
Future Generation Computer Systems 157 (2024) 360–375

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Enabling DevOps for Fog Applications in the Smart Manufacturing domain: A
Model-Driven based Platform Engineering approach
Julen Cuadra a,∗, Ekaitz Hurtado a, Isabel Sarachaga a, Elisabet Estévez b, Oskar Casquero a,
Aintzane Armentia a

a Systems Engineering and Automatic Control Department, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
b Electronics and Automation Engineering Department, University of Jaén, Jaén, 23071, Spain

A R T I C L E I N F O

Keywords:
Fog Computing
Model Driven Engineering
Node-RED
Smart Manufacturing
DevOps
Platform Engineering

A B S T R A C T

Cloud Computing is revolutionizing smart manufacturing by offering on-demand and scalable computer systems
that facilitate plant data analysis and operational efficiency optimization. DevOps is a methodology, widely
used for developing Cloud Computing systems, that streamlines software development by improving its
integration, delivery, and deployment. Although cloud application designers within a DevOps team are assumed
to have development and operational knowledge, this does not fall within the skills of experts that design
analytics applications of plant data. The deployment environment is also relevant since, as such applications
are often hosted in the Fog, the proliferation of application components may hinder their composition and
validation. This work is aimed at embracing the Platform Engineering approach to provide a tailored toolkit
that guides the design and development of OpenFog compliant applications for the experts in the Smart
Manufacturing domain. The platform uses Model Driven Engineering techniques and a flow-based visual editor
to allow application designers to graphically compose applications from components previously delivered
by component developers, abstracting them from the underlying technologies. As a result, containerized
applications, ready to be deployed and run by a container orchestrator, are obtained. The feasibility of the
proposal is proved through an industrial case study.
1. Introduction

Cloud Computing has established itself as the most suitable solution
to meet market demands in terms of data processing, storage, and opti-
mization, which has led to the development of innovative applications
related to Feature Engineering, data filtering or model training [1].
This is very promising for the Smart Manufacturing domain, since
there is a great deal of interest in introducing artificial intelligence to
make data-driven decisions that reduce error-prone human control [2],
and provide valuable troubleshooting clues that guide experts in the
rapid detection and resolution of faults [3]. Thus, Cloud Computing is
seen as the default choice to check factory performance, adapt produc-
tion to demand, and reduce production breakdowns due to defective
products or equipment failures [4–6]. However, its adoption within
existing factory automation remains a challenge: on the one hand,
cloud applications must be integrated into the standard automation
control hierarchy, while ensuring data security and time behavior
requirements [7]; on the other hand, the engineering procedures used
to design, develop and delivery cloud applications must be adapted

∗ Corresponding author.
E-mail addresses: julen.cuadra@ehu.eus (J. Cuadra), ekaitz.hurtado@ehu.eus (E. Hurtado), isabel.sarachaga@ehu.eus (I. Sarachaga), eestevez@ujaen.es

(E. Estévez), oskar.casquero@ehu.eus (O. Casquero), aintzane.armentia@ehu.eus (A. Armentia).

to the heavily domain-oriented profile of the experts working in the
automation field. As far as the authors know, this latter aspect has not
yet been explicitly addressed in the literature.

Cloud Engineering is a field of engineering that applies systematic
methods and support tools for conceiving, developing, operating, and
maintaining cloud computing systems. As such, Cloud Engineering cov-
ers diverse aspects including automated management of applications
run-time, architectural patterns for application design, and integration
of application development and delivery procedures. However, Cloud
Computing is still evolving, facing an increasing complexity in each of
these aspects.

From the point of view of automated management of applica-
tions run-time, in certain domains, cloud engineers face the challenge
of embracing the Cloud Continuum paradigm [8], which is usually
structured in three levels: (1) the Edge, composed of physical assets
providing services required in the different processes, and generating
massive amounts of data; (2) the Fog, composed of heterogeneous and
distributed devices called Fog Nodes, providing computing and storage
vailable online 8 April 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.03.053
Received 22 November 2023; Received in revised form 27 March 2024; Accepted 3
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 March 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:julen.cuadra@ehu.eus
mailto:ekaitz.hurtado@ehu.eus
mailto:isabel.sarachaga@ehu.eus
mailto:eestevez@ujaen.es
mailto:oskar.casquero@ehu.eus
mailto:aintzane.armentia@ehu.eus
https://doi.org/10.1016/j.future.2024.03.053
https://doi.org/10.1016/j.future.2024.03.053
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.03.053&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
resources located in an environment close to the source of the data;
and (3) the Cloud, providing similar functionalities to the Fog, but
with processing and storage resources located in external servers only
accessible through the Internet [6,9–12]. This Cloud Continuum has a
federated nature [7,13], as attested to by the fact that OpenFog, as a
Fog Computing standard, states that ‘‘Fog Computing works with the
Cloud’’ [14]. In the Smart Manufacturing domain, since plant assets
generally lack the computing resources to support data analytics appli-
cations, these were initially deployed in the Cloud [1]. However, this
approach led to undesired issues related to data security, networking
performance and task conformance, so there is a current tendency to
deploy such manufacturing applications in the Fog [7,11,15].

From the point of view of application design, applications in cloud
environments have typically been designed as a composition of small
and independent microservices, independently scalable and deploy-
able [16]. The definition of microservices is a critical design chal-
lenge [17,18], as each component fulfills a specific functionality and
requires an interface to interact with other components [19–21]. Mi-
croservices promote service reuse through individual Application Pro-
gramming Interfaces (APIs) that implement simple functionalities.
However, this creates reliability, performance and security challenges
for the complex applications composed using those services or APIs
[22]. Specifically, the proliferation of APIs creates the need for appli-
cation designers to discover available microservices and determine the
specific functionality associated with each service offered. Since each
programmer may have their own criteria, standardization is necessary
to compose these applications efficiently. Both in the Cloud and in the
Fog, standardization efforts (such as OASIS Topology and Orchestration
Specification for Cloud Applications -TOSCA- [23] and OpenFog [24],
respectively) have emerged with the aim of establishing common rules,
with synergies between the two standards: TOSCA defines applications
as collections of services to define workloads and proposes to encap-
sulate them in CSARs (Cloud Service ARchives); similarly, OpenFog
defines them as loosely coupled collections of microservices that are
encapsulated into containers. Other authors, without leaning on said
standards, go a step further and constrain applications as directed
data flows (hereinafter workflow) that greatly simplify application
logic [4,25–29]. Furthermore, considering that the use of Model Driven
Engineering (MDE) techniques is suitable to guide and assist the design,
development and deployment phases of complex systems [30], there
have been efforts to adopt MDE techniques in Cloud Engineering [31].

From the point of view of application development and delivery
procedures, it is common to use a DevOps model for streamlining
and integrating the software development process with the delivery,
deployment and operation of said software. Microservice development,
application design and application operation skills are heavily domain-
oriented aspects, and so is the composition of a DevOps team [32]. For
instance, in the Smart Manufacturing domain, a Plant floor operator
(a domain expert) may be interested in defining a fog application to
perform quality control on a product or predictive maintenance on a
machine. Plant floor operators know what plant data to read, what kind
of processing is required and what kind of action is required, but they
do not know how to specifically develop the application components,
nor do they know how to deliver or deploy an application. Similarly,
Production Managers (other domain experts) define production plans
as a composition of the services offered by plant entities (machines,
Mobile Manipulation Robots -MMR-, operators, etc.), but do not usually
know how a Programmable Logic Controller (PLC) or MMR program
is developed, nor how it is commissioned. In this sense, domain ex-
perts with the role of application designers must be abstracted from
the technicalities of all the phases from developing application com-
ponents to deploying applications. This is markedly different from
traditional DevOps teams, where application designers are assumed to
have both development and operational skills. Thus, the separation
of concerns between the stakeholders that participate in a DevOps
361

team is particularly important in the Smart Manufacturing domain. To
this end, providing reusable and cooperative capabilities within a De-
vOps infrastructure becomes an enabling factor in a Cloud Engineering
methodology. Platform Engineering is an emerging trend intended to
provide an engineering platform specifically designed to support the
needs of the different stakeholders by provisioning a common interface
to a DevOps infrastructure [33].

In this context, the research goal of the present work is twofold,
focused on covering the needs of the final product. On the one side,
it proposes a generic MDE-based methodology that guides the design
and development of OpenFog compliant applications for the main roles
identified in the Smart Manufacturing domain. On the other hand,
as any MDE-based methodology requires a support environment to
simplify and automate the process, this work provides a platform
that embeds the methodology in a toolkit tailored for containerized
application component delivery; easy and validated application design
as a composition of components; and their deployment in a container
orchestrator.

The remainder of this paper is organized as follows. Section 2 ana-
lyzes how the literature addresses the inclusion of DevOps in the Cloud
Computing paradigm and the design and development of containerized
microservice-based applications. Section 3 is devoted to overview the
proposed model-driven methodology and the implementation of the
engineering platform that follows said methodology. Section 4 and
Section 5 describe the platform as follows: while Section 4 details how
to design, develop and deliver a Fog Component, Section 5 focuses on
the design and development of a Fog Application. Section 6 presents
a case study where the suitability and applicability of the platform
is tested in a real case scenario in the Smart Manufacturing domain.
Finally, Section 7 discusses a qualitative analysis and presents the
conclusions obtained and the future work.

2. Related work

In 2018, researchers and practitioners published a manifesto [22]
presenting the advancements of Cloud Computing and the challenges
for achieving the Future Generation Cloud Computing in the following
decade. Application Development and Delivery, and Cloud Computing
at the Edge with Fog Computing were identified as open issues. In
this context, model-based orchestration is increasingly being adopted
in DevOps methodologies and within application delivery, automating
lifecycle management and application configuration. Nevertheless, a
shortage of application delivery frameworks and programming models
is identified as an issue that research should undertake. The next
paragraphs analyze several works that address these issues in some
way.

Platform Engineering aims to support all the concerns of the stake-
holders following a DevOps approach. Specifically, the application
and extension of these concepts on the Cloud is coined as CloudOps
in [8], where the authors extend the typical DevOps pipeline with
the particularities that the continuum presents. This paradigm aims
to solve the issues faced by Application Developers and Application
Operators due to the challenges presented by this complex federated
computational environment.

The authors in [34] present a complex automated pipeline gen-
erator with Continuous Integration and Continuous Delivery (CI/CD)
principles for the deployment of multiple types of applications. This
DevOps approach abstracts the stakeholders in the creation, manage-
ment or monitoring of the pipelines, leaning on Docker [35] and
Kubernetes [36] to achieve this. The DevOps pipeline is also leveraged
in [37] for cyber physical systems, with the aim of automating the Con-
tinuous Delivery of operation ready software based on a microservice
architecture that enables said automation. The same idea is followed
in [38], where the digital twin is used as the main enabler of the
DevOps approach in cyber physical production systems, serving as a
bridge between the development and operation environments. Models

are also used to ensure the fulfillment of application requirements,



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
as proposed in [39], where the authors present an autonomous man-
agement framework for microservice-based Cloud-native applications,
in accordance with a Model Driven Architecture (MDA). The models
presented in the paper are developed based on technology-agnostic
meta-models that follow a DevOps approach.

