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It is shown that Katětov-Tong insertion theorem continues to hold for normal 𝐿-topological spaces 
and functions with values in appropriately 𝐿-topologized tensor product 𝑀 ⊗𝐿 where 𝐿 is a 
complete lattice with an order-reversing involution and 𝑀 is a completely distributive lattice with 
a countable join base free of supercompact elements. When the first factor is the real unit interval, 
the tensor product can be identified with the Hutton fuzzy unit interval. Among corollaries of our 
insertion theorem are Urysohn lemma and Tietze extension theorem for (𝑀⊗𝐿)-valued functions 
as well as Katětov-Tong insertion theorem for 𝑀 -valued functions on traditional topological 
spaces.

1. Introduction

The famous Katětov-Tong insertion theorem due to Katětov [8] and Tong [19] states the following: A topological space 𝑋 is normal 
if and only if, given an upper semicontinuous function 𝑔 ∶𝑋→ [0, 1] and a lower semicontinuous function ℎ ∶𝑋→ [0, 1] with 𝑔 ≤ ℎ, there 
exists a continuous function 𝑓 ∶ 𝑋 → [0, 1] such that 𝑔 ≤ 𝑓 ≤ ℎ. If 𝑓 and 𝑔 are characteristic functions of closed and open sets, this 
powerful theorem becomes Urysohn lemma. Tietze extension theorem is another simple corollary of Katětov-Tong theorem.

In this paper we stay in the category 𝐓𝐨𝐩(𝐿) of 𝐿-topological spaces and continuous functions where 𝐿 is an arbitrary complete 
lattice with an order-reversing involution.

Our purpose is to show that the Katětov-Tong theorem can be carried over to normal 𝐿-topological spaces and functions with 
values in appropriately 𝐿-topologized tensor product 𝑀 ⊗𝐿 where 𝑀 is a completely distributive lattice with a countable join 
base consisting of elements which all fail to be supercompact (= completely join irreducible). When 𝑀 is the real unit interval, 
𝑀 ⊗𝐿 can be identified with the Hutton fuzzy unit interval [7] in which case the Katětov-Tong insertion theorem goes back to 
[9]. Further applications include, among others, simple proofs of Urysohn’s type lemma and Tietze’s type extension theorem for 
(𝑀⊗𝐿)-valued functions on normal 𝐿-topological spaces [4] as well as the Katětov-Tong insertion theorem for 𝑀 -valued functions 
on normal topological spaces [6].
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2. Terminology and notation

Let 𝐿 be a complete lattice. The set 𝐿𝑋 of all functions from a set 𝑋 into 𝐿 is a complete lattice under pointwise ordering:

𝑓 ≤ 𝑔 in 𝐿𝑋 iff 𝑓 (𝑥) ≤ 𝑔(𝑥) in 𝐿 for all 𝑥 ∈𝑋.
⋀
𝑠⊲𝑡

Bounds of a complete lattice are denoted 0 and 1 (unless otherwise stated). The two-point chain is denoted 𝟐.

2.1. Few 𝐿-topological concepts

A family  ⊆ 𝐿𝑋 is an 𝐿-topology on 𝑋, its members are open in 𝑋, and (𝑋,  ) is an 𝐿-topological space (usually written as 𝑋) if 
 is closed under finite meets and arbitrary joins formed in 𝐿𝑋 . Every 𝐴 ∈𝐿𝑋 has its interior

Int𝐴 =
⋁
{𝑈 ∈  ∶𝑈 ≤𝐴}.

⋀
𝑠⊲𝑡

A function 𝑓 ∶ (𝑋,  )→ (𝑌 ,  ) is continuous if, given 𝑉 in  , the composite 𝑉 ◦𝑓 belongs to  . We say  is generated by a 
subbase  ⊆ 𝐿𝑋 if  is the intersection of all 𝐿-topologies on 𝑌 which contain  . Because of no distributivity assumed in our 𝐿, 
when checking a function for continuity we shall refer to the following subbasic characterization of continuity (cf. [17, p. 282]):

Subbase lemma. Given  a subbase of an 𝐿-topology  on 𝑌 , a function 𝑓 ∶ (𝑋,  ) → (𝑌 ,  ) is continuous if and only if 𝑉 ◦𝑓 ∈  for 
all 𝑉 ∈  .

If 𝑍 ⊆𝑋, the restrictions {𝑈 |𝑍 ∶𝑈 ∈  } form a subspace 𝐿-topology on 𝑍 .

If 𝐿 has an order-reversing involution (⋅)′ ∶𝐿 →𝐿, then 𝐾 ∈𝐿𝑋 is called closed if 𝐾 ′ is open where

𝐾 ′(𝑥) =𝐾(𝑥)′
⋀
𝑠⊲𝑡

for all 𝑥 ∈𝑋. A complete lattice 𝐿 with an order-reversing involution (⋅)′ is written as

(𝐿, ′).
⋀
𝑠⊲𝑡

Every 𝐴 ∈𝐿𝑋 has its closure

𝐴 =
⋀
{𝐾 ∈𝐿𝑋 ∶𝐴 ≤𝐾 and 𝐾 is closed} = (Int (𝐴′))′.

⋀
𝑠⊲𝑡

A few more concepts will be defined later in the text.

2.2. Tensor products of complete lattices

Let 𝑀 and 𝐿 be complete lattices. Elements of 𝑀 are denoted by 𝑡, 𝑠, 𝑟, and elements of 𝐿 by 𝑎, 𝑏, 𝑐. A function 𝜆 ∶𝑀 → 𝐿 is 
join-preserving if

𝜆(
⋁
𝑇 ) =

⋁
𝜆(𝑇 ) for all 𝑇 ⊆𝑀.

