
1532 IEEE SENSORS JOURNAL, VOL. 24, NO. 2, 15 JANUARY 2024

A New Method to Design Trifurcated Optical
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Abstract—Trifurcated optical fiber displacement sensors
(OFDSs) are increasingly used in industrial and aerospace
applications. The critical element of the sensor is the fiber
bundle. However, there is no straightforward method to cal-
culate it from the working specifications of the sensor, the
number of fibers needed, their size, and arrangement. This
work presents a simple yet accurate method to design tri-
furcated OFDSs. The proposed method allows to derive the
geometrical arrangement and size of the fibers from three
simple equations, thus reducing significantly the difficulty
and complexity of the OFDS design. Those three equations
depend on the working point, working range, required sen-
sitivity, and maximum size of the bundle. In this way, the
proposed method will save valuable time for researchers and
engineers who wish to design, fabricate, and use this type of OFDSs. The procedure is explained in detail with two
examples. The results predicted by the model are compared with the experimental results of a bundle with identical fiber
arrangement and dimensions. The results show good agreement with a deviation of less than 1% in the working range
of the sensor.

Index Terms— Design, fiber bundle, fiber optic sensors, intensity modulated optical sensor, method, optical fiber
displacement sensor (OFDS), trifurcated.

I. INTRODUCTION

H IGH precision metrology is essential in Industry 4.0 to
monitor and improve the efficiency and versatility of

factory processes [1], [2]. As a result, distance sensors are used
in a wide range of applications to measure several parameters
of interest such as the thickness, height, roughness, deforma-
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tion, distortion, and gap between surfaces, for instance, [3],
[4], [5]. To select the best-fitting device, we have to consider
the application, the environment, and the required precision,
as these factors are critical to determining the specifications of
the sensor. A prime example of the latter can be acknowledged
in the aeronautical turbine industry.

In that field, noncontact solutions are practically compulsory
in order to carry out any metrology measurements, as heavy
metallic pieces are rotating at high speed significantly close
to each other [6]. To that end, the most popular alternatives
are capacitive [7], inductive [8], ultrasonic [9], draw-wire,
and optical sensors [10]. Among them, optical fiber dis-
placement sensors (OFDSs) offer many advantages such as
electromagnetic immunity, high response, speed, small size,
great versatility, and easy installation, for example, [11], [12].
Within this group of sensors, OFDSs based on the reflection
of optical intensity add two significant advantages: Firstly,
as an optical fiber is used to transmit light to the monitored
surface, the sensing heads can be installed in remote locations
where direct laser light cannot reach, such as inside an aircraft
turbine [13]. Secondly, since these sensors are often used in a
differential configuration [14], they minimize several potential
error sources due to reflective surface roughness, temperature
variations, fluctuations in the emitting light source, and so
on [15]. This approach is particularly useful for dynamic
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turbine testing, as the blades rotate and the reflective surface
is constantly changing [16], [17].

The working range and sensitivity of OFDSs depend on
their geometric structure, i.e., the number and transverse
arrangement of fibers in a bundle [18], [19], [20], [21]. The
typical OFDS configuration uses two adjacent optical fibers to
transmit and receive the light signal through reflection [22].
However, this arrangement limits the amount of reflected light,
which reduces the working range. Other configurations have
been proposed, e.g., a pair of bent-tip optical fibers [23],
a hemispherical arrangement of fibers, and even randomly
distributed transmitting and receiving fibers [24], [25], or more
recently, an OFDS based on a multicore fiber with seven cores
hexagonally arranged [26].

Some authors prefer to use fibers or bundles that form
an angle with one another and with the normal to the
reflecting surface [27]. It has been found that setting the
angle between the transmitting and receiving fibers to 20◦

increases the sensitivity up to 30 times over the conventional
parallel fiber configuration. Asymmetric approaches like this
are well-suited for angle measurement. For example, Sagrario
and Mead [28] designed an OFDS using a square structure to
perform both axial and angular displacement measurements;
Khiat et al. [29] developed a fiber sensor with four receiving
fibers around the transmitting one, for long-distance, high-
resolution measurements. The drawback of such fiber bundles
is that the sensor head increases proportionally with the angle.
Additionally, many of these designs only allow the measure-
ment of uniaxial rotation, that is, the ability to measure the
tilt of the reflecting surface along just one axis [30]. In cases
where the reflecting surface is neither homogeneous nor large
and also vibrates, the angle is not maintained and changes
rapidly. This applies to the measurement of tip clearance in
aircraft turbines, where the reflecting surfaces are the blades
and whose shape is twisted [31]. In these harsh environments,
the angle measurement is not advantageous.

Therefore, the designs used to measure displacements in
turbines are based on azimuthally symmetric arrangements,
specifically, bundles of fibers arranged in concentric rings
around a central emitting fiber. The most common designs are
the trifurcated OFDSs [32], [33]. These are based on a fiber
bundle with an emitting fiber in the center surrounded by two
fiber rings at different radial distances. Typically, fiber bundles
are custom-designed to meet the working range or sensitivity
required by the specific application [34], [35]. Those parame-
ters vary based on the number of fibers in each receiving ring,
the size and numerical aperture of each fiber, or the radii of the
fiber rings [36]. Various methods have been proposed to model
the response of OFDSs: Geometric approximations [25], [37],
ray tracing, Monte Carlo calculations [38] or Gaussian beam-
based models. Of all these approaches, the one presented
by Cao et al. [25] offers the widest range of possibilities,
albeit it faces the drawback of requiring the implementation
of 8 different formulas. The one based on a Gaussian or
quasi-Gaussian beam has also excellent accuracy, but it is
much simpler [39]. Anyway, designing the most suitable fiber
bundle is a complex numerical task [25], [27], [38], [39] that
the proposed approach in this article can greatly simplify.

Fig. 1. Schematic of an OFDS. The constituent blocks are a light-
emitting source, a fiber bundle to guide the light, and a receiver circuit to
convert the collected light power into voltage.

