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A B S T R A C T   

The current public acceptance rate towards medical cannabis feasibility has led to a worldwide increase in this 
plant species production. Nevertheless, the currently transforming legal framework does not prevent the origi-
nally unlawful knowledge around cannabis breeding, which lacks quality control regulations or standards for 
correct manufacturing processes, a fact that could subsequently lead to uncontrolled and even harmful crop 
products. In this line, the objective of this work was to develop a non-invasive methodology for cannabis che-
motype classification in different cultivars during the plant cultivation process, in order to keep undoubtful 
production control over cannabis crops. Hence, hyperspectral imaging (HSI), coupled with various multivariate 
data analysis approaches, such as principal component analysis (PCA) and partial least squares discriminant 
analysis (PLS-DA), enabled the non-invasive in-situ analysis of the plants. Hence, two PLS-DA classification 
models were trained with the plant spectral data for three chemotypes, based on the cannabinoid content of the 
plant inflorescences, with the difference between both approaches being the regard of the stem part of the plant 
as a bias. Thus, obtained sensitivity and specificity values in the inflorescences were 0.845/0.845 for Chemotype 
I, 0.954/0.920 for Chemotype II, and 0.888/0.925 for Chemotype III. At last, a hierarchical PLS-DA, which 
considered the stem as a bias, presented an overall 94.7 % trueness in the external validation of 57 different plant 
individuals, divided as 92.3 % trueness for chemotype I, 100.0 % trueness for chemotype II and 88.9 % trueness 
for chemotype III. Based on these results, the proof of concept for comprehensive agricultural control of cannabis 
crops through a non-invasive analytical technique was demonstrated, a previously unproven fact. Therefore, this 
work could further pave the way for non-invasive technology development for horticultural quality control in 
medical cannabis productions, as this emerging industry will require strict control over the cannabis chemotypes, 
with the strong advantage of avoiding destructive and time-consuming analytical techniques such as 
chromatography.   

1. Introduction 

Over the last few years, the trend of institutional acceptance towards 
the potential use of cannabis as a medical alternative to synthetic drugs 
for diverse illnesses or palliative pain treatment has undergone favour-
able progress (Cristino et al., 2020; Black, 2019; Cox-Georgian et al., 
2019; Aizpurua-Olaizola et al., 2017). Examples of this are the author-
isation of medical cannabis use in 38 US states through the approval of 
the Medical Marijuana Laws (MML) (‘State Medical Cannabis Laws’. 

Accessed: Jun. 02, 2023) or the declassification of cannabis and 
cannabis resin from the Schedule IV of the Single Convention of Narcotic 
Drugs (Recommendation of removal for cannabis and cannabis resin 
from Schedule IV of, 1961), thus recognising its therapeutic potential. As 
a result, various European countries have currently adopted favourable 
positionings towards the therapeutic application of cannabis, such as 
Germany or Switzerland (Abgabe, 2022; Act, 2022). This interest in the 
adoption of cannabis-based products in medicine mainly lies in the 
cannabinoids, a nearly exclusive class of terpenoid bioactive compounds 
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present in this plant species that interact with the human endocanna-
binoid system (ECS) (Booth and Bohlmann, 2019; Maccarrone, 2015; Di 
Marzo, 2018). The ECS is part of the human nervous system that plays an 
important physiological role, as it is involved in various processes such 
as brain plasticity regulation, neuronal development, energy balance or 
appetite regulation, among others (Aizpurua-Olaizola et al., 2017). 
However, within the class of cannabinoids, different compounds are 
biosynthesised in the cannabis plant, and each of them interacts differ-
ently with the receptors of the ECS, thus, possibly leading to different 
medical outcomes (Muller et al., 2019; Bonini, 2018; Zou and Kumar, 
2018). This is the reason why the growth in the interest in medical 
cannabis has highlighted the need for accurate and efficient methods for 
ensuring quality control compliance in the plant production process. 

