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Introduction

One of the frontiers of modern condensed matter physics is the study of the exotic quantum
phases arising from electronic correlations, which are further enriched by their interplay with
topology and disorder. In this Thesis, we study a variety of properties of several such phases. First,
we analyze the symmetry of the charge density wave state of 1T-TiSe2 [1]. Then, we examine the
collective modes appearing in the superconducting phase of monolayer 2H-NbSe2 [2]. Finally, we
propose an indicator to identify nontrivial topological phases in noncrystalline systems [3, 4]. In
this chapter, we provide an overview of the general context and relevance of each of these topics.

There are several approaches to classify and characterize the phases of matter and the transitions
between them. Symmetry is a crucial tool for this purpose. Indeed, each phase can be associated
to a group of preserved spatial and local symmetries. Within the Landau theory [5, 6], phase
transitions are understood as spontaneous symmetry breaking: the change in certain parameters
induces a different phase which breaks more, or different, symmetries. Importantly, this occurs
spontaneously due to the internal interactions of the system, in the absence of any external source
that explicitly breaks the symmetries. Symmetry breaking can be monitored by a local order
parameter, the expectation value of an operator that transforms as a representation of the symmetry
group and becomes nonzero only in the broken-symmetry phase. The dynamics of this order
parameter gives rise to collective modes, which can be important in the low-energy physics of the
system [7].

An ubiquitous broken-symmetry phase is the so-called charge density wave (CDW) state [8,
9], which appears in a variety of correlated systems, from Copper oxides [10, 11] to transition
metal dichalcogenides [12–16]. In a CDW transition, the electronic charge distribution acquires
a modulation with a different periodicity from the normal state, breaking a subgroup of the
translational symmetry. The order parameter is therefore related to the expectation value of the
charge density at the wavevector Q of the new modulation. As a consequence of the charge
modulation, the electronic structure is reconstructed. If the normal state is metallic, partial or
full gaps are opened in the Fermi surface, which reduces the total electronic energy in the CDW
state. Due to the electron-phonon coupling, phonons are also affected by the CDW instability [17],
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and the electronic charge density modulation is accompanied by a lattice distortion with the same
symmetry.

CDW materials display a variety of properties and phenomenology. Part of the richness comes
from the modulation wavevector Q, which allows to distinguish CDWs in terms of the commen-
suration between the original lattice periodicity and the new modulation of the charge density.
Within this scheme, commensurate CDWs still preserve a subset of the translations, and therefore
a real-space periodic supercell can be defined. On the other hand, no translational symmetry is
exactly preserved in an incommensurate CDW. External parameters, such as temperature, doping
or pressure, might drive a crossover between commensurate and incommensurate phases, as in
transition metal dichalcogenides [13, 18]. In Chapter 1, we focus on the commensurate CDW
phase of 1T-TiSe2. Besides transitions between different CDWs, the phase diagrams of CDW
materials typically show other correlated phases nearby that break different symmetries, such as
superconductivity and magnetism [19]. The study of the interplay and coexistence of these orders,
ranging from competition to even cooperation, is at the forefront of research in condensed matter
physics, and remains an open problem in general [20]. This motivates the study of the properties
and origin of CDWs. Two of the materials studied in this Thesis, 1T-TiSe2 and 2H-NbSe2, display
coexisting CDW and superconducting phases for certain parameter ranges [21–33].

The microscopic mechanism driving the CDW is a persistent source of controversies [34–38].
Depending on the dimensionality of the system and the strength of the interactions, the ordering
wavevector Q might be mainly set by Fermi surface nesting [39, 40], electron-phonon coupling
[8, 34] or electron-electron interactions [41–45]. While the microscopic origin of the CDW is a
relevant question that has implications in several aspects, such as the interplay with competing
phases, important information can also be extracted regardless of its origin, such as the symmetry
of the CDW.

Indeed, while the breaking of translational symmetry is its defining property, a CDW might
break further spatial symmetries [46, 47]. This might generically occur in 2D and 3D systems,
where multiple modulation wavevectors Q might be related by point-group symmetries. The
stripe CDW order in cuprates is an example of such a scenario, where the unidirectional CDW
modulation breaks the fourfold rotational symmetry of the underlying lattice [10, 11]. A special
case that has attracted attention in recent years occurs when the rotational symmetries are broken
only after a secondary nematic instability within the CDW state. For instance, a transition to a
nematic CDW has ben identified in in kagome AV3Sb5 metals [48–51]. The case of 1T-TiSe2 is
particularly intriguing, since similar signatures have been found [52–56], but the symmetry of its
CDW remains a source of controversy. Chapter 1 of this Thesis is devoted to this problem.

Another emblematic collective phase of matter is superconductivity, which is a special case
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of spontaneous symmetry breaking. Phenomenologically, superconductors are defined by the
ability to support persistent supercurrents in their ground state [57], which leads to a vanishing
resistance and the expulsion of magnetic fields, known as Meissner effect [58]. Microscopically,
superconductors can be regarded as charged superfluids, where bosonic pairs of electrons, known
as Cooper pairs [59], condense into a phase coherent state, driven by an effective electron-electron
attraction at low energies. Neutral superfluids break the continuous U(1) symmetry related to
particle number conservation, and therefore constitute well-defined broken-symmetry states in the
grand-canonical ensemble. On the other hand, Cooper pairs are charged, and therefore couple to
the electromagnetic field. The U(1) symmetry in superconductors is therefore linked to the local
gauge invariance, which cannot be broken since it is just a redundancy in our physical description
[60]. Therefore, there are no local gauge-invariant observables associated with superconductivity
that exhibit long-range order [61–63]. While this is a fundamental aspect of superconductivity, the
analogy with superfluids can be applied to determine several ground state properties, such as the
superconducting gap, without considering the gauge invariance issue.

Within this formalism, the order parameter of a superconductor describes the Cooper pair
wavefunction, and can be classified according to the spatial and spin symmetries of this pairing. In
the simplest case, no further symmetries are broken, which is described by a s-wave spin-singlet
pairing. The most common origin for the attractive interaction in these superconductors is the
electron-phonon interaction [64–66]. Electron-phonon driven s-wave spin-singlet superconduc-
tivity is called conventional superconductivity. The pairing interaction in the majority of the rest
of superconductors, dubbed unconventional, is thought to originate from electron-electron inter-
actions [67] or their collective modes, such as spin fluctuations [68], skyrmions [69] or plasmons
[70]. Moreover, local repulsion tends to be large in unconventional superconductors, which sup-
presses the s-wave spin-singlet channel with no sign changes of the superconducting gap, thus
favouring a different pairing symmetry [71, 72]. Consequently, unconventional superconductors
typically break additional symmetries. The d-wave spin-singlet superconducting pairing in tetrag-
onal cuprate superconductors is a paradigmatic case where the superconducting order parameter
breaks the fourfold rotational symmetry of the underlying lattice [10, 73]. Iron-based superconduc-
tors [74] and heavy fermion systems [75] are other examples of unconventional superconductors.
The thorough understanding of unconventional superconductivity and the development of a consis-
tent and complete microscopic theory for it remains one of the paramount challenges of condensed
matter physics [71, 72].

Interestingly, collective modes in a superconductor can provide valuable information about
the pairing [68, 76]. This has been traditionally exploited in conventional superconductors, where
phonons leave signatures in the tunneling current which allow to quantify the electron-phonon
coupling [76]. Spin fluctuations also impact the electronic spectral function in unconventional
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superconductors [68]. The amplitude and phase dynamics of the superconducting order parameter
itself also describes collective modes [77–79]. A special case occurs when several pairing channels
compete, where the fluctuations towards the subleading channels define new superconducting
collective modes [80, 81], as in iron-based superconductors [82, 83]. In Chapter 2, we will show
that monolayer 2H-NbSe2 is a surprising example of this scenario.