Unlike prior methods, the method introduced here allows
us to compute the bundle design that best fits the working
specifications. The proposed method enables the deduction of
the geometrical arrangement and fiber size within a bundle
from three simple equations, thereby significantly reducing
the difficulty and complexity of OFDS design, which can
be time-consuming and expensive. The three equations only
depend on the specifications defined at each application,
namely, the working point and range, the required sensitivity,
and the maximum size of the bundle. As a result, the
proposed method will save valuable time for researchers and
engineers who wish to design, fabricate, and use this type
of OFDSs. This method can trivially be extended to designs
with four (tetrafurcated), five (pentafurcated), or more fiber
rings. The only limitation of the method is that it is restricted
to the design of azimuthally symmetric bundles. The article
is organized into four sections. Firstly, the mathematical
model is presented. Secondly, the results obtained are
analyzed. Thirdly, the design equations are derived. Finally,
the model is validated by comparing the theoretical results
with experimental ones.

II. MATHEMATICAL MODEL

The schematic of an OFDS is shown in Fig. 1. It comprises
a light source, a fiber bundle, and a receiver. The light emitted
by the light source is guided through the transmitting fiber to
the reflecting surface. After reflection, the light is collected by
the receiving fibers of the bundle. Each of these is connected
to separate photodiodes, where the optical power is finally
converted into voltage. The latter is a function of the distance
between the bundle-tip and the reflective surface. The design of
the bundle is critical, since the response of the OFDS is highly
dependent on its geometric arrangement, i.e., the number, size,
and distribution of the transmitting and receiving fibers [15],
[20], [22], [27], [31].

The aim of this work is to develop a novel approach to
design a trifurcated OFDS, taking the desired working point
and range as input variables. For this purpose, we have built a
toy model of the response of the sensor to understand the
influence of each of the geometric parameters in order to
fine-tune its response and meet the requirements of the specific
application.
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Fig. 2. Structure of a trifurcated fiber bundle with radius R, com-
posed of a transmitting fiber of radius rT located at the center, and
two surrounding coaxial receiving rings. The positions of the rings are
denoted as {ρ1, ρ2}, respectively. Their widths are labeled {∆ρ1,∆ρ2}.
The diameters of the fibers {φ1, φ2} correspond to the widths of the
rings in the toy model, and their position equal the position of the fibers
{R1,R2}.

Fig. 2 illustrates the geometry of the problem. It consists of
a circular structure composed of a transmitting fiber located
at the center of the bundle and two coaxial rings of receiving
fibers surrounding it. The toy model replaces the discrete
fiber rings with continuous homogeneous rings. This greatly
simplifies the calculations while preserving all the bundle
geometry parameters.

The positions of the rings and their widths are ρ1, ρ2, 1ρ1,
and 1ρ2, respectively. The diameters of the fibers {φ1, φ2}

correspond to the widths of the rings in the toy model, and
their position equals the positions of the fibers {R1, R2}.
Other parameters are the radii of the transmitting fiber rT and
the bundle R. The validity of the toy model is confirmed in
Section V.

We assume that the transmitting fiber is a single mode to
reduce the modal noise at the output of the bundle [13]. Under
this premise, we can approximate the irradiance at the output
of the fiber as a Gaussian beam, using [40]

I (ρ, z) = I0

[
w0

w(z)

]2

exp
(

−2
ρ2

w2(z)

)
=

2P
πw2(z)

exp
(

−2
ρ2

w2(z)

)
(1)

where w(z) is the beamwidth, ρ is the radial distance
from the propagation axis z and I0 is the intensity of the beam
at the origin. P refers to the total optical power transmitted
by the beam and w0 is the waist radius at its stretchiest
point-where the intensity drops to 1/e2

≈ 13.5% of its
maximum value. The beamwidth w(z) spreads according to
the formula

w(z) = w0

√
1 +

(
z
z0

)2

. (2)

It reaches its minimum value w0 at the bundle tip (z = 0).
z0 is the Rayleigh distance, defined as z0 = πw2

0/λ, which
is the distance over which a beam can propagate without

Fig. 3. Evolution of the light intensity of a Gaussian beam with z, taking
w0 = 2.4 µm and z0 = 27 µm.

significantly diverging. The total light power emitted by the
transmitting fiber, P , can easily be estimated as

P =

∫
∞

0
I (ρ)2πr dr

= 2π I0

[
w0

w(z)

]2 ∫
∞

0
exp

(
−2

ρ2

w2(z)

)
ρ dρ

P =
π

2
w2

0 I0. (3)

Since the light power remains constant at different z distances
from the transmitting fiber-tip, both the peak intensity and the
intensity distribution profile vary with z. In fact, on the beam
axis, the intensity I (0, z) drops to

I (0, z) = I0
z2

0

z2 + z2
0
. (4)

Fig. 3 shows the evolution of I (ρ, z) with z.
For sufficiently large distances

z ≫ z0 H⇒ w(z) ≈ w0
z
z0

w(z) ≈ z tan θ0 = z tan(arcsin NA) (5)

being NA the numerical aperture of the transmitting fiber. The
divergence angle θ0 and w0 are parameters that solely rely on
the light source and transmitting fiber characteristics. Thus,
once both are selected, θ0 and w0 remain constant.

At a certain distance of z, the light beam reaches a surface,
reflects toward the receiver rings, and is collected after trav-
eling a total distance of 2z. The intensity at an infinitesimal
ring of width dρ placed at a distance ρ from the fiber axis is

d I (ρ, 2z) =
20P

πw2(2z)
exp

(
−2

ρ2

w2(2z)

)
2πρ dρ. (6)

The ideal reflectance of the surface is 0. Thus, the calculation
of the detected irradiance in the ring located at a radial distance
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ρ1 with width 21ρ1 is straightforward

I (ρ1, 1ρ1, 2z) =
20P

πw2(2z)

∫ ρ1+1ρ1

ρ1−1ρ1

exp
(

−2
ρ2

w2(2z)

)
2πρ dρ

I (ρ1, 1ρ1, 2z) = 20P sinh
(

4
ρ11ρ1

w2(2z)

)
exp

(
−2

ρ2
1 + 1ρ2

1

w2(2z)

)
.