Currently, two cannabinoids are commonly acknowledged to be 
potential active pharmaceutical ingredients (API), which are also the 
ones that appear in higher concentrations in cannabis inflorescences 
(Aizpurua-Olaizola, 2016): Δ9-Tetrahydrocannabinol (THC) and can-
nabidiol (CBD) (Gülck and Møller, 2020; Fraguas-Sánchez and Torres- 
Suárez, Nov. 2018). Therefore, since their discovery, cannabis strains 
have been cross-bred following the Mendelian genetics laws, in order to 
find resulting breeds with optimal THC/CBD ratios that improve ther-
apeutic efficacy and safety. As a consequence, countless cultivars can be 
now found within the cannabis species, but most of them can be clas-
sified into three chemotypes, depending on the content of these major 
cannabinoids (Small and Beckstead, 1973; Lewis et al., 2018): chemo-
type I, which can be defined as THC predominant; chemotype II, which 
possesses THC and CBD levelled contents; and chemotype III, which is 
predominant in CBD (Aizpurua-Olaizola, 2016). Therefore, in medical 
cannabis, breeds must be correctly classified through accurate canna-
binoid quantification, which traditionally has been mostly done by 
liquid chromatography coupled to diode array detector (LC-DAD), liquid 
chromatography and mass spectrometry (LC-MS) or gas chromatog-
raphy coupled to flame ionisation detector (GC-FID) (Aizpurua-Olaizola 
et al., 2014; San Nicolas, 2020; Chandra et al., 2019; Citti et al., 2018; 
Berman, et al., 2018; Citti et al., 2018; San Nicolas, et al., 1279). This 
means that the process involves destructive sampling, laborious sample 
preparation or costly analytical techniques, which are time-consuming 
and resource intensive. Moreover, in recent years, near-infrared spec-
troscopy (NIRS) has gained general appreciation for the analysis of 
cannabinoids, due to less labour-intensive and costly procedures, but 
without compromising precision and accuracy (Sánchez-Carnerero 
Callado et al., 2018; Duchateau et al., 2020; Deidda, 2021; Espel Gre-
kopoulos, 2019; Su, 2022; Yao et al., 2022). Nevertheless, the presence 
of moisture in the plant samples can be a procedural limitation when 
using NIRS, as the chemical bonds of the water molecule cause signifi-
cant banding in the NIR region. Therefore, it could be stated that, 
overall, moisture can cause either quantitative or qualitative interfer-
ence in the analysis of cannabinoids by this method. Due to this fact, the 
European Union (EU) delegated a commission regulation (N◦ 2017/ 
1155) which described an experimental procedure involving drying as 
pre-treatment of hemp samples for the analysis of cannabinoids (Regu-
lation, 2017), a procedure that is generally followed (Sánchez-Carnerero 
Callado et al., 2018; Duchateau et al., 2020; Su, 2022; Yao et al., 2022; 
Jarén et al., 2022; Valinger, 2021). Therefore, although NIRS requires an 
easier sample pre-treatment than chromatographic analysis, it does de-
mand an invasive experimental procedure on the cannabis plant for a 
reliable analysis of cannabinoids. 

In this line, hyperspectral imaging (HSI) appears as a potential non- 
invasive analytical technique for chemotype determination in cannabis, 
which combines the advantages of imaging and spectroscopy for 
capturing both spatial and spectral information from the plant (Amigo, 
2019). Through optical imaging, HSI enables two-dimensional object 
visualisation as a normal image, whereas a wide electromagnetic spec-
trum from each pixel is retrieved. Therefore, instead of just capturing the 
primary colours (red, green, blue) from each pixel, the wide spectrum 
from the pixels is broken down into spectral bands, and deeper 

information than what can be observed at first glance can be retrieved 
(Amigo et al., 2015). Hence, NIR-HSI not only enables the determination 
of the chemical composition of a sample by spectroscopic means but also 
permits the two-dimensional visualisation of its distribution throughout 
the sample surface. 

Thus, a hyperspectral image can be observed as a three-dimensional 
array which has two spatial dimensions, divided into pixels (x and y), 
and one spectral dimension (λ) (Fig. 1) (Amigo et al., 2015), which 
contains all the chemical information of the measured plant. This is why 
hyperspectral images usually present multicomponent mixture depen-
dence and they rarely contain selective spectral variables related to 
specific components (Amigo et al., 2015). For this reason, hyperspectral 
images often exhibit multicomponent mixture dependence, and they 
rarely contain selective spectral variables related to specific compo-
nents; however, this is the reason why HSI may deal with selective 
variables related to moisture bands that cause interference in NIRS 
analysis, enabling a non-invasive analysis in a living plant. Moreover, 
hyperspectral images can also contain spatial or spectral noise and 
redundant data, so the data must be adequately treated for the correct 
determination of the sought conclusions. In this line, machine learning 
approaches can fill this gap and handle multivariate challenges 
extracting meaningful patterns from hyperspectral data, in order to 
provide automated and efficient chemotype classification for quality 
control compliance at the plant production site, allowing rapid and non- 
destructive analysis of cannabis. 