Despite its success, the theory of spontaneous symmetry breaking does not provide a complete
classification of quantum phases and phase transitions. There are phase transitions between phases
with the same symmetry that cannot be differentiated by any local order parameter. This is where
the field of topology becomes useful in condensed matter physics. This was first manifested with
the discovery of the quantum Hall effect [84]: 2D electron gases under large magnetic fields exhibit
quantized Hall conductivity while remaining insulators with a vanishing longitudinal conductivity.
Systems with an integer number of filled Landau levels are insulators with the same symmetries,
but they have different quantized Hall conductivities, associated to a different Chern numbers
[85–89]. The Chern number is an integer topological invariant related to the change of the phase
of the wavefunction around the magnetic Brillouin zone, which can only change in a topological
phase transition where the mobility gap closes [85–89].

As exemplified by the Chern number, topology deals with global properties of the wavefunc-
tions, which define different topological invariants. Symmetry is also crucial in this field, since
topological classes are defined with respect to an equivalence relation consisting of adiabatic trans-
formations that respect the underlying symmetries. In this sense, topological phases are protected
by the symmetries that, if removed, would change the topology. Their nonlocal character grants
topologically nontrivial phases with a notion of robustness against local symmetry-preserving per-
turbations. In general, this is related to certain quantized responses, such as the Hall conductivity
in Chern insulators [90] and the Faraday and Kerr rotation in 3D strong topological insulators [91–
93]. Moreover, when interfaced with topologically different systems, topological phases usually
display anomalous boundary states which cannot be removed if the boundary itself respects the
protecting symmetries.

Depending on their protecting symmetries, topological phases are classified as strong, if the
protecting symmetries are only the local time-reversal, particle-hole, or chiral symmetries [94–98],
or crystalline, if they also require translational or other spatial symmetries [99, 100]. Regardless
of whether the symmetries are needed for the protection, they greatly facilitate the topological
characterization. This is especially the case for translational invariance in crystals, which has been
traditionally exploited by topology. In noninteracting systems, Bloch’s theorem allows to define
a crystal momentum in the Brillouin zone. This simplifies the topological characterization, since
topological invariants can be expressed as integrals over the Brillouin zone of certain geometric
quantities. For instance, the integral of the Berry curvature gives the Chern number. However,
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this computation is still hard in general. In conjunction with translational symmetry, point-group
symmetries can notably simplify this task even more via the so-called symmetry indicators [101–
107]. Symmetry indicators partially determine topological invariants based on the symmetry
eigenvalues of the occupied bands at high symmetry points in the Brillouin zone. Due to their
role in topological protection and characterization, crystalline symmetries have a crucial role in
the understanding of topological phases.

Nevertheless, topological phases can also exist in the absence of translational symmetry,
extending the field of topological phases to amorphous, disordered, quasicrystalline and nanocrys-
talline materials. For instance, this is clear for strong topological insulators, which are only
protected by local symmetries and a mobility gap [94–98]. Actually, the presence of plateaus of
quantized Hall conductivity over ranges of magnetic field in a quantum Hall insulator relies on
certain amount of disorder to localize all states but one in each Landau level. Furthermore, disorder
can even induce topological phases starting from trivial crystals, as in the so-called topological
Anderson insulators [108, 109]. Moreover, new topological phenomena can arise in noncrystalline
systems. Quasicrystals can host topological phases protected by rotational symmetries incompat-
ible with translational symmetry [110–112]. Amorphous systems lack exact spatial symmetries,
but they can be preserved on average, which leads to the so-called statistical topological insulators
[113]. However, identifying topological phases in noncrystalline systems is harder due to the
absence of exact translational symmetry and, consequently, of a Brillouin zone. While several
topological markers have been recently proposed, there is no generic and efficient method to
characterize topological phases in noncrystalline solids. We will address this issue in Chapter 3.

This Thesis involves three of the topics described above. It is divided in three chapters.
The first chapter deals with different secondary instabilities within an already broken-symmetry
ground state. In particular, we study 1T-TiSe2, a transition metal dichalcogenide that displays a
commensurate 2 × 2 × 2 CDW. Motivated by the diverging conclusions of different experiments
regarding the symmetry of the CDW state [52–54, 56, 114], we develop a theory where electron
doping drives two transitions to nematic and stripe CDWs where the threefold symmetry of the
underlying lattice is spontaneously broken [1].

The second chapter concerns the study of the collective modes of the superconducting order
parameter in a multiband system. Here, we consider another transition metal dichalcogenide,
monolayer 2H-NbSe2. At low temperature, NbSe2 becomes superconducting, with a ground
state which is likely a conventional s-wave spin-singlet superconductor. Motivated by the recent
experimental results from the group of Miguel Ugeda [2], together with other unconventional
features in the critical field [115, 116], we study the superconducting collective modes in the
presence of a subleading unconventional pairing. We find that the fluctuations towards this
subleading pairing define a Leggett mode, which leaves signatures in the tunneling spectrum.
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Finally, the third chapter is devoted to the topic of topological states in noncrystalline systems
[4]. In particular, we address the problem of signaling nontrivial topological phases in such systems.
We introduce the structural spillage, a new topological indicator applicable to noncrystalline solids,
which measures the band inversions between the noncrystalline system and a known reference
crystal, and is readily compatible with ab initio calculations [3]. The application of this method to
amorphous bilayer Bismuth predicts it to be a topological insulator.
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Resumen en castellano

Una de las fronteras de la física de la materia condensada es el estudio de las fases cuánticas
exóticas que surgen de la interacción entre correlaciones electrónicas, topología y desorden. En
esta Tesis, hemos estudiado diversas propiedades de varias de estas fases. En primer lugar, hemos
analizado la simetría del estado de onda de densidad de carga de 1T-TiSe2 [1]. Luego, hemos
examinado los modos colectivos que aparecen en la fase superconductora de la monocapa de
2H-NbSe2 [2]. Finalmente, hemos propuesto un indicador para identificar fases topológicas no
triviales en sistemas amorfos [3, 4]. Este capítulo proporciona un breve resumen del contexto
general de cada uno de estos temas, así como de los resultados particulares que hemos obetenido.

Existen varios enfoques para clasificar y caracterizar las fases de la materia y las transiciones
entre ellas. La simetría es una herramienta crucial para este propósito. De hecho, cada fase
puede ser asignado un grupo de simetrías espaciales y locales preservadas. En la teoría de Landau
[5, 6], las transiciones de fase se entienden como ruptura espontánea de simetría: cambiar ciertos
parámetros induce una fase diferente que rompe más, o diferentes, simetrías. Esto ocurre de manera
espontánea debido a las interacciones internas del sistema, en ausencia de cualquier fuente externa
que rompa explícitamente las simetrías. La ruptura de simetría puede ser indicada por un parámetro
de orden local, el valor esperado de un operador que se transforma como una representación del
grupo de simetría y que es distinto de cero sólo en la fase con la simetría rota. La dinámica de este
parámetro de orden da lugar a modos colectivos, que pueden ser importantes en la física de baja
energía del sistema [7].