⋀
𝑠⊲𝑡

Thus we are in the category 𝐒𝐮𝐩 of complete lattices and join-preserving functions. The category 𝐒𝐮𝐩 has tensor products. One 
construction of a tensor product in 𝐒𝐮𝐩, which is in tune with the fuzzy unit interval of Hutton [7] (cf. [5]), has been described by 
Shmuely [18]. Namely, the tensor product of 𝑀 and 𝐿 is the complete lattice

𝑀 ⊗𝐿
⋀
𝑠⊲𝑡

consisting of all functions 𝜆 ∶𝑀 →𝐿 which are join-reversing – i.e.

𝜆(
⋁
𝑇 ) =

⋀
𝜆(𝑇 ) for all 𝑇 ⊆𝑀.

⋀
𝑠⊲𝑡

Hence 𝜆(0) = 1. Meets in 𝑀 ⊗𝐿 are computed pointwisely in 𝐿𝑀 . The function ⊗ ∶𝑀 ×𝐿 →𝑀 ⊗𝐿 sending (𝑡, 𝑎) ∈𝑀 ×𝐿 to the 
function 𝑡 ⊗𝑎 ∶𝑀 →𝐿 defined by

(𝑡 ⊗ 𝑎) (𝑠) =
⎧⎪⎨⎪⎩
1 if 𝑠 = 0
𝑎 if 0 ≠ 𝑠 ≤ 𝑡
0 if 𝑠 ≰ 𝑡
2

is a universal bimorphism. Bounds of 𝑀 ⊗𝐿 are the functions 𝟎,𝟏 ∶𝑀 →𝐿 defined by
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𝟎(𝑡) =
{

1 if 𝑡 = 0
0 if 𝑡 ≠ 0 and 𝟏(𝑡) = 1.

Both 𝑀 and 𝐿 completely embed into 𝑀 ⊗𝐿 via 𝑒1 ∶𝑀 →𝑀 ⊗𝐿 and 𝑒2 ∶𝐿 →𝑀 ⊗𝐿 given by

𝑒1(𝑡) = 𝑡 ⊗ 1 and 𝑒2(𝑎) = 1⊗𝑎.
⋀
𝑠⊲𝑡

A full description of tensor products in 𝐒𝐮𝐩 may be found in the book [2] (as well in [3]).

2.3. Completely distributive lattices and ⊲-separability

For the tensor product 𝑀 ⊗𝐿 to play the same role for 𝐿-topological spaces as the real unit interval plays in usual topology, we 
must assume something more about 𝑀 than mere completeness. We will assume 𝑀 is a completely distributive lattice endowed with 
an appropriate join base. To this end – instead of the usual equational definition of complete distributivity – we shall use Raney’s 
[15] characterization of complete distributivity in terms of the totally below relation ⊲.

Given 𝑠, 𝑡 ∈𝑀 , we let

𝑠 ⊲ 𝑡
⋀
𝑠⊲𝑡

if, whenever 𝑡 ≤
⋁
𝑇 with 𝑇 ⊆𝑀 , there exists an 𝑟 ∈ 𝑇 such that 𝑠 ≤ 𝑟. Then: (1) 𝑠 ⊲ 𝑡 implies 𝑠 ≤ 𝑡, and (2) 𝑠 ≤ 𝑞 ⊲ 𝑟 ≤ 𝑡 implies 

𝑠 ⊲ 𝑡. In particular, ⊲ is transitive.

According to [15], a complete lattice 𝑀 is completely distributive iff each 𝑡 ∈𝑀 has the approximation property – i.e.

𝑡 =
⋁
{𝑠 ∈𝑀 ∶ 𝑠 ⊲ 𝑡},

⋀
𝑠⊲𝑡

in which case ⊲ has the insertion property – i.e.

𝑠 ⊲ 𝑡 implies 𝑠 ⊲ 𝑟 ⊲ 𝑡 for some 𝑟 ∈𝑀.
⋀
𝑠⊲𝑡

A set 𝑄 ⊆𝑀 is called a join base of 𝑀 (in short: base) if each element of 𝑀 is a join of a subset of 𝑄. This is equivalent to the 
requirement that for all 𝑡 ∈𝑀 one has

𝑡 =
⋁
{𝑟 ∈𝑄 ∶ 𝑟 ≤ 𝑡}.

⋀
𝑠⊲𝑡

We shall freely use the following equivalent properties [4]:

(1) 𝑄 is a base of 𝑀 .

(2) If 𝑡 ⊲ 𝑠 in 𝑀 , then there is an 𝑟 ∈𝑄 with 𝑡 ⊲ 𝑟 ⊲ 𝑠.

(3) 𝑡 =
⋁
{𝑟 ∈𝑄 ∶ 𝑟 ⊲ 𝑡} for all 𝑡 ∈𝑀 .

An element 𝑡 ∈𝑀 is called supercompact (another terminology: completely join irreducible) if

𝑡 ⊲ 𝑡.
⋀
𝑠⊲𝑡

In [6], a countable base 𝑄 of a completely distributive lattice 𝑀 is called ⊲-separable if it is free of supercompact elements – i.e. 
𝑟 � 𝑟 for all 𝑟 ∈𝑄. We may say that a complete lattice 𝑀 is ⊲-separable if it is completely distributive and has a ⊲-separable base. 
Observe that 0 is never supercompact and besides, if 𝑀 is ⊲-separable, also 1 fails to be supercompact.

Besides the real unit interval (in which the rationals form a ⊲-separable base), there are interesting examples of ⊲-separable 
lattices:

(a) The tensor product 𝑀 ⊗𝐿 with 𝑀 a ⊲-separable lattice and 𝐿 being the power set (ℕ) ordered by inclusion; this is in fact 
true for any completely distributive 𝐿 with a countable base (see [4]).