Regarding application design and development, the work in [25]
proposes the Distributed DataFlow (DDF) programming model for de-
veloping IoT (Internet of Things) applications that can be deployed on
Fog and Cloud devices. The applications are represented as directed
graphs where the nodes of the graph are independent processing units,
which have inputs and outputs. The authors distinguish two stake-
holders: node developers and application developers. While for the
former no development model is indicated, for the latter, an exten-
sion of the Node-RED [40] tool is proposed, allowing the graphical
design of workflows. Similarly, the authors in [41] also focus on DDF-
based IoT applications. Depending on real-time requirements of the
component, it is possible to benefit of the advantages of the Edge
devices or the resources offered by the Cloud. The authors develop
their own graphical interface that allows the design of the network
topology and the application graphs. The authors in [29] also define
meta-models for the design of applications as workflows of reactive
processing tasks. Although meta-models are used by the architecture
to automate application deployment, this work lacks graphical design
tool for applications.

In this context, some authors make use of modeling techniques to
ease the application design and/or development, as in [42], where a
Domain Specific Language (DSL) is proposed to enable the design of
multi-tier applications, covering IoT devices as well as Edge, Fog and
Cloud nodes. This DSL is collected in two meta-models: one devoted
to the definition of IoT systems and another focused on the definition
of adaptation rules that allow the system to automatically respond to
different situations. This work also provides a Model-to-Text (M2T)
transformer to generate the necessary application deployment files. An-
other type of applications are used in [43], where an Unified Modeling
Language (UML) DSL is proposed to support the design and contin-
uous deployment of applications, leveraging TOSCA for their deploy-
ment. Three meta-models are presented following the MDA approach: a
platform-independent model to assist developers, a technology-specific
model for evaluating the architecture and a deployment-specific model
to automate the deployment of the application in the cloud.

TOSCA is also used in [44], as well as Docker, where the deployment
of multi-component applications on top of existing container orchestra-
tors is enabled. The proposal achieves component-aware management,
as they decouple the lifecycle of application components from that of
the containers hosting them, but the application designer must have a
detailed knowledge of the technologies used, the modeling of applica-
tions and the development of the necessary software components. There
is no separation of concerns between programmers and designers and
practitioners in the industry usually prefer to use more informal ap-
proaches for describing microservice based applications [17]. A similar
approach is proposed in [45], where a model-driven cloud applica-
tion orchestration approach that enables a role-aware orchestration is
proposed, transforming TOSCA-based Cloud applications into Open Ap-
plication Model (OAM) [46] files ready to be deployed in Kubernetes.
This approach is centered around the abstraction of platform specific
knowledge from the application developers and to enable a separation
of concerns between them and application operators following typical
DevOps practices.

Usually, the application concept is not considered from the manage-
ment point of view, which is addressed in [47], where the authors pro-
pose an extension of Kubernetes platform, called Application-Centric
Orchestration Architecture (ACOA), with the aim of achieving an appli-
cation deployment on the Edge-Fog-Cloud continuum that maximizes
the quality of service of the deployed application. For this purpose,
an application model based on directed graphs is proposed, where
362

components are the vertices, and the channels are the edges. The
application is considered as the smallest deployment element, and,
although components are deployed separately, they are related when
the application is composed. Similarly, application-aware orchestration
is treated in [48], where the authors propose an OpenFog-compliant
Kubernetes extension that enables the inclusion of the Application and
Component concepts at the orchestration level. These concepts are
managed by custom controllers that operate said resources as Kuber-
netes native resources. Furthermore, the authors propose a Hierarchical
Application Management Structure to adapt the proposal to any domain
and operating model of an organization or system.

Container-based applications in Fog Computing are also addressed
in [49], where the Semantic Model driven Approach to Deployment and
Adaptivity of these applications (SMADA-Fog) is presented. This ap-
proach contributes modeling tools or a semantic framework in relation
to the deployment of the applications. However, although a deploy-
ment meta-model is presented, a meta-model for applications is not
proposed. The semantic framework enables the automatic processing
of complex knowledge related to automated code generation for both
service deployment and adaptivity.

On the other hand, regarding the development process Kubernetes
and Docker technologies are also use as edge infrastructure. This is
the case of SODALITE@RT [50], an open-source framework capable of
modeling cloud–edge microservice-based IoT applications. In this work
TOSCA is adopted to describe the deployment model of a managed
heterogeneous distributed application and automate their deployment,
monitoring, or the management. Furthermore, in Edge Computing there
are also other frameworks for IoT applications, such as EdgeFlow [51],
capable of assisting the developer in the application development pro-
cess, dividing applications functionality into multiple parts, defining
and validating the requirements and finding a deployment strategy. IoT
application deployment plans are also addressed in [52], describing
a model-based approach to automatically assigning multiple software
deployment plans to hundreds of edge gateways and connected IoT
devices. A platform-independent meta-model describes a list of tar-
get devices and deployment plans and is validated with a prototype
integrated into a DevOps toolchain.

As far as authors know, there is not a proposal of an engineering
platform that focuses on the design and development of container-based
components that are later used to build applications as a composition of
microservices. Furthermore, DevOps requires the quick and easy deliv-
ery and deployment of the applications which can be achieved through
the use of a graphical tool that is part of the toolkit implementing the
platform. The operational aspect of the pipeline is widely covered, but
the development aspect is implemented through ad-hoc solutions that
lack the reusability and inter-domain operability required today.

3. Overview of the approach

As stated above, the separation of concerns between the different
stakeholders that make up a DevOps team is crucial. As the specific
needs of a DevOps team vary from domain to domain, so does the
engineering platform, which, as a product, depends entirely on the
needs of its end users. As a motivating scenario, Fig. 1 presents the
DevOps pipeline, customized for the Smart Manufacturing domain
applications, shown as a feedback loop to describe the relationship
between the development and operation tasks.

Against this background, this section is divided into two subsec-
tions. The first subsection presents a methodology based on MDE
to guide the design, development, delivery, and operation of Fog-
level applications, considering them as microservice workflows that
are implemented as containerized components. The second subsection
presents the platform that implements said methodology, focusing on
the Dev aspect and delegating the Ops side on the leading container

orchestrator.



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 1. Custom DevOps pipeline for the entire Fog application development and operation process.
3.1. Model-driven methodology for the design, development, delivery, and
operation of Fog Applications

The proposed methodology is based on MDE techniques and is
aimed at decoupling the different phases of the Fog Application lifecy-
cle, from the component and application design and development to the
application delivery, deployment, and operation. The proposal consid-
ers three stakeholders: Component Programmers, Application Designers
and Platform Administrators (whose tasks are marked in Fig. 2 in blue,
green, and black colors, respectively). In order to achieve the separation
of concerns between them, this work also defines two concepts, the so-
called Fog Components and Fog Applications, which are based on the
Component Based Software Engineering (CBSE) approach [53]. CBSE
proposes the construction of complex systems (Fog Applications) by
means of the composition of simple components (Fog Components),
which are previously developed independently of the applications. The
CBSE approach promotes the development of components as software
modules that can be reused in different applications. Thus, in the
present work, Component Programmers are in charge of designing
Component Models and developing Fog Components (software mod-
ules that encapsulate several functionalities) before application design.
Component Programmers store them in a Fog Component Catalog.
This element achieves the interoperability between Component Pro-
grammers and Application Designers, allowing Application Designers
to conceive Fog Components as black boxes that offer functionalities
and use them when necessary.

To comply with the OpenFog reference architecture, this paper
proposes that Fog Applications are composed of instances of Fog Com-
ponents for which just one of their functionalities has been selected
for a given application. Therefore, the Fog Component instance will
correspond to a microservice, and the selected functionality will be
its offered service. This way, reusability is achieved as the same Fog
Component can be used in different Fog Applications as different
microservices. To this end, OpenFog proposes to encapsulate microser-
vices using containerization technologies. The Application Designers
are in charge of generating the Application Model, so they have to
instantiate, customize and connect each of the desired components from
the catalog.

Therefore, as it is depicted in Fig. 3, in the early stages of the devel-
opment of a Fog Component the Component Programmer must develop
its source code considering all the functionalities it might offer in any
application. These may be functionalities that are related in some way
363
or that the programmer has decided to package together. Besides, they
will identify the software dependencies that the Fog Component needs,
encapsulating all the pieces in a container image (Requirements of Fog
Component in Fig. 3). Fog Component design comprises building the
component model that describes such Fog Component implementation,
which is needed by the Programmer to generate a new entry in the Fog
Component Catalog (Catalog item of Fog Component in Fig. 3). These
items are ready to use by the Application Designer but lack the context
to be part of an application. For this purpose, they make use of M2T
transformations (ModelToComponent transformation rules in Fig. 2).

The Application Designer will instantiate the Fog Components pro-
viding them with context within the Fog Application. This implies
determining the required components from the Fog Component Catalog
and selecting one their available functionalities. When these items are
instantiated in the flow-based visual editor, and parameterized as part
of an application, they are turned into microservices (ready-to-deploy
Microservice in Fig. 3). This element is aware of its ‘‘surroundings’’
(previous and following components in the flow) and ‘‘responsibilities’’
(service to execute) within the context of the application. When the
Platform Administrator decides to deploy the application, the microser-
vices will be orchestrated as containers on the container orchestration
platform (Runtime Microservice in Fig. 3), executing the desired ser-
vice (functionality selected from the Fog Component) according to its
parametrization.

It should be noted that the Application Models generated by Ap-
plication Designers are platform-agnostic files, independent of each
orchestrator’s deployment intricacies. To deliver and operate Fog Ap-
plications, this generic Application Model is transformed into the neces-
sary ready-to-deploy file(s), named as the Application Delivery Model.
The Platform Administrators are in charge of this transformation, as
they are the ones who deploy the application, being experts in the
selected container orchestration platform. This platform is responsible
of deploying and operating the Application Delivery Model, running the
individual microservices, enabling their communication and checking
whether the application is correctly running.

3.2. Supporting technologies for the implementation of the engineering plat-
form

In order for the engineering platform to implement the proposed
methodology, the selection of the supporting technologies is critical
as there are hundreds of options to choose from, each with their



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 2. Overview of the model-driven methodology for the different phases of the development lifecycle of Fog Applications.
Fig. 3. Relation between the Fog Component and Microservice concepts.
benefits and disadvantages, as showcased by the Cloud Native Comput-
ing Foundation’s landscape [54]. The chosen technologies must offer
enough tools to automate the process and guarantee the validity of the
results. Furthermore, they must provide aspects such as simplicity or
flexibility and allow for the desired separation of concerns between the
stakeholders. Thus, the authors have performed an analysis of different
options for each technology integrated in the process. Fig. 4 shows the
engineering platform that implements the model-driven methodology,
highlighting the supporting technologies involved.