Una conocida fase de ruptura de simetría es el estado de onda de densidad de carga (CDW, por
sus siglas en inglés) [8, 9], que aparece en numerosos sistemas correlacionados, desde los óxidos de
cobre [10, 11] hasta los dicalcogenuros de metales de transición [12–16]. En una transición CDW,
la distribución de carga electrónica adquiere una modulación con una periodicidad diferente a la del
estado normal, rompiendo un subgrupo de la simetría de translación. El parámetro de orden está
relacionado con el valor esperado de la densidad de carga con el vector de onda Q correspondiente
a la nueva modulación. Como consecuencia de la modulación de carga, la estructura electrónica
se reconstruye. Si el estado normal es metálico, se abren brechas (gaps) parciales o completas en
la superficie de Fermi, lo que reduce la energía electrónica total en el estado CDW. Debido a la
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interacción electrón-fonón, los fonones también se ven afectados por la inestabilidad CDW [17], y
la modulación de la densidad de carga electrónica va acompañada de una distorsión de la red con
la misma simetría.

Los materiales CDW muestran una rica variedad de propiedades y fenomenología. Parte de
la riqueza proviene del vector de onda Q de la modulación, que permite distinguir las CDWs en
términos de la conmensuración entre la periodicidad original de la red y la nueva modulación de
la densidad de carga. En este esquema, las CDWs conmensuradas preservan un subgrupo de las
translaciones, y por lo tanto se puede definir una supercelda periódica en el espacio real. Por
otro lado, ninguna simetría de translación se preserva exactamente en una CDW inconmensurada.
Parámetros externos, como la temperatura, el dopaje o la presión, pueden inducir una transición
entre fases conmensuradas e inconmensuradas, como en los dicalcogenuros de metales de transición
[13, 18]. En el Capítulo 1, nos centraremos en la fase CDW conmensurada de 1T-TiSe2. Además de
las transiciones entre diferentes CDWs, los diagramas de fase de los materiales CDW suelen mostrar
otras fases correlacionadas cercanas que rompen simetrías diferentes, como la superconductividad
y el magnetismo [19]. El estudio de la interacción y coexistencia de estos estados, que va desde la
competición hasta la cooperación, se encuentra en la vanguardia de la investigación en física de la
materia condensada y sigue siendo un problema sin resolver en muchos casos [20]. Esto motiva
el estudio de las propiedades y el origen de las CDWs. Dos de los materiales estudiados en esta
Tesis, 1T-TiSe2 y 2H-NbSe2, muestran fases CDW y superconductoras que coexisten para ciertos
rangos de parámetros [21–33].

El mecanismo microscópico que origina las CDWs es una continua fuente de controversias
[34–38]. Dependiendo de la dimensionalidad del sistema y la fuerza de las interacciones, el vector
de onda Q de la CDW puede estar principalmente determinado por el anidamiento (nesting) de
la superficie de Fermi [39, 40], la interacción electrón-fonón [8, 34] o las interacciones electrón-
electrón [41–45]. Mientras que el origen microscópico de la CDW es una pregunta relevante con
implicaciones en varios aspectos, como la interacción con fases competidoras, también se puede
extraer información importante independientemente de su origen, como la simetría de la CDW.

De hecho, aunque la ruptura de la simetría de translación es su propiedad definitoria, una
CDW podría romper más simetrías espaciales [46, 47]. Esto puede ocurrir genéricamente en
sistemas 2D y 3D, donde múltiples vectores de onda Q pueden estar relacionados por simetrías
del grupo puntual. La CDW de rayas (stripe) en los cupratos es un ejemplo donde la modulación
unidireccional CDW rompe la simetría de rotación cuártica C4 de la red subyacente [10, 11].
Un caso especial que ha atraído la atención en los últimos años ocurre cuando las simetrías de
rotación sólo se rompen después de una segunda inestabilidad a una fase nemática dentro del estado
CDW. Por ejemplo, se ha identificado una transición a una CDW nemática en los metales kagome
AV3Sb5 [48–51]. El caso de 1T-TiSe2 es particularmente intrigante, ya que se han encontrado
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señales similares [52–56], pero la simetría de su CDW sigue siendo motivo de controversia. El
Capítulo 1 de esta Tesis está dedicado a este problema.

Otra fase colectiva emblemática es la superconductividad, que es un caso especial de ruptura
espontánea de simetría. Fenomenológicamente, los superconductores se definen por su capacidad
para mantener supercorrientes persistentes en su estado fundamental [57], lo que conduce a una
resistencia nula y a la expulsión de campos magnéticos, conocida como efecto Meissner [58]. Mi-
croscópicamente, los superconductores pueden considerarse como superfluidos cargados, donde
pares de electrones, conocidos como pares de Cooper [59], condensan en un estado coherente,
causado por una atracción efectiva entre electrones a bajas energías. Los superfluidos no cargados
rompen la simetría continua U(1) relacionada con la conservación del número de partículas, y por
lo tanto constituyen estados de ruptura de simetría bien definidos en la colectividad macrocanónica.
Por otro lado, los pares de Cooper están cargados y, por lo tanto, se acoplan al campo electromag-
nético. La simetría U(1) en los superconductores está vinculada a la invariancia gauge local, que
no puede romperse, ya que sólo es una redundancia en nuestra descripción física [60]. Por lo tanto,
no existen observables locales invariantes gauge asociados a la superconductividad que exhiban
orden de largo alcance [61–63]. Si bien este es un aspecto fundamental de la superconductividad,
la analogía con los superfluidos se puede aplicar para determinar varias propiedades del estado
fundamental, como el gap superconductor, sin considerar el problema de la invariancia gauge.

En este formalismo, el parámetro de orden de un superconductor describe la función de
onda de los pares de Cooper y puede clasificarse según las simetrías espaciales y de espín de este
apareamiento. En el caso más simple, la superconductividad no rompe más simetrías, y está descrita
por un apareamiento de onda s y singlete de espín. El origen más común para la interacción atractiva
en estos superconductores es la interacción electrón-fonón [64–66]. La superconductividad de
onda s y singlete de espín originada por la interacción electrón-fonón se llama superconductividad
convencional. La interacción atractiva en la mayoría del resto de superconductores, denominados
no convencionales, se cree que proviene de las interacciones electrón-electrón [67] o de sus
modos colectivos, como las fluctuaciones de espín [68], los esquirmiones (skyrmions) [69] o los
plasmones [70]. Además, en los superconductores no convencionales, la repulsión local tiende
a ser grande, lo que suprime el canal de onda s y singlete de espín que no presenta cambios de
signo del gap superconductor, favoreciendo así una simetría de apareamiento diferente [71, 72].
En consecuencia, los superconductores no convencionales suelen romper simetrías espaciales.
El apareamiento de onda d y singlete de espín en cupratos tetragonales superconductores es un
caso paradigmático en el que el parámetro de orden superconductor rompe la simetría de rotación
cuártica C4 de la red subyacente [10, 73]. Los superconductores basados en hierro [74] y los
sistemas de fermiones pesados [75] son otros ejemplos de superconductores no convencionales.
La comprensión detallada de la superconductividad no convencional y el desarrollo de una teoría
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microscópica coherente y completa para ésta siguen siendo uno de los principales desafíos en física
de la materia condensada [71, 72].

Es interesante señalar que los modos colectivos en un superconductor pueden proporcionar
información valiosa sobre el apareamiento [68, 76]. Tradicionalmente, esto se ha aprovechado
en superconductores convencionales, donde los fonones dejan señales en la corriente túnel que
permiten cuantificar la interacción electrón-fonón [76]. Las fluctuaciones de espín también afectan
a la función espectral electrónica en superconductores no convencionales [68]. La dinámica de
amplitud y fase del propio parámetro de orden superconductor también describe modos colectivos
[77–79]. Un caso especial ocurre cuando varios canales de apareamiento compiten, donde las
fluctuaciones hacia los canales secundarios definen nuevos modos colectivos superconductores
[80, 81], como en los superconductores basados en hierro [82, 83]. En el Capítulo 2, mostraremos
que la monocapa de 2H-NbSe2 es un ejemplo sorprendente de este escenario.