In addition, it is also worth the ad hoc mentioning of some recent 
works focused on the quantification of the main cannabinoids (THC and 
CBD, alongside their THCA and CBDA acidic conjugates) by NIR-HSI and 
other machine learning approaches. In this line, in S. K. Abeysekera et al. 
(Abeysekera, et al., 2023) it was proved that NIR-HSI technology is a 
valuable tool for the accurate estimation of THCA content for high- 
throughput phenotyping of cannabis. This was also the conclusion of 
W. S. Holmes et al. (Holmes, 2023) regarding the quantification of CBDA 
content in inflorescences and leaves through this technique. Also in the 
case of Y. Lu et al. (Lu et al., 2022), it was determined that NIR-HSI, as 
opposed to conventional analytical methods, is a potentially useful tool 
for non-destructive, rapid quantification of the stated major cannabi-
noids in floral material of cannabis. Thus, recent empirical studies are 
demonstrating the potential of this technology in cannabis for various 
objectives, simplifying the procedure without compromising analytical 
capabilities. For this reason, innovative non-invasive techniques such as 
NIR-HSI should be more frequently introduced in crop quality control, 
seeking to reduce field and laboratory workloads. 

Hence, the objective of this study was to determine the feasibility of 
HSI, coupled with machine learning approaches, for non-invasive che-
motype classification in cannabis. The scope is the development of an 
accurate and reliable method that could streamline the analysis process 
in-situ, excluding the need for any sample preprocessing for chemotype 
classification in cannabis, thus, facilitating quality control in the medical 
cannabis industry. The proposed methodology holds great promise for 
improving cultivation practices and enabling well-informed decision- 
making in cannabis-related research and production. 

2. Materials and methods 

2.1. Cannabis plants cultivation 

The cannabis plants were cultivated in the facilities of Sovereign 
Fields S.L. (Larramendi 3 str., Donostia-San Sebastian 20006, Spain). 
Plants were grown in 11 L black pots containing a soil/hummus/nutrient 
mixture. Specifically, the mixture consisted of 80 % of Light mix soil of 
Biobizz Worldwide S.L. (Lezama-Leguizamon industrial park, Gorbeia 
11 str., Etxebarri, Spain), 20 % of hummus, and 10 g/L of farmer mix 
nutrient solution by Lurpe Natural Solutions (Zubiate 3 str., Lemoa 
48330, Spain), which is composed of bat guano, bone meal, kelp meal, 
Azomite®, organic alfalfa, insect frass, blood meal, dolomite, 
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Fig. 1. NIR-Hyperspectral image visualisation of a cannabis plant captured in the 930–2500 nm wavelength range.  
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langbeinite humic and fulvic acids, and a complex blend of rhizobacteria 
and trichoderma. The total cultivation time was 12 weeks: the first 4 
weeks corresponded to the vegetative stage, the period during which the 
plants grew; and the next 8 weeks were the flowering stage when in-
florescences developed. The photoperiod regime defined the vegetative 
and flowering stages: At 18 h light/6h dark for the vegetative stage, it 
changed to 12 h light/12 h dark for the flowering stage. NIR- 
Hyperspectral images of the plants were acquired in their tenth culti-
vation week. 

NIR-hyperspectral images of 57 plant individuals were taken for this 
work, divided into different varieties: 10 Dairy Queen (DQ), 9 Futura 75 
(FT), 10 Remedy (RE), 8 Roma (RO), 10 Tel Aviv (TA) and 10 White 
Widow (WW) individuals. Each one of the individuals was enumerated. 

2.2. Analysis of cannabinoids 

As a reference method for the definition of each variety’s chemotype, 
the corresponding cannabinoid content was determined in in-
florescences of the stated cultivars using Liquid Chromatography with 
Diode Array Detector (LC-DAD) according to Aizpurua-Olaizola et al. 
(Aizpurua-Olaizola, 2016) in the Sovereign Fields S.L. facilities. It was 
assessed that Tel Aviv, Roma and Dairy Queen varieties belonged to 
Chemotype I (CTotal THC/CTotal CBD > 10), Remedy and White Widow 
varieties belonged to Chemotype II (0.3 < CTotal THC/CTotal CBD < 3), and 
Futura 75 variety belonged to Chemotype III (CTotal THC/CTotal CBD < 0.1) 
(Small and Beckstead, 1973). 

