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Abstract: 

Single nucleotide polymorphisms (SNPs) are an interesting option to facilitate the analysis of highly 

degraded DNA by allowing the reduction of the size of the DNA amplicons. The SNPforID 52-plex panel 

is a clear example of the use of non-coding SNPs in Forensic Genetics. However, nonstop advances in 

studies of genetic polymorphisms are leading to the discovery of new associations between SNPs and 

diseases.  

The aim of this study was to perform a comprehensive review of the state of association between the 52 

SNPs in the 52 plex-panel and diseases or other traits related to their treatment, such as drug response 

characters. In order to achieve this goal, we have conducted a bioinformatic search for each SNP included 

in the panel and the SNPs in linkage disequilibrium (LD) with them. A total of 424 SNPs (52 in the panel 

and 372 in LD) were investigated in PubMed, Scopus and dbSNPs databases. Our results show that three 

SNPs in the SNPforID 52-plex panel (rs2107612, rs1979255, rs1463729) have been associated with 

diseases such as hypertension or macular degeneration, as well as drug response. Similarly, three out of 

the 372 SNPs in LD (rs2107614, rs765250, rs11064560) are also associated with various pathologies. In 

view of these results, we propose the need for a periodic review of the SNPs used in forensic genetics in 

order to keep their associations with diseases or related phenotypes updated and to evaluate the interest of 

their continuity in the panels of forensic utility. 
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Introduction 

The increasing knowledge of the genome has represented a major impact on forensic genetics 

[1]. Genetic characterization of individuals through DNA analysis allows identification processes from 

small amounts of biological remains [2, 3]. Microsatellites (STRs) of autosomes and X and Y 

chromosomes, as well as mitochondrial DNA, are the polymorphisms most frequently used [3]. However, 

the analysis of STR loci becomes problematic when applied to degraded DNA samples, common in 

genetic casework, since the multiplex PCR amplification of the STR loci requires lengths of template 

DNA fragments between 150 and 400 bp [4, 5, 6]. 

Two approaches have been proposed in order to solve this problem, the shortening of the 

amplicons of the STR loci (miniSTRs) or the use of single nucleotide polymorphisms (SNPs). However, 

reducing the size of the amplified product is not always enough to solve the numerous cases in which 

DNA is highly degraded [5]. In those cases, the use of SNPs, which are highly common genetic variations 

with a distribution of approximately one SNP every 100-300 nucleotides, has been proposed [7]. 

SNPs allow the reduction of the amplified product to less than 100 bp and, in addition, they have 

a low mutation rate in the order of 10
-8

/locus/generation [8], which makes them really stable genetic 

markers. Another advantage of SNPs analysis is the wide range of available typing methods, which are 

fast and amenable to automation [9]. In particular, the latest massive sequencing platforms allow the 

simultaneous study of a large number SNPs in a short time [10]. Because of all these advantages, it is 

expected that these markers become frequently used in forensic laboratories in the near future. 

Sanchez et al. [11] developed a panel of 52 biallelic SNPs selected by the SNPforID consortium. 

This panel was successfully validated for use in forensic genetic investigations by the SNPforID 52-plex 

assay performed by Musgrave-Brown et al. [12]. 

The selection criteria for these polymorphisms included that the size of the amplicon were less 

than 120 bp, that they presented a minimum 30% heterozygosity in at least one of the studied populations, 

African, European and Asian, and a minimum 20% heterozygosity in the three populations. SNPs were 

selected from the distal portions of the p and q arms of each autosome and they checked that there was a 

minimum distance of 100 kb between candidate SNPs and close genes. In addition, they checked that 

there were not a probable association with the STRs loci most commonly used in forensic analysis. The 

DNA sequences flanking the candidate SNPs had to be reliably reported and should be free of 

polymorphisms that could interfere with primer binding. 