This work proposes the use of XML (eXtensible Markup Language)
technologies throughout the entire process to ensure the validity of the
generated components and applications. Models are developed as XML
documents (.xml file extension) whereas the authors selected W3C XML
Schema Technology [55] (.xsd file extension) for the implementation
of the meta-models. For M2T transformations the authors propose the
use of the XSLT technology stylesheets [56], which allows transforming
XML documents to documents in other formats.

On the one hand, containers have become the de facto standard for
packaging microservices, because they allow for light-weight virtual-
ization at the operating system level [20,57], in concrete, Docker [35]
has been selected as it is the leading tool for creating containers [44,
58,59]. Fog Component base images are Docker container images, and
they are stored in the Image Repository. Docker offers some features
suited to implement the proposed methodology, i.e., reusability, cost-
effectiveness or giving freedom to Component Programmers to develop
the source code with any programming language. Furthermore, the use
of containers enables the separation of concerns between Component
Programmers, Application Designers and Platform Administrators [60].
364
On top of that, with the objective of avoiding manual tasks and
easing the design and development of Fog Applications, this work
proposes the use of a flow-based visual editor implemented as an
extension of the Node-RED tool. Node-RED is a visual programming
tool with graphic potential that allows a visual workflow definition,
based on relating different functionalities represented as nodes. An-
other potential of Node-RED lays in its capacity to develop customized
nodes [26] from user defined templates [61]. This work proposes
leveraging this fact, by integrating the Fog Component Catalog as a
Fog Computing Library within Node-RED, so that Fog Components
are stored as nodes. The Fog Computing Library aims to achieve
the desired complete separation of concerns. Besides, in Node-RED,
these library nodes can execute personalized tasks. More precisely,
the authors contribute the customization of Node-RED using scripts
that are also automatically generated through M2T transformations
applied to component models, to generate nodes that can be used and
parameterized by the Application Designer and are able to generate the
Application Model automatically. With all these features, the proposed
modified Node-RED can offer a graphic tool to design and develop the
Application Model automatically.

On the other hand, application development is a process tightly
coupled with the orchestration platform chosen to manage the de-
ployment and lifecycle of containers [62]. For the platform to be
realizable, the container orchestration platform chosen must: (1) enable
the creation of containers and manage their lifecycle, (2) obtain the
information packaged in the Application Delivery model and pass it
to the individual containers as environment variables and (3) enable



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 4. Engineering platform that implements the model-driven methodology for the different phases of the development lifecycle of Fog Applications, displaying the technologies
involved.
the communication between microservices. In this work, the authors
propose to delegate the operation of Fog Applications in Kubernetes, as
it is the most popular platform for the orchestration of container-based
applications [58,59], and fulfills all of the aforementioned require-
ments. Furthermore, Kubernetes offers some functionalities that aid
in the delivery and operation of Fog Applications, based on con-
tainerized microservices, such as application scalability, workload op-
timization or self-healing capabilities for deployed containers. The
platform-agnostic Application Model is transformed to the deployable
Application Delivery Model through M2T transformations and XSLT
technology.

4. Design and development of Fog Components

This work proposes a generic (domain independent) and abstract
(application independent) Fog Component specification, based on a Fog
Component meta-model, which gathers the minimum characteristics of
a Fog Component. The design and development of Fog Components
involves three steps, described in the following subsections (from Step
1 to Step 3).

4.1. Step 1: Design of a Fog Component

For each Fog Component, the Component Programmer must create
a component model (.xml file) where they establish the functionality or
functionalities that the Fog Component will encapsulate. For this, the
Component Programmer follows the rules established by the proposed
Fog Component meta-model (see Fig. 5), which is implemented as an
XML Schema (.xsd file).

Each component is characterized by its name as a unique identi-
fier in the system and a more detailed description can be provided.
To ease application design, Fog Components are grouped according
to the category attribute. The number and variety of categories are
domain-dependent (TComponent type) and established by the Com-
ponent Programmer. Finally, information related to the component
implementation is provided (imgBase attribute).

Each component can offer one or more functionalities (elements of
the Function type), defined by a unique identifier (id attribute), its name,
and the set of input and/or output parameters needed by each of the
functionalities (inputs and outputs, respectively). It is also possible to
provide a more detailed description of the functionalities and to provide
365
additional parameters related to the component runtime through the
customization attribute. The input and output parameters are defined
as a data structure characterized by its name and data type (dataType
attribute). The required data types are determined by the Component
Programmer when defining the interface of the functionalities. Finally,
the communication protocol supported by each functionality must be
specified, which may vary for each functionality or component.

As an example, Fig. 6 shows the component model related to the As-
semblyStation Fog Component. It belongs to a category called processing,
and it offers three different functionalities, named: Calculate OEE, Cal-
culate Performance and Calculate Trend, each with their corresponding
identifiers. In this example, every functionality receives a unique data
structure with the required parameters to run properly, generating, as
a result, another data structure with the output parameters, using the
Hypertext Transfer Protocol (HTTP) protocol.

Finally, The Component Programmer checks whether the compo-
nent model conforms to the Fog Component meta-model. The use of
models, meta-models and an XML parser, ensures that the components
designed are valid so they can be properly developed.

4.2. Step 2: Develop a Fog Component

Fog Component development is a process tightly coupled with the
virtualization technology chosen. The Component Programmer must
develop the source code that is able to execute the functionality or
functionalities indicated with the established inputs and/or outputs and
encapsulate it in a Docker image.

4.2.1. Step 2.1: Develop the Fog Component’s source code
In this context, this work proposes that each Fog Component devel-

oped is packaged into a container image capable of running all of the
component’s functionalities, herein referred to as base image. It must
be mentioned that, with the purpose of reusing the same base image
to create different microservices that belong to different applications,
it is mandatory to prepare base images to be instantiable in a cus-
tomized manner within an application. Accordingly, the component
code packaged in the container image must be made parametrizable
with environment variables (parametrization template). These variables
are categorized in two groups:



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 5. Fog Component meta-model provided as an XML Schema.
Fig. 6. XML file related to the component model of the AssemblyStation Fog
Component.

• Environment variables that refer to the component instantiation.
These environment variables are used to indicate: the function-
ality (function variable) selected to be executed when the com-
ponent is instantiated within a Fog Application (microservice),
and the variables related to the execution of the functionality se-
lected (customization variables). These variables, always named as
CUSTOM_<variable name>, are set by the programmer, and they
are used to provide additional functionality-specific parameters
to the container runtime.

• Environment variables that refer to the workflow of microser-
vices in the Fog Application. Here, the fact that microservices
(instances of Fog Components) communicate with other microser-
vices is considered. If the functionality selected needs an input,
the INPORT_NUMBER environment variable specifies the port
number where the microservice will be listening. In case of having
functionalities that produce output data, two environment vari-
ables are needed: OUTPUT to determine the next microservice
name and OUTPUT_PORT to know the port on which it will be
listening.

Note that the source code can be built in any programming lan-
guage, since, by using Docker, the image will be functional. As an
example, Fig. 7 shows the parametrization template that the Compo-
nent Programmer must follow, described as generic pseudocode. As
observed, the code has been constrained in terms of the environment
variables described above. The concrete values of these variables are
set during the application design phase.
366
Fig. 7. Parametrization template related to the implementation of the functionalities
of the components shown as generic pseudocode.

4.2.2. Steps 2.2 and 2.3: Encapsulation and storage of the base image of a
Fog Component

When the programmer writes the source code, they encapsulate it
in a Docker image. This constitutes the base image of the microser-
vice, which has all the functionalities programmed. Fig. 8 shows the
Dockerfile template to generate the base image of a component. In the
FROM command, the programmer must add the official image of the
programming language selected to develop the source code. Using the
RUN command all the necessary dependencies can be installed and the
COPY command allows all required files, such as the source code file, to
be included in the containing image. Eventually, in the CMD command
the programmer must write the command to execute the source code
file.

Using the aforementioned Dockerfile, the Component Programmer
generates the base image of the component (Step 2.2) and, after that,
stores it in a repository (image repository) for its later use (Step 2.3).
The name of the image is obtained from the imgBase attribute of the
component model.

4.3. Step 3: Integration of a Fog Component in the Fog Computing Library

As previously stated, this engineering platform pursues the sepa-
ration of concerns between the different stakeholders that take part
throughout the lifecycle of Fog Applications. The Fog Component Cata-
log (or Fog Computing Library in Node-RED) aims to decouple the tasks
of the Component Programmer from those relative to the Application
Designer. The component designed and developed must be integrated
in the Fog Computing Library for its posterior use in the design of
Fog Applications (Step 3), as a library node which is composed of
two files, involving the transformation of the component model (Step
3.1) and the delivery of the resulting node in the library (Step 3.2).
To automatically generate these files, the Component Programmer is
provided with one XSLT stylesheet for each.



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 8. Dockerfile for the generation of the base image of Fog Components.

For the automatic generation of the Fog Computing Library, it must
be considered that Node-RED’s runtime is built on Node.js. In fact,
the library nodes are Node.js in which own JavaScript code may be
written. On the one hand, to graphically design Fog Applications, the
Application Designer must be aware of the Fog Components stored
in the Fog Computing Library, and these must have a graphical rep-
resentation. On the other hand, part of the information needed for
application development is contained in the component models, and it
depends on the concrete component instantiations. Therefore, this work
proposes that each library node consists of two parts: (1) a visual part
that allows displaying the library node content (visual.html) and (2) a
functional part that automates the generation of the application model
(functional.js). Thus, the M2T transformations in charge of creating
the library node from the XML component model will use two XSLT
stylesheets to generate these two files resulting in a node which can be
directly integrated in the Fog Computing Library.

5. Design and development of Fog Applications

Once the Fog Components are designed (and stored in the Fog Com-
puting Library) and developed (and stored in the image repository), the
design and development of the Fog Applications becomes possible. The
use of a meta-model is key, as the proposed Fog Application meta-model
provides the structure required by the Application Designer.

5.1. Step 4.1: Design of a Fog Application

For each Fog Application, the Application Designer must obtain an
application model, determining the microservices that compose it and
establishing relationships between them, in order to arrange the Fog
Application workflow. The application model must follow the rules
defined by the proposed Fog Application meta-model (see Fig. 9), which is
also implemented as an XML schema (.xsd file). In Fig. 9, relationships
between elements of the meta-model are graphically represented. In
turn, relationships between attributes are represented in textual form
(gray notes associated with the elements).

