%; 272 
CSA of STG=3.3%; see Table 1). 273 

In sum, through complementary approaches, we find evidence for a shared genetic component 274 
between reading performance and CSA measures associated with reading, namely the total left-275 
hemisphere CSA and the CSA of the lateral STG. 276 

Discussion 277 

In the current study, we have established a set of morphometric measures associated with reading 278 
performance in the ABCD dataset, constituted by 3 CSA and 6 CT measures, including relevant 279 
regions of the reading network. Several of the effects were robust when controlling for other cognitive 280 
measures, highlighting the specificity of these effects for reading. Next, we explored whether genes 281 
played a role in the brain-behaviour relationship and found evidence for genetic overlap with two CSA 282 
measures (total CSA and CSA of the lateral STG) but not for any of the CT measures. Finally, through 283 
mediation analysis, we showed that the gene-behaviour association is partially mediated through the 284 
CSA measures. These results are discussed next. 285 

A set of nine cortical structural measures were consistently associated with reading in the ABCD 286 
study of 9-to-10-year-old US children. The scale of this dataset (N>9,000) allowed us to perform a 287 
whole-brain search for morphometric (CSA and CT) correlates of reading in the left hemisphere, and 288 
to uncover small but consistent effects. For each regional CT or CSA measure, we assessed two 289 
effects: a global effect which is a measure of variability within a given region, and a second relative 290 
effect that reflects variability of the regional expansion (i.e. correcting for global measures). The 291 
relative regional CSA and CT measures are also of interest. For instance, a gradient of relatively 292 
greater CSA and relatively thinner CT has been positively associated with general cognitive ability; 293 
this pattern seems to be driven by genetic associations, reflecting cortical expansion during 294 
development and evolution 41. 295 

Total CSA was associated with reading performance, and this effect was reflected by a global 296 
association of most regional CSA measures. Smaller brain volume 15 and lower CSA 42 has been 297 
reported in dyslexic individuals. A previous study that used the ABCD dataset also demonstrated that 298 
performance on crystallised cognitive measures, including reading, was more strongly associated with 299 
total CSA compared to the regional CSA measures 43.  300 

We also observed a regional effect of CSA beyond the generalized effect, as the relative CSA of the 301 
lateral part of the STG was associated with reading skills after adjusting for total left CSA. Sensitivity 302 
analyses showed that the association was not driven by general cognitive processes, as it was robust 303 
after adjustment for other cognitive variables (i.e. fluid intelligence, matrix reasoning and picture 304 
vocabulary), which in is line with previous findings of distinct regionalization patterns of CSA across 305 
cognitive tasks in the ABCD 43. The STG is a known hub within the speech and reading networks 44,33: 306 
Functional MRI studies have shown that the posterior part of the STG is a key multimodal area for 307 
audiovisual integration of speech and print, involved in the grapheme-to-phoneme correspondence 308 
mapping within the dorsal reading pathway 45,4,46, while the anterior STG seems to be more related to 309 
the ventral pathway of speech processing 33,3. The present study included the CSA of the lateral STG 310 
as a single unit, and we cannot, therefore, relate the observed effects to the different specific 311 
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processes within it. Nevertheless, it is noteworthy that this specific region, the key hub for the ventral 312 
and dorsal reading networks, was the area most strongly associated with reading performance. The 313 
lateral temporal cortex is one of the areas of greatest local cortical expansion in humans compared to 314 
macaques 47. Recent studies looking at grey matter measures and reading have also highlighted the 315 
relevance of the STG. Plonski et al. 48 performed multivariate classification of children with dyslexia 316 
based on morphometric features and identified the mean curvature of the lateral STG as a feature 317 
discriminating dyslexics from controls, and Perdue et al. 49 found that the CT of the left STG was 318 
positively correlated with word and nonword reading performance. Moreover, reduced grey matter 319 
volume in the bilateral superior temporal cortex was found in dyslexic readers 50, and an altered 320 
pattern of asymmetry of the planum temporale, within the superior surface of the posterior part of the 321 
superior temporal gyrus, has also been reported in dyslexic young males 51. Nevertheless, the 322 
literature on neuroanatomical differences in DD is inconsistent, possibly due to small sample sizes 323 
and methodological heterogeneity 15. 324 

Six regional CT measures were associated with reading performance, although mean CT was not. 325 
The postcentral gyrus and three occipital CT measures (inferior occipital gyrus and sulcus, lingual 326 
gyrus, fusiform gyrus) were positively associated with reading performance after adjusting for other 327 
cognitive covariates. These occipital regions are part of the visual system and are involved in the left 328 
ventral occipito-temporal network of reading that performs visual-orthographic processing 52, with the 329 
left fusiform gyrus including the so-called visual word form area 53. Bilateral fusiform gyri have been 330 
reported to have reduced surface area in pre-readers who develop DD, although no differences in CT 331 
were seen 54. The three other regional measures associated with reading performance were the CT of 332 
the superior and middle frontal gyri and the CSA of the SPG. The left parietal cortex has been 333 
implicated in letter position coding 55, while activation in the middle frontal gyrus is activated by 334 
reading in Chinese and French children 56. The association of these measures with reading 335 
performance shifted in the direction of effect (for the SPG) and the strength of the association became 336 
bigger (for frontal CT regions) after controlling for the global measures, implying that the relative 337 
regional change of these measures is in the opposite direction to the global effect. 338 

In line with previous findings, the effects of CSA and CT measures on reading were independent of 339 
each other. These two measures reflect different features of cerebral cortical structure that are 340 
relatively independent both phenotypically and genetically 57,58, although relative greater area and 341 
thinner CT have also been linked to cortical stretching that takes place over development 23,59 and 342 
may share genetic influences without a clear pattern of sign concordance 60. Previous studies have 343 
shown that CSA measures are overall more heritable than CT measures 61,23,25 and total CSA has 344 
been linked to several cognitive traits 23,19. 345 