In addition, SNPs are commonly used markers in determining susceptibility to various diseases 

[13, 14] because some SNPs may play an important biological role as they cause changes in the DNA 

sequence and, sometimes, they are able to affect the expression of genes or the encoded proteins [15]. 

However, it is well established that the selected markers for human identification testing have to be in 

sequences that do not affect the expression of the genome or the encoded proteins, nor should they be 

associated with the risk or progression of any disease [16]. 

Therefore, if such a condition were demonstrated, it would be advisable not to include those 

markers in forensic tests [17, 16]. Additionally, we must take into consideration that the SNPs may be 

part of linkage disequilibrium (LD) blocks, so that an SNP is in correspondence with all the SNPs from 

that block. As a result, non-coding SNPs may be in LD with other SNPs located in coding or regulatory 

regions [7]. Therefore, it should be taken into consideration that those 52 SNPs or any of the SNPs in LD 

with them might provide information about the risk or progression of a disease and, if so, it would be 

necessary to evaluate their stay in the current panel. 

Subsequently, the objective of this study is to determine whether there is any reported 

association between any of the SNPs proposed by the SNPforID consortium and any disease or other 

endophenotypic trait, taking into account both the 52 SNPs included in the panel and the SNPs in LD 

with them. 



3 

Materials and methods 

Search of SNPs in likage disequilibrium 

As a criterion to determine the size of the region where the SNPs in LD were searched, among 

the genes harboring any of the SNPs included in the work, the larger was selected (RBFOX1). As a result, 

a region of 2,662 Mbp was defined. 

In order to identify SNPs in LD with the reference SNP in that area, the International HapMap 

Project databases (www.hapmap.org) and Haploview V.4.2 software were used. A r
2
 LD threshold of 0.8 

was established using the existing data for individuals with European ancestry (CEU). SNPs with a minor 

allele frequency greater than 1% (MAF ≥ 0.01) were selected. 

Data sources 

To determine if the selected SNPs were associated with any disease, we conducted a search in 

the bibliographic databases PubMed (www.ncbi.nlm.nih.gov/pubmed) and Scopus 

(http://www.scopus.com/), introducing the rs ID from the dbSNP database 

(http://www.ncbi.nlm.nih.gov/SNP/) for each SNP and their clinical relevance was checked. 

Results 

When we analyzed the 52 SNPs selected by the SNPforID consortium, we found that 39 of them 

were part of Hapmap haplotypes (Figure 1). In addition to the 52 SNPs included in the panel proposed by 

the SNPforID consortium, other 372 SNPs, in LD with them according to the different haplotypes found, 

were added making a total of 424 SNPs (Additional data are given in Online Resources 1 and 2).  

In order to determine possible relationships between those SNPs and diseases, we performed a 

search for each of the 424 SNPs in the three databases (Fig. 1). 

The search of the 424 SNPs in PubMed referred to 16 SNPs out of the 52 SNPs in the panel and 

to 9 out of the 372 SNPs in LD. In Scopus, we obtained information for 9 out of the 52 SNPs in the panel 

and 5 out of the 372 SNPs in LD. The search for clinical relevance in dbSNP of each of the 424 

polymorphisms included in this study provided no matches.  

After removing duplicates between databases, reviews and papers which referred to the 

optimization of a technique or to the analysis of SNPs in different ethnic groups, 13 articles were included 

for further analysis (Table 1). Those articles referred to 16 SNPs, 7 out of the 52 SNPs in the panel and 9 

out of the 372 SNPs in LD. Among them, 8 were excluded due to lack of association with the diseases 

and phenotypes in relation to which they had been studied (Table 1).  