(b) The Cartesian product of a countable family of ⊲-separable lattices is ⊲-separable too. In particular, this is the case of the 
Hilbert cube (see [6]).

3. 𝑳-topologizing 𝑴 ⊗𝑳

For 𝑀 a completely distributive lattice, members of 𝑀 ⊗𝐿 can be characterized in terms of ⊲ (cf. [4]). Namely, 𝜆 ∶𝑀 → 𝐿 is 
join-reversing if and only if it is left-continuous – i.e.⋀
3

𝜆(𝑡) =
𝑠⊲𝑡
𝜆(𝑠) for all 𝑡 ∈𝑀.
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For an order-reversing function 𝜆 ∶𝑀 →𝐿, we let

𝜆+(𝑡) =
⋁
𝑡⊲𝑠
𝜆(𝑠) for all 𝑡 ∈𝑀.

Then 𝜆+ ≤ 𝜆 and 𝜆+ is order-reversing.

The following properties come from [4]:

3.1 Fact. Let 𝑀 be completely distributive with a base 𝑄, and let 𝐿 be complete. For each 𝜆 ∈𝑀 ⊗𝐿 we have:

(1) 𝜆+(𝑡) =
⋁

𝑡⊲𝑠, 𝑠∈𝑄
𝜆+(𝑠).

(2) 𝜆+(𝑡) =
⋁

𝑡⊲𝑠, 𝑠∈𝑄
𝜆(𝑠).

(3) 𝜆(𝑡) =
⋀

𝑠⊲𝑡, 𝑠∈𝑄
𝜆(𝑠).

(4) 𝜆(𝑡) =
⋀

𝑠⊲𝑡, 𝑠∈𝑄
𝜆+(𝑠).

3.2 Remark. As already mentioned, 𝑀 ⊗ 𝐿 is ordered pointwise. By 3.1(4), if 𝑀 is completely distributive, we have a useful 
alternative:

𝜆 ≤ 𝜇 iff 𝜆+ ≤ 𝜇+.
⋀
𝑠⊲𝑡

Therefore, given 𝑓, 𝑔 ∈ (𝑀 ⊗𝐿)𝑋 , we have

𝑓 ≤ 𝑔 iff 𝑓 (𝑥)+ ≤ 𝑔(𝑥)+ for all 𝑥 ∈𝑋.
⋀
𝑠⊲𝑡

As in the case of Hutton fuzzy unit interval [0, 1](𝐿) – which can be identified with [0, 1] ⊗𝐿 (cf. [5]) – our tensor product 𝑀⊗𝐿
carries three 𝐿-topologies.

3.3 Definition. Let 𝑀 be a completely distributive lattice and (𝐿, ′) be complete. For every 𝑡 ∈𝑀 , define 𝑅𝑡, 𝐿𝑡 ∶𝑀 ⊗𝐿 →𝐿 by

𝑅𝑡(𝜆) = 𝜆+(𝑡) and 𝐿𝑡(𝜆) = 𝜆(𝑡)′.
⋀
𝑠⊲𝑡

The three 𝐿-topologies on 𝑀 ⊗𝐿 are defined as follows:

(a) the upper 𝐿-topology 𝑀⊗𝐿 is generated by {𝑅𝑡 ∶ 𝑡 ∈𝑀},

(b) the lower 𝐿-topology 𝑀⊗𝐿 is generated by {𝐿𝑡 ∶ 𝑡 ∈𝑀},

(c) the interval 𝐿-topology 𝑀⊗𝐿 is generated by {𝑅𝑡, 𝐿𝑡 ∶ 𝑡 ∈𝑀}.

3.4 Remark. Zhang and Liu [20] dealt with the set of all join-preserving functions from a completely distributive 𝑀 to a completely 
distributive (𝐿, ′), which they called the 𝐿-fuzzy modification of 𝑀 . The relationship of 𝑀 ⊗𝐿 to the 𝐿-fuzzy modification of 𝑀 is 
discussed in [4].

The following properties come from [4]:

3.5 Fact. Let 𝑀 be a completely distributive lattice with a base 𝑄, and let 𝐿 be a complete lattice. For each 𝑡 ∈𝑀 the following hold where 
𝑟 stands for a member of 𝑄:

(1) 𝑅𝑡 =
⋁
𝑡⊲𝑟
𝑅𝑟.

If 𝐿 has an order-reversing involution (⋅)′, then:

(2) 𝑅𝑡 =
⋁
𝑡⊲𝑟
𝐿′
𝑟.

(3) 𝐿𝑡 =
⋁
𝑟⊲𝑡
𝐿𝑟.

(4) 𝐿𝑡 =
⋁
𝑟⊲𝑡
𝑅′
𝑟.

3.6 Definition. Let 𝑀 be completely distributive, (𝐿, ′) be complete, and let 𝑋 be an 𝐿-topological space. An 𝑓 ∶𝑋→𝑀 ⊗𝐿 is:
4

(1) lower semicontinuous if it is continuous when the set 𝑀 ⊗𝐿 is given the 𝐿-topology 𝑀⊗𝐿,
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(2) upper semicontinuous if it is continuous when the set 𝑀 ⊗𝐿 is given the 𝐿-topology 𝑀⊗𝐿,

(3) continuous if it is continuous when the set 𝑀 ⊗𝐿 is given the 𝐿-topology 𝑀⊗𝐿.

So, 𝑓 is continuous iff it is lower and upper semicontinuous.

3.7 Remark. For 𝑀 a completely distributive lattice and (𝐿, ′) a complete lattice, the embedding 𝑒1 from 𝑀 into 𝑀 ⊗𝐿 is also an 
𝐿-topological embedding of 𝑀 with its traditional lower, upper, and interval topologies, respectively, into 𝑀 ⊗𝐿 with its lower, 
upper, and interval 𝐿-topologies, respectively (cf. [4]).