(7)

Similarly, the measured irradiance in a second ring located at
a distance ρ2 and width 21ρ2 is

I (ρ2, 1ρ2, 2z) = 20P sinh
(

4
ρ21ρ2

w2(2z)

)
exp

(
−2

ρ2
2 + 1ρ2

2

w2(2z)

)
.

(8)

Assuming that the two photodetectors collecting the light
entering the two independent receiving rings have a typical
quadratic response [6]

Vi = ki 20P sinh
(

4
ρi1ρi

w2(2z)

)
exp

(
−2

ρ2
i + 1ρ2

i

w2(2z)

)
(9)

where Vi is the output voltage of photodetector i , and ki is
a constant that includes the photodetector response and other
factors such as noise, detector circuit gain, surface roughness,
contamination, bends, etc. Consequently, the responsivity of
the sensor, η(z), is defined as the ratio of the optical intensities
of its two receiving rings, i.e., V2/V1

η(z) =

k2 sinh
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(10)

The constant k is defined as k = k2/k1. In the following (11),
we assume that the response of both photodetectors is the
same, so k = 1. Although the responsivity of the OFDS
depends on four geometric parameters, we encompass these
into just three: {A1, A2, q}. Thereby, (10) with (5) compacts
to

η(z) =

sinh
(

A2
z2 tan2 θ0

)
sinh

(
A1

z2 tan2 θ0

) exp
(

−
q
z2

)
(11)

where
A1 = ρ11ρ1

A2 = ρ21ρ2

q =
(
ρ2

2 + 1ρ2
2 − ρ2

1 − 1ρ2
1

)
/2 tan2 θ0

w(z) ≈ ztan θ0

Geometrical
parameters.

In Fig. 4, the responsivity is plotted along with the optical
power collected by the inner and outer rings, P1(z) and P2(z),
respectively. We applied a scaling factor of 2.5 to P1(z) and
P2(z) to visualize the three functions together. Still, one can
observe that the response of each ring is significantly smaller
than the combined output. Furthermore, according to Fig. 4,
the inner ring (red curve) demonstrates excellent performance
at short distances due to a narrow but steep linear range, which

Fig. 4. Optical power collected by the inner-red, P1(z)-and outer-
green, P2(z)-rings along with the responsivity-blue, η(z). A scale factor of
2.5 was applied to P1(z) and P2(z) to display the three curves together.
The table shows the linear ranges and their slopes. In yellow, some
typical points of interest of η(z) in mm: zTP = 9.3, zHR = 12, and
zHM = 13.7.

makes the sensor highly sensitive. Conversely, the outer ring
(green curve), has a more extensive linear range at the cost of
a loss of sensitivity, i.e., a slower growth of its response. This
is because the received light is broadened and varies radially
smoother. For the same reason, the outer ring receives less
power, in this case, five times less than the inner ring.

However, we can also observe that taking the ratio between
both curves results in a significantly improved response (blue
curve). It is both greater in amplitude and larger in linear
range. Thus, using a single-ring configuration has the only
advantage of enabling shorter distance measurements. Never-
theless, as we have seen, working with a single ring has many
disadvantages, mostly related to the inability to correct the
emitting light source intensity fluctuations, ambient light, etc.
Just as an example, if we define the linear range as the interval
between 5% and 65% of the maximum value of the front slope
of each curve, we obtain a linear range of 1z5,65 = 1.13 mm
when working with the inner ring, and 1z5,65 = 3.08 mm
for the outer. Finally, we can observe that the linear range
of the responsivity-which combines the optical power of both
rings-extends up to 1z5,65 = 10.77 mm.

The typical responsivity of the sensor is also presented
in Fig. 4. It saturates at the limit value, when the distance
to the reflector is sufficiently large

lim
z→∞

η(z) =

sinh
(

A2
z2 tan2 θ0

)
sinh

(
A1

z2 tan2 θ0

) exp
(

−
q
z2

)
=

A2

A1
=

ρ21ρ2

ρ11ρ1
.

(12)

For convenience, let us refer to this limit as p

p = lim
z→∞

η(z) =
ρ21ρ2

ρ11ρ1
. (13)

According to (13), the saturation value of the sensor increases
with the ratio of the receiving areas, A2/A1.

Fig. 5 illustrates how each term of the responsivity function
contributes to the result (11), revealing that the hyperbolic
sine term (11) in orange is significant only for small z
values. For larger z values, it just multiplies the exponen-
tial by the limit p. In fact, the responsivity given by (11)
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Fig. 5. Sensor response η(z) in blue and S(z) in black for the following
design specifications (mm): ρ1 = 0.5, ρ2 = 1.5, ∆ρ2 = 0.1, and ∆ρ2 =

0.15. Also, θ0 = 5◦, q = 130 mm2, and k = 1. Contribution of the
hyperbolic sines in orange; in red, the exponential one.

is indistinguishable from

η(z) =
I (ρ2, 1ρ2, 2z)
I (ρ1, 1ρ1, 2z)

≈ p exp
(

−
q
z2

)
. (14)

A dashed vertical line has been added in Fig. 5 to indicate
where the responsivity (blue line) is no longer zero. From
that point on, the hyperbolic-sine-term barely changes and
resembles a constant.

Another key parameter of the sensor is the sensitivity, §,
defined as the slope of the responsivity

S(z) =
dη(z)

dz
= 2

pq
z3 exp

(
−

q
z2

)
. (15)

The sensitivity is maximum when the second derivative equals
zero, i.e., solving for the turning point, zTP, of the responsivity

Smax =
d2η(z)

d2z

∣∣∣∣
z=zTP

= 0 H⇒ zTP =

√
2
3

q. (16)

Thus, the value of the responsivity (14) at that point is

η(zTP) = p exp
(

−
q

z2
TP

)
≈ 0.22p. (17)

An additional key point is the distance at which the respon-
sivity reaches half its maximum value. We named it zHM

η(zHM) =
1
2

p. (18)

Solving for zHM yields to

zHM =

√
q

ln 2
≈ 1.2

√
q. (19)

Moreover, substituting (16) in (19) revealed that the relation-
ship between zTP and zHM can be expressed as

zHM =

√
3

2 ln 2
zTP = 1.47zTP. (20)

In previous Fig. 4, we plotted the responsivity along with
the proposed key parameters, namely: zTP, zHM, and zHR. The
latter is the distance point at half of the working range of the
sensor. We assumed that the working range of the sensor is
between the [5, 65]% of ηmax, which corresponds to the most
linear region of the responsivity. So, zHR will be at 35% of the

maximum responsivity ηmax. As we will see in Section V, the
working range may also be defined by fitting the responsivity
to a straight line using Pearson’s correlation coefficient.