2.3. Nir-hyperspectral image acquisition 

Images were taken in situ, using a HySpex SWIR 384 (HySpex by 
NEO, Østensjøveien 34, N-0667 Oslo, Norway) hyperspectral camera 
with the field setup, under sunlight illumination. Images were obtained 
on the same summer day (02/07/2021), between 09:00 and 14:00. 

The spectral range of the hyperspectral camera was set between 930 
nm and 2500 nm, divided into 288 spectral channels with a 5.45 nm 
spectral resolution, and the spatial resolution was 384 x 286 pixels. The 
camera was equipped with the 3 m distance lens and the rotation angle 
of the rotor of the tripod of the field setup was set at 16◦, which provided 
a linear field of view (FOV) of 841 mm, resulting in a pixel size across-/ 
along the track of 2.19/2.19 mm. 

For the acquisition of the images, the corresponding plant individual 
was placed in front of a white wall inside the greenhouse, at the facilities 
of Sovereign Fields S.L. Then, the tripod was placed at a distance of 3 m 
from the plant pot, perpendicularly to the wall. As the rotation of the 
tripod rotor moved from left to right according to the established rota-
tion angle (16◦), the plant was aligned so that it was centered in the 
linear FOV. Once all the parameters were set, the image was acquired 
with the ENVI® hyperspectral image processing software (NV5 Geo-
spatial Solutions, Inc., Broomfields, Colorado, USA) and then radio-
metrically calibrated. Images of one plant individual at a time were 
taken. 

2.4. Hyperspectral image analysis 

NIR-hyperspectral images were imported into MATLAB environment 
(The MathWorks Inc.) and handled with HYPER-Tools 3.0 (freely 
available at https://www.hypertools.org) (Mobaraki and Amigo, 2018). 

A total of 502 flower spectra were extracted from the NIR- 
hyperspectral images by manual flower-pixel picking: 249 of chemo-
type I, 178 of chemotype II and 75 of chemotype III. In addition, a cu-
mulative number of 219 stem spectra were as well extracted from all 
images by manually picking pixels from the plant stem regions, as it can 
be observed in Fig. 2. Retrieved spectra were preprocessed with 
Savitzky-Golay derivative (Window width 7; Polynomial order 2; De-
rivative order 1) (Fig. 2) and mean-centered for the classification model 
training. 

For correct chemotype prediction and appropriate data visualisation, 
the background was eliminated for each plant. For doing so, Principal 
Component Analysis (PCA) was performed on each image, after mean 
centering (Pearson, Nov. 1901; Hotelling, 1933). Scores of PC2 provided 
morphological fit of the plant individuals, focused on inflorescences, 
allowing the irregular background removal from the images, as shown in 
Fig. 3. 

Two classification strategies based on Partial Least Squares- 
Discriminant Analysis (PLS-DA) were proposed in this work (Ståhle 
and Wold, 1987). The first approach was conducted by directly training 
the calibration model with the 502 flower spectra of the three 

Fig. 2. Manual flower-pixel and stem-pixel picking in the hyperspectral images 
of various plant individuals for spectra retrieving to train the corresponding 
classification model (a) DQ5 individual (b) TA6 individual (c) RO6 individual 
(d) RE2 individual (e) WW5 individual (f) FT9 individual g) SWIR spectra of the 
flower-pixels and stem-pixels used for the classification model training after 
Savitzky-Golay derivative. 
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chemotypes. On the other hand, the second strategy was based on a two- 
layer hierarchical model: in the first layer, the stem was classified from 
the rest of the plant using the 502 flower spectra and 219 stem spectra; 
in the second level, the non-stem part of the plant was classified as the 
corresponding chemotype using the 502 flower spectra. The models, 
developed using the PLS_Toolbox 9.0 (Eigenvector Reseach, WA, USA), 
were cross-validated with random subsets, with 10 data splits and 5 
iterations. 

The pixels not used in the training of the classification models were 
predicted with these in every hyperspectral image. 

3. Results and discussion 

3.1. Major cannabinoid characterisation 

The chemotype of each cultivar was defined through destructive 
analysis of cannabinoids in their pooled dry inflorescences. 

Corresponding major cannabinoid concentrations are shown in Table 1, 
from which Dairy Queen, Tel Aviv and Roma cultivars were defined as 
chemotype I belonging; White Widow and Remedy were defined as 
chemotype II; and Futura 75 was defined as chemotype III. 