Despite the apparent specificity of the association of the identified cortical measures to reading, this 346 
specificity was not tested beyond the cognitive variables described above, so it is possible that these 347 
effects are shared with other cognitive and psychological traits. For instance, children with attention 348 
deficit/hyperactivity disorder (ADHD) have reduced total CSA 62 and some of the right-hemisphere 349 
homologue regions that were reading-associated in the present study are also among the several 350 
sMRI measures that have been found to predict ADHD symptomatology (in the ABCD dataset): 351 
namely, lower CSA of the right lateral temporal cortex, lower CT of the right postcentral cortex and 352 
greater CT of the right lateral occipital cortex 63. 353 

In sum, we established a set of structural correlates of reading performance, which included key 354 
regions such as the CSA of the STG, which is involved in the dorsal and ventral reading networks, 355 
and the CT of occipital regions implicated in the ventral reading network. These associations were 356 
subtle but consistent across sensitivity analyses, and were not modulated by age or sex. No 357 
association was found between structural measures of other key regions of the reading network, such 358 
as the inferior frontal gyrus or inferior parietal regions, which may indicate the multifaceted nature of 359 
these regions and that their implication in reading is not reflected in morphological changes, at least at 360 
the developmental stage (late childhood, 9-10yo) at which we tested this association. 361 
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Reading was heritable in the ABCD dataset, although with a lower estimate relative to previously 362 
reported results for reading in a large GWAS meta-analysis 19,18. In this dataset, morphometric brain 363 
measures associated with reading performance showed low to modest heritabilities, which were 364 
significantly different from zero in most cases, as has been previously reported for these measures 23. 365 
Total left CSA was the measure with the highest estimates across methods, while regional measures 366 
were more variable. Relative regional measures (adjusted for global measures) had lower heritability 367 
estimates in the ABCD dataset. 368 

On the other hand, estimates based on summary statistics from the UK Biobank dataset for the same 369 
imaging measures ranged between 0.12-0.23, as previously reported 25. Note that these brain GWAS 370 
summary statistics from the UK Biobank had been adjusted for multiple imaging confounds, including 371 
global measures (i.e. head size 25,64). The ABCD dataset consists of children (9-10 year-olds), 372 
whereas the UK Biobank contains older adults (mean age at recruitment: 55.2 years). As heritability is 373 
a relative measure that depends on the amount of total variance, it is possible that the differences in 374 
heritability of brain structures reflect either distinct genetic influences and/or differential environmental 375 
influences on the developing and the ageing brain. Twin-h2 of brain imaging measures slightly 376 
increases from childhood to adulthood and then decreases in older ages 65,66. A longitudinal twin-study 377 
identified distinct genetic factors that influence cortical thickness of regions across space and time 378 
throughout adolescence 67. Nevertheless, there are multiple other aspects that differ between the two 379 
datasets that we analysed (i.e. sample size, the use of individual-level data or summary statistics 380 
data, specific global brain covariates used: adjusting for totalCSA or meanCT in the ABCD vs 381 
adjusting for head size in the UK Biobank). We cannot therefore establish whether age or some of 382 
these other factors are driving the difference we observe. 383 

Overall, we confirmed that reading and reading-related cognitive and brain traits were moderately 384 
heritable across methods. Next, three complementary analyses were performed to further elucidate 385 
possible shared genetic effects for reading and reading-associated brain measures. First, we 386 
performed genetic correlation analyses, we then examined the most promising signals through 387 
polygenic scores, and finally assessed these relations through mediation analyses. 388 

There was a consistent trend of a small positive genetic correlation between the total CSA and the 389 
CSA of the lateral STG with reading-related cognitive measures (educational attainment and cognitive 390 
performance). Genetic correlation between total CSA and educational attainment has previously been 391 
reported in the ENIGMA dataset, albeit with a considerably stronger genetic correlation of 0.22 392 
(p=1.9e-13) 23, using the same GWAS summary statistics for educational attainment 38 and the 393 
ENIGMA GWAS meta-analysis data for total CSA. The difference between the previous and our 394 
genetic correlation estimates for CSA and educational attainment may be partially explained by the 395 
fact that the UK Biobank GWAS summary statistics we used here was run adjusting for head size 25, 396 
and it was therefore a more relative measure of cortical expansion, while the ENIGMA meta-analysis 397 
did not correct for this 23. Lateral STG also showed genetic correlation with word reading and a 398 
negative genetic correlation with dyslexia, although these associations did not survive multiple 399 
comparisons correction for the 36 tests. The recent GWAS meta-analysis of reading- and language-400 
related traits 19 found a significant genetic correlation between reading and the CSA of the banks of 401 
the superior temporal sulcus, which partially overlaps the lateral STG we report here. They used the 402 
same UK Biobank GWAS resource used in the present study 25 but a different brain parcellation to 403 
compute the genetic correlations between the reading and language GWAS meta-analysis and 58 404 
structural neuroimaging traits with known links to reading and language. The word reading GWAS we 405 
included in this analysis was from Eising et al. 19, so the concordance of these results is reassuring 406 
but also expected. Overall, our results are in line with the literature, supporting a possible genetic 407 
overlap between reading and related cognitive traits with total CSA and the CSA around the superior 408 
temporal regions. 409 

We did not find evidence for a genetic overlap between reading and any of the other reading 410 
associated CT and CSA measures. The power to detect genetic correlations depends on the strength 411 
of the phenotypic association, the strength of the genetic effects on each trait (i.e. heritability) and the 412 
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actual genetic overlap that exists 68. In our results, the heritability estimates were of a similar order of 413 
magnitude for all cortical measures (Supplementary Fig.9), but the strength of the association with 414 
reading was lower for these other measures, which may have resulted in diminished power to detect 415 
low to moderate genetic correlations. Note that a lack of a genetic correlation between two traits may 416 
also occur despite there being a genetic overlap, if there are genetic variants that contribute to both 417 
traits with mixed directions of effect 69. 418 