Finally seven studies were considered, referring to 8 SNPs, 5 out of the 52 SNPs proposed by the 

SNPforID consortium and 3 out of the 372 SNPs in LD. Six studies related 7 SNPs with several diseases 

or phenotypes (rs876724, rs2076848, rs2107614, rs765250, rs11064560, rs2107612, rs1463729). The 

remaining SNP, rs1979255, was studied in relation to the trans- (or distal) effects over region 22q11, 

where COMT gene is located (Table 1). 
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 Discussion 

We have found eight SNPs associated with several diseases among the 52 SNPs in the panel 

routinely used in forensic genetics and the SNPs in LD with them. 

SNPs rs2107614, rs765250, rs2107612, rs11064560 

Three studies found association between four polymorphisms (rs765250, rs2107612, rs2107614, 

rs11064560) in the gene WNK1 (WNK lysine deficient protein kinase 1) and variation in blood pressure 

and hypertension [18, 19, 20]. This gene is a member of the WNK subfamily [21]. The WNK 

serine/threonine kinases are key regulators of blood pressure through the control of the transport of 

sodium and chloride ions [22].  

Essential hypertension is a heterogeneous and multicausal disease, related to hereditary or 

genetic factors but, above all, to high-sodium diet, environmental stress and obesity [23]. Most genes in 

which mutations have been linked to hypertension encode molecules that control the ability of the kidney 

to maintain the balance of salt. This reiterates the relevance of this physiological pathway in the 

regulation of blood pressure [24]. 

The SNP rs2107612 in the WNK1 gene, included in the panel, as well as the SNP rs765250, in 

LD with the former, contribute to variation in blood pressure and hypertension. Newhouse et al. [18] 

demonstrated the association of rs2107612 A allele with changes in systolic blood pressure (95% CI = 

0.2-2, p = 0.008). The rs765250 A allele showed the strongest association with variation in blood pressure 

(Systolic Blood Pressure, 95% CI = 1.3-4.9, p = 5x10
-4

, Diastolic Blood Pressure: 95% CI = 0.7-3.2, p = 

0.002) and hypertension (95% CI = 1.0-1.7, p = 0.01) [18]. Furthermore, the association between the 

rs765250 SNP and hypertension and blood pressure variation was confirmed in a meta-analysis, which 

combined data from other populations with data from BRIGHT (British Genetics of Hypertension Study) 

(p = 2x10
-4

, n = 17851) resulting from the work by Newhouse et al. [18]. The results from this meta-

analysis ruled out the possibility that the association were a false positive. 

On the other hand, Turner et al. [19] investigated SNPs in genes that encoded or were involved 

in renal sodium transport systems as possible predictors of blood pressure in response to a thiazide 

diuretic. Three SNPs located in the WNK1 gene, rs2107614, rs2277869 and rs1159744, were associated 

with differences in ambulatory blood pressure in response to hydrochlorothiazide, a diuretic commonly 

used to treat high blood pressure (p = 0.039, p = 0.007 and p = 0.034, respectively).  

In particular, the SNP rs2107614, in LD with rs2107612 in the panel, is located in intron 1 of 

WNK1 gene. Wilson et al. [21] showed that the deletion of intron 1 of WNK1 gene resulted in an increase 

in the expression levels of the gene. Moreover, this deletion is one of the causes of a type of inherited 

hypertension known as Pseudohypoaldosteronism Type II (PHAII, also known as Gordon Syndrome or 

Syndrome of Family Hypertension and Hyperkalemia) [21, 22].  

Another polymorphism in the WNK1 gene, SNPs rs11064560, in LD with rs2107612 in the 

panel, was associated with bevacizumab-induced hypertension, the first anti-angiogenic agent approved 

for use in the clinic (p = 0.028, OR: 1.41, 95 %: 1.04-1.92) [20]. In patients treated with bevacizumab, 

hypertension was reported in 46 of the 305 (15%) individuals with TT genotype, in 51 of the 313 (16%) 

individuals with TG genotype and in 20 of 71 (28%) individuals with GG genotype. Bevacizumab is used 

in combination with chemotherapy in the treatment of various tumours [25, 26, 27, 28]. Hypertension is 

one of the most common side effects of treatment with this drug. The same relationship Lambrechts’ team 

found had already been described by Frey et al. [29] in a smaller cohort (p = 0.0026). Furthermore, the G 

allele of SNP rs11064560, which correlated with hypertension induced by bevacizumab in the study by 