A pesar de su éxito, la teoría de la ruptura espontánea de simetría no proporciona una
clasificación completa de las fases cuánticas y sus transiciones. Existen transiciones de fase entre
fases con la misma simetría que no pueden diferenciarse por ningún parámetro de orden local.
Aquí es donde el campo de la topología se vuelve útil en física de la materia condensada. Esto
se manifestó por primera vez con el descubrimiento del efecto Hall cuántico [84]: los gases de
electrones 2D en un campo magnético fuerte muestran una conductividad Hall cuantizada y, al
mismo tiempo, son aislantes con conductividad longitudinal nula. Los sistemas con un número
entero de niveles de Landau llenos son aislantes con las mismas simetrías, pero tienen diferentes
conductividades Hall cuantizadas, asociadas a diferentes números de Chern [85–89]. El número
de Chern es un invariante topológico entero relacionado con el cambio de fase de la función de
onda alrededor de la zona de Brillouin magnética, que sólo puede cambiar en una transición de
fase topológica donde el gap de movilidad se cierra [85–89].

Como ejemplifica el número de Chern, la topología trata sobre propiedades globales de las
funciones de onda, que definen diferentes invariantes topológicos. La simetría también es crucial
en este campo, ya que las clases topológicas se definen con respecto a una relación de equivalencia
que consiste en transformaciones adiabáticas que respetan las simetrías subyacentes. En este
sentido, las fases topológicas están protegidas por las simetrías que, si se eliminan, cambiarían
la topología. Su carácter no local otorga a las fases topológicamente no triviales una noción de
robustez contra perturbaciones locales que preservan la simetría. En general, esto está relacionado
con ciertas respuestas cuantizadas, como la conductividad Hall en aislantes de Chern [90] y las
rotaciones de Faraday y de Kerr en aislantes topológicos fuertes en 3D [91–93]. Además, en la
interfaz entre sistemas topológicamente diferentes, suelen aparecer estados de borde anómalos que
no se pueden eliminar si la propia interfaz respeta las simetrías que protegen las fases topológicas.
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Dependiendo de las simetrías que las protegen, las fases topológicas se clasifican como fuertes,
si sólo están protegidas por las simetrías locales de inversión temporal, partícula-hueco o quiral
[94–98], o cristalinas, si también requieren simetrías de traslación u otras simetrías espaciales
[99, 100]. Independientemente de si son necesarias para la protección, las simetrías facilitan en
gran medida la caracterización topológica. Esto es especialmente relevante para la invariancia de
traslación en cristales, que ha sido tradicionalmente aprovechada por la topología. En sistemas no
interactuantes, el teorema de Bloch permite definir un momento cristalino en la zona de Brillouin.
Esto simplifica la caracterización topológica, ya que los invariantes topológicos se pueden expresar
como integrales sobre la zona de Brillouin de ciertas cantidades geométricas. Por ejemplo, la
integral de la curvatura de Berry proporciona el número de Chern. Sin embargo, este cálculo sigue
siendo difícil en general. Junto con la simetría de traslación, las simetrías del grupo puntual pueden
simplificar notablemente esta tarea gracias a los llamados indicadores de simetría [101–107]. Los
indicadores de simetría determinan parcialmente los invariantes topológicos dependiendo de los
valores propios de las simetrías de las bandas ocupadas en los puntos de alta simetría de la zona
de Brillouin. Debido a su función en la protección y caracterización topológica, las simetrías
cristalinas desempeñan un papel crucial en la comprensión de las fases topológicas.

Sin embargo, las fases topológicas también pueden existir en ausencia de simetría de traslación,
lo que extiende el campo de las fases topológicas a materiales amorfos, desordenados, cuasicristal-
inos y nanocristalinos. Por ejemplo, esto es evidente para aislantes topológicos fuertes, que sólo
están protegidos por simetrías locales y un gap de movilidad [94–98]. De hecho, la presencia
de mesetas (plateaus) de conductividad Hall cuantizada durante rangos de campo magnético en
un aislante Hall cuántico necesita de cierta cantidad de desorden para localizar todos los estados
excepto uno en cada nivel de Landau. Además, el desorden puede incluso inducir fases topológicas
partiendo de cristales triviales, como en los llamados aislantes topológicos de Anderson [108,
109]. Es más, nuevos fenómenos topológicos pueden surgir en sistemas no cristalinos. Los cuasi-
cristales pueden albergar fases topológicas protegidas por simetrías rotacionales incompatibles con
la simetría de traslación [110–112]. Los sistemas amorfos carecen de simetrías espaciales exactas,
pero pueden preservarse en promedio, lo que lleva a los llamados aislantes topológicos estadísticos
[113]. Sin embargo, identificar las fases topológicas en sistemas no cristalinos es más difícil debido
a la ausencia de simetría de traslación exacta y, en consecuencia, de una zona de Brillouin. Aunque
se han propuesto varios marcadores topológicos recientemente, no existe un método genérico y
eficiente para caracterizar fases topológicas en sólidos no cristalinos. Abordaremos este problema
en el Capítulo 3.

Esta Tesis abarca tres de los temas descritos anteriormente. Está dividida en tres capítulos. El
primer capítulo trata sobre diferentes inestabilidades secundarias dentro de un estado fundamental
que ya ha roto la simetría. En particular, hemos estudido el 1T-TiSe2, un dicalcogenuro de metal de
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transición que muestra una CDW commensurada 2 × 2 × 2. Motivados por las observaciones de
distintas simetrías de la fase CDW en experimentos de microscopía de efecto túnel [52–54, 56, 114],
hemos desarrollado una teoría en la que el dopaje provoca dos transiciones a CDWs nemáticos
y de rayas, donde la simetría de rotación C3 de la red subyacente se rompe espontáneamente
[1]. Primero, hemos realizado el análisis de simetrías del sistema para construir un modelo k · p
acoplado al parámetro de orden de la CDW. El estado fundamental a dopaje cero es simétrico bajo
C3, caracterizado por un parámetro de orden con tres componentes iguales ∆⃗ = (∆, ∆, ∆). Cuando
el dopaje aumenta hasta cruzar unas singularidades de van Hove incipientes, hay una transición
a una CDW nemática con parámetro de orden ∆⃗ = (∆1, ∆2, ∆2). Si el dopaje se incrementa aún
más, la energía electrónica se minimiza para una CDW de rayas, caracterizada por un parámetro
de orden ∆⃗ = (∆, 0, 0). Tambien hemos demostrado que dichas CDWs aparecen en un modelo de
ligaduras fuertes mínimo, que hemos resuelto en la aproximación del campo medio autoconsistente.
Dado que el dopaje no se puede controlar precisamente en los experimentos, nuestra teoría puede
resolver el problema de la simetría de la CDW, reconciliando todos los experimentos.

El segundo capítulo está dedicado al estudio de los modos colectivos del parámetro de orden
superconductor en un sistema multibanda. En particular, hemos considerado otro dicalcogenuro
de metales de transición, la monocapa de 2H-NbSe2. A bajas temperaturas, el NbSe2 se vuelve
superconductor, con un estado fundamental que probablemente es un superconductor convencional
de onda s y singlete de espín. Motivados por la observación de resonancias bosónicas en el espectro
de túnel del estado superconductor de la monocapa de 2H-NbSe2 por el grupo de Miguel Ugeda [2],
junto con otras características no convencionales en el campo magnético crítico [115, 116], hemos
estudiado los modos colectivos superconductores en presencia de una interacción atractiva en un
canal de apareamiento secundario no convencional. Hemos encontrado que las fluctuaciones hacia
este apareamiento secundario, junto con el acoplo espín-órbita (SOC) en ausencia de inversión
espacial, definen un modo de Leggett, que consiste en la fluctuación de la fase relativa entre los
parámetros de orden de las bandas separadas por el SOC. Hemos calculado que su energía es menor
que el gap de las cuasipartículas en el superconductor, por lo que el modo de Leggett está bien
definido y no puede decaer. Además, hemos determinado que deja señales en la función espectral
de los electrones, y por lo tanto podría ser detectado en experimentos que midan el espectro túnel.
Finalmente, hemos discutido cómo el modo de Leggett es compatible con las resonancias bosónicas
observadas en [2]. En conclusión, es necesario considerar los modos colectivos superconductores
para analizar las resonancias que aparecen en la corriente túnel.