This meta-model establishes that each application, characterized by
its name as a unique identifier in the system, is composed of a set of two
or more microservices. Each microservice corresponds to the instance
of one of the Fog Components designed as described in Section 4.
Therefore, the microservice name is inherited from the name of the
instantiated Fog Component. The service offered by the microservice is
inherited from the identifier of the selected function. The base image
and the custom parameters for the function runtime are inherited
367
by the imgBase and customization parameters from the equally named
component model parameters.

Both the selected Fog Component and the selected functionality
determine the communication needs of the microservice, which may
have an input port (inPort element) and/or an output port (outPort
element). Input and output ports share some attributes. Namely, their
name as a unique identifier in the system, the supported protocol,
and the type of the data structure required by the service (dataType
attribute). The latter two are inherited from the selected functionality.
The input port is also characterized by the port number on which the
service will be listening for requests.

The data flow between microservices is defined by the communica-
tion channels established between ports. The channel starts in an output
port of a microservice (from attribute) and finishes in an input port
of another microservice (to attribute). Thus, the start and the end of
the application data flow is determined by those microservices that
have only an output port and only an input port, respectively. For the
established channel to be considered valid, two conditions must be met:
(1) the protocol supported by the two ends must be the same; (2) the
data structures associated with the communicating ports must be of the
same type.

As an example, Fig. 10 presents the model related to a Fog Ap-
plication composed of four microservices. There is an initial eXist
microservice (it does not have input port) which sends information to
a middle AssemblyStation microservice (it has input and output ports).
Another intermediate microservice, OEEEvents, receives the result on
its input port and, after performing its functionality, sends the data to
the Influx microservice through its output port, which has no output
port, ending the workflow. All microservices communicate through the
HTTP protocol.

The graphic interface of the platform allows Application Designers
to design Fog Applications as a workflow of microservices (Step 4.1).
Node-RED offers a web view where microservices can be visually
arranged as a workflow, which is detailed in Fig. 11. As mentioned in
Section 4.3, nodes are composed of two parts: a visual part (visual.html)
and a functional part (functional.js). The former is used in this web
view, and it provides tools for Application Designers to customize
the component and connect it to other instantiated components in
order to design the application. Therefore, the Application Designer
must select the desired Fog Component from those available on the
Fog Computing Library, and after that, select the functionality desired
for the current application (component instantiation). Furthermore,
in case of the component has input, the Application Designer must
indicate the port number where the corresponding service will listen
and parameterize any custom variable if needed. Fig. 11 shows the
graphical representation of the design and development process for the
application model depicted in Fig. 10. Each microservice is represented
by a rectangle with the name of the selected function (the service it
offers). Channels are represented by lines that join microservices. The
node edition part of this web view details how the functionality is
selected and where to establish the input port number.

5.2. Step 4.2: Develop a Fog application

When all the needed Fog Components have been instantiated, the
Application Designer requests the development of the application, that
is, the generation of the Application Model, which the proposed Node-
RED-based platform performs automatically. The second file that con-
forms the component’s library node (its functional part or the so-called
functional.js) runs when the Application Designer requests the applica-
tion development and has the necessary functionalities to generate the
Application Model.

The automatic generation of the Application Model is performed
by a cascade process, illustrated in Fig. 12, as each node adds its
information to the XML model. There are three types of nodes: the
‘‘initial’’ node (without input) creates the XML model; if the node



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 9. Fog Applications meta-model implemented as an XML Schema.
Fig. 10. XML document related to the application model of the DataProcessing Fog
Application.

is in the middle of the workflow (has input and output), it updates
the model delivered by the previous node, and sends it to the next
node; and the ‘‘final’’ node (without output) also updates the received
model, but additionally executes the validation of the model against
the application meta-model (see Fig. 9). If the designed application is
correct, it will display the XML Application Model; if it is not, a warning
message is issued, notifying the Application Designer which component
is wrongfully defined and what the validation error is.

This automation, together with the use of the Fog Computing Li-
brary, abstracts the Application Designer from the complexity of the
components and the model generation. The graphical potential of the
tool offers a simple and efficient toolkit as the application model is
always validated to ensure that it complies with the rules established
by the Fog Application meta-model.

The next step, which is out of the scope of the proposed platform
consists of building the Application Delivery Model (file/s to be de-
ployed on the container orchestration platform chosen). However, the
proposed methodology establishes that the Application Delivery Model
can be automatically created from the corresponding Application Model
(generic and platform-agnostic XML file generated by Node-RED). More
precisely, this work proposes that the Platform Administrator gener-
ates it by means of M2T transformations applied to the Application
Model. The required transformations are implemented in an XSLT
stylesheet (appModelTransformer.xslt in Fig. 4). It should be noted that
368
this stylesheet may vary as it is dependent both on the container
orchestrator of choice and on the Platform Administrator. In fact, the
orchestrator may offer different ways of inputting the Application De-
livery Model and the Administrator is the one who makes the decision
of which one to use. In this sense, this model allows the addition
of specific metadata to customize the orchestration. Thus, it would
be possible to include orchestration metadata related to scalability
or network metrics for quality-of-service management [7,47] in the
Application Delivery Model.

6. Case study

One of the main pillars of Industry 4.0 is the ability to turn the
data collected from the plant into valuable information to improve the
efficiency and productivity of the plant. To that end, it is necessary to
ensure access, storage, and processing of the data. The Fog Computing
paradigm suits these requirements thanks to its low latencies and data
security. This section exemplifies how the proposed platform can be
used within the Smart Manufacturing domain and its applications,
testing the suitability and applicability of the platform engineering
approach to a real case scenario. The manufacturing system used in
this case study is structured in two levels (see Fig. 13): plant (which
corresponds with the Edge) and Fog. A video is provided as Supplemen-
tary Material to ease the understanding of the usage of the proposed
platform, as well as the code as a GitHub repository.

At the plant level, the case study has two robotic assembly stations
(AS1 and AS2), interconnected by a transport robot (TR1). Stations
AS1 and AS2 have been designed to perform the assembly of a set of
3D printed parts emulating a stepper motor shaft. Each resource will
publish different types of information via the Message Queuing Teleme-
try Transport (MQTT) [63] communication protocol (recommended by
OpenFog), which decouples the communication of the two layers in an
asynchronous manner. At the Fog level, two applications are proposed
for each plant resource (AS1, AS2 and TR1): one for data acquisition
and another for data processing. For simplicity, Fig. 13 and the rest
of the section only show the applications related to a single plant
resource (AS1), where blocks represent microservices, but with minimal
changes, it can be extended to the AS2 resource, as only the resource
ID in the submitted data structures needs to be changed.



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 11. Web view on Node-RED for the design of Fog Applications.
Fig. 12. Automatic generation process of the Application Model.

• The Data Acquisition Fog application (orange blocks in Fig. 13)
obtains data from the assembly station (1) and stores it for further
processing (2).

• The Data Processing Fog application (green blocks in Fig. 13) reads
the stored data (3), processes it to obtain information about the
evolution of the operations performed by the station (4), and
finally, saves the results in a database (DB) for later visualization
(6). In particular, it calculates the Overall Equipment Effective-
ness (OEE), a key performance indicator (KPI) based on the
availability, performance and production quality of a machine.
This application also generates a warning to plant personnel in
case the OEE falls below a predefined threshold, or if it maintains
a negative trend (5).

At the Fog level, there are a set of infrastructure resources that
provide services that are necessary for the correct operation of the Fog
applications (blue blocks in Fig. 13), but do not provide any application
logic. These resources are independent of the approach and are not
developed within the engineering platform, but should be considered
by the Component Programmer when implementing functionalities. In
turn, the two Fog applications are connected by a native XML database
(eXistDB) [64], so that the data acquisition application will store the
data of the station which is retrieved by the other application to process
it. Finally, there is a time series database (influxDB) [65] to store the OEE
calculations, which are graphically displayed on a dashboard (Grafana
dashboard) [66].

The following sections illustrate the steps to follow when utilizing
the proposed engineering platform: starting with identifying, designing
and developing Fog Components, followed by the design and develop-
ment of Fog Applications and finalizing with the delivery and operation
of the developed Fog Applications.
369
6.1. Design and development of Fog components

Based on the requirements of the applications, the Component
Programmer identifies the necessary components. The components de-
veloped are as follows (all their functionalities support the HTTP
protocol to send and/or receive data):

• MQTT-HTTP component: it offers functionalities to obtain the
data that the assembly station publishes on the MQTT broker.

• eXist component: it provides functionalities to read from and
write to the native XML DB.

• AssemblyStation component: it provides functionalities to per-
form KPI-related analyses.

• OEEevents component: its functionalities give feedback to the
plant personnel on the KPI.

• Influx component: its functionalities are related to reading and
writing in the time series DB.

In this case study, four component categories are distinguished:
source (components that, in general, behave as a data source); events
(components that allow reacting to relevant situations); processing
(components that perform processing tasks); and sink (components
that, in general, are the final destination of data).

Then, the Component Programmer develops the source code that
implements the functionalities for each component (Step 2.1) using the
parametrization template shown in Fig. 7. After encapsulating the base
images using the Dockerfile template illustrated in Fig. 8 (Step 2.2),
the Component Programmer stores them in the image repository (Step
2.3), (Google Container Registry [67] in this case study). Finally, the
Component Programmer makes use of the XSLT stylesheets to generate
the component node and integrates it in the Fog Computing Library.

6.2. Design and development of Fog applications

To better understand the design of the Fog Applications of the case
study, Fig. 14 details their data flows. Each microservice is represented
by a block with its name on the outside and its service inside. The data
type associated to the input and output ports is also shown. Note that
infrastructure resources are depicted just to facilitate the understanding
of the application operation, as, from the application designer’s point
of view, they are transparent.



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 13. Functional overview of the case study in the FMS domain.
Fig. 14. Workflow of the designed Fog applications for data acquisition and data
processing.

The operation of the two applications is as follows. For the Data
Acquisition application, every time the AS1 assembly station finishes
some operation, it publishes its data in a topic of the MQTT broker. As
the MQTT-HTTP microservice is subscribed to this topic, it receives that
data and sends it to the eXist microservice, whose StoreAssemblyStation-
Data service stores it in the native XML DB. For the Data Processing
Fog application, eXist is its first microservice, which, as the GetAssem-
blyStationData service has been selected, obtains the data from the DB,
and sends it to the AssemblyStation microservice to process the data
received and calculate the OEE. It sends the result to the OEEevents
microservice to analyze the result obtained with the NotifyOperator
service. In case the OEE has fallen below a threshold, it sends a warning
to the plant personnel, so that they can take corrective or optimization
actions. Eventually, the OEE data is received by the Influx microservice
and stored in the time series DB using the StoreOEEData service.

As mentioned in Section 5, the Application Designer will use the
modified Node-RED toolkit to design and develop these applications.
The designer will check if the necessary components are in the Fog
Computing Library, and if all of them are available, they will follow the
process explained above. Once the workflow is defined, the automatic
generation of the Application Model can be requested.