In an attempt to tease apart direct and indirect genetic effects, we conducted a comparison of genetic 419 
correlations between sibling-based GWAS and population-based GWASes for years of education and 420 
cognitive function 39 and reading-related brain phenotypes (UK Biobank GWAS from population-based 421 
estimates). These analyses revealed few nominally significant genetic correlations with the sibling-422 
based, but in most cases not the population-based cognitive GWASes, none of which survived 423 
multiple comparison corrections. Although this could potentially indicate that the genetic correlation is 424 
robust to detect at least some indirect genetic effects, it should be noted that the GWAS for the brain 425 
measures was population-based, and hence these rg estimates could still be inflated due to 426 
demographic and indirect effects on the brain measures. As new and larger family-based GWASes 427 
become available, it will be important to further study the direct and indirect genetic influences on the 428 
relationship between cognitive traits and reading-related brain measures. 429 

To further examine the shared genetic correlates to reading and CSA measures we used polygenic 430 
scoring. A polygenic score of cognitive performance (PGSCP) predicted 3.6% of the variance in 431 
reading performance and was also a significant predictor of total CSA and the CSA of the STG region. 432 
These CSA measures partially mediate the effect of PGSCP on reading, explaining up to 4.8% of the 433 
effect of total CSA, and 4.2% of the effect of the CSA of the STG. The effect seems to be shared 434 
between the two CSA measures, as the adjustment of the CSA measures with each other diminished 435 
the mediation or made it disappear. Of note, these effects are small: less than 0.2% of the total 436 
variation in reading performance is explained through this route (i.e. the 4.8% of the 3.6% that the 437 
PGSCP explains in the variation of reading performance). This relationship is similar to the one 438 
reported for intelligence measures in young-adult samples: CSA measures mediated up to 3.4% of 439 
the effect of the PGS of educational attainment on intelligence in two twin-based datasets 70 and 440 
vertex-wise surface area measures were shown to partly mediate the effect of PGS of educational 441 
attainment on the ‘g’ general intelligence factor 71, which is also in line with previously reported 442 
positive genetic correlations between CSA and educational attainment in genomic 23 and twin-studies 443 
72. Based on these results, we suggest that a small part of the genetic effects captured by the PGS act 444 
through the CSA measures to affect reading performance. Hence, the observed effects highlight that 445 
the biology underlying reading ability is partly heritable and polygenic, and that it relies on a 446 
distributed network throughout the brain. 447 

Although the current study showed that it is possible to triangulate reading with the brain and its 448 
genetic effects, it also has some limitations. First, all the effect sizes we report here are small. The 449 
sum of demographic variables in the baseline model explains up to 18.3% of the variability in reading, 450 
while the maximum brain-reading association (i.e. CSA total) only explains an additional 1%. This is 451 
expected for univariate brain wide association studies that attempt to establish brain-behaviour 452 
correlates based on inter-individual variability 73. Hence, the current results do not support the 453 
existence of morphometric brain features with large effect sizes in reading performance. Second, we 454 
focused on the relationship between reading performance and morphological cortical measures (CSA 455 
and CT). Although cortical morphometry can be seen as an indirect measure of function 73, other 456 
imaging modalities, such as functional task-related measures, may be more closely associated with 457 
reading performance. Large datasets such as the ABCD and the UK Biobank do not contain relevant 458 
reading-related task measures 74,75, while smaller datasets do not provide enough power to perform 459 
the type of analyses carried out in the current study. However, functional connectivity from resting-460 
state data, available in the ABCD and UK Biobank, could be used as markers of interest in follow-up 461 
studies. Furthermore, the present study only considered the neocortex, and did not include subcortical 462 
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structures, despite regional differences in volume of the thalamus or cerebellum having been related 463 
to DD or reading performance in typically developing children 76.  464 

Moreover, we used a variety of analyses and datasets with different demographic characteristics. The 465 
goal was to find converging evidence across them, but this approach also adds heterogeneity that 466 
may hinder the interpretation of our results. We provided plausible explanations of why some results 467 
may not be congruent in terms of this heterogeneity, and, instead, focused on the strongest signals 468 
that replicated throughout the analyses to overcome this caveat. Lastly, some crucial aspects to 469 
understand how reading affects the brain and its genetic underpinnings, such as development, were 470 
overlooked to some extent in the present study. Our modelling does not capture the full complexity of 471 
brain-genetic-behaviour relations. The effects could be inflated by gene-environment interactions. For 472 
instance, recreational reading has been shown to mediate the relationship between polygenic scores 473 
of intelligence and crystallised measures of intelligence (including reading) in the ABCD dataset 74, 474 
while sociodemographic factors such as caregiver education and income (modelled in the present 475 
study as covariates) can also influence brain structure 75. As the ABCD is a multimodal and 476 
phenotypically-dense longitudinal study that has been following children since 2018 and will continue 477 
to do so for the next 7 years, follow-up studies will have the opportunity to assess the stability of the 478 
effects reported here. 479 

The present study illustrates the type of analytical approach that could be used to understand the 480 
biological bases of reading performance, utilizing openly available datasets and tools. It should be 481 
noted that the goal of the current study was to dissect the complex relationship between traits. Thus, 482 
this work does not have any direct implication for efforts to support reading skills, as the effect sizes 483 
we have uncovered are very small and do not have any predictive power at the individual-subject 484 
level. Nevertheless, this approach allows us to better understand the possible key brain features and 485 
regions (e.g. total CSA, STG) implicated in a complex behaviour such as reading. In the future, this 486 
work could be extended to other relevant phenotypes, such as functional or structural connectivity 487 
measures. In addition, possible factors that are likely to shape the effects we describe (such as age or 488 
sex) should also be taken into consideration to provide a more comprehensive account. 489 