To avoid repetitions, we now describe a general procedure of generating continuous (𝑀⊗𝐿)-valued functions by scales (cf. [11]

and [12]).

Let 𝐿 be a complete lattice and 𝑀 a ⊲-separable lattice with base 𝑄. Let {𝐹𝑟}𝑟∈𝑄 be a ⊲-antitone family of element of 𝐿𝑋 – i.e.

𝐹𝑠 ≤ 𝐹𝑟 if 𝑟 ⊲ 𝑠.
⋀
𝑠⊲𝑡

Let 𝑓 ∶𝑋→𝑀 ⊗𝐿 be defined by

𝑓 (𝑥)(𝑡) =
⋀
𝑟⊲𝑡
𝐹𝑟(𝑥)

for all 𝑥 ∈𝑋 and 𝑡 ∈𝑀 . The transitivity and the insertion property of ⊲ show that 𝑓 is well defined, for 𝑓 (𝑥) is left-continuous:

𝑓 (𝑥)(𝑡) =
⋀
𝑟⊲𝑡
𝐹𝑟(𝑥) =

⋀
𝑠⊲𝑡

⋀
𝑟⊲𝑠
𝐹𝑟(𝑥) =

⋀
𝑠⊲𝑡
𝑓 (𝑥)(𝑠).

The family {𝐹𝑟}𝑟∈𝑄 is called a scale generating 𝑓 .

3.8 Properties. Let (𝐿, ′) be a complete lattice and 𝑀 be a completely distributive lattice with a ⊲-separable base 𝑄. Let 𝑓, 𝑔 ∶𝑋→𝑀⊗𝐿
be generated by scales {𝐹𝑟}𝑟∈𝑄 and {𝐺𝑟}𝑟∈𝑄, respectively. Then for each 𝑡 ∈𝑀 the following hold where 𝑟 and 𝑠 stand for members of 𝑄:

(1) 𝐿𝑡◦𝑓 =
⋁
𝑟⊲𝑡
𝐹 ′
𝑟 .

(2) 𝑅𝑡◦𝑓 =
⋁
𝑡⊲𝑟
𝐹𝑟.

(3) {𝐿′
𝑟◦𝑓}𝑟∈𝑄 and {𝑅𝑟◦𝑓}𝑟∈𝑄 are scales generating 𝑓 .

(4) 𝑓 ≤ 𝑔 iff 𝐹𝑠 ≤𝐺𝑟 whenever 𝑟 ⊲ 𝑠.

For 𝑋 an 𝐿-topological space we have

(5) 𝑓 is continuous iff 𝐹𝑠 ≤ Int 𝐹𝑟 whenever 𝑟 ⊲ 𝑠.

Proof. (1) restates the definition of 𝑓 .

(2) By 3.5(2) and by (1) above, we have

𝑅𝑡◦𝑓 =
⋁
𝑡⊲𝑠

(
𝐿′
𝑠◦𝑓

)
=
⋁
𝑡⊲𝑠

⋀
𝑟⊲𝑠
𝐹𝑟 ≥

⋁
𝑡⊲𝑠

⋁
𝑠⊲𝑟
𝐹𝑟 =

⋁
𝑡⊲𝑟
𝐹𝑟.

For the reverse inequality, for all 𝑠 with 𝑡 ⊲ 𝑠 and for all 𝑟 with 𝑡 ⊲ 𝑟 ⊲ 𝑠 we have⋁
𝑡⊲𝑟
𝐹𝑟 ≥

⋀
𝑟⊲𝑠
𝐹𝑟.

Thus ⋁
𝑡⊲𝑟
𝐹𝑟 ≥

⋁
𝑡⊲𝑠

⋀
𝑟⊲𝑠
𝐹𝑟 =𝑅𝑡◦𝑓.

(3) Clearly, both {𝐿′
𝑟◦𝑓}𝑟∈𝑄 and {𝑅𝑟◦𝑓}𝑟∈𝑄 are scales. Since {𝐹𝑟}𝑟∈𝑄 generates 𝑓 , we have by (1) that⋀

𝑟⊲𝑡

(
𝐿′
𝑟◦𝑓

)
(𝑥) =

⋀
𝑟⊲𝑡

⋀
𝑠⊲𝑟
𝐹𝑠(𝑥) =

⋀
𝑠⊲𝑡
𝐹𝑠(𝑥) = 𝑓 (𝑥)(𝑡).

Hence {𝐿′
𝑟◦𝑓}𝑟∈𝑄 generates 𝑓 too. Let ℎ be the function generated by the scale {𝑅𝑟◦𝑓}𝑟∈𝑄. By (2) we have

𝑅𝑡◦ℎ =
⋁
𝑡⊲𝑟

(
𝑅𝑟◦𝑓

)
=
⋁
𝑡⊲𝑟

⋁
𝑟⊲𝑠
𝐹𝑠 =

⋁
𝑡⊲𝑠
𝐹𝑠 =𝑅𝑡◦𝑓.
5

By 3.2 we obtain ℎ = 𝑓 .
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(4) Assume 𝑓 ≤ 𝑔. Let 𝑟 ⊲ 𝑠 in 𝑄. Since scales are ⊲-antitone, by (1), (2), and 3.2 we have

𝐹𝑠 ≤
⋀
𝑡⊲𝑠
𝐹𝑡 =𝐿′

𝑠◦𝑓 ≤𝑅𝑟◦𝑓 ≤𝑅𝑟◦𝑔 =
⋁
𝑟⊲𝑡
𝐺𝑡 ≤𝐺𝑟.