Taking as an example the eXist component, Fig. 15 illustrates the
differences on the application development for the same component
instantiated in two different applications. In both cases, the same
functional.js script file is used to obtain different application models but
with the same base image (exist_base_image) and different environment
variables related to component instantiation: the selected function, the
type of the received or sent data and the customization variables, in
this case, the ID of the asset. For the Data Acquisition Fog application,
the component needs an input port where data is received and, in the
case of the Data Processing Fog Application, the component is the first
one of the workflow, so it needs an output port to send data.
370
6.3. Delivery and operation of Fog applications

The proposal offers freedom in the selection of the execution plat-
form of the applications, knowing that for each case the platform’s
requirements will differ. In this case study Kubernetes has been selected
as the container orchestration platform to deliver and operate Fog
applications. As mentioned in Section 3.2, Kubernetes is one of the best
options for deploying and managing containers.

First, Kubernetes offers several options to deploy containers, but
all files use YAML (Yaml Ain’t Markup Language) format. For this
reason, it is straightforward for the Platform Administrator to trans-
form the XML Application Model to the Application Delivery Model
using model-to-model (M2M) transformations, performed through the
appModelTransformer.xslt. Kubernetes offers several constructs to de-
ploy and run Docker containers: Pods, which are elements where the
container is going to create and run (i.e., the microservices), and
Deployments, to request container deployments in the cluster. In ad-
dition, the latter allow the addition of the environment variables to
the associated container. Eventually, Kubernetes Services enable the
communication between microservices.

Although Kubernetes itself meets these requirements, it does not
have the application concept built in. Moreover, the DevOps approach
tries to simplify and automate application deployment. Therefore,
based on knowledge of the authors from previous work [48], we
propose a Vanilla Kubernetes extension, adding features to achieve
these goals. Kubernetes offers some methods to extend the platform,
i.e. create Custom Resources (CRs) and govern them through Custom
Controllers. Kubernetes also allows the integration of meta-models as
Custom Resource Definitions (CRDs). When the CR is posted in Kuber-
netes, it is checked against the CRD (the meta-model) to verify its
validity.

The following subsections explain how the platform has been mod-
ified to automate the entire delivery and operation and how the two
Fog Applications of the case study are successfully deployed.

6.3.1. Kubernetes extension to enable automated application operation
As mentioned above, Kubernetes offers tools to integrate meta-

models in the platform, using the Custom Resource Definition. To follow
the meta-models presented in this work, two new resources have been
defined as Kubernetes CRs: Application and Microservice.

Each CR has a custom controller associated to it, responsible of
managing its lifecycle in Kubernetes. The Application Controller is
in charge of processing the Application Delivery Model as follows:
a watcher detects when a new application resource is posted in the
system, which then starts the automatic deployment process. For each



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 15. Differences on the application development of a component instantiated in different applications.
Fig. 16. Automatic Application Delivery Model deployment process using the proposed Kubernetes extension.
microservice, the application controller gets all its information and
creates a microservice resource. If the microservice needs to be available
to others (if it offers a service, has an input port), the controller
creates the related Service resource, enabling the communication of said
microservice.

At the same time, the Microservice Controller is responsible for
creating the Deployment. For that, it has a watcher that detects when
new microservice resources are created. It creates the Deployment with
all the information of the microservice, adding the required environ-
ment variables listed in Section 4.2.1 and requests the deployment in
the platform. Herein, Kubernetes takes control of the delivery of the
application and deploys the microservice inside a Pod, as stated in
the Deployment. The application controller will update the status of
the applications as their microservices are successfully deployed. Thus,
the proposed Kubernetes extension covers the operational part of the
DevOps pipeline, automating all the deployment process, illustrated in
Fig. 16. As it can be seen, the Application Delivery Model is a single
YAML file (an Application CR), greatly simplifying the delivery and
operation process.

6.3.2. Kubernetes enabled delivery and operation of Fog applications
The YAML deployment files obtained are passed to Kubernetes

through declarative means using kubectl by the Platform Administrator.
Kubernetes then assigns each Pod to a node within the cluster and pulls
the Docker images from the Google Container Registry. Specifically,
K3s, a lightweight and easy to install Kubernetes distribution, has been
selected to build the Kubernetes cluster for the case study. From an
infrastructure point of view, the cluster is made up of five nodes: a
371
master node, dedicated only to running the K3s, that manages the
cluster, and four processing nodes (from now on, workers).

Kubernetes automatically assigns a random string to the Pod name
to maintain unique identifiers for the deployed Pods, since more than
one pod can be deployed for each deployment (i.e., in case of failure
there will be a failed pod and another one with running state). It should
be noticed that, while Infrastructure Resources are unique in the system
and thus, their identifier is simple, the Deployment name is complex
and follows the rule Application.name-MicroService.name (the network
alias of the service). Each Pod has a unique IP address reachable within
the cluster and masked under Kubernetes Services.

Once the Pods are deployed, the container that runs inside them
executes the CMD command established in the customized container
image. This command executes the code, reading the environment
variables, established throughout the whole procedure, and performing
the functionality selected.

Fig. 17 shows the deployment of the processing Fog Application
presented in this case study. The bottom half reflects the state of the or-
chestration platform before and after the application deployment. First,
only the infrastructure resources (eXistDB, influxDB, MQTT broker and
Grafana) and the proposed extension controllers are running (applica-
tion and microservice controllers). Once the processing application is
deployed, it can be seen how the platform state is updated, due to the
creation and execution of the 4 new microservices related to that appli-
cation (eXist-getAssemblyStationData, assemblyStation-processingOEE,
OEEevents-notifyOperator, and Influx-Store- OEEData), as presented in
Fig. 13 or Fig. 14. When they start executing their functionalities, as
the application has been previously validated, it is able to achieve its



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
Fig. 17. Status of the Kubernetes cluster before and after the deployment of the
processing Fog Application (screenshots from Kubernetes dashboard) and OEE evolution
over time (screenshots from Grafana dashboard).

objective, which in this case is the calculation and supervision of the
OEE related to the AS1 assembly station. Thus, the OEE calculated from
data coming from AS1 is shown at the top of Fig. 17, presented as a
snapshot of the Grafana dashboard. To probe the correct operation of
the designed applications, a delay was forced during the execution of
the different station operations by modifying the robot code to decrease
the production rate and hence, the OEE. As it can be observed, when the
indicator decreases below a certain given threshold, the NotifyOperator
service generates an alert for the operator working in the factory to
act accordingly. In this simulated environment, the production rate is
reestablished and the OEE goes above the limit threshold established.

7. Conclusions and future work

The smart manufacturing domain is characterized by domain ex-
perts that act as application designers who are not experts in appli-
cation component development or application deployment. In recent
times, this activity is being joined by the need to define analytics
applications that process plant data in real-time, a task that is usually
performed in the Fog. These analytics applications are often tied to
information technology systems (IT systems) rather than operational
technology systems (OT systems), which results in additional challenges
for application designers in the Smart Manufacturing domain. For in-
stance, concepts (such as microservices and containers) that do not exist
in plant development standards (such as IEC 61131-3) are introduced.
In addition, application designers must deal with the problems that
these new concepts already bring with them in the development and
runtime phases. In this sense, the reuse of services promoted by the mi-
croservices architectural paradigm has led to a great proliferation in the
number of microservices, which makes it difficult to discover them and
identify their functionalities during development. Moreover, composing
complex applications based on microservices also creates reliability,
performance, and security challenges during runtime, which should be
taken into account in their deployment (e.g., with instructions for the
orchestrator to scale the application if necessary).

Although Cloud Engineering solutions are still evolving, in the
Smart Manufacturing domain there are no approaches, to the author’s
knowledge, that allow the necessary separation of concerns to abstract
the technical aspects of application component development and deliv-
ery from those related to Fog application design, as well as to abstract
the latter from the deployment of Fog applications. For these reasons,
this work proposes a platform for the composition of industrial Fog
applications, aligned with the precepts of OpenFog, that automates con-
tainerized application component delivery in a component library, and
372
application deployment using a container orchestrator. This platform
provides a solid foundation that allows it to be used without the need
to have a deep knowledge of the underlying technologies related to Fog
applications. In the opinion of the authors, the novelty of this proposal
resides in two aspects: on the one hand, in providing a methodologi-
cal support that embeds MDE techniques, which innately provide the
mechanisms to enable the cooperation between the platform users; on
the other hand, in providing a technological support that adopts the
Platform Engineering approach, which aims to provision a toolkit that
embeds the methodology and all the required functionalities, acting as
a common interface to the DevOps infrastructure.

The platform requires an initial setup that involves time and effort
to implement but provides a solid separation of concerns between the
stakeholders. Work overload and restrictions of the proposal mainly
affect the Component Programmers, who are forced to parameterize
the source code of the Fog Components. However, this constraint also
provides advantages as Component Programmers are free to arrange
source code as they need. The possibility of developing several func-
tionalities within the same code could be useful in the case of the same
functionality that can communicate through different protocols. These
functionalities can be programmed in the same Fog Component, making
it possible to reuse functional parts of the source code. Furthermore,
Component Programmers must create the corresponding component
models and generate the Fog Computing Library nodes. This improves
the independence among different groups of Component Programmers
who can collaborate through the component models, without having
to access the source code. Additionally, the Component Programmer
is provided with the stylesheets needed to execute the M2T transfor-
mations necessary to obtain valid library nodes. As high-performance
and real-time requirements become more relevant, as part of the fu-
ture work, the Component development process can be optimized and
restricted to allow for real-time container deployment.

The platform uses Docker to create containers and Kubernetes as the
container orchestrator that manages the deployment of containers and
controls their lifecycle, delegating most of the Ops side of the DevOps
pipeline on the orchestrator. It should be noted that the proposed
methodology is agnostic of the container orchestrator of choice and
that in case of modifying the orchestrator, only the stylesheets should
be modified. In addition to the advantages offered by Kubernetes
itself, the extension of this platform adds benefits such as automating
the entire process of deploying Fog Applications as it can generate
the microservices and enable the communication between them from
the application delivery model. Furthermore, the extension allows the
integration of the proposed application meta-model into the platform.
In the near future, the platform could be extended to include scalability
concerns within the orchestrator itself, augmenting the reusability and
adaptability of the designed Fog Applications.

As the proposal is based on MDE techniques, the validity of the
Fog Application deployed in Kubernetes is ensured. Once the Fog Com-
ponents and the Fog Computing Library are developed, the platform
eases the design and automates the development of Fog Applications.
Therefore, the design and development of Fog Applications requires
little effort for the Application Designer. Hence, the separation of
concerns between Component Programmers and Application Designers
is achieved, while at the same time favoring the reuse of the Fog
Components when developing the applications. In addition, the use
of the graphical environment abstracts the Application Designer from
the design and implementation details of the needed Fog Components,
achieving a true separation of concerns, which is essential to reduce
the complexity at design level. Furthermore, Application Designers
take advantage of the graphical potential and customization capacity
of Node-RED. As a result, Application Designers are provided with
a graphical interface for applications design from which application
development is automated. Finally, although the platform was origi-
nally conceived for guiding and providing support in the design and
development of microservice-based Fog Applications, the use of MDE



Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.

s
t
M

D

c
i

D

A

A

h
a
t
s
a
p

a

techniques allows it to be adopted in similar domains by customizing
the meta-models and the stylesheets.