In summary, we identified the cortical correlates of reading performance, including total CSA and key 490 
reading-network measures such as the CSA of the STG and the CT of a cluster of occipital regions 491 
that are involved in the dorsal and ventral reading pathways. The effects reported in these analyses 492 
were consistent and predominantly left-hemisphere specific. Nevertheless, these were also modest 493 
effects, which argue against large effects of cortical features in reading performance, and highlight the 494 
need for large datasets to be able to address these types of questions in an unbiased manner. 495 
Further, while there was no indication of a genetic overlap with any of the CT measures, we found 496 
evidence that suggests that genetic effects contribute to the association with CSA. These findings 497 
revealed insights into the structural brain correlates of reading, and indicate that the total CSA and the 498 
superior temporal gyrus CSA partially mediate the association between genetic factors and reading 499 
performance.500 
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Methods 501 

ABCD study data 502 

The Adolescent Brain Cognitive Development (ABCD) study is a longitudinal study across 21 data 503 
acquisition sites following ~11,878 children starting at 9 and 10 years old 76. Parents/caregivers 504 
provided written informed consent, and children verbal assent, to a research protocol approved by a 505 
central Institutional Review Board (cIRB) at the University of California, San Diego (UCSD) for most 506 
sites or by a local IRB for a few sites (https://abcdstudy.org/study-sites/) 77. The study used specific 507 
recruitment strategies to create a population-based, demographically diverse sample 78. However, it is 508 
not necessarily representative of the U.S. national population 79. The current study analysed the full 509 
baseline sample (N~11,878) from the ABCD data release 3.0 RDS (DOI: 10.15154/1520591) and the 510 
Genotyping Data from the ABCD Curated Annual Release 3.0 (NDA Study 901; DOI: 511 
10.15154/1519007). All variables included in the current study are listed and described in 512 
Supplementary Table 1, with Supplementary Table 2 providing their descriptive statistics. 513 

Behavioural data 514 

The dependent variable for our primary analysis was the Toolbox Oral Reading Recognition Task 515 
from the NIH Toolbox® Cognition Battery, which is a reading test that asks individuals to pronounce 516 
single words 80. Three additional cognitive variables were included for the sensitivity analyses: 517 
Toolbox Picture Vocabulary Task (NIH Toolbox® Cognition Battery), which measures language skills 518 
and verbal intellect; the "fluid composite" cognitive score, which is a composite score derived as the 519 
average normalized scores from several fluid ability measures from the NIH Toolbox® Cognition 520 
Battery, namely: Flanker, Dimensional Change Card Sort, Picture Sequence Memory, List Sorting and 521 
Pattern Comparison; and the Matrix Reasoning task from the Wechsler Intelligence Scale for 522 
Children-V (WISC-V), which measures fluid intelligence and visuospatial reasoning. 523 

Structural magnetic resonance imaging data 524 

The ABCD MRI data were collected using harmonized scanning protocols across 21 research sites, 525 
using Siemens Prisma, GE 750 and Philips 3T scanners. Full details of the imaging acquisition 526 
protocols and preprocessing can be found in Casey et al. 81 and Hagler et al. 82. Cortical surfaces 527 
were constructed from T1 weighted MRI volumes and segmented to calculate measures of apparent 528 
CT and CSA using Freesurfer v5.3.0. We used ABCD tabulated imaging data that provided CT and 529 
CSA measures per region. We restricted the analysis to subjects who passed quality control for the 530 
cortical surface reconstruction based on manual inspection of the data (i.e. had “1” on the fsqc_qc 531 
variable; see Hagler et al., 2019). 532 

Freesurfer atlas parcellation measures (Destrieux et al., 34) for left-hemisphere CT and CSA were 533 
included in the analysis. Seventy-four regional and one global measure (total CSA or mean CT) were 534 
included for CT and CSA. Thus, 150 measures were analyzed in total. The main analyses were 535 
focused on the left hemisphere, although some of the homotopic right-hemisphere measures were 536 
also included for completeness and sensitivity. 537 

Additional data 538 

The study comprises different data acquisition sites and associated MRI scanners, as well as related 539 
individuals (twins and siblings). Therefore, the scanner ID was included as a random factor to account 540 
for the dependence of samples, and family relatedness (family ID) was included as a random factor 541 
nested within scanner in all analyses that included related individuals. The ABCD is a diverse dataset 542 
with a wide range of individuals across different ethnicities and socioeconomic backgrounds (Garavan 543 
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et al., 2018). We included the following demographic variables in all analyses, unless otherwise 544 
specified: sex, age, genetic principal components (PC1-PC10; see “Genetic analyses” section below), 545 
household income and caregiver education. Note that the genetic PCs were computed for the full 546 
sample (including diverse ancestries) and for the European-PCA cluster for some genetic analyses, 547 
which aims to minimize variation in non-genetic and genetic factors (see below). The PCs 548 
corresponding to the specific dataset used in each analysis were included as covariates. Furthermore, 549 
as some genetic analyses require the use of unrelated individuals, we defined a subset of unrelated 550 
individuals for those analyses (see “Genetic quality control”). 551 

Brain-behaviour association analyses 552 

Quality control 553 

Individuals that passed quality control for both neuroimaging (N=11,265) and genetic data (N=11,092) 554 
were selected. Next, we filtered out individuals that had missing data for covariates, or variables of 555 
interest (1,868 individuals excluded), or with extreme outlier values (i.e. more than 7 standard 556 
deviations away from the mean for that variable: 47 individuals). Finally, we also trimmed extreme 557 
values of the dependent variable (i.e. reading; see above) by excluding the 0.01 quantiles at each end 558 
of the distribution (N=164 individuals excluded) to avoid having long tails that would affect the 559 
regression models (kurtosis was reduced from 4.56 to 3.43; see Supplementary Fig.1). This final 560 
dataset of 9,013 individuals was used for the main brain-behaviour association analyses. Descriptive 561 
statistics per covariate before and after the final trimming are presented in Supplementary Table 2. 562 