III. RESULTS AND DISCUSSION

After introducing the mathematical model in Section II,
the next step is to analyze the results. Equations (11) and
(14) characterize the responsivity of the sensor. Notice that it
depends on the geometric parameters through two expressions

ρ2
2 + 1ρ2

2 − ρ2
1 − 1ρ2

1 and
ρ21ρ2

ρ11ρ1
.

The roles of {ρ2, 1ρ2} and {ρ1, 1ρ1} are symmetrical with
respect to the responsivity. Also, changes in {ρ2, 1ρ2} are
equivalent, and the same is true for {ρ1, 1ρ1}. Therefore,
we conducted our initial analysis of the responsivity through
global changes in q and p. The dependence of the responsivity
on those parameters is better exemplified in Fig. 6.

Fig. 6(a) shows the responsivity as a function of q and z
for different values of p, from 1 to 5 in steps of 1. The green
surface corresponds to p = 5, and the blue at the bottom
corresponds to p = 1. Inspecting Fig. 6(a) leads us to two
outcomes.

1) First, the shape of the curve does not change as the
value of p increases. This implies that the position of
the working point is independent of p, as evidenced
in (16) and (19). However, it does change the scale and
slope of the curve and, therefore, the sensitivity in the
neighborhood of the working point.

2) Second, the analysis of the responsivity reveals two
simultaneous effects: on the one hand, the reduction
of the parameter q shifts the turning point to smaller
values; thus if we want to work at short distances,
the parameter q must be small. This fact is supported
by (16). On the other hand, it shows that this decrement
of q is associated with an increment in the slope of
the responsivity; thus, the sensitivity and q are inversely
proportional. When one increases, the other decreases.
In short, q is a trade-off parameter between the position
of the working point and the sensitivity of the sensor

q ↓ H⇒ zTP ↓ and q ↓ H⇒ Smax ↑ .

As previously stated, the working range is defined
as 1z5,65 = z65 − z5, which equals to 0.94

√
q . This

can easily be deduced by following the same procedure
that led to (16) and (20). Thus, a larger working range
of the sensor implies a larger value of q; which, in turn,
decreases the sensitivity. In conclusion, the range of
distances at which the responsivity is linear is inversely
proportional to the sensitivity

q ↑ H⇒ 1z5,65 ↑ so, 1z5,65 ↑ H⇒ S(z) ↓ .

This loss of sensitivity can be corrected, at least partially,
in two ways.

a) Externally, increasing the gain of the photodetec-
tors.

b) Increasing p as it is proportional to the sensitiv-
ity (15).
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Fig. 6. Responsivity as a function of q and p. (a) Responsivity as a function of {q, z} for different p, from p = 1 to 5 in steps of 1. The top green
surface corresponds to p = 5 and the blue at the bottom to p = 1. (b) Responsivity as a function of p and z for different q, from q = 0.1 mm2 to
10.1 mm2 in steps of 2 mm2. The top blue surface corresponds to q = 0.1 mm2 and the cyan at the bottom to q = 10.1 mm2. The red markers
indicate the same point.

The maximum and minimum values of p are given
by the size of the bundle, R ≥ ρ2 + 1ρ2, and the
size of the transmitting fiber, rT ≤ ρ1 − 1ρ1. For
that purpose, to increase p, the outer receiving ring
should either be wider, located further away, or both.
From (13), widening the area of the outer ring or
reducing the area of the inner ring leads to a larger p.
This is possible while leaving q unchanged since they
are independent. The only practical limitations of this
procedure are the maximum gain of the photodetectors
[ki , (10)] and the maximum ratio of the areas of the
receiving rings p = A2/A1, which, in summary, depend
on both the size of the bundle R and the size of the
emitting fiber rT . Identical conclusions can be drawn
from Fig. 6(b), which shows the sensitivity as a function
of p and z for different values of q .

In summary, to achieve a wider working range and higher
sensitivity, we need to increase {p, q} in the sensor design.
Moreover, a higher responsivity can be obtained by increas-
ing p, see (13).

In a second analysis, we conducted a set of simulations to
understand better the influence of each parameter by varying
one while the rest remained fixed. Fig. 7 shows the results of
the toy model for the responsivity η(z) and sensitivity, S(z).
The reference parameters are

ρ1 = 0.5 mm ρ2 = 1.0 mm
1ρ1 = 0.2 mm 1ρ2 = 0.2 mm

θ0 = 5◦.

A. Variation of the Position of the Inner Ring ρ1

This variation is equivalent to changing the position of the
inner ring fibers. Looking at Fig. 7(a), we can hardly observe
any change in the position of the sensitivity. This is because the
range of values over which it can vary is small since the rest
of the bundle limits the inner ring. However, the responsivity
value drops sharply when we increase the value of ρ1, bringing
the two rings closer. This decrease of η(z) is accompanied
by a substantial drop in S(z), see Fig. 7(b), and a variation
of its maximum toward smaller values of z. The maximum

value of the sensitivity is given at zTP distance, Smax = S(zTP),
substituting (16) in (15)

S(zTP) =
3
√

3 exp
(
−

3
2

)
ρ21ρ2 tan θ0

ρ11ρ1

√
ρ2

2 + 1ρ2
2 − ρ2

1 − 1ρ2
1

. (21)

Also, the working range decreases slightly with an increase of
ρ1. So, as predicted by (16) and (21)

ρ1 ↑ H⇒ zTP ↓, S(zTP) ↓, 1z5,65 ↓ .