To see the reverse implication, let 𝑠 ⊲ 𝑡. Then

𝐿′
𝑡◦𝑓 =

⋀
𝑟⊲𝑡
𝐹𝑟 ≤𝐺𝑠,

so that

𝐿′
𝑡◦𝑓 ≤

⋀
𝑠⊲𝑡
𝐺𝑠 =𝐿′

𝑡◦𝑔.

(5) For the only if part, let 𝑟 ⊲ 𝑠 in 𝑄. Then

𝐹𝑠 ≤
⋀
𝑡⊲𝑠
𝐹𝑡 =𝐿′

𝑠◦𝑓 ≤𝑅𝑟◦𝑓 =
⋁
𝑟⊲𝑡
𝐹𝑡 ≤ 𝐹𝑟

with 𝐿′
𝑠◦𝑓 closed and 𝑅𝑟◦𝑓 open. Hence 𝐹𝑠 ≤ Int 𝐹𝑟. The argument for the if part is given within the proof of [4, Theorem 5.3]. We 

repeat it here for the sake of completeness. Namely, if 𝐹𝑠 ≤ Int 𝐹𝑟 whenever 𝑟 ⊲ 𝑠, then both

𝐿𝑡◦𝑓 =
⋁
𝑠⊲𝑡
𝐹 ′
𝑠 =

⋁
𝑠⊲𝑡
𝐹𝑠

′
and 𝑅𝑡◦𝑓 =

⋁
𝑡⊲𝑟
𝐹𝑟 =

⋁
𝑡⊲𝑟

Int 𝐹𝑟

are open. Hence 𝑓 is continuous by Subbase lemma. □

It is sometimes convenient to identify elements of 𝐿𝑋 with certain elements of (𝑀 ⊗𝐿)𝑋 .

3.9 Definition. Given 𝐴 ∈𝐿𝑋 , define 𝜒𝐴 ∶𝑋→𝑀 ⊗𝐿 – the characteristic function of 𝐴 – by

𝜒𝐴(𝑥) = 1⊗𝐴(𝑥)
⋀
𝑠⊲𝑡

for all 𝑥 ∈𝑋.

Notation. If 𝑍 ⊆𝑋, then 1𝑍 ∈𝐿𝑋 stands for the traditional characteristic function defined by

1𝑍 (𝑥) =
{

1 if 𝑥 ∈𝑍
0 if 𝑥 ∈𝑋⟍𝑍.

3.10 Proposition. In an 𝐿-topological space 𝑋 we have for each 𝐴 ∈𝐿𝑋 :

(1) 𝐴 is open iff 𝜒𝐴 is lower semicontinuous.

(2) 𝐴 is closed iff 𝜒𝐴 is upper semicontinuous.

Proof. (1) Let 𝑥 ∈𝑋 and 𝑡 ≠ 1. Given 𝑠 with 𝑡 ⊲ 𝑠, we have 𝑠 ≠ 0, so that(
𝑅𝑡◦𝜒𝐴

)
(𝑥) = 𝜒𝐴(𝑥)+(𝑡) =

⋁
𝑡⊲𝑠

(1⊗𝐴(𝑥))(𝑠) =𝐴(𝑥).

This plus the two other cases gives us

𝑅𝑡◦𝜒𝐴 =
{
𝐴 if 𝑡 ≠ 1 or 𝑡 = 1 ⊲ 1
1∅ if 𝑡 = 1 � 1.

(2) We have

𝐿𝑡◦𝜒𝐴 =
{
𝐴′ if 𝑡 ≠ 0
1∅ if 𝑡 = 0. □

4. Katětov-Tong insertion theorem for 𝑴 ⊗𝑳-valued functions and its applications

The following lemma of [6] allows to construct scales in various situations.

4.1 Insertion lemma. Let 𝑁 be a complete lattice endowed with a relation ⋐ satisfying the following conditions for all 𝑎, 𝑏, 𝑐 ∈𝑁 :

(1) 𝑎 ⋐ 𝑏 implies 𝑎 ≤ 𝑏,
6

(2) 𝑎 ≤ 𝑏 ⋐ 𝑐 ≤ 𝑑 implies 𝑎 ⋐ 𝑑,
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(3) 𝑎, 𝑏 ⋐ 𝑐 implies 𝑎 ∨ 𝑏 ⋐ 𝑐,
(4) 𝑎 ⋐ 𝑏, 𝑐 implies 𝑎 ⋐ 𝑏 ∧ 𝑐,
(5) 𝑎 ⋐ 𝑏 implies 𝑎 ⋐ 𝑑 ⋐ 𝑏 for some 𝑑 ∈𝑁 .

Let 𝐽 be a countable set endowed with a transitive and irreflexive relation ≺. Let {𝑎𝑗}𝑗∈𝐽 and {𝑏𝑗}𝑗∈𝐽 be families of 𝑁 satisfying the 
following:

𝑗 ≺ 𝑖 implies

⎧⎪⎨⎪⎩
𝑎𝑖 ≤ 𝑎𝑗
𝑎𝑖 ⋐ 𝑏𝑗
𝑏𝑖 ≤ 𝑏𝑗 .

(∗)

Then there exists a family {𝑐𝑗}𝑗∈𝐽 such that

𝑗 ≺ 𝑖 implies

⎧⎪⎨⎪⎩
𝑎𝑖 ⋐ 𝑐𝑗
𝑐𝑖 ⋐ 𝑐𝑗
𝑐𝑖 ⋐ 𝑏𝑗 .

We recall that an 𝐿-topological space 𝑋 is normal [7] if, whenever 𝐾 is closed in 𝑋, 𝑈 is open in 𝑋, and 𝐾 ≤𝑈 , there exists an 
open 𝑉 in 𝑋 such that

𝐾 ≤ 𝑉 ≤ 𝑉 ≤𝑈.