Regression analyses 563 

All numeric variables were z-transformed (centered and scaled to have a mean of 0 and variance of 564 
1). Linear mixed-effect regressions were run using R (v 4.0.3) package lme4 v 1.1-25; 83 to identify 565 
structural ROIs associated with reading. 566 (ݎ݁݊݊ܽܿݏ|1) ~ ݃݊݅݀ܽ݁ݎ  + :ݎ݁݊݊ܽܿݏ|1)  (ݕ݈݂݅݉ܽ  + + ݔ݁ݏ   ܽ݃݁ +  ℎ݅݃ℎ. + ܿݑ݀݁  ℎ݁ݏݑ݋ℎ݈݀݋. + 567 ݁݉݋ܿ݊݅ + 10ܥܲ:1ܥܲ   568  ߝ 
(Eq 1) 569 

(ݎ݁݊݊ܽܿݏ|1) ~ ݃݊݅݀ܽ݁ݎ 570   + :ݎ݁݊݊ܽܿݏ|1)  (ݕ݈݂݅݉ܽ  + + ݔ݁ݏ   ܽ݃݁ +  ℎ݅݃ℎ. + ܿݑ݀݁  ℎ݁ݏݑ݋ℎ݈݀݋. + 571 ݁݉݋ܿ݊݅ + 10ܥܲ:1ܥܲ  + ݁݌ݕݐ݋ℎ݁݊݌ ݃݊݅݃ܽ݉݅   572  ߝ 

(Eq 2) 573 

(ݎ݁݊݊ܽܿݏ|1) ~ ݃݊݅݀ܽ݁ݎ 574   + :ݎ݁݊݊ܽܿݏ|1)  (ݕ݈݂݅݉ܽ  + + ݔ݁ݏ   ܽ݃݁ +  ℎ݅݃ℎ. + ܿݑ݀݁  ℎ݁ݏݑ݋ℎ݈݀݋. + 575 ݁݉݋ܿ݊݅ + ݁݌ݕݐ݋ℎ݁݊݌ ݃݊݅݃ܽ݉݅ ݈ܾܽ݋݈݃ 576  + 10ܥܲ:1ܥܲ  + ݁݌ݕݐ݋ℎ݁݊݌ ݃݊݅݃ܽ݉݅   577 ߝ 

(Eq 3) 578 

 579 

First, we included all random variables and covariates of interest in a baseline model (Equation 1; see 580 
Supplementary Table 1 for the definition of all covariates and random factors). Each brain measure 581 
was then added as an independent variable in separate regressions to assess their effect on reading 582 
(Equation 2; Model 1). Next, we checked that the association of regional measures was robust after 583 
controlling for the corresponding global measures (Equation 3; Model 2), i.e. the left-hemisphere total 584 
CSA for CSA measures or the left-hemisphere mean CT for CT measures. A likelihood ratio test 585 
(LRT) between each pair of nested models (Baseline vs Model 1; Model 1 vs Model 2) was used to 586 
assess the significance of the term of interest. We defined brain measures consistently associated 587 
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with reading as those that were significant after multiple testing corrections in both models 1 and 2 588 
(False Discovery Rate q-value<0.05). 589 

We next assessed whether any of the identified brain measures had a significant interaction with 590 
demographic variables such as age and sex, by separately adding these interaction terms to Models 1 591 
and 2 for each brain measure, and assessing the significance of each interaction through a LRT 592 
between tested models. 593 

To assess whether the observed associations were specific to reading, we also explored whether the 594 
reading-associated measures were robust to adjustment for other cognitive covariates related to 595 
reading: fluid intelligence score, matrix reasoning, and picture vocabulary (see Supplementary Table 1 596 
for the definition of variables included in this sensitivity analysis). 597 

Although the main analysis focused on left-hemisphere measures, the reading-associated measures 598 
were followed up by performing identical analyses with their homotopic right-hemisphere measures. 599 
We also computed the correlations between these homotopic regions and across all reading-600 
associated brain measures, using the residuals after adjusting for the covariates in Models 1 and 2 (R 601 
package psych v2.0.12 84). 602 

We re-ran these analyses again restricting them to subsets of the data (see section below for exact 603 
subset definitions) to confirm that these results were not driven by the family component or were 604 
ancestry-specific: unrelated individuals only (after QC: N=7,502), and unrelated individuals of 605 
European ancestry (after QC: N=4,080). 606 

In order to clarify the inter-dependence of the CSA and CT effects, we computed Pearson’s 607 
correlation of the beta estimates that we obtained for the CSA and CT measures for reading 608 
performance in the ABCD dataset. We performed this comparison for the whole dataset, as well as for 609 
the two other smaller subsets from this dataset. 610 

All effects were visualized in brainplots using the R packages ggseg v 1.6.4 85 and ggsegDesterieux v 611 
1.0.1.002 86. 612 

Genetic analyses 613 

Genetic quality control 614 

Plink 87 (v1.90b6.15) was used to perform SNP and sample quality control (QC) following Coleman et 615 
al. 88. 11,099 individuals had available genotype data for 516,598 SNPs. SNPs were excluded if they 616 
had genotyping rate <0.99, Hardy Weinberg Equilibrium (HWE) p-value <1e-6, or minor allele 617 
frequency (MAF) < 0.01. After this QC, 340,003 SNPs were kept. Samples were excluded if they had 618 
a missing genotyping rate greater than 95% (N=7). 619 

A set of 291,223 common (MAF>0.05), autosomal, independent SNPs were selected by pruning LD 620 
using a window of 1500 variants and a shift of 150 variants between windows, with an r2 cut-off of 0.2, 621 
and excluding high-LD and non-autosomal regions 88. These SNPs were used to identify sex 622 
mismatches, assess relatedness and flag outliers for IBD or heterozygosity, and to perform ancestry 623 
analyses. To identify a set of unrelated individuals, we randomly excluded one subject from each pair 624 
with a pi-hat > 0.1875. This resulted in 11,047 subjects passing genetic QC, of which 9,061 were 625 
unrelated (i.e. pi-hat>0.1875). 626 