B. Variation of the Inner Ring Width 1ρ1

The responsivity value is very sensitive to the width of the
inner ring, as shown in Fig. 7(c). Increasing the width of the
inner ring causes a significant decrease in the responsivity.
When 1ρ1 goes from [0.1, 3] mm, the responsivity divides by
four. Fig. 7(d) depicts that the same is true for the sensitivity,
which becomes three times smaller. In short, the responsivity
decreases and flattens when the radius of the inner fibers
increases. The position of S(zTP), though, remains constant,
meaning that q is less sensitive to changes in 1ρ1. Likewise,
the working range is independent of 1ρ1. Summarizing

1ρ1 ↑ H⇒ η(z) ↓, S(z) ↓ .

C. Variation of the Position of the Outer Radius ρ2

If we modify the outer radius of the fiber ring, increasing
the distance ρ2, as shown in Fig. 7(e), we observe two effects
on the responsivity. On the one hand, the curve shifts toward
larger values of z; on the other hand, both its amplitude and
working range increase. However, based on Fig. 7(f), there is
a small decrease in sensitivity as ρ2 increases. The position of
its maximum value zTP grows linearly with ρ2. So

ρ2 ↑ H⇒ q ↑, p ↑, η(z) ↑, zTP ↑ S(z) ↓ .

This can be understood from (13) and (16). An increase
of ρ2 raises the value of q and p, and, therefore, zTP. Hence,
the maximum value of the responsivity is also augmented. (21)
explains the slight decay of sensitivity as ρ2 increases.
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Fig. 7. All the values from the legends are in millimeters. Vertical lines show the zTP points for every curve. (a) through (j) show the responsivity
and sensitivity for five different geometrical parameter configurations: {ρ1,∆ρ1, ρ2,∆ρ2, θ0}. Data were normalized with respect to the maximum
value.

D. Variation of the Outer Ring Width 1ρ2

If we now look at the variation of the sensor response with
the width of the outer ring, Fig. 7(g) and (h), we observe the
opposite behavior. This is due to the minus sign in the q factor.

By increasing the value of 1ρ2 in the range [0.1, 3] mm,
we triple the value of both responsivity and sensitivity.
As with 1ρ1 (Section III-B), the position of the turning
point zTP hardly varies and can be considered constant for
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TABLE I
LIST OF POSSIBLE WORKING POINTS OF THE SENSOR TOGETHER WITH THE VALUE OF THEIR RESPECTIVE RESPONSIVITIES

this 1ρ2 range. The same happens with the working range.
Then

1ρ2 ↑ H⇒ η(z) ↑, S(z) ↑ .

E. Variation of the Numerical Aperture NA = sin(θ0)
The last parameter to vary is the numerical aperture of the

source. In Fig. 7(i) and (j) we vary the NA between [0.1, 3],
which corresponds to the acceptance angles θ0 = [5, 15]

◦.
If we increase the NA, the responsivity increases in slope and
shifts toward smaller z values, see Fig. 7(j). Its value is almost
quadrupled and the position of the maximum, i.e., the value
of zTP, is halved. It is noteworthy the huge dependence of the
working range on NA; the working range is indeed divided by
three. Consequently

NA ↑ H⇒ η(z) ↑, zTP ↓, S(z) ↑ .

F. Dead Zone
Some authors define the dead [39] or blind [20] zone of

an OFDS as the range of distances in which the responsivity
is very small or zero. In Table I we show that the value z5
for which the responsivity is 5% of its maximum value
is z5 = 0.58

√
q . This parameter indicates the point at which

the responsivity starts to rise. It is evident that, in order to
minimize the dead zone, q must be reduced.

As previously discussed, there are two approaches to
address this issue: either by moving the receiver fiber rings,
increasing ρ1, and decreasing ρ2; or by increasing the NA
of the source. This is easy to understand in both cases;
if we decrease the distance between the fiber rings to the
center of the bundle, the reflected light reaches the two rings
significantly due to their proximity to the transmitting fibers.
Conversely, increasing the NA causes the light to scatter
rapidly, reaching the receiving rings even at a short distance.
This can easily be observed for the case of two equal fiber
rings 1ρ1 = 1ρ2

q =
ρ2

2 − ρ2
1

2 tan2 θ0
=

(ρ2 − ρ1)(ρ2 + ρ1)

2 tan2(arcsin NA)
. (22)

So

NA ↑ ∨ (ρ2 − ρ1) ↓ ∨ (ρ2 + ρ1) ↑ H⇒ Dead zone ↓.

The individual inspection of the parameters yields the
following design tips.

1) To operate at small distances, we should either increase
the NA of the source, bring the fiber rings closer,
or decrease the fiber rings to bundle center distance.

2) Distances zTP, zHM, and zHR give us information about
the position of the responsivity curve (see Table I).

3) Sensitivity can be improved by decreasing the width of
the inner ring (the radius of the inner fibers), or equiva-
lently, increasing the width of the outer ring (the radius
of the outer fibers).

4) The position working point is independent of the width
of the rings, i.e., the diameter of the fibers.

IV. DESIGN PROCEDURE

Although the fiber bundle sensor has a simple principle and
many outstanding advantages, most of the research has focused
on the model and calculation of the response of a specific bun-
dle, i.e., modeling the response of the bundle knowing a priori
its geometric parameters and configuration [13], [14], [15],
[16], [17], [18]. However, there is no research on the design
of such bundles from given specifications. In other words,
no procedure that relates the target distance and the working
range to the fiber parameters and bundle configuration.

The ultimate goal is to determine {ρ1, ρ2, 1ρ1, 1ρ2} from
the design requirements, which are: the size of the bundle
(outer radius R) and the working point, zWP, the sensitiv-
ity, S(z), and working range, 1z, of the OFDS

Input


R

zWP
S(zWP)

1z


︸ ︷︷ ︸

Design
requirements

−→

 Solve
design equations

−→

Output

Toy model Experimental
ρ1

21ρ1
ρ2

21ρ2

 =


R1
φ1
R2
φ2


︸ ︷︷ ︸

Geometrical
parameters

.