Lambrechts et al. [20] is in LD with the A allele of the SNP rs765250, in LD with rs2107612 in the panel, 

which has been associated with increased blood pressure. Therefore, the observed association between the 

SNP and the hypertension induced by the drug is biologically plausible. Therefore, the SNP rs11064560 

is a potential predictor of the response profile to bevacizumab. 
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It would be advisable to consider these evidences to evaluate the permanence of these 

polymorphisms in the current panel used in forensic genetics. Also, caution should be taken not to include 

in the future, SNPs in LD with rs2107612, given its relationship with hypertension and drug response. 

SNP rs1463729 

Strunnikova et al. [30] demonstrated the association of SNP rs1463729 and age-related macular 

degeneration (AMD). AMD is a leading cause of irreversible loss of central vision in elderly populations, 

with a higher prevalence in women than in men [31]. AMD affects all layers of the macula, the structure 

responsible for central vision, encompassing in different degenerative patterns photoreceptors, retinal 

pigment epithelium (RPE) and Bruch's membrane [32]. Aging is the most important risk factor for this 

disease [33] but, in addition, other risk factors have been identified to date showing a strong association 

with the disease, such as smoking, history of cataract surgery, and family history of AMD [34].  

AMD susceptibility is influenced by genetic factors [35, 36]. It has been shown that there are 

several genomic regions and candidate genes affecting the susceptibility to this disease [37, 38, 39]. 

Using an expression study, Strunnikova et al. [30] identified 154 genes that make up the genetic signature 

of the retinal pigment epithelium (RPE). Subsequently, they conducted a comparative analysis of these 

genes with the results of a genome-wide association study (GWAS) for AMD [40]. The SNP rs1463729, 

near the LHX2 gene, one of the genes included in the signature of the RPE, is associated with AMD in 

that GWAS (p = 0.001846).  

Given the relationship between the rs1463729 polymorphism and AMD, its continuity in the 

panel of SNPs selected by the SNPforID consortium of interest in forensic genetics should be evaluated. 

SNP rs1979255 

The gene COMT encodes the enzyme catechol-O-methyl transferase, involved in the catabolism 

of monoamines, which are influenced by the psychotropic drugs, including antidepressants and 

neuroleptics. Linkage studies have provided evidences of one or more loci in the 22q11 region, where 

COMT is located, which influence the susceptibility to various psychiatric phenotypes as schizophrenia 

[42, 43], bipolar disorder [43], schizoaffective disorder [44] and others. Thus, COMT is a candidate gene 

for a number of neurological and psychiatric disorders [45]. 

Xing et al. [41] studied the effect of different transcriptional regulatory regions on region 22q11, 

where COMT is located. Ten regions showed additive trans-effects on the region 22q11. One of them was 

the 4q35 region, where the SNP rs1979255, included in the panel, is located (p = 3.4x10
-4

). Variants that 

act in trans-, also known as distal regulators, can be anywhere in the genome relative to the target gene 

[46]. 

The results of the genetic maps suggest that the effects of these variations on gene expression are 

smaller than the effects of cis-acting variants. This is due to the fact that the genes are generally 

influenced by various trans-acting regulators and, therefore, the effect of each one on the target gene 

expression is moderate [46].  

It would be advisable to take into account the relationship between the rs1979255 polymorphism 

and the COMT gene to evaluate the continuity of this SNP in the processes of human genetic 

identification. 

SNPs rs876724, rs2076848 

It has been shown that there is a link between SNP rs876724 and parental imprinting in alcohol 

dependence [47].  