Genetic principal components (PCs) were calculated using SmartPCA (EIGENSOFT v 6.1.4 89) for the 627 
total sample. These PCs were then used as covariates in the brain-behaviour regression analyses 628 
(see above). PCs computed with reference populations of the 1000 genomes reference dataset (v37; 629 
90) were plotted to visualize the genetic ancestry of the total sample. 630 

In order to define a subset of homogeneous ancestry, we then selected individuals with a > 90% of 631 
European ancestry (as defined by the variable "genetic_ancestry_factor_european" from the ABCD 632 
data release 3.0; N=6,103) and removed outlier individuals exceeding 6 standard deviations along 633 
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one of the top 10 PCs using SmartPCA 89. The genetic PCs for this subset were used in downstream 634 
genetic analyses that are sensitive to population stratification effects. This subset consisted of 5,740 635 
individuals of European ancestry, of which 4,716 were unrelated. 636 

Heritability and genetic correlation analyses 637 

A genetic relationship matrix (GRM) of 4,716 unrelated individuals of European ancestry from the 638 
ABCD dataset was built in GCTA (v1.93.2beta 36) using 331,460 autosomal, directly genotyped SNPs. 639 
We further excluded one random participant from each pair having a kinship coefficient higher than 640 
0.05 based on the calculated GRM (as this analysis is especially sensitive to higher levels of 641 
relatedness), resulting in 4,633 participants. Genome-based restricted maximum likelihood (GREML; 642 
36) analyses were performed to estimate the SNP-based heritabilities (h2-SNP), using residuals after 643 
controlling for the sex, age and the first 10 genetic PCs for this subset as covariates and scanner (for 644 
brain measures) or site (for non-brain measures) as a random factor. As power was limited for this 645 
analysis, we maximized the sample size by not excluding individuals who had missing variables that 646 
were not used in each specific analysis (as for the brain-behaviour analysis), and therefore the 647 
sample sizes were slightly larger, ranging from 4,285 to 4,363 depending on the specific measure. 648 
The significance of the heritability estimates was Bonferroni corrected for multiple comparisons for the 649 
number of tested measures, i.e. 21 measures (9 brain measures, 8 brain measures adjusted for 650 
global measures and 4 cognitive measures). Bivariate GREML analyses were run to compute the 651 
genetic correlation (rg) between regional and global brain measures, and we then assessed whether 652 
the rg was significantly different to 1 through a one-tailed z-test (where z = (1-rg)/se). In order to 653 
determine whether genetic correlations between reading performance and brain imaging phenotypes 654 
could be detected, given the sample size and heritability estimates for the different traits in the ABCD 655 
dataset, we ran power analyses using the GCTA-GREML power calculator 68. This analysis showed 656 
that the current dataset is not well powered to detect these genetic correlations (power < 80% for all 657 
measures, see Supplementary Fig.10). 658 

Heritability and genetic correlations based on summary statistics 659 

The linkage disequilibrium score regression (LDSC) allows the computation of genetic correlation from 660 
GWAS summary statistics, without relying on individual level data 37. LDSC (v1.0.1) was used to 661 
calculate the heritability and genetic correlations of the identified nine brain measures and four 662 
reading-related cognitive measures (as defined in Supplementary Table 7). These included GWAS 663 
summary statistics from much larger datasets than the ABCD dataset used for the genetic analysis, 664 
and therefore we expected that they would be better powered to detect potentially subtle genetic 665 
correlations. The following traits were included: word reading (reaction time) 19, developmental 666 
dyslexia (defined based on word reading and spelling tests) 22, educational attainment and cognitive 667 
performance (for fluid intelligence) 38, and CT and CSA brain measures 25. Multiple comparisons 668 
corrections were applied for the 13 heritability estimates (9 brain imaging and 4 cognitive; 669 0.0056=0.05/9=ߙ) and 36 genetic correlations (9 imaging x 4 cognitive; 0.0014=0.05/36=ߙ) tested. 670 

In order to disentangle whether potential genetic correlations were driven by direct or indirect genetic 671 
effects, we performed additional genetic correlation analyses using LDSC between the same brain 672 
measures (from the UK Biobank) and GWAS summary statistics based on the population and sibling 673 
estimates for “years of schooling” and “cognitive function” from Howe et al. 39. Multiple comparisons 674 
corrections were applied for 36 tests (9 imaging measures x 4 cognitive measures: 2 sib- + 2-675 
population based; 676 .(0.0014=ߙ 

Additional genetic correlations were computed to assess differences of CSA measures across studies 677 
(with a partially overlapping sample): mean total CSA (ENIGMA, including 10,083 individuals from the 678 
UK Biobank 23) and total left CSA in the UK Biobank 25. 679 
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Polygenic Scoring 680 

PRSice (v2.2.12) 91 was used to compute polygenic scores (PGS) for each of the traits of interest (i.e. 681 
using the published cognitive GWAS summary statistics listed in Supplementary Table 7 as base 682 
datasets). 683 

The target dataset was the ABCD unrelated European ancestry subset (N=4,080). The ABCD 684 
imputed genotype data was used, which had been imputed using the TOPMed imputation server with 685 
Eagle v2.4 phasing and TOPMed mixed ancestry reference (http://dx.doi.org/10.15154/1519007). The 686 
imputed data was filtered using plink to keep only HRC biallelic genotype calls with a minimum 687 
genotype probability of 0.9, and SNPs with imputation quality scores above 0.7, and lifted to the hg19 688 
reference panel (27,817,000 SNPs). Next, SNPs were filtered on HWE (p-value >1e-6), MAF>0.05 689 
and missing genotype rate < 0.1 (4,034,417 SNPs kept).  690 