A limitation of the proposal is that, in the case of instantiating
the same Fog Component in different applications (e.g., the eXist Fog
Component), as many containers as instantiated Fog Components are
created. This leads to a waste of resources since the same container
could be shared by all applications. Therefore, using the potential of the
extension of Kubernetes, the next steps will focus on the development
of a Fog architecture that is able to manage the lifecycle of such
applications, making it possible for several applications to use the
services offered by a containerized microservice. It will also consider
the reactivity of Fog applications to feed back into the manufacturing
process, beyond simply alerting plant workers.

Funding

This work was financed by the project RTI2018-096116-B-I00
funded by MCIN/AEI/10.13039/501100011033/ and funded by
FEDER Una manera de hacer Europa, by the project PES18/48 funded
by UPV/EHU, by Open Access funding provided by University of
Basque Country, Spain and by the PhD fellowship granted under the
frame of the PIF 2022 call funded by the University of the Basque
Country (UPV/EHU), Spain, grant number PIF22/188.

CRediT authorship contribution statement

Julen Cuadra: Writing – original draft, Visualization, Validation,
Investigation, Conceptualization. Ekaitz Hurtado: Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation.
Isabel Sarachaga: Writing – review & editing, Supervision, Inves-
tigation. Elisabet Estévez: Writing – review & editing, Methodol-
ogy. Oskar Casquero: Writing – review & editing, Supervision, Re-
ources, Project administration, Funding acquisition, Conceptualiza-
ion. Aintzane Armentia: Writing – review & editing, Supervision,
ethodology, Funding acquisition, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

I have shared my code at the manuscript as a GitHub repository.

ppendix A. List of abbreviations

See Table A.1.

ppendix B. Supplementary data

The implementation code of the proposed platform is available at
ttps://github.com/ekhurtado/GCIS_MDE_engineering_platform. The
uthors also make the required files and stylesheets available on
he GitHub repository. Besides, a graphical support is developed to
how the use and operation of the proposed platform. This support is
vailable as a video in the following link: https://www.youtube.com/
laylist?list=PLs6bFF_iqW3G8AiVVMPi-SpupCvgmYsyB.

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.future.2024.03.053.
373
Table A.1
List of abbreviations.

Abbreviation Definition

API Application Programming Interface
CBSE Component Based Software Engineering
CR Custom Resource
CRD Custom Resource Definition
CSAR Cloud Service ARchives
DDF Distributed DataFlow
DSL Domain Specific Language
HTTP Hypertext Transfer Protocol
IoT Internet of Things
KPI Key Performance Indicator
MDA Model Driven Architecture
MDE Model Driven Engineering
MMR Mobile Manipulation Robots
MQTT Message Queuing Telemetry Transport
M2M Model-to-Model
M2T Model-to-Text
OAM Open Application Model
OEE Overall Equipment Effectiveness
PLC Programmable Logic Controller
TOSCA Topology and Orchestration Specification for Cloud Applications
UML Unified Modeling Language
XML eXtensible Markup Language
XSLT eXtensible Stylesheet Language Transformations
YAML Yaml Ain’t Markup Language

References

[1] P. Bellavista, A. Zanni, Feasibility of fog computing deployment based on
Docker containerization over RaspberryPi, in: 18th International Conference on
Distributed Computing and Networking, ACM, Hyderabad, India, 2017, pp. 1–10,
http://dx.doi.org/10.1145/3007748.3007777.

[2] J. Harjuhahto, V. Hirvisalo, Positioning fog computing for smart manufacturing,
2022, http://dx.doi.org/10.48550/arXiv.2205.10860, arXiv:2205.10860 [cs].

[3] D. Bouhalouan, B. Nachet, A. Adla, Knowledge-Intensive decision support system
for manufacturing equipment maintenance, J. Digit. Inf. Manage. 18 (3) (2020)
85, http://dx.doi.org/10.6025/jdim/2020/18/3/85-98.

[4] E. Hurtado, A. López, A. Armentia, I. Sarachaga, O. Casquero, E. Estevez, M.
Marcos, On the development of fog-edge feedback applications, in: 2021 IEEE
17th International Conference on Automation Science and Engineering (CASE),
2021, p. 2.

[5] A. Seitz, D. Henze, D. Miehle, B. Bruegge, J. Nickles, M. Sauer, Fog computing
as enabler for blockchain-based IIoT app marketplaces - A case study, in: 2018
Fifth International Conference on Internet of Things: Systems, Management and
Security, IEEE, Valencia, Spain, 2018, pp. 182–188, http://dx.doi.org/10.1109/
IoTSMS.2018.8554484.

[6] S. Wang, J. Wan, D. Li, C. Zhang, Implementing smart factory of industrie 4.0:
An outlook, Int. J. Distrib. Sens. Netw. 12 (1) (2016) 1–10, http://dx.doi.org/
10.1155/2016/3159805.

[7] S. Kitanov, T. Janevski, Fog computing orchestration based on network latency,
J. Multimedia Process. Technol. 12 (4) (2021) http://dx.doi.org/10.6025/jmpt/
2021/12/4/125-131.

[8] J. Alonso, L. Orue-Echevarria, M. Huarte, CloudOps: Towards the operational-
ization of the cloud continuum: Concepts, challenges and a reference frame-
work, Appl. Sci. 12 (9) (2022) 4347, http://dx.doi.org/10.3390/app12094347,
Number: 9 Publisher: Multidisciplinary Digital Publishing Institute.

[9] O. Akrivopoulos, I. Chatzigiannakis, C. Tselios, A. Antoniou, On the deployment
of healthcare applications over fog computing infrastructure, in: 2017 IEEE
41st Annual Computer Software and Applications Conference (COMPSAC), IEEE,
Turin, Italy, 2017, pp. 288–293, http://dx.doi.org/10.1109/COMPSAC.2017.178.

[10] A. Barron, D.D. Sanchez-Gallegos, D. Carrizales-Espinoza, J.L. Gonzalez-Compean,
M. Morales-Sandoval, On the efficient delivery and storage of IoT data in
edge–fog–cloud environments, Sensors 22 (18) (2022) 7016, http://dx.doi.org/
10.3390/s22187016, Number: 18 Publisher: Multidisciplinary Digital Publishing
Institute.

[11] I. Stojmenovic, S. Wen, The fog computing paradigm: Scenarios and security
issues, in: 2014 Federated Conference on Computer Science and Information
Systems, 2014, pp. 1–8, http://dx.doi.org/10.15439/2014F503.

[12] J. Singh, P. Singh, S.S. Gill, Fog computing: A taxonomy, systematic review,
current trends and research challenges, J. Parallel Distrib. Comput. 157 (2021)
56–85, http://dx.doi.org/10.1016/j.jpdc.2021.06.005.

https://github.com/ekhurtado/GCIS_MDE_engineering_platform
https://www.youtube.com/playlist?list=PLs6bFF_iqW3G8AiVVMPi-SpupCvgmYsyB
https://www.youtube.com/playlist?list=PLs6bFF_iqW3G8AiVVMPi-SpupCvgmYsyB
https://www.youtube.com/playlist?list=PLs6bFF_iqW3G8AiVVMPi-SpupCvgmYsyB
https://doi.org/10.1016/j.future.2024.03.053
http://dx.doi.org/10.1145/3007748.3007777
http://dx.doi.org/10.48550/arXiv.2205.10860
http://arxiv.org/abs/2205.10860
http://dx.doi.org/10.6025/jdim/2020/18/3/85-98
http://refhub.elsevier.com/S0167-739X(24)00128-6/sb4
http://refhub.elsevier.com/S0167-739X(24)00128-6/sb4
http://refhub.elsevier.com/S0167-739X(24)00128-6/sb4
http://refhub.elsevier.com/S0167-739X(24)00128-6/sb4
http://refhub.elsevier.com/S0167-739X(24)00128-6/sb4
http://refhub.elsevier.com/S0167-739X(24)00128-6/sb4
http://refhub.elsevier.com/S0167-739X(24)00128-6/sb4
http://dx.doi.org/10.1109/IoTSMS.2018.8554484
http://dx.doi.org/10.1109/IoTSMS.2018.8554484
http://dx.doi.org/10.1109/IoTSMS.2018.8554484
http://dx.doi.org/10.1155/2016/3159805
http://dx.doi.org/10.1155/2016/3159805
http://dx.doi.org/10.1155/2016/3159805
http://dx.doi.org/10.6025/jmpt/2021/12/4/125-131
http://dx.doi.org/10.6025/jmpt/2021/12/4/125-131
http://dx.doi.org/10.6025/jmpt/2021/12/4/125-131
http://dx.doi.org/10.3390/app12094347
http://dx.doi.org/10.1109/COMPSAC.2017.178
http://dx.doi.org/10.3390/s22187016
http://dx.doi.org/10.3390/s22187016
http://dx.doi.org/10.3390/s22187016
http://dx.doi.org/10.15439/2014F503
http://dx.doi.org/10.1016/j.jpdc.2021.06.005


Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
[13] C.A. Lee, Cloud federation management and beyond: Requirements, relevant
standards, and gaps, IEEE Cloud Comput. 3 (1) (2016) 42–49, http://dx.doi.
org/10.1109/MCC.2016.15.

[14] IEEE Standard Association, IEEE Standard for Adoption of OpenFog Reference
Architecture for Fog Computing, IEEE Std 1934-2018, 2018, pp. 1–176, http:
//dx.doi.org/10.1109/IEEESTD.2018.8423800.

[15] G. Mangiaracina, P. Plebani, M. Salnitri, M. Vitali, Efficient data as a service
in fog computing: An adaptive multi-agent based approach, IEEE Trans. Cloud
Comput. (2022) 1–18, http://dx.doi.org/10.1109/TCC.2022.3220811.

[16] J. Kosińska, G. Brotoń, M. Tobiasz, Knowledge representation of the state of
a cloud-native application, Int. J. Softw. Tools Technol. Transf. (2023) http:
//dx.doi.org/10.1007/s10009-023-00705-2.

[17] M. Waseem, P. Liang, M. Shahin, A. Di Salle, G. Márquez, Design, monitoring,
and testing of microservices systems: The practitioners’ perspective, J. Syst.
Softw. 182 (2021) 111061, http://dx.doi.org/10.1016/j.jss.2021.111061.

[18] O. Zimmermann, Microservices tenets: Agile approach to service development
and deployment, Comput. Sci. - Res. Dev. 32 (2016) http://dx.doi.org/10.1007/
s00450-016-0337-0.