Finalmente, el tercer capítulo involucra el tema de los estados topológicos en sistemas no
cristalinos [4]. En particular, hemos abordado el problema de cómo señalar fases topológicas no
triviales en tales sistemas, donde no hay métodos simultáneamente genéricos y eficientes. En
este capítulo, hemos introducido el “structural spillage” (derrame estructural), un nuevo indicador



Contents 15

topológico aplicable a sólidos amorfos, que mide las inversiones de bandas entre el sistema no
cristalino y un cristal de referencia conocido, y es directamente compatible con cálculos ab initio
[3]. Debido a las analogías con el “spin-orbit spillage" [117], los correladores extraños [118, 119],
y los indicadores de simetrías en promedio [120], el structural spillage puede indicar el estado
topológico de un material no cristalino, tal y como demostramos en nuestros cálculos de ligaduras
fuertes en modelos basados en Bismuto amorfo. Así, el structural spillage abre la puerta a la
clasificación sistemática de sistemas no cristalinos topológicos.
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Chapter 1

Nematic charge density wave in
1T-TiSe2

In this chapter, we study the charge density wave (CDW) state in the transition metal dichalco-
genide 1T-TiSe2. We present a theory to reconcile conflicting experimental claims regarding the
nature of the CDW state in TiSe2, including whether there is a single or multiple CDW transitions
and the occasional observation of rotation symmetry breaking. Using a k · p model for monolayer
TiSe2 coupled to the CDW order parameter, we show how commonplace electron doping x drives
two transitions to threefold (C3) symmetry breaking states within the CDW. First, for sufficient
ellipticity of the conduction bands, as displayed by the realistic band structure of TiSe2, incipient
van Hove singularities appear in the CDW conduction bands. Therefore, starting from a C3-
symmetric 3Q CDW at low doping, the system is driven to a nematic 3Q CDW when the chemical
potential crosses the incipient van Hove singularities. Upon further increasing the doping, we find
a transition to a 1Q stripe state due to the gain of electronic energy. We then show how both
stripe and nematic states emerge from a minimal interacting tight-binding model, for both positive
and negative initial gaps. Since the doping of most experimental samples cannot be precisely
controlled, our theory provides a coherent picture for the long-standing puzzle of the symmetry
of the CDW. Finally, we discuss several experimental techniques that could verify our predictions,
such as transport, photoemission and tunneling measurements.
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1.1 Introduction

In this section, we will first describe CDWs in a general setting, highlighting the role of the
charge susceptibility, electron-phonon coupling and electron-electron interactions, as well as the
possibility of breaking further spatial symmetries. We will then introduce the general family of
transition metal dichalcogenide materials and their different stackings, which lead to a variety
of correlated physics. Focusing on 1T-TiSe2 in particular, we will describe the properties of its
normal state as well as its CDW, emphasizing the different controversies that have been brought
about in this material. Particular attention is paid to the apparently contradictory signatures of the
symmetry of the CDW. Motivated by these, we will describe our model and calculations in the
next sections.

1.1.1 Charge density waves

CDWs are correlated states where the electronic charge density spontaneously breaks trans-
lational symmetry [8, 9]. CDWs were first proposed by Peierls for a quasi-1D 1-band metallic
electron system, interacting only via a with weak electron-phonon coupling [39, 40]. If ck are the
electron annihilation operators at momentum k, and bq are the phonon annihilation operators at
momentum q, the Hamiltonian reads

H = He + Hph + He−ph = ∑
k

εkc†
kck + ∑

q
Ωqb†

qbq + ∑
kq

gk,k+qc†
kck+q(b†

q + b−q), (1.1)

where εk and Ωq are the electron and phonon dispersions, respectively, and gk,k+q is the electron-
phonon coupling. For simplicity, we have left the spin index of the fermion operators implicit.

In a quasi-1D metal, the Fermi surface has large parallel patches connected by twice the
Fermi momentum, Q = 2kF. This property, known as Fermi surface nesting, indicates that the
system has a tendency towards instabilities with a spatial modulation with wavevector Q, since
these modulations can open gaps and gain electronic energy. Quantitatively, this tendency is
indicated by the electronic charge susceptibility of the system, which measures the energy cost
of charge fluctuations around equilibrium. For the noninteracting electronic Hamiltonian He, the
bare electronic susceptibility reads

χ0(q, Ω) = ∑
k

∑
iω

tr[G0(k, iω)G0(k + q, iω + Ω)] = ∑
k

f (εk+q)− f (εk)

Ω −
(
εk+q − εk

)
+ iη

, (1.2)

where G0(k, iω) = [iω − ϵk]
−1 is the bare electronic Matsubara-Green’s function, f (ε) =

[1 + eϵ/kBT]−1 is the Fermi function, T is the temperature, η → 0+, and the trace in the first
equality is over the internal spin degrees of freedom. The tendency towards charge modulation
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of He is reflected in the divergence of χ0(q, Ω) for Ω → 0 at the momentum Q = 2kF at zero
temperature. For an infinitesimal electron-phonon interaction gk,k+Q coupling these states, the
system undergoes the so-called Peierls instability to a CDW with a charge density1

ρ(r) = ρ0(r) + Re
[
∆eiQ·r

]
, (1.3)

where ρ0(r) is the bare charge density of He and ∆ = ∑k⟨c†
kck+Q⟩ is the order parameter of the

CDW. The order parameter ∆ is complex in general, indicating the amplitude and the phase of
the modulation. Equivalently, its real and imaginary parts correspond to modulations cos(Q · r)
and sin(Q · r), respectively, which have a π

2 phase difference. In certain situations, such as in
the presence of inversion symmetry in our example, the real and imaginary parts might transform
differently under point group symmetries, and therefore only one of them might be realized. Note
that in our quasi-1D scenario with Fermi surface nesting, the modulation wavevector Q = 2kF is
generally incommensurate with the original lattice periodicity.

As a consequence of the charge modulation, a gap is opened in the electronic spectrum ren-
dering the system insulating, and the electron-phonon coupling drives a periodic lattice distortion
to screen the charge. The divergent electronic susceptibility guarantees that the gain in electronic
energy is always greater than the elastic energy cost of the lattice displacements. In this weak
coupling picture, lattice distortion is a byproduct of the electronic charge modulation, which would
occur irrespective of the presence of the lattice distortion. The divergence is gradually smoothed
with increasing temperature, which defines a critical temperature TCDW above which the CDW
is no longer stable. Above TCDW, due to the electron-phonon coupling, the frequency Ωq of the
phonon mode that freezes in the CDW is renormalized around the momentum Q, exhibiting a
minimum known as Kohn anomaly [17]. At TCDW, ΩQ vanishes, giving rise to the static lattice
distortion in the CDW.