4.2 Theorem (Katětov-Tong insertion theorem for (𝑀 ⊗ 𝐿)-valued functions). Let (𝐿, ′) be complete and let 𝑀 be ⊲-separable. For 𝑋
an 𝐿-topological space the following are equivalent:

(1) 𝑋 is normal.

(2) If 𝑔 ∶𝑋→𝑀 ⊗𝐿 is upper semicontinuous, ℎ ∶𝑋→𝑀 ⊗𝐿 is lower semicontinuous, and 𝑔 ≤ ℎ, then there is a continuous 𝑓 ∶𝑋→
𝑀 ⊗𝐿 such that

𝑔 ≤ 𝑓 ≤ ℎ.

Proof. (1) ⇒ (2): We shall use a special case of 4.1 in which: 𝑁 =𝐿𝑋 , the relation ⋐ is defined by

𝐴 ⋐𝐵 iff 𝐴⊆ Int𝐵
⋀
𝑠⊲𝑡

for all 𝐴, 𝐵 ∈ 𝐿𝑋 , and 𝐽 = 𝑄 is a ⊲-separable base in which ⊲ , when restricted to 𝑄 × 𝑄, plays the role of the transitive and 
irreflexive relation ≺. Before proceeding further, we observe that for any 𝑋 the relation ⋐ satisfies (1)–(4) of 4.1, and ⋐ satisfies (5) 
of 4.1 if and only if 𝑋 is normal.

So, let 𝑋 be normal, 𝑔, ℎ ∶𝑋→𝑀 ⊗𝐿 be upper and lower semicontinuous, respectively, and let 𝑔 ≤ ℎ. For every 𝑟 ∈𝑄, let

𝐺𝑟 =𝐿′
𝑟◦𝑔 and 𝐻𝑟 =𝑅𝑟◦ℎ.

⋀
𝑠⊲𝑡

By 3.8(3), {𝐺𝑟}𝑟∈𝑄 and {𝐻𝑟}𝑟∈𝑄 are scales generating 𝑔 and ℎ, respectively. Consequently, after applying 3.8(4) to 𝑔 ≤ ℎ, we have 
𝐺𝑠 ≤𝐻𝑟 if 𝑟 ⊲ 𝑠. Elements of these two scales satisfy condition (∗) of 4.1, and are closed and open by upper semicontinuity of 𝑔 and 
lower semicontinuity of ℎ, respectively. Hence

𝐺𝑠 ⋐𝐻𝑟 if 𝑟 ⊲ 𝑠
⋀
𝑠⊲𝑡

and so there exists a scale {𝐹𝑟}𝑟∈𝑄 such that

𝑟 ⊲ 𝑠 implies

⎧⎪⎨⎪⎩
𝐺𝑠 ⋐ 𝐹𝑟
𝐹𝑠 ⋐ 𝐹𝑟
𝐹𝑠 ⋐𝐻𝑟.

(∗∗)

Since 𝐹𝑠 ≤ Int 𝐹𝑟 whenever 𝑟 ⊲ 𝑠, the function 𝑓 ∶𝑋→𝑀 ⊗𝐿 generated by {𝐹𝑟}𝑟∈𝑄 is continuous by 3.8(5). Finally, by 3.8(4) and 
(∗∗) it follows that 𝑔 ≤ 𝑓 ≤ ℎ.

(2) ⇒ (1): If 𝐾 ≤𝑈 with 𝐾 being closed and 𝑈 being open, then 𝜒𝐾 ≤ 𝜒𝑈 where 𝜒𝐾 is upper and 𝜒𝑈 is lower semicontinuous by 
3.10. So, there is a continuous 𝑓 ∶𝑋→𝑀 ⊗𝐿 with 𝜒𝐾 ≤ 𝑓 ≤ 𝜒𝑈 . Then

′ ′ ⋀

7

𝐾 =𝐿1◦𝜒𝐾 ≤𝐿1◦𝑓 ≤𝑅0◦𝑓 ≤𝑅0◦𝜒𝑈 =𝑈.
𝑠⊲𝑡
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Select 𝑡 ∈𝑄 with 0 ⊲ 𝑡 ⊲ 1. Then 𝑡 ≠ 0 as always, and 𝑡 ≠ 1 as 𝑄 does not have supercompact elements. For any 𝜆 ∈𝑀 ⊗𝐿 we have

𝜆(1) ≤ 𝜆+(𝑡) ≤ 𝜆(𝑡) ≤ 𝜆+(0).
⋀
𝑠⊲𝑡

For 𝜆𝑥 = 𝑓 (𝑥) with arbitrary 𝑥 ∈𝑋, the above inequalities yield

𝐾 ≤𝐿′
1◦𝑓 ≤𝑅𝑡◦𝑓 ≤𝐿′

𝑡◦𝑓 ≤𝑅0◦𝑓 ≤𝐾.
⋀
𝑠⊲𝑡

Now, 𝑉 =𝑅𝑡◦𝑓 is open and 𝐿′
𝑡◦𝑓 is closed, hence 𝐾 ≤ 𝑉 ≤ 𝑉 ≤𝐾 . □

Because of 3.7, Katětov-Tong insertion theorem for (𝑀 ⊗ 𝐿)-valued functions provides a common generalization of insertion 
theorems for ([0, 1] ⊗𝐿)-valued functions [9] and (𝑀⊗ 𝟐)-valued functions [6] (cf. [13]). An immediate corollary – stated below as 
4.3 – is also the Urysohn lemma for (𝑀 ⊗𝐿)-valued functions proved directly in [4]. An argument for the nontrivial part of 4.3 has 
already been given when proving (2) implies (1) of 4.2. Urysohn lemma with 𝑀 = [0, 1] goes back to Hutton [7].