[19] J. Dobaj, J. Iber, M. Krisper, C. Kreiner, A microservice architecture for the
industrial Internet-of-Things, in: Proceedings of the 23rd European Conference
on Pattern Languages of Programs, ACM, Irsee Germany, 2018, pp. 1–15, http:
//dx.doi.org/10.1145/3282308.3282320.

[20] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, M. Villari, Open issues in
scheduling microservices in the cloud, IEEE Cloud Comput. 3 (5) (2016) 81–
88, http://dx.doi.org/10.1109/MCC.2016.112, Conference Name: IEEE Cloud
Computing.

[21] P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh, W. Steiner,
The FORA fog computing platform for industrial IoT, Inf. Syst. 98 (2021) 101727,
http://dx.doi.org/10.1016/j.is.2021.101727.

[22] R. Buyya, S. Srirama, G. Casale, R. Calheiros, Y. Simmhan, B. Varghese, E.
Gelenbe, B. Javadi, L. Vaquero, M. Netto, A. Toosi, M. Rodriguez, I. Llorente, S.
Di Vimercati, P. Samarati, D. Milojicic, C. Varela, R. Bahsoon, M. De Assuncao,
O. Rana, W. Zhou, H. Jin, W. Gentzsch, A. Zomaya, H. Shen, A manifesto for
future generation cloud computing: Research directions for the next decade, ACM
Comput. Surv. 51 (5) (2019) http://dx.doi.org/10.1145/3241737.

[23] OASIS, TOSCA version 2.0, 2023, https://docs.oasis-open.org/tosca/TOSCA/v2.
0/TOSCA-v2.0.html.

[24] OpenFog Consortium, OpenFog reference architecturee, 2017, https://www.
iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf.

[25] N. Giang, M. Blackstock, R. Lea, Developing IoT applications in the fog: a
distributed dataflow approach, in: 2015 5th International Conference on the
Internet of Things, IOT, 2015, http://dx.doi.org/10.1109/IOT.2015.7356560.

[26] N.K. Giang, R. Lea, V.C. Leung, Developing applications in large scale, dynamic
fog computing: A case study, Softw. - Pract. Exp. 50 (5) (2020) 519–532,
http://dx.doi.org/10.1002/spe.2695.

[27] S.W. Kum, J. Moon, T.-B. Lim, Design of fog computing based IoT application
architecture, in: 2017 IEEE 7th International Conference on Consumer Electronics
- Berlin (ICCE-Berlin), IEEE, Berlin, Germany, 2017, pp. 88–89, http://dx.doi.
org/10.1109/ICCE-Berlin.2017.8210598.

[28] S. Taherizadeh, V. Stankovski, Incremental learning from multi-level monitoring
data and its application to component based software engineering, in: 2017 IEEE
41st Annual Computer Software and Applications Conference (COMPSAC), IEEE,
Turin, 2017, pp. 378–383, http://dx.doi.org/10.1109/COMPSAC.2017.148.

[29] R. Dintén, P.L. Martínez, M. Zorrilla, Arquitectura de referencia para el diseño
y desarrollo de aplicaciones para la Industria 4.0, Rev. Iberoam. Autom.
Inform. Ind. 18 (3) (2021) 300–311, http://dx.doi.org/10.4995/riai.2021.14532,
Number: 3.

[30] N. Ferry, H. Song, A. Rossini, F. Chauvel, A. Solberg, CloudMF: Applying MDE to
tame the complexity of managing multi-cloud applications, in: 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing, IEEE, London,
2014, pp. 269–277, http://dx.doi.org/10.1109/UCC.2014.36.

[31] V. Cortellessa, D. Di Pompeo, R. Eramo, M. Tucci, A model-driven approach
for continuous performance engineering in microservice-based systems, J. Syst.
Softw. 183 (2022) 111084, http://dx.doi.org/10.1016/j.jss.2021.111084.

[32] W.P. Luz, G. Pinto, R. Bonifácio, Adopting DevOps in the real world: A theory, a
model, and a case study, J. Syst. Softw. 157 (2019) 110384, http://dx.doi.org/
10.1016/j.jss.2019.07.083.

[33] H. Dursun, Full spec software via platform engineering: Transition from bolting-
on to building-in, in: Proceedings of the 27th International Conference on
Evaluation and Assessment in Software Engineering, ACM, Oulu Finland, 2023,
374

pp. 172–175, http://dx.doi.org/10.1145/3593434.3593440.
[34] I.-C. Donca, O.P. Stan, M. Misaros, D. Gota, L. Miclea, Method for continuous
integration and deployment using a pipeline generator for Agile software
projects, Sensors 22 (12) (2022) 4637, http://dx.doi.org/10.3390/s22124637.

[35] Docker, Docker, 2024, https://www.docker.com/.
[36] C. McLuckie, J. Beda, B. Burns, Kubernetes, 2024, https://kubernetes.io/, v1.29.
[37] I. Aldalur, A. Arrieta, A. Agirre, G. Sagardui, M. Arratibel, A microservice-

based framework for multi-level testing of cyber-physical systems, Softw. Qual.
J. (2023) http://dx.doi.org/10.1007/s11219-023-09639-z.

[38] M. Ugarte Querejeta, L. Etxeberria, G. Sagardui, Towards a DevOps approach
in cyber physical production systems using digital twins, in: A. Casimiro, F.
Ortmeier, E. Schoitsch, F. Bitsch, P. Ferreira (Eds.), Computer Safety, Reliability,
and Security. SAFECOMP 2020 Workshops, in: Series Title: Lecture Notes in
Computer Science, Vol. 12235, Springer International Publishing, Cham, 2020,
pp. 205–216, http://dx.doi.org/10.1007/978-3-030-55583-2_15.

[39] J. Kosińska, K. Zieliński, Autonomic management framework for cloud-native
applications, J. Grid Comput. 18 (4) (2020) 779–796, http://dx.doi.org/10.1007/
s10723-020-09532-0.

[40] OpenJS Foundation & Contributors, Node-RED, 2024, https://nodered.org,
v3.1.5.

[41] H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, IFogSim: A toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments, Softw. - Pract. Exp. 47 (9) (2017)
1275–1296, http://dx.doi.org/10.1002/spe.2509, _eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/spe.2509.

[42] I. Alfonso, K. Garces, H. Castro, J. Cabot, Modeling self-adaptative IoT architec-
tures, in: 2021 ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), IEEE, Fukuoka, Japan, 2021,
pp. 761–766, http://dx.doi.org/10.1109/MODELS-C53483.2021.00122.

[43] D. Perez-Palacin, J. Merseguer, J.I. Requeno, M. Guerriero, E. Di Nitto, D.A.
Tamburri, A UML profile for the design, quality assessment and deployment
of data-intensive applications, Softw. Syst. Model. 18 (6) (2019) 3577–3614,
http://dx.doi.org/10.1007/s10270-019-00730-3.

[44] M. Bogo, J. Soldani, D. Neri, A. Brogi, Component-aware orchestration of cloud-
based enterprise applications, from TOSCA to Docker and Kubernetes, Softw.
- Pract. Exp. 50 (9) (2020) 1793–1821, http://dx.doi.org/10.1002/spe.2848,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2848.

[45] Y. Wang, C. Lee, S. Ren, E. Kim, S. Chung, Enabling role-based orchestration
for cloud applications, Appl. Sci. 11 (14) (2021) 6656, http://dx.doi.org/10.
3390/app11146656, Number: 14 Publisher: Multidisciplinary Digital Publishing
Institute.

[46] Open application model, 2023, https://github.com/oam-dev/spec.
[47] A. Orive, A. Agirre, H.-L. Truong, I. Sarachaga, M. Marcos, Quality of service

aware orchestration for cloud–edge continuum applications, Sensors 22 (5)
(2022) 1755, http://dx.doi.org/10.3390/s22051755.

[48] J. Cuadra, E. Hurtado, F. Pérez, O. Casquero, A. Armentia, OpenFog-
compliant application-aware platform: A kubernetes extension, Appl. Sci. 13 (14)
(2023) 8363, http://dx.doi.org/10.3390/app13148363, Number: 14 Publisher:
Multidisciplinary Digital Publishing Institute.

[49] N. Petrovic, M. Tosic, SMADA-Fog: Semantic model driven approach to deploy-
ment and adaptivity in fog computing, Simul. Model. Pract. Theory 101 (2020)
102033, http://dx.doi.org/10.1016/j.simpat.2019.102033.

[50] I. Kumara, P. Mundt, K. Tokmakov, D. Radolović, A. Maslennikov, R.S. González,
J.F. Fabeiro, G. Quattrocchi, K. Meth, E. Di Nitto, D.A. Tamburri, W.-J. Van
Den Heuvel, G. Meditskos, SODALITE@RT: Orchestrating applications on Cloud-
Edge infrastructures, J. Grid Comput. 19 (3) (2021) 29, http://dx.doi.org/10.
1007/s10723-021-09572-0.

[51] C. Avasalcai, B. Zarrin, S. Dustdar, EdgeFlow—Developing and deploying latency-
sensitive IoT edge applications, IEEE Internet Things J. 9 (5) (2022) 3877–3888,
http://dx.doi.org/10.1109/JIOT.2021.3101449.

[52] H. Song, R. Dautov, N. Ferry, A. Solberg, F. Fleurey, Model-based fleet de-
ployment in the IoT–edge–cloud continuum, Softw. Syst. Model. 21 (5) (2022)
1931–1956, http://dx.doi.org/10.1007/s10270-022-01006-z.

[53] T. Vale, I. Crnkovic, E.S. de Almeida, P.A.d.M. Silveira Neto, Y.C. Cavalcanti,
S.R.d. Meira, Twenty-eight years of component-based software engineering, J.
Syst. Softw. 111 (2016) 128–148, http://dx.doi.org/10.1016/j.jss.2015.09.019.

[54] Cloud native landscape, 2024, https://landscape.cncf.io/.
[55] W3C, W3C XML schema definition language (XSD) 1.1 part 1: Structures, 2012.
[56] W3C, XSL transformations (XSLT) version 2.0 (second edition), 2021, https:

//www.w3.org/TR/2021/REC-xslt20-20210330/.
[57] L.A. Vayghan, M.A. Saied, M. Toeroe, F. Khendek, A kubernetes controller for

managing the availability of elastic microservice based stateful applications, J.