3.2. PLS-DA model performance 

3.2.1. PLS-DA model training 
The classification model for the three chemotypes was trained using 

8 Latent Variables. Cross-validation of the model was performed 
through random subsampling, since the three defined classes possessed 
different statistical weights in the model, with 10 data splits permutated 
in 5 iterations. Cross-validated optimised sensitivity and specificity 
values were the following for each class: 0.845/0.845 for Chemotype I, 
0.954/0.920 for Chemotype II, and 0.888/0.925 for Chemotype III. ROC 
curves for each class are shown in Fig. 4. 

To ensure the reliability of the model, a 100-iteration permutation 
test was performed with the data used for the model training, to test the 
statistical significance of the model. This way, it is determined whether 
the predictive capacity of the model is overfitted, if it is product of 
chance or if it is product of the corresponding sample-variable correla-
tions (Lopez et al., Sep. 2023). The probability of chance of the model 
was tested through the Wilcoxon test (Wilcoxon, 1945), where both the 
self-predicted and cross-validated result happened to be 0 for each one 
of the chemotype classes. Thus, it was determined that the model is 
statistically robust and significant, meaning neither cross-validated pa-
rameters of the model nor its predictive capacity are affected by random 
factors or product of chance, therefore implying that every prediction 
result would be the truthful product of the correlation between the 
variables and the classes of the data. 

Fig. 3. Morphological masking on Dairy Queen 4 plant individual through PCA (a) False RGB image of the plant (b) Scores and Loadings of PC1, PC2 and PC3 (c) 
Masked false RGB image of the plant individual. 

Table 1 
THC and CBD concentrations in different cannabis cultivars’ dry inflorescences 
determined by HPLC-DAD in and their respective chemotype.   

Cannabinoid 
concentration (w/w. %)   

Variety Total THC Total CBD CTotal THC/CTotal CBD Class 

White Widow  5.6  7.5 0.75 Chemotype II 
Dairy Queen  20.2  0.7 28.86 Chemotype I 
Tel Aviv  16.9  0.2 84,50 Chemotype I 
Roma  17.3  0.2 86,50 Chemotype I 
Futura 75  0.7  15.6 0.04 Chemotype III 
Remedy  6.8  8.8 0.77 Chemotype II  
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3.2.2. PLS-DA model external validation 
The predicted chemotype probabilities for each plant are presented 

in Table S1 of Supplementary Material (SM). The minimum threshold for 
predicting the corresponding chemotype in each pixel of the images was 
set at 50 % probability. Thus, for the external prediction of the che-
motype of a plant individual, a restriction rule was set, stating that at 
least 50 % of the pixels that constitute an image must be classified in one 
of the chemotypes. According to this statement, the predicted chemo-
types on the true plant individual classes are shown in Table 2. 

From the results presented in Table 2 it could be acknowledged that 4 
individuals were incorrectly classified (7.02 % misclassification ratio). 
In comparison, the other two individuals were not classified in any of the 
classes (3.51 % non-classification ratio), so 51 out of 57 plant in-
dividuals were correctly classified (89.47 % trueness). In this line, it is 
worth highlighting that every individual belonging to chemotype II was 
correctly classified (100 % trueness). The best results were expected to 
correspond to this class, as it showed the best overall sensitivity and 
specificity values in the model training (0.954 and 0.920, respectively). 

Furthermore, the volume of analysed chemotype I individuals was the 
largest between the three classes (n = 28). This class was composed of 
three different cultivars, which could lead to a higher misclassification 
probability due to greater biological variability among individuals. This 
could be why, out of the 28 individuals, there were 25 individuals 
correctly classified (89.29 % trueness). Finally, the model performed 
worst in predicting chemotype III plants. In this case, only 6 out of 9 
individuals were correctly classified (66.67 % trueness). In general 
terms, this result would not be adequate for the development of a 
representative classification model. However, this fact could result from 
a bias in its predictive capacity. Taking a closer look at the predictions, it 
could be noted that, overall, the stem part of the plants was predicted as 
chemotype I, regardless of the class each plant belonged to. Indeed, this 
bias seems more noticeable in chemotype III plants, where pixels pre-
dicted as chemotype I comprise a notoriously large portion of the im-
ages. Therefore, the model was hierarchised at two classification levels 
to leverage the stem area of the plants in the images. This modification 
was expected to remove this prediction bias, so a model with better 
predictive capacity could be achieved. 