The Diagnostic and Statistical Manual of Mental Disorders classifies excessive drinking as an 

addictive disorder [48]. Alcohol dependence is a complex disease caused by genetic, epigenetic and 

etiological factors [49]. Alcohol consumption is the third leading cause of death worldwide, after 

hypertension and tobacco consumption, with 5.5 million deaths per year, representing 3.2% of all deaths 

worldwide [50]. 
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Early work conducted to investigate the genetic basis of alcohol consumption and addiction were 

based on candidate genes studies [51, 52, 53]. Recently, loci involved in dependency and alcohol 

consumption have been proposed by GWAS [54, 55, 56, 57, 58, 59].  

It is known that genetic imprinting plays a role in susceptibility to alcohol dependence [60]. 

Genetic imprinting is the best known cause of parent-of-origin effects (POE), due to which a gene is 

expressed differently depending on the parental origin of the chromosome [61]. The alleles have different 

levels of transcript and, therefore, may produce a different effect on the phenotype when they are 

transmitted by the father or the mother [62]. In addition, genetic imprinting is related to several diseases, 

including diabetes, breast cancer, and obesity, in addition to alcohol dependence [63, 64, 65]. 

Liu et al. [47] conducted a search throughout the genome of places associated with parental 

imprinting in alcohol dependence. They used data from 112 Caucasian families collected in the 

Collaborative Studies on Genetics of Alcoholism (COGA). The SNP rs876724, included in the panel 

showed excess maternal inheritance (maternally greater contribution) (LOD = 2.73, p = 0.0002). 

In relation to alcohol dependence, another study showed the association of SNP rs2076848, 

belonging to the panel, with the electroencephalogram beta 2 phenotype (EEG), a quantitative measure 

related to alcoholism [66]. These waves are associated with mental alertness [67]. 

Porjesz et al. [68] showed that the GABAergic system and human EEG measures were 

significantly associated. Subsequently, they reported the association between the EEG phenotype and a 

group of GABA receptors (A), whose genes are located on chromosome 4. Specifically, GABRA2 gene 

showed a strong association with alcohol dependence and the beta frequency of the EEG. Therefore, the 

researchers suggested that this gene may influence susceptibility to alcohol dependence by modulating the 

level of neuronal excitation [69]. 

Roy-Gagnon et al. [66] estimated the specific heritability of EEG phenotype for a locus through 

ROMP regression (Regression of Offspring on Mid-Parent). They used data from COGA. SNP rs2076848 

was one of the SNPs associated with the EEG phenotype (ROMP: HL2 ± SE = 0.005 ± 0.001). 

The studies of Liu et al. [47] and Roy-Gagnon et al. [66] have shown, respectively, the 

preferential transmission of SNP rs876724 and the heritability of EEG phenotype associated with SNP 

rs2076848 in relation to alcohol dependence. However, the results of both studies have not been 

replicated. Therefore, future studies would be needed to confirm these results and clarify the role of these 

SNPs in alcohol dependence. 

Other SNPs studied in relation to genetic susceptibility to various conditions 

We found 8 additional SNPs in six studies which concluded that there was no association with 

the diseases or characteristic phenotypes of different traits.  

Cai et al. [70] studied the association between rs1990021 and rs3858703 polymorphisms, located 

in the WNK1 gene and in LD with rs2107612 in the panel, and ischemic stroke in Chinese Han 

population, finding no association for these SNPs. 

Suarez et al. [71] obtained the same result for SNPs rs826472 and rs964681, both included in the 

panel of interest in forensic genetics, after conducting a GWAS in a sample of 409 families with 

schizophrenia.  

Similarly, two studies evaluated the association between rs717227 and rs6688537 

polymorphisms, in LD with rs891700 in the panel and located at the CHRM3 gene, with atopic dermatitis 

and bipolar disorder respectively, finding no association in any of the cases [72, 73]. 