The PGSs were then computed for each trait through clumping (clump-kb 250kb, clump-p: 1, clump-691 
r2=0.1) and thresholding (8 p-value thresholds: 5e-08, 1e-5, 0.0001, 0.001, 0.05, 0.1, 0.5, 1). Next, 692 
linear mixed-effects models were run in R (v 4.0.3; package lme4 v 1.1-25). A baseline model 693 
included the dependent variable and all covariates specified above (see section “Regression 694 
analyses”) and separate PGS models were run including each PGS (for Educational Attainment, 695 
Cognitive Performance or Reading) as an independent variable. The reading GWASMA used as the 696 
base dataset was from Eising et al. 19 excluding the ABCD dataset. The significance of each PGS was 697 
assessed by a likelihood ratio test between the baseline and PGS model. The proportion of variance 698 
explained by the PGS (ܴ߂ଶ) was computed as the difference of the ܴଶ between the models divided by 699 

one minus ܴଶ of the baseline model (ܴ߂ଶ = ோమ௉ீௌ ିோమ௕௔௦௘௟௜௡௘(ଵିோమ௕௔௦௘௟௜௡௘)  ). 700 

The most predictive PGS for reading was first identified (largest ܴ߂ଶ) to define the most predictive 701 
base dataset and p-value threshold for reading in the ABCD dataset (see Supplementary Figs. 9 and 702 
10). Next, the selected base dataset and p-value threshold were used to perform the cross-trait 703 
regression (i.e. with the two CSA measures as dependent variables) in order to maximize power and 704 
limit the number of performed comparisons. An additional regression was run with STG as dependent 705 
variable and total left CSA included as a covariate. The significance of the PGS was Bonferroni 706 
adjusted for the three tested brain measures (0.0167=0.05/3=ߙ). 707 

Mediation analysis 708 

For each model of interest (see Table 1), two regression models were computed using the R package 709 
lme4 86: an initial model that computed the effect of the independent variable PGSCP (IV) on the CSA 710 
measure (mediator), and another that computed the indirect effect of the IV on reading (dependent 711 
variable), after accounting for the mediator. All models included the covariates and random structure 712 
indicated in Equation 1, and additional cognitive covariates were also included for sensitivity analyses 713 
(as specified in Table 1). The mediation (v 4.5.0) package 92 was then used to estimate causal 714 
mediation effects 93. The significance of the direct (ADE) and indirect (ACME) paths was assessed by 715 
a quasi-Bayesian approximation of the confidence intervals (10,000 simulations). Sensitivity analysis 716 
included additional covariates to assess if the mediation effects were robust to those adjustments (see 717 
Table 1). The significance of the mediation indirect path was Bonferroni corrected for the 8 mediation 718 
models (0.0063=0.05/8=ߙ). 719 

Data availability 720 

ABCD data are publicly available through the National Institute of Mental Health (NIHM) Data Archive 721 
(https://data-archive.nimh.nih.gov/abcd). The current study analysed the full baseline sample 722 
(N~11,878) from the ABCD data release 3.0 RDS (DOI: 10.15154/1520591) and the Genotyping Data 723 
from the ABCD Curated Annual Release 3.0 (NDA Study 901; DOI: 10.15154/1519007). All variables 724 
included in the current study are listed and described in Supplementary Table 1. GWAS summary 725 
statistics used in this study are available from the NHGRI-EBI GWAS Catalog 726 
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https://www.ebi.ac.uk/gwas/downloads/summary-statistics and the Oxford Brain Imaging Genetics 727 
Server – BIG40 (https://open.win.ox.ac.uk/ukbiobank/big40/). Supplementary Table 7 contains the 728 
references and field ID’s for all analysed traits. 729 

Code availability 730 

The custom code associated with this study is publicly available at https://github.com/amaiacc/MS-731 
brain-reading-genetics/. 732 
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Tables 768 

Table 1: Mediation model testing the significance of CSA measures as mediators of the PGSCP 769 
(independent variable) and reading (dependent variable) association (N=4,080). All models 770 
included MRI scanner as a random factor, and the following covariates: sex, age, high.educ, 771 
household.income, PC1:PC10 (genetic principal components). IV: independent variable. Adjustment: 772 
additional covariates included in mediation models. Estimate: standardized beta for the parameter. 773 
95% CI: confidence intervals . A: Effect of the independent variable on the mediator. B: Effect of the 774 
mediator on the dependent variable. ACME= Average Causal Mediation Effect; ADE= Average Direct 775 
Effect. The significance of the direct (ADE) and indirect (ACME) paths was assessed by quasi-776 
Bayesian Monte Carlo simulation of the confidence intervals (two-sided, 10,000 simulations). P 777 
(unadj)= unadjusted p-value. Note that the mediation R package 92 used for this analysis does not 778 
provide exact p-values for values < 2.2e-16.  P (adj) = the significance of the mediation indirect path 779 
was Bonferroni corrected for the 8 mediation models (0.0063=0.05/8=ߙ). PGSCP= polygenic score for 780 
cognitive performance at the p-value threshold of 0.05; CSA= Cortical surface area; STG lat= lateral 781 
part of the superior temporal gyrus. Lh= left-hemisphere. WISCV= WISC-V Matrix Reasoning Total 782 
Scaled Score. 783 

Mediator Adjustment Parameter Estimat
e 95% CI P (unadj) P (adj) % 

Mediation 

Total CSA (lh)  

A 0.089 0.06-0.11      
B 0.106 0.07-0.14      
ACME 0.009 0.01-0.01 <2e16 <0.0063 4.9 
ADE 0.182 0.15-0.21 <2e16    
Total 0.191 0.16-0.22 <2e16    

Total CSA (lh) G-TEMP-SUP-
LATERAL (CSA lh) 

A 0.045 0.02-0.06      
B 0.054 0.01-0.1      
ACME 0.002 0-0 0.014 0.208 1.3 
ADE 0.181 0.15-0.21 <2e16    
Total 0.183 0.16-0.21 <2e16    