3.3. HPLS-DA model performance 

3.3.1. HPLS-DA model training 
The first classification level of the HPLS-DA consisted of a classifi-

cation between pixels corresponding to the stem and non-stem part. This 
model showed cross-validated sensitivity and specificity values of 0.986 
and 0.995 for the non-stem part of the plant, respectively, and 0.995 and 
0.986 for the case of the stem part, with 4 Latent Variables (LV) (see 
Fig. 5). The second classification level of the HPLS-DA corresponded to 

Fig. 4. Estimated (blue) and Cross-Validated (green) receiving operating 
characteristic (ROC) curves and estimated (solid) and cross-validated (dashed) 
response curves (a) Chemotype I (b) Chemotype II (c) Chemotype III. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 2 
True classes and predicted classes of 57 plant individuals of 6 different varieties belonging to three chemotypes through trained PLS-DA classification model.    

Predicted class (Chemotype Probability > 50 %)    

Chem. I Chem. II Chem. III Not classified  

True class Chemotype I (n = 28) 25 2 0 1 28 
Chemotype II (n = 20) 0 20 0 0 20 
Chemotype III (n = 9) 2 0 6 1 9   

27 22 6  Sum = 57  

Fig. 5. Estimated (blue) and cross-validated (green) ROC curves and estimated 
(solid) and cross-validated (dashed) response curves (a) Non-stem class (b) 
Stem class. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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the previously trained PLS-DA (section 3.2.). 

3.3.2. HPLS-DA model external validation 
The predicted chemotype probabilities for each plant individual 

through HPLS-DA are presented in Table S2 of SM. The minimum 
threshold for predicting the corresponding chemotype in each pixel was 
also set at 50 % probability, as in the previous PLS-DA predictions. 
Nevertheless, in this case, for chemotype prediction in a plant, the 
leverage of stem pixels among the total pixels constituting each image 
was assessed, as either the morphology or size of the plant varied be-
tween individuals and varieties. Hence, a restriction rule was established 
in the second classification level, stating that at least 50 % of the leaf 
pixels must be classified in one of the three chemotypes. By this state-
ment, the predicted chemotypes on the true plant individual classes are 
shown in Table 3. 

According to the results presented in Table 3, no individual was 
unclassified in chemotype prediction through HPLS-DA, which indicates 
a classification with a greater probability than 50 % in one of the che-
motypes in every plant individual (0.00 % non-classification ratio). 
However, 5 out of 57 individuals were incorrectly classified (91.23 % 
trueness, 8.77 % misclassification ratio). As in the case of PLS-DA, all 
chemotype II individuals were correctly classified (100 % trueness), but 
in the case of chemotype III plants, the results improved, with correct 
classification of 8 out of 9 individuals (88.89 % trueness). Considering 
the number of chemotype III plant individuals, this was a remarkable 
improvement over the PLS-DA results (22.22 % improvement). None-
theless, the trueness ratio of the chemotype I plant was downgraded 
(3.58 % downgrade), as 24 out of 28 individuals were correctly classi-
fied (85.71 % trueness). 

3.4. Comparison between classification models 

Comparing the PLS-DA and HPLS-DA models overall, it could be 
stated that the hierarchical model offered better results than the first 
one, shown in Table 4, as no individual was left unclassified. Some of the 
visual prediction examples can be observed in Fig. 6, where it can be 
observed that, for instance, Futura75 no. 2 individual, which belongs to 
chemotype I, was classified as chemotype I through the PLS-DA model, 
whereas it was correctly classified using the HPLS-DA model. This later 
one enhanced overall predictive capacity, as trueness for the chemotype 
III class was improved due to the removal of the stem bias. Conse-
quently, the achieved results were closer to true classes. 

3.5. Proof of concept confirmation 

In both model cases, two certain individuals were undoubtfully 
misclassified. Those individuals were Tel Aviv 3 and Tel Aviv 4, theo-
retically belonging to chemotype I, which has been undoubtedly clas-
sified to chemotype II. In the case of the Tel Aviv 3 individual, the 
probability results obtained by PLS-DA model were 8.05 % for chemo-
type I, 91.95 % for chemotype II and 0.00 % for chemotype III, while 
through HPLS-DA, prediction probabilities of 1.33 % for chemotype I, 
98.67 % for chemotype II and 0.00 % for chemotype III were obtained. 
In the case of the Tel Aviv 4 individuals, the prediction results were 
similar. PLS-DA provided resulting probabilities of 9.02 % for chemo-
type I, 90.98 % for chemotype II and 0.00 % for chemotype III, while 