CDWs have signatures in several experimentally observable quantities. The real-space charge
modulation can be directly measured with scanning tunneling microscopy (STM). New Bragg
peaks at Q appear in neutron and X-ray diffraction, as well as in the Fourier transform of STM
maps [121]. The change in the electronic spectrum and the transfer of spectral weight between
states separated by momentum Q can be observed with angle-resolved photoemission spectroscopy
(ARPES) [122–127]. The softening of the phonon mode can be observed by X-ray scattering [128]
and Raman spectroscopy [129]. Furthermore, the CDW transition can leave fingerprints in the
transport properties of the system, such as a change in the slope of the temperature-dependent
electrical resistivity [130, 131].

1Eq. (1.3) only displays the modulation with the lowest order harmonic Q, but modulations with Q + G will appear
for the reciprocal lattice vectors G of the original unit cell.
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In practice, the idealized divergence of the electronic susceptibility in a 1D crystal is smoothed
by several effects beyond temperature, such as deviation from perfect nesting, disorder-induced
scattering, electron-electron interactions, etc. [34]. This is the case of 2D and 3D systems, where
Fermi surface nesting is much weaker. For a CDW to occur in these cases, the electron-phonon
coupling has to be greater than a given value. Therefore, away from the ideal weak-coupling limit,
the states far from the Fermi level and the momentum dependence of the electron-phonon coupling
become important [34, 35, 132]. The relative importance of the Fermi surface drops compared to
the whole band contribution, and the nesting of the Fermi surface is no longer a good indicator of
the presence of a CDW instability nor predictive of its wavevector Q. Indeed, the nesting of the
Fermi surface only measures the peaking of the imaginary part of the static susceptibility

lim
Ω→0

1
Ω

χ′′(q, Ω) = π ∑
k

δ (EF − εk) δ
(
EF − εk+q

)
, (1.4)

where EF is the Fermi energy. However, what determines the instability is the real part of the
static susceptibility χ′(q, Ω = 0) [34], which involves the energy differences εk+q − εk (see Eq.
(1.2)). This becomes even more important in multiband systems due to the interband transitions2.
Furthermore, in the strong-coupling case, where the instability is of the electron-phonon-coupling
driven Jahn-Teller type, nonlinear lattice effects become important [132]. Above the critical tem-
perature, fluctuation-induced short-range order is established, which already affects the electronic
spectrum; for example, partial gaps open [35]. The long-range coherence is only reached at TCDW.
Moreover, strong-coupling CDWs tend to lock into the lattice and be commensurate [35].

Besides electron-phonon coupling, electron-electron interactions can also drive a CDW. The
paradigmatic model is the excitonic insulator instability of semiconducting or semimetallic systems
with a small indirect bandgap or overlap, respectively [43–45]. In this case, interband Coulomb
interaction might be attractive in the CDW channel at the momentum Q connecting the electron
and hole pockets. This scenario shares analogies with the BCS theory of superconductivity that
will be described in Chapter 2, where the two components of the Nambu spinors are the electron
and hole bands here. Consequently, in general there is no particle-hole symmetry, since the masses
and anisotropies of the electron and hole bands can be different, nor U(1) symmetry, which would
represent an artificial charge conservation in the electron and hole pockets separately. Therefore,
under realistic conditions the instability is no longer weak-coupling as in the BCS theory, since
there is no divergent susceptibility. Nevertheless, an analogous gap equation can still be written
down. Instead of Cooper pairs, it is electron-hole pairs, or excitons, which condense in a coherent
state. While in simple models a collective mode of excitonic or plasmonic nature is predicted to

2Furthermore, in multiband systems, matrix elements of the overlap between states enter in the susceptibility.
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soften in the transition [45, 133], this mode can be Landau damped if decay into single-particle
excitations is allowed [134, 135]. Nevertheless, electron-phonon coupling hybridizes this mode
with a certain phonon, which should indeed become soft [35, 133].

Finding excitonic insulators in real materials is hard since there is no symmetry distinction with
an electron-phonon driven CDW [35]. Indeed, since electron-phonon coupling is always present,
pure excitonic insulators are arguably thought experiments [34]. Nevertheless, the question of
the contribution of electron-electron interactions to the stability of a CDW is well-defined. Other
examples where electron-electron interactions drive CDWs are Wigner crystals [41, 42, 136] and
2D metals with van Hove singularities close to the Fermi level [137–139].

Regardless of their origin, a new feature appears in CDWs in 2D and 3D. Due to the point group
symmetries, there might be several symmetry-equivalent momenta Q corresponding to a given
charge modulation. For instance, we will see that the CDW in monolayer 1T-TiSe2 corresponds to a
modulation with momenta Qi = ΓMi, and there are three Mi points in its hexagonal Brillouin zone
related by threefold (C3) symmetry. The same scenario applies to the CDW in kagome AV3Sb5

metals [48–50]. In these cases, the CDW has a multicomponent order parameter, where each
component is related to the amplitude of the modulation in each of the symmetry-equivalent Q.
The new degrees of freedom in multi-Q CDWs associated to the relative values of the amplitudes
at the different Q allow the CDW to break additional spatial symmetries beyond the translational
symmetry. In the case of monolayer 1T-TiSe2, when the amplitudes of the three modulations are
the same, the C3 symmetry is preserved. When any of the amplitudes becomes inequivalent, the C3

symmetry is broken in the CDW state. In this Chapter, we will study how electron doping induces
transitions from the symmetric CDW to C3-symmetry-broken CDWs. This situation is reminiscent
of the kagome AV3Sb5 metals, where a nematic CDW has also recently been discovered [48–50].

1.1.2 Transition metal dichalcogenides

The material we focus on this Chapter, TiSe2, is an example of a transition metal dichalcogenide
(TMD). TMDs are layered materials with chemical formula MX2, where M is a transition metal and
X is a chalcogen, typically S, Se or Te [15, 16]. The transition metal commonly belongs to the groups
IV (e.g. Ti), V (e.g. Nb, Ta) or VI (e.g. Mo, W). Each “unit” Van der Waals layer is formed by a layer
of the transition metal sandwiched between two layers of the chalcogen. Typically, the individual
layers of each element form a triangular lattice with threefold rotational symmetry, although they
can also be distorted. Depending on the relative positions of the individual layers inside the unit
layer and the stacking of different unit layers, TMDs display different polytypes [140] (see Fig. 1.1).
For example, in the octahedral 1T polytype the atoms in the three individual layers are located in
the three different Wyckoff positions forming a triangular lattice (see Fig. 1.2(a)). Namely, if we
label these three positions as a, b, c, and we use lowercase letters for the chalcogens and capital
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Figure 1.1: Schematic stackings of distinct TMD polytypes, indicating their space group, number
of layers in the unit cell, and representative TMDs crystallizing in each polytype. Extracted from
Ref. [140].

letters for the transition metal, the stacking is aBc. The bulk unit cell consists of one layer. TiSe2

crystallizes in the 1T polytype. Another polytype that we will study throughout this thesis is the
trigonal prismatic 2Ha polytype, which is the most stable polytype of NbSe2 and has two layers
per unit cell in the bulk, whose stacking is aBa cBc (see Fig. 1.2(b)).

The different combinations of transition metals and polytypes give rise to a variety of correlated
states, such as CDWs, superconductivity, Mott insulators, etc., which have been under scrutiny for
decades [12–16, 35]. Moreover, their study in the 2D limit has also been allowed thanks to the
development of a variety of synthesis methods [15, 16]. This Chapter is devoted to the study of
the CDW in TiSe2, while Chapter 2 will analyze the superconductivity in monolayer NbSe2.
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Figure 1.2: Side and top views of the lattices of (a) 1T-TiSe2 and (b) 2Ha-NbSe2. Only the top
view of the top layer of 2Ha-NbSe2 is shown for visualization purposes.