4.3 Theorem (Urysohn lemma for (𝑀 ⊗ 𝐿)-valued functions). Let (𝐿, ′) be complete and let 𝑀 be ⊲-separable. For 𝑋 an 𝐿-topological 
space the following are equivalent:

(1) 𝑋 is normal.

(2) If 𝐾 ∈𝐿𝑋 is closed, 𝑈 ∈𝐿𝑋 is open, and 𝐾 ≤𝑈 , then there exists a continuous 𝑓 ∶𝑋→𝑀 ⊗𝐿 such that

𝐾 ≤𝐿′
1◦𝑓 ≤𝑅0◦𝑓 ≤𝑈.

Another easy corollary of 4.2 is the Tietze extension theorem for (𝑀⊗𝐿)-valued functions proved directly in [4]. Its ([0, 1] ⊗𝐿)-
valued version is given in [9], and its (𝑀 ⊗ 𝟐)-valued version is given in [6].

4.4 Theorem (Tietze extension theorem for (𝑀 ⊗ 𝐿)-valued functions). Let (𝐿,′ ) be complete and let 𝑀 be ⊲-separable. Let 𝑋 be a 
normal 𝐿-topological space and let 𝑍 ⊆𝑋 be such that 1𝑍 is closed in 𝑋. Then every continuous 𝑓 ∶𝑍 →𝑀 ⊗𝐿 extends continuously to 
the whole space 𝑋.

Proof. Let 𝑓 ∶𝑍 →𝑀 ⊗𝐿 be continuous. Define 𝑔, ℎ ∶𝑋→𝑀 ⊗𝐿 by

𝑔(𝑥) =
{
𝑓 (𝑥) if 𝑥 ∈𝑍
𝟎 if 𝑥 ∈𝑋⟍𝑍

and ℎ(𝑥) =
{
𝑓 (𝑥) if 𝑥 ∈𝑍
𝟏 if 𝑥 ∈𝑋⟍𝑍.

⋀
𝑠⊲𝑡

Then 𝑔 ≤ ℎ, and it is not difficult to check that 𝑔 is upper semicontinuous and ℎ is lower semicontinuous. By 4.2 there is a continuous 
𝑓 ∶𝑋→𝑀 ⊗𝐿 such that 𝑔 ≤ 𝑓 ≤ ℎ. Clearly, 𝑓 extends 𝑓 to all of 𝑋.

Let us, nevertheless, check ℎ for lower semicontinuity. Let, for a moment, 0𝐿 and 1𝐿 stand for bounds of 𝐿. Since 𝑀 is ⊲-

separable, 𝑅1 is the constant map with value 0𝐿 and hence, 𝑅1◦ℎ = 1∅ is open in 𝑋. Take 𝑡 ≠ 1 in 𝑀 . Since 𝑅𝑡◦𝑓 is open in 𝑍 , it is 
of the form 𝑈𝑡|𝑍 with 𝑈𝑡 being open in 𝑋. Then

(𝑅𝑡◦ℎ)(𝑥) =
{

(𝑅𝑡◦𝑓 )(𝑥) =𝑈𝑡(𝑥) if 𝑥 ∈𝑍
𝑅𝑡(𝟏) = 1𝐿 if 𝑥 ∈𝑋⟍𝑍.

⋀
𝑠⊲𝑡

In conclusion, we have the openness of 𝑅𝑡◦ℎ =𝑈𝑡 ∨ 1𝑋⟍𝑍 . □

Unlike Urysohn lemma, 4.4 with 𝐿 ≠ 𝟐 does not characterize normality of 𝐿-topological spaces. According to Rodabaugh [16], 
an 𝐿-topological space 𝑋 is called suitable [for extending functions from an 𝐿-topological subspace of 𝑋 to the whole of 𝑋] if it 
has a closed 1𝑍 where ∅ ≠ 𝑍 ⊊ 𝑋. A normal 𝐿-topological space need not be suitable. As shown in [1], ([0, 1] ⊗𝐿, [0,1]⊗𝐿) fails 
to be suitable for every completely distributive lattice (𝐿,′ ) with 𝐿 ≠ 𝟐. It would be of interest to know for which 𝑀 and 𝐿 ≠ 𝟐 is 
(𝑀 ⊗𝐿, 𝑀⊗𝐿) suitable.

Notice. Katětov-Tong insertion theorem for monotonically normal 𝐿-topological spaces and ([0,1]⊗𝐿)-valued functions is discussed 
in [10] and an (𝑀⊗ 𝟐)-valued version is given in [14]. A characterization of monotonically normal 𝐿-topological spaces in terms of 
inserting (𝑀 ⊗𝐿)-valued functions is hoped to appear elsewhere.

5. Inserting hedgehog-valued functions

In this section, we apply our Katětov-Tong insertion Theorem 4.2 to obtain a characterization of normal 𝐿-topological spaces in 
terms of inserting a continuous hedgehog-valued function.

Let 𝜅 be a cardinal and let 𝐼 be a set with cardinality 𝜅. We first observe that our insertion theorem can be stated for functions 
8

having the 𝐿-topological product (𝑀⊗𝐿)𝜅 as the range space. We recall that, given 𝑌 with an 𝐿-topology  , the Cartesian product 
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𝑌 𝜅 of 𝜅 copies of 𝑌 is 𝐿-topologized by the subbase {𝑈◦𝜋𝑖: 𝑈 ∈ and 𝑖 ∈ 𝐼} where 𝜋𝑖 is the 𝑖th projection. Let  𝜅 be the product 
𝐿-topology of 𝑌 𝜅 . Given an 𝐿-topological space 𝑋 and a function 𝑓 ∶𝑋→ (𝑀 ⊗𝐿)𝜅 , let us agree to call 𝑓 :

(1) lower semicontinuous if it is continuous when the set (𝑀 ⊗𝐿)𝜅 is given the 𝐿-topology 𝜅
𝑀⊗𝐿

,

(2) upper semicontinuous if it is continuous when the set (𝑀 ⊗𝐿)𝜅 is given the 𝐿-topology 𝜅
𝑀⊗𝐿

,

(3) continuous if it is continuous when the set (𝑀 ⊗𝐿)𝜅 is given the 𝐿-topology 𝜅
𝑀⊗𝐿

.