using HPLS-DA, these values were 0.09 % for chemotype I, 99.91 % for 
chemotype II and 0.00 % for chemotype III. Both individuals were 
significantly classified as chemotype II belonging and, as unlikely as it 
may appear, this result could be correct, derived from a plant labelling 
error in the plant cultivation facilities. This fact was later confirmed, 
since, at the time of the image acquisition, some White Widow in-
dividuals (chemotype II) were incorrectly labelled and lost control over 
their tracking. Therefore, to ascertain the comparability of these precise 
individuals with the other Tel Aviv and White Widow individuals, a 
Student t-test was applied between the prediction results of these groups 
(Student, 1908). The statistic t-tests were calculated assuming equal 
variances between the two groups. On the one hand, the belonging of Tel 
Aviv 3 and Tel Aviv 4 individuals to Tel Aviv variety was proposed as a 
null hypothesis, thus comparing chemotype I resulting in predictions in 
the corresponding individuals of both groups. On the other hand, the 
resemblance of Tel Aviv 3 and Tel Aviv 4 individuals to White Widow 
cultivar was proposed as a null hypothesis, so predicted probabilities for 
chemotype II were compared between the stated groups. Both calcula-
tions, shown in Table 5, were done with predictions resulting from the 
HPLS-DA model. 

The results of the statistical t-test rejected the null hypothesis of TA3 
and TA4 individuals belonging to T.A. variety, as the calculated t 
resulted to be − 9.18 (t Critical for one-tail = 1.86), while it accepted 
their similarity to W.W. variety (calculated t = 1.43; t Critical for one- 
tail = 1.81). Being this so, if these individuals were to be correctly 
relabeled as W.W. cultivar belonging, the HPLS-DA prediction results 
would considerably improve to 92.31 % trueness for chemotype I, 
100.00 % trueness for chemotype II and 88.89 % trueness for chemotype 
III, alongside 5.26 % misclassification ratio, as just 3 individuals would 
be incorrectly predicted. Therefore, the overall prediction trueness of 
the HPLS-DA would be 94.74 %, which would give this classification 
model an accurate predictive capacity. Accepting this hypothesis, the 
final average predicted probabilities for each chemotype would be those 
shown in Table 6. According to those results, the classification perfor-
mance for chemotype II plants is excellent, showing a predicted average 
probability of 96.63 % with 5.59 % precision. In the other cases, the 
predicted average probability and precision results were 67.85 % and 
15.10 % for chemotype I plants, and 61.75 % and 17.82 %, respectively, 
for chemotype III plants. This fact could occur due to chemotype II 
plants containing both major cannabinoids in significant contents. In 
contrast, either of the other two classes only contains one of them 
(section 3.1), so it could be deduced that the presence of both cannabi-
noids at significant concentrations considerably enables representative 
chemotype classification by NIR-hyperspectral imaging in cannabis 
cultivars. 

Table 3 
True classes and predicted classes of 57 plant individuals of 6 different varieties belonging to three chemotypes through trained HPLS-DA classification model.    

Predicted class (Chemotype Probability > 50 %)    

Chem. I Chem. II Chem. III Not classified  

True class Chemotype I (n = 28) 24 4 0 0 28 
Chemotype II (n = 20) 0 20 0 0 20 
Chemotype III (n = 9) 1 0 8 0 9   

25 24 8  Sum = 57  

Table 4 
Classification model predictive capacity comparison.   

PLS-DA (3 classes) HPLS-DA (2 levels) 

Overall trueness 89.47 % 91.23 % 
Chemotype I 

Chemotype II 
Chemotype III 

89. 29 % 
100.00 % 
66.67 % 

85.71 % 
100.00 % 
88.89 % 

Misclassification ratio 7.02 % 8.77 % 
Non-classification ratio 3.51 % 0.00 %  
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4. Conclusion 