The procedure can be summarized in the following steps.
1) First, for practical reasons, it is usually necessary to set

a maximum radius R of the bundle

R = ρ2 + 1ρ2 (first design equation). (23)
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2) Then, q is determined from the working point. If we
consider the turning point of the responsivity as the
working point, i.e., zWP = zTP =

√
2q/3, then the

parameter q becomes fixed

q =
3
2

z2
TP (second design equation). (24)

Any alternative working point also sets the q parameter.
In general, and as we have previously indicated, the
relationship between the working point zWP and the
parameter q is of the form zWP = h

√
q, being h a

numerical constant, see Table I.
These two conditions impose restrictions on the slope
of the responsivity. Indeed

1ρ2 = R − ρ2 (25)

1ρ1 =

√
ρ2

2 + (R − ρ2)
2
− ρ2

1 −
z2

WP tan2 θ0

h2 (26)

and then, by substituting (25) and (26) in (13)

p =
ρ2(R − ρ2)

ρ1

√
ρ2

2 + (R − ρ2)
2
− ρ2

1 −
z2

WP tan2 θ0

h2

. (27)

3) We could set either the sensitivity, S(zWP), or the
maximum value of the responsivity of the sensor. It is
equivalent to fixing the value of p. This is the third
design equation. With the choice of {p, q} the respon-
sivity of the sensor becomes fixed

η(z) = p exp
(

−
z2

WP

h2z2

)
(third design equation).(28)

All that remains is to determine from the three design
equations the geometric values of the two rings, i.e., the
sizes and placement of the fibers. Since we have four
parameters {ρ1, ρ2, 1ρ1, 1ρ2} and three conditions, the
problem is underdetermined. We can leave the design
based on a free parameter we can take at will, e.g., ρ2.
Expressing the three design equations as a function
of ρ2, we obtain

BUNDLE DESIGN COOKBOOK

1ρ2 = R − ρ2 (DE1)

1ρ1 =

√
ρ2

2 +(R−ρ2)
2
−ρ2

1 −
z2

WP tan2 θ0

h2 (DE2)

ρ1 =
ρ21ρ2

p1ρ1
(DE3)


.

A simple inspection of the latter brings two clues about
the bundle design process. The smaller the radius of the inner
ring ρ1, the greater the intrinsic slope p of the responsivity, i.e.,
the greater the sensitivity. This would recommend placing the
first ring as close as possible to the emitter fiber, establishing

the new condition

rT = ρ1 − 1ρ1 (29)

ρ1 =
rT

2
±

√
R2

2
−

r2
T

4
−

z2
WP tan2 θ0

2h2 − ρ2
2 − Rρ2. (30)

However, this choice is not always compatible with the selec-
tion of the working point or q . Notice that we can easily raise
the chosen slope at the working point, S(zWP), by just tuning
the asymmetric gain factor k, which is determined from the
selected photodetectors gains as demonstrated in (11)

dη(z)
dz

∣∣∣∣
zWP

= S(zWP) = 2k
p

h2zWP
exp

(
−

1
h2

)
. (31)

Two additional constraints must always be satisfied for the
design to be physically feasible, namely

rT ≤ ρ1 − 1ρ1 (32a)
ρ2 ≥ ρ1 + 1ρ1 + 1ρ2. (32b)

These inequalities only reflect that the rings in the toy model
and the fibers in the experimental fiber bundle cannot overlap.

Another design option is to set a known linear response,
f (z) = z0 + mz, in a specified range, [zi, zf] and find the
responsivity that best approximates it within that range. Then,
we look for the responsivity that minimizes the error in the
working range of the sensor [zi , z f ]. For the sake of ease of
reading, the design equations for this case have been developed
in the Appendix.

We shall illustrate the preceding procedure with two real-
world examples, both of which are carefully discussed in
Sections V-A and V-B.

V. EXPERIMENTAL VALIDATION

The experimental setup has been described in detail previ-
ously in [34] and [35]. Regarding the light source, a laser
module from Frankfurt Components (HSML-0660-20-FC,
Frankfurt Laser Company, Friedrichsdorf, Germany) was
employed. It had a nominal output power of 20 mW at 660 nm.
An optical isolator (IOF-660, Thorlabs, Newton, NJ, US) was
placed between the laser and the bundle to avoid reflections
that could destabilize the light source. For the opto-electrical
conversion, two Thorlabs PDA100A-EC photodetectors were
used. Finally, the responsitivity is calculated as the quotient
of the two obtained voltage signals, {V1, V2} for Section V-A,
and {V1, V3} for Section V-B.

To validate our model, a tetrafurcated bundle was designed
and fabricated, consisting of a single-mode transmitting fiber
at its center and three concentric rings of multimode receiving
fibers. The chosen emitting fiber was a single-mode fiber as
reasoned in Section II. The fibers of the first two rings have
the same diameter, 0.2 mm. However, the outer ring fibers
are 0.34 mm in diameter. The total diameter of the bundle is
1.12 mm. A microscopic image of its cross section is shown
in Fig. 8(b). The values of the position and radii of the fibers
are presented in Table II.

This bundle allows one to validate twice the model. Firstly,
we compare the responsivity of two rings (first and second)
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Fig. 8. (a) Responsivity according to Section V-A together with the
experimental one from the bundle with identical receiving fibers. The toy
model in blue, and the experimental in orange. For the toy model k =

k2/k1 = 1.8. (b) Cross section of the manufactured bundle. (c) Cross
section of the toy model.

with equal fibers (same ring width in the toy model). Sec-
ondly, we compare the responsivity of two rings of fibers
with different diameters (the first and third rings, different
ring widths in the toy model). Consequently, the validation
consisted in comparing the responsivity of the toy model with
the experimental one in both cases. To quantitatively compare
the results in the working range, we calculated the mean square
error (MSE) between the two responsivities. Furthermore, the
points of interest defined in Table I were also compared, and
the results are presented side-by-side in Table II.

A. Example I
In this first example, we wanted to design a bundle with

two equal diameter fiber rings, 1ρ1 = 1ρ2, with an outer
radius R = 0.7 mm, rT = 0.062 mm, θ0 = 5◦. zWP = 5 mm
was chosen at the distance where the responsivity is half of
its maximum value, zHM. Let p = 2 and zHM = 5 mm.