Assume (𝑀 ⊗𝐿)𝜅 is ordered componentwise. Then, given 𝑓, 𝑔 ∶𝑋→ (𝑀 ⊗𝐿)𝜅 , we have

𝑓 ≤ 𝑔 iff 𝜋𝑖◦𝑓 ≤ 𝜋𝑖◦𝑔 for all 𝑖 ∈ 𝐼 .

5.1 Proposition. Let (𝐿, ′) be complete and let 𝑀 be ⊲-separable. An 𝐿-topological space 𝑋 is normal if and only if, given an upper 
semicontinuous 𝑔 ∶𝑋→ (𝑀⊗𝐿)𝜅 and a lower semicontinuous ℎ ∶𝑋→ (𝑀⊗𝐿)𝜅 with 𝑔 ≤ ℎ, there exists a continuous 𝑓 ∶𝑋→ (𝑀⊗𝐿)𝜅
such that 𝑔 ≤ 𝑓 ≤ ℎ.

Proof. This is obvious. Indeed, for each 𝑖 ∈ 𝐼 we have 𝜋𝑖◦𝑔 ≤ 𝜋𝑖◦ℎ and so by 4.2 there is a continuous 𝜑𝑖 ∶𝑋→𝑀 ⊗𝐿 such that

𝜋𝑖◦𝑔 ≤ 𝜑𝑖 ≤ 𝜋𝑖◦ℎ.
⋀
𝑠⊲𝑡

The unique function 𝑓 ∶𝑋→ (𝑀 ⊗𝐿)𝜅 satisfying 𝜋𝑖◦𝑓 = 𝜑𝑖 is continuous (by the Subbase lemma) and 𝑔 ≤ 𝑓 ≤ ℎ. □

In [6], there is a version of the classical Katětov-Tong theorem for functions with values in a hedgehog identified with a subspace 
of the Tychonoff cube [0, 1]𝜅 consisting of its “coordinate axes”.

We finish this paper with a brief discussion of a fuzzy hedgehog consisting of the “coordinate axes” of the product (𝑀⊗𝐿)𝜅 with 
its interval 𝐿-topology. We recall that according to the usual definition, a hedgehog (having 𝑀 ⊗𝐿 as spines) would be the union of 
𝜅 copies of the tensor product 𝑀 ⊗𝐿 by identifying the bottom 𝟎 of each tensor product. We omit all the technicalities and just let

𝐽𝑀⊗𝐿(𝜅) =
⋃
𝑖∈𝐼

{𝜑 ∈ (𝑀 ⊗𝐿)𝜅 ∶ 𝜑(𝑗) = 𝟎 for all 𝑗 ≠ 𝑖} ⊆ (𝑀 ⊗𝐿)𝜅
⋀
𝑠⊲𝑡

with the componentwise ordering and the subspace 𝐿-topology inherited from the Cartesian product (𝑀 ⊗𝐿)𝜅 .

As earlier, given an 𝐿-topological space 𝑋, a function 𝑓 ∶ 𝑋 → 𝐽𝑀⊗𝐿(𝜅) is called lower semicontinuous, upper semicontinuous, 
continuous, respectively, if it is continuous when the set 𝐽𝑀⊗𝐿(𝜅) is equipped with the subspace 𝐿-topology induced from 𝜅

𝑀⊗𝐿
, 

𝜅
𝑀⊗𝐿

, and 𝜅
𝑀⊗𝐿

, respectively. Of course, 𝑓 ∶𝑋 → 𝐽𝑀⊗𝐿(𝜅) is continuous in one of those three senses if and only if so is 𝑒◦𝑓 ∶
𝑋→ (𝑀 ⊗𝐿)𝜅 where 𝑒 is the identity embedding of 𝐽𝑀⊗𝐿(𝜅) into (𝑀 ⊗𝐿)𝜅 .

Also, if 𝑓, 𝑔 ∶𝑋→ 𝐽𝑀⊗𝐿(𝜅), then

𝑓 ≤ 𝑔 in 𝐽𝑀⊗𝐿(𝜅)𝑋 iff 𝑒◦𝑓 ≤ 𝑒◦𝑔 in ((𝑀 ⊗𝐿)𝜅 )𝑋 .
⋀
𝑠⊲𝑡

With all this in mind we can formulate the following:

5.2 Proposition. Let (𝐿, ′) be complete and let 𝑀 be ⊲-separable. An 𝐿-topological space 𝑋 is normal if and only if, given an upper 
semicontinuous 𝑔 ∶𝑋→ 𝐽𝑀⊗𝐿(𝜅) and a lower semicontinuous ℎ ∶𝑋→ 𝐽𝑀⊗𝐿(𝜅) with 𝑔 ≤ ℎ, there exists a continuous 𝑓 ∶𝑋→ 𝐽𝑀⊗𝐿(𝜅)
such that 𝑔 ≤ 𝑓 ≤ ℎ.

We omit formulations of Urysohn’s type and Tietze’s type theorems for (𝑀 ⊗𝐿)𝜅 -valued and 𝐽𝑀⊗𝐿(𝜅)-valued functions.
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