Total CSA (lh) Fluid Component, 
WISCV 

A 0.081 0.05-0.11      
B 0.083 0.05-0.12      
ACME 0.007 0-0.01 <2e16 <0.0063 4.4 
ADE 0.145 0.12-0.17 <2e16    
Total 0.151 0.12-0.18 <2e16    

Total CSA (lh) 
Fluid Component, 
WISCV, 
Vocabulary 

A 0.072 0.05-0.1      
B 0.052 0.02-0.08      
ACME 0.004 0-0.01 0.0004  0.0032 3.3 
ADE 0.105 0.08-0.13 <2e16    
Total 0.109 0.08-0.13 <2e16    

G-TEMP-SUP-
LATERAL (CSA lh)   

A 0.076 0.05-0.1    
B 0.108 0.08-0.14     
ACME 0.008 0-0.01 <2e16 <0.0063 4.2 
ADE 0.183 0.15-0.21 <2e16    
Total 0.191 0.16-0.22 <2e16    

G-TEMP-SUP-
LATERAL (CSA lh) Total CSA (lh) 

A 0.015 -0.01-0.04    
B 0.076 0.04-0.12     
ACME 0.001 0-0 0.176 1 0.6 
ADE 0.181 0.15-0.21 <2e16    
Total 0.182 0.15-0.21 <2e16    

G-TEMP-SUP-
LATERAL (CSA lh)  

FluidComponent, 
WISCV 

A 0.069 0.04-0.1      
B 0.091 0.06-0.12     
ACME 0.006 0-0.01 <2e16 <0.0063 4 
ADE 0.145 0.12-0.17 <2e16    
Total 0.152 0.12-0.18 <2e16    

G-TEMP-SUP-
LATERAL (CSA lh)  

FluidComponent, 
WISCV, 
Vocabulary 

A 0.059 0.03-0.09      
B 0.061 0.03-0.09     
ACME 0.004 0-0.01 <2e16 <0.0063 3.3 
ADE 0.105 0.08-0.13 <2e16    
Total 0.109 0.08-0.14 <2e16    
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 784 

Figure legends 785 

Figure 1. Overview of study goals and analytical approaches. A and B state the main goals of the 786 
study, and the analytical steps taken to address them are depicted in the central panels (1, 2, 3). The 787 
measures used in each analysis are specified in these panels. The data used for each analysis type 788 
are indicated by the colour: green (individual level data from the ABCD study) and blue (GWAS 789 
summary statistics). sMRI= structural MRI measures of cortical thickness (CT) and cortical surface 790 
area (CSA); LMM= linear mixed effect model; h2SNP(GREML)= SNP-heritability estimated from 791 
unrelated samples using the genome-based restricted maximum likelihood (GREML) estimation 792 
approach; h2SNP (LDSC)= SNP-heritability estimated from GWAS summary statistics using linkage 793 
disequilibrium score regression (LDSC); PGS= polygenic scoring analysis. Cognitive: cognitive 794 
measures (i.e. Reading performance, fluid intelligence component, NIHTBX picture vocabulary, 795 
WISCV: WISC-V Matrix Reasoning Total Scaled Score). 796 

Figure 2. Effect of left-hemisphere cortical measures on reading performance (N=9,013). Beta 797 
estimates for A cortical surface area measures and B cortical thickness measures. Points indicate 798 
beta estimates for the independent brain variables and error bars represent the 95% confidence 799 
intervals. Covariates: ݔ݁ݏ +  ܽ݃݁ +  ℎ݅݃ℎ. + ܿݑ݀݁  ℎ݁ݏݑ݋ℎ݈݀݋. + ݁݉݋ܿ݊݅  Model 1: test 800 ;10ܥܲ:1ܥܲ 
model assessing the effect of each brain measure by comparing it to a nested model including only 801 
the covariates, Model 2: test model after adjusting for global measure (total CSA or mean CT). The 802 
regions that survived multiple comparisons correction (FDR) are shaded in grey. C, D: brainplots of T-803 
values associated for each brain region in Model 2. The upper panels show T-values for all regions, 804 
and the lower panels show only T-values for regions that survive multiple comparisons correction 805 
(FDR). CSA= cortical surface area; CT= cortical thickness; LH= left-hemisphere; G = gyrus; S = 806 
sulcus. 807 

Figure 3. Decile plots for PGS of cognitive performance on left-hemisphere CSA measures 808 
(N=4,080). The points indicate the mean CSA for each decile; the error bars show the 95% 809 
confidence intervals. PGSCP= polygenic score for cognitive performance at the p-value threshold of 810 
0.05; CSA= Cortical surface area; STG: superior temporal gyrus; ܴ߂ଶ: variance explained by the 811 
PGS, assessed by a likelihood ratio test between the baseline and PGS model. The proportion of 812 
variance explained by the PGS (ܴ߂ଶ) was computed as the difference of the ܴଶ between the models 813 

divided by one minus ܴଶ of the baseline model (ܴ߂ଶ = ோమ௉ீௌ ିோమ௕௔௦௘௟௜௡௘(ଵିோమ௕௔௦௘௟௜௡௘)  ). 814 

Figure 4. Mediation of the CSA on the association between the PGSCP and reading. (A) total CSA as 815 
mediator and (B) CSA of the lateral STG as mediator. The standardized estimates of the paths are 816 
provided, with the 95% confidence intervals in brackets. ACME= Average Causal Mediation Effect; 817 
ADE= Average Direct Effect. A: Effect of the independent variable on the mediator. B: Effect of the 818 
mediator on the dependent variable. The significance of the direct (ADE) and indirect (ACME) paths 819 
was assessed by quasi-Bayesian Monte Carlo simulation of the confidence intervals (10,000 820 
simulations). *** indicates p-values <0.001. Bonferroni corrected p-value threshold for the 8 mediation 821 
models is 0.0063=0.05/8=ߙ. PGSCP= polygenic score for cognitive performance; CSA= Cortical 822 
surface area; STG lat= lateral part of the superior temporal gyrus. 823 
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