1.1.3 TiSe2: state of the art

Normal state

The transition metal dichalcogenide TiSe2 crystallizes in the octahedral 1T polytype (see
Fig. 1.2(a)). It has space group P3̄m1 (#164) and point group D3d in both monolayer and bulk
samples, whose generators are the out-of-plane threefold rotational symmetry C3, the in-plane
twofold rotational symmetry C2x, and the intralayer inversion symmetry i (see Appendix 1.A for
the group theory analysis). The band structure near the Fermi level of monolayer TiSe2 features an
electron pocket at the three M points and two hole pockets located at Γ [141], as shown in Fig. 1.3.
The electron pockets derive from Ti d orbitals and have M+

1 symmetry, so they are even under i
and C2x. The hole pockets derive from Se p orbitals and transform as Γ−

3 , which is odd under the
intralayer inversion. Spin-orbit coupling (SOC) splits the two valence bands at Γ, where they are
degenerate in its absence (see Fig. 1.3(c,d)). The electron and hole pockets are nearly energetically
aligned, but the presence of a small indirect gap (Eg > 0) or overlap (Eg < 0) is still debated,
especially in the bulk [126, 127, 142–144]. Bulk TiSe2 displays a similar band structure, with the
lowest-lying electron pockets located at the L points and having L+

1 symmetry instead [145, 146].
Below but close to the Γ−

3 valence bands, bulk TiSe2 also features Γ−
2 and A−

3 hole pockets at the
Γ and A points, respectively. While in principle these bands only play a spectator role in the CDW,
they might be have an effect in certain experiments.

Several reasons lie behind the semiconductor versus semimetal controversy. First of all,
uncontrolled electron doping is ubiquitously found in TiSe2 samples due to Se vacancies and Ti
interstitials [131, 147, 148]. Consequently, the bottom of the conduction bands is usually slightly
filled, and can be observed in ARPES. Together with the thermal broadening, which is unavoidable
when measuring the high-temperature normal state, this makes the gap or overlap difficult to
resolve. Moreover, due to the strong-coupling nature of the CDW, the gapped spectrum of the
CDW phase can extend above TCDW [144, 149, 150]. Finally, band structure calculations cannot
help to solve this issue, since the significant correlations make the computed gap strongly depend
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(a)

(e)(d)

(b) (c)

Figure 1.3: (a) Low energy band structure without SOC and symmetry labels for the bands for
the bulk (notation in parenthesis for the monolayer) (obtained with model (1.26)). (b) Fermi
surface sketch of the normal state in the semimetallic case without SOC. The order parameter ∆⃗
coupling conduction and valence bands is also shown. (c) ARPES band structure of monolayer
TiSe2 in the normal state at T = 265K (extracted from Ref. [127]). (d) ARPES band structure
of bulk TiSe2 in the normal state at T = 300K (extracted from Ref. [126]). (e) Sketch of the kz
dispersion in the normal state of bulk TiSe2 (extracted from Ref. [126]).

on the exchange-correlation functional used in density functional theory (DFT) calculations [146],
or other details in GW extensions [151–153]. Nevertheless, recent ARPES experiments, which
have simultaneously measured the Γ and L bands at room temperature, have concluded that, when
appropriately accounting for the thermal broadening, TiSe2 is semiconducting with an indirect gap
of Egap ∼ 80meV in both bulk and monolayer [126, 127] (see Figs. 1.3(c,d)). This is consistent
with Ref. [142], which further electron doped the system to fully resolve the conduction band
and determined an indirect gap as long as the doping does not strongly renormalize the gap. The
narrow gap scenario is also supported by the fit to the temperature-dependent resistivity [131].
Nevertheless, given that the debate remains unresolved [144], in this chapter we will consider both
positive and negative gaps in the normal state, and show that this does not qualitatively change our
conclusions.

Charge density wave state

As the temperature is decreased, the L−
1 phonon of bulk TiSe2 softens [128], and a com-

mensurate 2 × 2 × 2 CDW develops below T3D
CDW ∼ 200K [35, 154] (see Fig. 1.4). The charge
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(b) (c)(a)

(d) (e)

Figure 1.4: (a) Sketch of the in-plane atomic displacements involved in the TiSe2 CDW. (b)
Real space STM image of the surface of bulk TiSe2 in the CDW state (adapted from Ref. [114]).
(c) Fourier transform of (b) highlighting the Bragg peaks associated to the CDW (adapted
from Ref. [114]). (d) ARPES band structure of bulk TiSe2 in the CDW state (extracted from
Ref. [126]). (e) Sketch of the low-energy band structure in the CDW state of bulk TiSe2 (extracted
from Ref. [126]).

modulation can be observed in STM as a pattern where charge is concentrated in one of each four
top Se atoms (see Figs. 1.4(b,c)). This distortion, with momenta Q = ΓLi and symmetry L−

1 ,
couples the Γ−

3 and L+
1 hole and electron pockets, causing a repulsion between them that can be

observed in ARPES (see Figs. 1.4(d,e)). In the CDW, the L point backfolds to Γ, as evidenced
by the observation of the valence band replica at L in ARPES (see Fig. 1.4(d)). Analogously, in
monolayer TiSe2, it is the M−

1 phonon coupling the Γ−
3 and M+

1 bands that condenses. The critical
temperature in the monolayer depends on the substrate [155], likely due to Ti-Se bond length and
Se vacancy concentration differences [156], but is typically T2D

CDW ∼ 230K.

Electron doping and pressure undermine the commensurate CDW, decreasing its critical
temperature until it dies in a putative quantum critical point at xCDW ∼ 0.06e/f.u. or pCDW ∼
3GPa [21–25, 141, 156–159]. Before the commensurate CDW is completely suppressed, there
appears an incommensurate CDW phase at intermediate temperature, which smoothly transitions to
the commensurate phase at lower temperature [23, 25, 156, 157]. Interestingly, a superconducting
dome is found close to the putative quantum critical point, where the discommensurations appear
at low temperature [21–25, 27, 28] (see Fig. 1.5). As predicted by Mcmillan [8, 13, 18], the
incommensurate CDW forms commensurate domains separated by sharp domain walls where
electrons tend to accumulate, which can drive the superconductivity [23, 24, 26, 156, 157, 160,
161]. In order to fully understand these interesting phases, first it is necessary to study the parent
commensurate CDW state, which, as we discuss below, is the source of several unresolved debates.
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Figure 1.5: Sketch of the temperature-doping phase diagram of bulk TiSe2. Extracted from
Ref. [25].

To this end, in this Thesis we focus on the zero-pressure, low-doping (x < xCDW) regime, where
the CDW is commensurate.

Due to the band structure reminiscent of a model excitonic insulator, the microscopic mecha-
nism driving the CDW has been discussed at length, but lacks an agreed solution up to date. Both
the strong electron-phonon coupling Jahn-Teller-like picture [128, 162–164] and the excitonic
insulator scenario [123, 133, 159, 165] have been proposed. Both interactions are sizeable and
could in principle drive the CDW separately or jointly [166, 167]. As explained in Section 1.1.1,
differentiating between both mechanisms is hard, since the majority of ground state observables
are analogous in both. Moreover, due to the mentioned difficulties in appropriately modeling the
normal state, the quantitative agreement between a given theory and experiment, for example in the
critical temperature or doping, cannot be taken as definitive proof of any scenario. Nevertheless,
due to the different timescales associated with the dynamics of phonons and excitons, out-of-
equilibrium experiments point to a sizeable contribution of both interactions [168–172]. These
experiments indicate that the strong electron-phonon coupling governs the in-plane short-range
order, whereas excitonic correlations set the out-of-plane long-range coherence. Indeed, this is
consistent with the fact that, in bulk TiSe2, in-plane order sets at a temperature ∼ T2D

CDW, and
out-of-plane coherence is then developed at T3D

CDW [173].