The SNPs rs1493232, in the panel, and rs6657343 in LD with rs891700, were analyzed in two 

GWAS performed with the descendants of the original Framingham cohort (Framingham Heart Study 

Offspring) [74, 75]. Kathiresan et al. [74] analyzed the levels of blood lipids, including high and low 

density lipoprotein cholesterol (HDL-C, LDL-C) and triglycerides (TG), as they are highly heritable 

traits. Benjamin et al. [75] analyzed the concentration of 22 systemic biomarkers in four biological 
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functions: inflammation / oxidative stress, natriuretic peptides, liver function and vitamins. Systemic 

biomarkers provide insights into the pathogenesis, diagnosis and risk stratification of a disease. As in the 

previous case, the concentrations of many of these biomarkers are heritable phenotypes. In both studies, 

no association between SNPs and the analyzed variables was found. 

Therefore, these polymorphisms are suitable markers for use in human identification because 

they have not been associated with diseases or phenotypic traits. 

Conclussion 

Our study shows that 3 out of the 52 SNPs in the panel proposed by the SNPforID consortium 

show association with various diseases and drug response (rs2107612, rs1979255, rs1463729). Similarly, 

3 out of the 372 SNPs in LD (rs2107614, rs765250, rs11064560) were associated with various 

pathologies. It would be advisable to consider these associations in order to evaluate their permanence in 

the current panel of interest in forensic genetics.  

This work highlights the need for a periodic review of the possible relationships of the SNPs 

used in forensic genetics processes with various diseases, in order to eliminate the risk of using SNPs 

associated with diseases or other phenotypic traits. 

The increasing number of studies demonstrating such associations makes essential the inclussion 

of a specific monitoring criterion for those polymorphisms in order to avoid the use of markers associated 

with human features that exceed the scope of Forensic Genetics. 
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Table 1. List of the 16 SNPs studied in association with any disease or phenotype 

Fig. 1 Flow diagram of the study 





Table 1. List of the 16 SNPs studied in association with any disease or phenotype 

SNP SNPs in LD r2 Chr Alleles Position1 Gene Evaluation of the SNP Disease or phenotipe Reference 

rs2107612 

rs1990021 0,851 

12 

C/G 951775 

WNK1 

No related Ischemic stroke Cai et al, 2014 

rs2107614 0,859 C/T 903079 Related Hypertension Turner et al, 2005 

rs765250 0,858 A/G 908283 Related Hypertension Newhouse et al, 2009 

rs3858703 0,926 A/G 863517 No related Ischemic stroke Cai et al, 2014 

rs11064560 0,887 G/T 943953 Related Hypertension Lambrechts et al, 2014 

rs2107612 1 A/G 888320 Related Hypertension Newhouse et al, 2009 

rs1493232 rs6505623 0,965 18 C/T 1125057 - No related Lipid levels Kathiresan et al, 2007 

rs826472 - - 10 C/T 2406631 - No related Schizophrenia Suarez et al, 2006 

rs1979255 - - 4 C/G 190318080  - Related COMT gene Xing et al, 2007 

rs1463729 - - 9 A/G 126881448 - Related 
Age-related macular 

degeneration (AMD) 
Strunnikova et al, 2010 

rs2076848 - - 11 A/T 33154927 - Related Alcoholism Roy-Gagnon et al, 2005 

rs876724 - - 2 C/T 114974 - Related Alcoholism Liu et al, 2005 

rs964681 - - 10 C/T 132698419 - No related Schizophrenia Suarez et al, 2006 

rs891700 

rs717227 1 

1 

C/T 239882599 

CHRM3 

No related Atopic dermatitis Enomoto et al, 2007 

rs6657343 1 A/T 239891511 No related Systemic biomarkers Benjamin et al, 2007 

rs6688537 0,934 A/C 239850588 No related Bipolar disorder Shi et al, 2007 

1 Position in bp based on the GRCh37/hg19 version of the genome. Abbreviations: Chr, chromosome. 
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