Fig. 8(b) and (c) illustrates the case. In this scenario (11)
and (14) become as follows:

q =
ρ2

2 − ρ2
1

2 tan2 θ0
; p =

ρ2

ρ1
(33a)

η(z) =
ρ2

ρ1
exp

(
−

ρ2
2 − ρ2

1

2z2 tan2 θ0

)
. (33b)

With the working point q = z2
WP/h2, and the limit p fixed by

design, we calculate {ρ1, ρ2} as a function of {p, q}. Indeed,
clearing {ρ1, ρ2} from (33a) and (33b), and taking (23)

ρ1 =
√

2 tan θ0

√
q

p2 − 1
(34a)

ρ2 = p
√

2 tan θ0

√
q

p2 − 1
(34b)

1ρ1 = 1ρ2 = R − ρ2. (34c)

TABLE II
SIDE-BY-SIDE COMPARISON OF THE OBTAINED RESULTS FOR THE TOY

MODEL AND THE EXPERIMENTAL FIBER BUNDLE. MSE STANDS FOR

MSE. THE OVERLAPPED WORKING RANGE IS DEFINED AS THE

RANGE WHERE THE WORKING RANGE OF THE TOY MODEL AND THE

EXPERIMENTAL BUNDLE COEXIST

Solving the equations

ρ1 = 297 µm
ρ2 = 595 µm

1ρ1 = 1ρ2 = R − ρ2 = 105 µm.

As mentioned before, we also must comply with the (32a)
and (32b) geometrical constraints, assuring that the design can
be truly fabricated. For (32a) geometrical constraint

ρ2,min = ρ1 + 21ρ1 = 507 µm
ρ2 = 595 µm > 507 µm ✓

and for (32b) constraint

ρ1,min = rT + 1ρ1 = 167 µm
ρ1 = 297 µm > 167 µm ✓.

So, the design is truly manufacturable.

B. Example II
In this second example, the receiving rings have different

widths as depicted in Fig. 9(b) and (c) (the manufactured
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Fig. 9. (a) Responsivity according to Section V-B together with the
experimental one from the bundle with receiving fibers of different
diameters. The toy model in blue and the experimental in orange. For
the toy model k = k2/k1 = 1.15. (b) Cross section of the manufactured
bundle. (c) Cross section of the toy model.

bundle and the toy model). This time, we set the working
point at zWP = 4.4 mm, and we will also assume that this
point corresponds to the turning point zWP = zTP.

Taking R = 1.12 mm and ρ2 = 0.97 mm, and also setting
the maximum responsivity to p = 4.5, then

q =
ρ2

2 + 1ρ2
2 − ρ2

1 − 1ρ2
1

2 tan θ2
0

=
3
2

z2
TP = 29 mm2

and

ρ2
2 + 1ρ2

2 − ρ2
1 − 1ρ2

1 = 0.85 mm2.

Moreover, 1ρ2 = R −ρ2 = 0.15 mm, and from the definition
of p (13)

p = 4.5 =
ρ2(R − ρ2)

ρ11ρ1
⇒ 1ρ1 = 0.032 mm2ρ−1

1 .

Hence

0.972 mm2
+ 0.152 mm2

−ρ2
1 − 0.001 mm4ρ−2

1 = 0.85 mm2.

Solving for ρ1, we get ρ1 = 0.32 mm and 1ρ1 = 0.1 mm.
The geometric parameters of the bundle are as presented
in Table II. Like in Section V-A, before accepting the design as
feasible, we must ensure it satisfies the geometrical constraints.
For (32a) constraint

ρ1 + 1ρ1 + 1ρ2 ≤ ρ2.

Indeed

ρ2 = 0.97 ≥ 0.57 mm ✓.

Next, the second geometrical constraint (32b) is checked
taking into account that rT = 0.062 mm

rT ≤ ρ1 − 1ρ1 = 0.22 mm ✓.

Fig. 10. Performance comparison between the bundle of Zhang et al.
and the toy model taking {ρ1 = 0.3,∆ρ1 = 0.1, ρ2 = 0.6,∆ρ2 =

0.1} mm and θ0 = 37◦. The optical power collected by the inner ring
(red) is P1(z), and the outer (green) is P2(z). The responsivities, η(z),
are in blue. Dashed lines represent the results of Zhang et al., and the
continuous ones are the predicted by the toy model.

Finally, in Figs. 8(a) and 9(a), we present a comparison of
the obtained two responsivities, namely, the one from the toy
model in blue and the experimental from the manufactured
bundle in orange. The toy model and experimental results
are in very good agreement, with practically identical curves
placed at the same working point.

Side-by-side results comparison of the two examples is
presented in Table II. The geometrical parameters of the fab-
ricated bundle are very close to those predicted by the model.
The discrepancy between the toy model and the experimental
curves of the responsivity can be quantified through the MSE,
which is around 1% in the whole working range. This fact
justifies the validity of the proposed toy model method.

Furthermore, we have calculated the working range of the
toy model and the fabricated bundle in both examples. The
working range was also defined as the region where Pearson’s
correlation coefficient exceeds 0.997. This value has already
been used in the literature as a reference value [31], [32]
and ensures the linearity of the working region. Table II also
shows a strong degree of agreement, not only for the one
calculated from Pearson’s correlation coefficient but also from
the proposed [5, 65]% range.

The most notable difference is observed in Example II (see
Section V-B) for small distances, where the receiving fiber
rings are more widely spaced. At small distances, the optical
power gathered by the third ring is relatively low, leading to
quantification errors in the measurements. These issues are not
present in the ideal toy model.

Another advantage of using tetrafurcated OFDSs is that we
can extend the linear range and increase the sensitivity by
combining the responsivities of each pair of rings. Ultimately,
we could further extend the OFDS range and steepness by
using pentafurcated, hexafurcated OFDSs, etc. Nevertheless,
that would inevitably lead to an increase in the overall size of
the bundle. Hence, we should look for a trade-off between the
desired linear range and the bundle size (23).

Our model has also been validated with results from other
researchers. In particular, we used our model to successfully
replicate the results of Zhang and Yang [41]. The bundle used
by these authors consists of two identical fiber rings closely
spaced; the fiber core radii are 1ρ1 = 1ρ2 = 0.1 mm. The
position of the inner ring of fibers is at ρ1 = 0.3 mm, while
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the outer one is at ρ2 = 0.6 mm from the bundle-center. The
fiber acceptance angle is θ0 = 37◦.