This work concluded that, through NIR-hyperspectral image analysis 
of Cannabis sativa L., different cultivars belonging to chemotypes I, II and 
III could be representatively classified, avoiding invasive analytical 
techniques. This was made possible due to a two-level hierarchical 
classification model in cannabis plants: on the first level stem and non- 
stem parts of the plants could be classified, while on the second level 
plants were classified in one of the three chemotypes based on SWIR 
spectral information. According to the HPLS-DA model, the results 
showed that plants belonging to chemotype II were perfectly classified, 
as in the cases of chemotype I and chemotype III, 1 and 2 individuals, 
respectively, were misclassified. This translates into an overall classifi-
cation trueness of 94.74 %, a correct proof of concept classification 
performance. Moreover, as formerly stated, TA3 and TA4 individuals, 
theoretically belonging to chemotype I, were representatively classified 
to chemotype II. Even though it was an anomaly, it was later confirmed 
that, during the cultivation time, a mislabelling error happened in the 
cultivation facilities, as some individuals belonging to White Widow 
variety (chemotype II) were incorrectly tagged. Rather than worsening 
the results, this error empirically demonstrated the purpose of this work, 
as in-field analysis enabled procedural control over the plants avoiding 
invasive characterisation of cannabinoids in plant inflorescences. 
Nevertheless, it is also true that, in any other scenario, this could be a 
potential source of error in the data, so it is imperative that adequate 
traceability is kept towards the identification of the plant individuals for 
future field work involving larger sample sizes, with rigorous labelling 

Fig. 6. PLS-DA (left) and HPLS-DA (right) prediction examples in different plants: (a) Roma no. 3 individual (Chemotype I) (b) White Widow no. 10 individual 
(Chemotype II) (c) Futura75 no. 2 individual (Chemotype III). 

Table 5 
Statistic t-tests between TA3 and TA4 individuals with the rest of T.A. group and 
TA3 and TA4 individuals with the W.W. group.   

t-Test: Two-groups assuming equal variances (α = 0.05)  

Chemotype I Chemotype II  

TA3 and TA4 Rest of TAs TA3 and TA4 WWs 

Mean 0.71 69.66 99.29 92.80 
Variance 0.77 103.10 0.77 38.01 
Observations 2 8 2 10 
Pooled Variance 90.31  34.29  
P(T ≤ t) two-tail 1.61E-05  0.18  
t Critical two-tail 2.31  2.23   

Table 6 
Predicted average probability, standard deviation and precision in each of the 
three chemotypes, accepting the hypothesis of TA3 and TA4 individuals 
belonging to WW variety.   

Chemotype I 
(%) 

Chemotype II 
(%) 

Chemotype III 
(%) 

Trueness  92.31  100.00  88.89 
Predicted average 

probability  
67.85  96.63  61.75 

Standard Deviation  10.24  5.40  11.01 
Precision (RSD)  15.10  5.59  17.82 

*RSD: Relative standard deviation 
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and tracking procedures. Moreover, it would also be beneficial to assess 
and demonstrate the classification model’s performance across different 
cultivation environments, apart from the specific conditions of the fa-
cilities of Sovereign Fields S.L., so as to ensure the transferability of the 
results in different growth sites. 

Therefore, the methodology based on NIR-HSI with a HPLS-DA for 
chemotype classification properly dealt with the main handicap of the 
analysis of cannabinoids by NIRS, which was the moisture present in the 
fresh plant tissue, enabling representative analysis directly in a complete 
living plant individual. Nonetheless, it is essential to highlight and not 
confuse the main aim of this work, which was the classification of 
cannabis plant individuals into their corresponding chemotype through 
an easy and non-invasive methodology for quality control in production, 
with the quantification of cannabinoids present in the plants, for which 
the traditional methodology would be the drying of the corresponding 
plant material for the subsequent analysis by NIRS or other means such 
as chromatography. 

Thus, as the main objective of this work was achieved, the proof of 
concept for comprehensive breeding control of crops, and more certainly 
of cannabis, through a non-invasive analytical technique was demon-
strated. This fact could pave the way for non-invasive technology 
development in agricultural quality control, as the stated aim was ach-
ieved by avoiding usual analytical techniques such as chromatography 
or conventional SWIR spectroscopy. However, to make it possible, the 
classification model would need much more extensive training data. In 
order to enhance the generalizability of the results, a much larger 
sample number would be needed, with greater cultivar diversity 
coverage through different cultivation times. Therefore, an ideal pro-
posal would be to extent the model calibration data with more cultivars 
from the three chemotypes, ideally balancing the statistical weight of 
the classes, and adding spectra from different plant tissues, such as 
leaves, and complementing it with spectra at different growing stages. 
This way, a regressive tendency would be deduced according to different 
times of growth, making the prediction of the corresponding chemotype 
in individuals at early growth stages possible. 
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