Syst. Softw. 175 (2021) 110924, http://dx.doi.org/10.1016/j.jss.2021.110924.

http://dx.doi.org/10.1109/MCC.2016.15
http://dx.doi.org/10.1109/MCC.2016.15
http://dx.doi.org/10.1109/MCC.2016.15
http://dx.doi.org/10.1109/IEEESTD.2018.8423800
http://dx.doi.org/10.1109/IEEESTD.2018.8423800
http://dx.doi.org/10.1109/IEEESTD.2018.8423800
http://dx.doi.org/10.1109/TCC.2022.3220811
http://dx.doi.org/10.1007/s10009-023-00705-2
http://dx.doi.org/10.1007/s10009-023-00705-2
http://dx.doi.org/10.1007/s10009-023-00705-2
http://dx.doi.org/10.1016/j.jss.2021.111061
http://dx.doi.org/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1145/3282308.3282320
http://dx.doi.org/10.1145/3282308.3282320
http://dx.doi.org/10.1145/3282308.3282320
http://dx.doi.org/10.1109/MCC.2016.112
http://dx.doi.org/10.1016/j.is.2021.101727
http://dx.doi.org/10.1145/3241737
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
http://dx.doi.org/10.1109/IOT.2015.7356560
http://dx.doi.org/10.1002/spe.2695
http://dx.doi.org/10.1109/ICCE-Berlin.2017.8210598
http://dx.doi.org/10.1109/ICCE-Berlin.2017.8210598
http://dx.doi.org/10.1109/ICCE-Berlin.2017.8210598
http://dx.doi.org/10.1109/COMPSAC.2017.148
http://dx.doi.org/10.4995/riai.2021.14532
http://dx.doi.org/10.1109/UCC.2014.36
http://dx.doi.org/10.1016/j.jss.2021.111084
http://dx.doi.org/10.1016/j.jss.2019.07.083
http://dx.doi.org/10.1016/j.jss.2019.07.083
http://dx.doi.org/10.1016/j.jss.2019.07.083
http://dx.doi.org/10.1145/3593434.3593440
http://dx.doi.org/10.3390/s22124637
https://www.docker.com/
https://kubernetes.io/
http://dx.doi.org/10.1007/s11219-023-09639-z
http://dx.doi.org/10.1007/978-3-030-55583-2_15
http://dx.doi.org/10.1007/s10723-020-09532-0
http://dx.doi.org/10.1007/s10723-020-09532-0
http://dx.doi.org/10.1007/s10723-020-09532-0
https://nodered.org
http://dx.doi.org/10.1002/spe.2509
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2509
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2509
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2509
http://dx.doi.org/10.1109/MODELS-C53483.2021.00122
http://dx.doi.org/10.1007/s10270-019-00730-3
http://dx.doi.org/10.1002/spe.2848
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2848
http://dx.doi.org/10.3390/app11146656
http://dx.doi.org/10.3390/app11146656
http://dx.doi.org/10.3390/app11146656
https://github.com/oam-dev/spec
http://dx.doi.org/10.3390/s22051755
http://dx.doi.org/10.3390/app13148363
http://dx.doi.org/10.1016/j.simpat.2019.102033
http://dx.doi.org/10.1007/s10723-021-09572-0
http://dx.doi.org/10.1007/s10723-021-09572-0
http://dx.doi.org/10.1007/s10723-021-09572-0
http://dx.doi.org/10.1109/JIOT.2021.3101449
http://dx.doi.org/10.1007/s10270-022-01006-z
http://dx.doi.org/10.1016/j.jss.2015.09.019
https://landscape.cncf.io/
http://refhub.elsevier.com/S0167-739X(24)00128-6/sb55
https://www.w3.org/TR/2021/REC-xslt20-20210330/
https://www.w3.org/TR/2021/REC-xslt20-20210330/
https://www.w3.org/TR/2021/REC-xslt20-20210330/
http://dx.doi.org/10.1016/j.jss.2021.110924


Future Generation Computer Systems 157 (2024) 360–375J. Cuadra et al.
[58] R. Fayos-Jordan, S. Felici-Castell, J. Segura-Garcia, A. Pastor-Aparicio, J. Lopez-
Ballester, Elastic computing in the Fog on Internet of Things to improve the
performance of low cost nodes, Electronics 8 (12) (2019) http://dx.doi.org/10.
3390/electronics8121489.

[59] R. Fayos-Jordan, S. Felici-Castell, J. Segura-Garcia, J. Lopez-Ballester, M. Cobos,
Performance comparison of container orchestration platforms with low cost
devices in the fog, assisting Internet of Things applications, J. Netw. Comput.
Appl. 169 (2020) http://dx.doi.org/10.1016/j.jnca.2020.102788.

[60] H. Kang, M. Le, S. Tao, Container and microservice driven design for cloud infras-
tructure DevOps, in: 2016 IEEE International Conference on Cloud Engineering
(IC2E), 2016, pp. 202–211, http://dx.doi.org/10.1109/IC2E.2016.26.

[61] F. Xhafa, B. Kilic, P. Krause, Evaluation of IoT stream processing at edge
computing layer for semantic data enrichment, Future Gener. Comput. Syst. 105
(2020) 730–736, http://dx.doi.org/10.1016/j.future.2019.12.031.

[62] B. Costa, J. Bachiega, L.R. de Carvalho, A.P.F. Araujo, Orchestration in fog com-
puting: A comprehensive survey, ACM Comput. Surv. 55 (2) (2022) 29:1–29:34,
http://dx.doi.org/10.1145/3486221.

[63] OASIS, MQTT - The standard for IoT messaging, 2019, https://mqtt.org/.
[64] W. Meier, eXist-db - The open source native XML database, 2023, http://exist-

db.org/exist/apps/homepage/index.html, v6.2.0.
[65] P. Dix, Influxdb, 2024, https://www.influxdata.com/, v2.7.5.
[66] T. Ödegaard, Grafana dashboards, 2024, https://grafana.com/grafana/

dashboards/, v10.4.
[67] Google container registry, 2024, https://cloud.google.com/container-registry?hl=

es.

Julen Cuadra graduated in Industrial Technology Engineer-
ing and obtained a master’s degree in Industrial Engineering
at the Faculty of Engineering in Bilbao (UPV/EHU) in 2019
and 2021, respectively. In September 2021, he started a
Ph.D. program in control, automation, and robotics en-
gineering at the Faculty of Engineering in Bilbao. As a
researcher, he is part of the GCIS (Grupo de Control e
Integración de Sistemas) research group at the Department
of Systems Engineering and Automatic Control, where he
is focused on the development and integration of Fog
Computing solutions.

Ekaitz Hurtado graduated in IT from the Faculty of Engi-
neering in 2020. In September 2021, he started the Control,
Automation and Robotics Engineering master’s degree where
he developed the Final Project focused on the develop-
ment and integration of the Fog Computing paradigms in
industrial solutions. In September 2023, he started a Ph.D.
program in control, automation, and robotics engineering.
He has been part of the GCIS (Grupo de Control e Inte-
gración de Sistemas) research group at the Department of
Systems Engineering and Automatic Control from September
2021 to February 2022 as contracted researcher and from
September 2023 as a researcher.
375
Dr. Isabel Sarachaga is Permanent Associate Professor in
Automatic Control and Systems Engineering at the Univer-
sity of the Basque Country (UPV/EHU). She graduated with
B.Sc. in Computer Science from the University of Deusto
in 1990 and obtained her Ph.D. degree from the same
University in 1999. Since 2001, she has been a member of
the Systems Control and Integration research group (GCIS)
of the UPV/EHU. Currently, her main research interests
deal with the application of the Model Driven Engineering
paradigm to industrial control systems and reconfigurable
distributed applications in the context of Industry 4.0.

Dr. Elisabet Estévez is a lecturer in the Electronics and
Automation Engineering department at the University of
Jaen. She graduated in Telecommunications Engineering
from the University of the Basque Country (UPV/EHU)
in 2002. She obtained her Ph.D. in Automatic Control
(UPV/EHU) in 2007. She is co-author of over 120 technical
articles in international journals and conference proceedings
in the field of industrial control systems. She participated
in research projects funded both nationally and by the
European Union RD. Her expertise falls mainly within the
field of industrial control. She has also been a reviewer for
several conferences and technical journals.

Dr. Oskar Casquero received the B.S. degree in telecommu-
nication engineering and the Ph.D. degree in engineering,
in 2003 and 2013, respectively. From 2004 to 2007, he
worked as an IT Architecture Analyst at the Virtual Campus
of the University of the Basque Country. Since 2007, he has
been working as an Assistant Professor with the Systems
Engineering and Automatic Control Department, currently
at the Faculty of Engineering, Bilbao. He investigates on
smart and flexible manufacturing systems using digital
twins, model-driven engineering, multi-agent systems and
cloud computing technologies. Dr. Casquero collaborates as
a reviewer with several indexed journals and international
conferences.

Dr. Aintzane Armentia graduated in Telecommunications
Engineering by the University of the Basque Country
(UPV/EHU) in 2001. After 6 years of industrial experience,
she started to work as a researcher in the Department of
Automatic Control and Systems Engineering of the same
university. In 2011 she obtained her M.Sc. degree in Con-
trol, Automation and Robotics Engineering, and in 2016
she obtained her Ph.D. degree. She is currently an assistant
professor in the same department. Her research interest is
focused on Model Based Engineering, multiagent systems,
cloud computing technologies and smart manufacturing
systems.

http://dx.doi.org/10.3390/electronics8121489
http://dx.doi.org/10.3390/electronics8121489
http://dx.doi.org/10.3390/electronics8121489
http://dx.doi.org/10.1016/j.jnca.2020.102788
http://dx.doi.org/10.1109/IC2E.2016.26
http://dx.doi.org/10.1016/j.future.2019.12.031
http://dx.doi.org/10.1145/3486221
https://mqtt.org/
http://exist-db.org/exist/apps/homepage/index.html
http://exist-db.org/exist/apps/homepage/index.html
http://exist-db.org/exist/apps/homepage/index.html
https://www.influxdata.com/
https://grafana.com/grafana/dashboards/
https://grafana.com/grafana/dashboards/
https://grafana.com/grafana/dashboards/
https://cloud.google.com/container-registry?hl=es
https://cloud.google.com/container-registry?hl=es
https://cloud.google.com/container-registry?hl=es

	Enabling DevOps for Fog Applications in the Smart Manufacturing domain: A Model-Driven based Platform Engineering approach
	Introduction
	Related work
	Overview of the approach
	Model-driven methodology for the design, development, delivery, and operation of Fog Applications
	Supporting technologies for the implementation of the engineering platform

	Design and development of Fog Components
	Step 1: Design of a Fog Component
	Step 2: Develop a Fog Component
	Step 2.1: Develop the Fog Component's Source Code
	Steps 2.2 and 2.3: Encapsulation and Storage of the base image of a Fog Component

	Step 3: Integration of a Fog Component in the Fog Computing Library

	Design and development of Fog Applications
	Step 4.1: Design of a Fog Application
	Step 4.2: Develop a Fog Application

	Case Study
	Design and development of Fog components
	Design and development of Fog applications
	Delivery and operation of Fog applications
	Kubernetes extension to enable automated application operation
	Kubernetes enabled delivery and operation of Fog Applications


	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. List of abbreviations
	Appendix B. Supplementary data
	References