In Fig. 10, we show the optical power collected by the
inner (red curve) and outer (green curve) rings along with
the responsivity (blue curve). The continuous lines show our
results, and the dashed are from Zhang et al. As it can be seen,
the toy model accurately predicts the results from Zhang et al.,
despite the toy model is an approximation, and Zhang et al.
used a quasi-Gaussian source.

All these results justify the validity and accuracy of the
model and its suitability as a bundle design tool.

VI. CONCLUSION

This work presents a practical method of great importance
for the design of trifurcated OFDS sensors. A procedure
for designing OFDSs has been developed based on three
equations that relate sensor specifications: working distance,
range, sensitivity, and linear behavior, to the bundle geometry.

Two design examples have been presented along with the
experimental results. These show that the developed method
is simple, powerful, and accurate, with an MSE under 1%
in the whole working range of the sensor. Additionally, the
method has been validated using a bundle from the literature.
The proposed method can be applied not only to trifurcated
OFDS, but also to any bundle design with azimuthal symmetry.
Consequently, the proposed method has no limitations and
performs equally regardless of the input specifications.

It is important to point out that the toy model simplifies
a bundle of adjacent fibers. Thus, the greater the fibers
inter-spacing within the same ring, the greater the discrepancy
between the experimental values and those predicted by the toy
model. In summary, the toy model does not apply to bundle
configurations where the receiving rings are spread rather than
filled with fibers.

In future work, we intend to improve the designs of OFDS
sensors by using tetrafurcated and pentafurcated OFDSs to
increase the amplitude and linear range.

APPENDIX
LEAST SQUARES MINIMIZATION

As mentioned in Section IV, there is another design proce-
dure. It consists of approximating the response of the sensor
as close as possible to a given straight line. Setting a known
linear response f (z) = η0 + mz within a range [zi, zf] we want
to find the responsivity η(z) that most closely approximates
it within that range, i.e., we seek the responsivity η(z) that
minimizes the error in the working range of the sensor [zi, zf].
The error function E(p, q) is defined as

E(p, q) = ∥η(z) − (η0 + mz)∥2 (A35)

E(p, q) =

∫ z f

zi

[η(z) − (η0 + mz)]2 dz. (A36)

Expanding

E(p, q) =

∫ zf

zi

η(z)2 dz − 2η0

∫ zf

zi

η(z) dz − 2m
∫ zf

zi

zη(z) dz

+ η2
0(zf − zi) + mη0

(
z2

f − z2
i

)
+

1
3

m2(z3
f − z3

i

)
(A37)

E(p, q) = p2
∫ zf

zi

exp
(

−2
q
z2

)
dz − 2η0 p

∫ zf

zi

exp
(

−
q
z2

)
dz

− 2mp
∫ zf

zi

z exp
(

−
q
z2

)
dz

+ η2
0(zf − zi) + mη0

(
z2

f − z2
i

)
+

1
3

m2(z3
f − z3

i

)
.

(A38)

To obtain the optimum fit, we need to minimize the error
over p and q , i.e., we must find the values p and q for which

∂ E(p, q)

∂p
=

∂ E(p, q)

∂q
= 0. (A39)

Setting the partial derivatives equal to zero yields
∂ E(p, q)

∂p
= 2

[
p

∫ zf

zi

exp
(

−2
q
z2

)
dz − η0

∫ zf

zi

exp
(

−
q
z2

)
dz

−m
∫ zf

zi

z exp
(

−
q
z2

)
dz

]
= 0 (A40)

∂ E(p, q)

∂q
= 2p

[
−p

∫ zf

zi

z−2 exp
(

−2
q
z2

)
dz

+ η0

∫ zf

zi

z−2 exp
(

−
q
z2

)
dz

+m
∫ zf

zi

z−1 exp
(

−
q
z2

)
dz

]
= 0. (A41)

Now it is time to equal the p values from (A40) and (A41).
But first, we have to rearrange (A40)

p
∫ zf

zi

exp
(

−2
q
z2

)
dz

= η0

∫ zf

zi

exp
(

−
q
z2

)
dz + m

∫ zf

zi

z exp
(

−
q
z2

)
dz (A42)

so we can easily clear p from (A40)

p =

η0
∫ zf

zi
exp

(
−

q
z2

)
dz + m

∫ zf

zi
z exp

(
−

q
z2

)
dz∫ zf

zi
exp

(
−2 q

z2

)
dz

. (A43)

The exact process applies for clearing p from the partial
derivative respect from q of the error function presented
in (A41). First, we rearrange it

p
∫ zf

zi

z−2 exp
(

−2
q
z2

)
dz

= η0

∫ zf

zi

z−2 exp
(

−
q
z2

)
dz + m

∫ zf

zi

z−1 exp
(

−
q
z2

)
dz

(A44)

and then, we clear p from (A44) in order to equal it to the
expression of p obtained in (A43)

p =

η0
∫ zf

zi
z−2 exp

(
−

q
z2

)
dz + m

∫ zf

zi
z−1 exp

(
−

q
z2

)
dz∫ zf

zi
z−2 exp

(
−2 q

z2

)
dz

.

(A45)

Equaling the expressions of p from (A43) and (A45),
we obtain

η0
∫ zf

zi
exp

(
−

q
z2

)
dz + m

∫ zf

zi
z exp

(
−

q
z2

)
dz∫ zf

zi
exp

(
−2 q

z2

)
dz
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=

η0
∫ zf

zi
z−2 exp

(
−

q
z2

)
dz + m

∫ zf

zi
z−1 exp

(
−

q
z2

)
dz∫ zf

zi
z−2 exp

(
−2 q

z2

)
dz

.

(A46)

Coming to an end, all we have to do is solve (A46) for q
for the selected slope m and the intersecting value η0 of the
line with the abscissa axis. Finally, we use equation (A43)
or (A45) to obtain the value of p. Knowing {p, q}, we can
proceed by following the steps listed in Section IV and get
the fiber bundle design for the specific application.
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