Several other controversies regarding the CDW properties of TiSe2 have arisen. Two puzzles
originated from the temperature-dependent electrical resistivity ρ. Traditionally grown sam-
ples using the chemical vapor transport method usually display a resistivity as the black line
in Fig. 1.6(a), with a low-temperature resistivity saturating at a finite value and with a positive
slope

(
dρ
dT (T → 0) > 0

)
, typical of a metallic ground state [131, 147, 154, 174]. However, this

arises from the native electron doping induced in this growth process [131, 147, 174]. Indeed,
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(a) (b)

Figure 1.6: (a) Resistivity as a function of temperature for bulk TiSe2 grown by three different
techniques. (b) ARPES spectrum of pressure-grown bulk TiSe2 (correspoding to the red line in
(a)) in the CDW state at T = 20K, showing the backfolded valence band in L but without sign of
the electron pocket. Extracted from Ref. [147].

Ref. [147] has recently achieved stoichiometric samples with insulating low-temperature resistiv-
ity
(

dρ
dT (T → 0) < 0

)
(red line in Fig. 1.6(a)) and, correspondingly, with the conduction band

unoccupied, as in Fig. 1.6(b). ARPES also resolves a gap in the low-temperature CDW, with
the smallest gap now occurring between the L and A points [126] (see Figs. 1.4(d,e)). Surpris-
ingly, while the latter is uncoupled to the CDW, this gap is smaller than the normal state gap at
room temperature [126]. The reason might be a trivial temperature renormalization of the gap
due to charge transfer between Ti and Se. The second question posed by the resistivity was the
origin of the peak in the resistivity at T∗ ∼ 150 − 165K. It is now understood as arising from
a crossover from electron-dominated transport at low-temperature, to a high-temperature regime
ruled by thermally-activated holes [131]. Moreover, the mobility of the carriers increases as going
away from TCDW, where the scattering with CDW fluctuations is the strongest [174]. Actually,
both the peak height and T∗ tend to anticorrelate with the a amount of extrinsic doping [131, 154].

Symmetry of the CDW

An arguably more fundamental controversy still unresolved up to date involves the symmetry of
the CDW. As explained above, the primary CDW order parameter ∆⃗ is agreed to have L−

1 symmetry,
as established by neutron diffraction [154] and X-ray [175] experiments (in the monolayer, the
symmetry is M−

1 [176]). This modulation has momenta Qi = ΓLi in the bulk (Qi = ΓMi in
the monolayer). Since there are three inequivalent L (M) points, ∆⃗ = (∆1, ∆2, ∆3) has three
components representing the amplitudes for the three Qi modulation vectors. These experiments
are compatible with a C3-symmetric 3Q configuration of ∆⃗, with the three components having
equal magnitude, ∆⃗ = (∆, ∆, ∆). This configuration agrees with DFT results at stoichiometry
[141, 177].
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(a) (b) (c) (d) (e)

Figure 1.7: (a) Real space STM image of the surface of bulk TiSe2 in the CDW state (extracted
from Ref. [53]). (b) Fourier transform of (a) highlighting the Bragg peaks associated to the
CDW (extracted from Ref. [53]). (b) Fourier transform of (a) along the three ΓM̄ directions,
highlighting the different intensity of the three CDW Bragg peaks indicating broken C3 symmetry
(extracted from Ref. [53]). (d) Real space STM image of the surface of bulk Cu-doped TiSe2
in the CDW state (extracted from Ref. [56]). (e) Fourier transform of (d) highlighting the only
nonzero CDW Bragg, which indicates a 1Q stripe CDW (extracted from Ref. [56]).

However, a few STM experiments in the surface of bulk TiSe2 are incompatible with this C3-
symmetric 3Q state [52–54]. Indeed, Refs. [52–54] observed domains where the charge modulation
has a preferred direction, which is clearly revealed in the different intensity of the three CDW Bragg
peaks at the ΓMi momenta of the surface Brillouin zone (see Figs. 1.7(a-c)). Two of the intensities
of the Bragg peaks are similar, and the other is significantly smaller (∆1 ≪ ∆2 ∼ ∆3). Therefore,
the C3 symmetry is broken in the CDW state of these samples, at least on the surface. This
contrasts with other STM experiments, where C3 symmetry is preserved [114]. The situation was
further complicated by the STM report of coexisting domains of C3-symmetric 3Q CDW and 1Q
stripe CDW in Cu doped samples [56], the latter having only one nonzero CDW Bragg peak (see
Figs. 1.7(d-e)).

A possible explanation of Refs. [52–55] proposed by Refs. [178–182] was a second transition
to a chiral CDW with space group C2, breaking all mirrors, inversion and C3 symmetries. If
only the L−

1 order parameter ∆⃗ condenses, an interlayer inversion symmetry is always present.
Therefore, the chiral CDW needs the condensation of two phonons, which Refs. [55, 178–182]
propose to be the L−

1 and L+
2 phonons. While Refs. [55, 182] provided X-ray and thermodynamic

signatures of a second transition to a chiral CDW, the X-ray evidence has been contested and
argued to be compatible with the achiral C3-symmetric 3Q CDW [183, 184]. Moreover, the
temperature where the transition to the chiral CDW was proposed coincides with the onset of a
symmetry-preserving out-of-plane displacement of the Se atoms [184], which could explain the
thermodynamic anomalies. Also, since the STM experiments [52–54] probe the surface, they
are insensitive to the presence or absence of bulk inversion symmetry, and can only establish the
breaking of the rotational symmetry. An alternative proposal of a chiral and C3-symmetry breaking
CDW was put forward by Ref. [185], whose DFT calculations for pristine bulk TiSe2 predict the
mixing of L−

1 and M−
1 phonons, leading to a space group C2. Explaining the variability of the

CDW symmetry observed in STM remains a challenge. We point out that the debate regarding



1.1. Introduction 29

the breaking of inversion symmetry only applies to bulk TiSe2. The C3-symmetric 3Q CDW in
monolayer TiSe2 already breaks inversion and mirror symmetries due to the order parameter being
M−

1 .

Recently, Refs. [186, 187] have measured the circular photogalvanic effect (CPGE) in bulk
TiSe2. CPGE is a nonlinear optical effect where a different DC current is generated by right and
left circularly polarized light. It is useful to probe the symmetries of the system, since the CPGE is
nonzero only in gyrotropic systems, which are noncentrosymmetric. In particular, the longitudinal
CPGE is finite only in chiral materials, while a nonzero transverse CPGE requires the breaking of
C3 symmetry. As other techniques, the CPGE can only probe the average symmetry of the region
spanned by the laser spot; if smaller domains break the symmetry but restore it on average, the
CPGE is blind to the symmetry breaking. With this in mind, we now describe the experiments of
Refs. [186, 187]. In the absence of training, the longitudinal CPGE vanishes in both the normal and
the CDW states of TiSe2, indicating the presence of inversion symmetry on average. Refs. [186,
187] have also measured the CPGE in trained samples. For that, starting at high temperature in
the normal state, they train the system with circular light above a threshold intensity while cooling
to low temperatures. Then, after removing the training light, the longitudinal CPGE is nonzero,
indicating a chiral state. Indeed, the sign of the CPGE current can be controlled by the left or
right-handed helicity of the training light. Moreover, when heating the system, the nonzero CPGE
persists until a temperature TCPGE about 20K lower than TCDW. On the other hand, the transverse
CPGE always vanishes, which indicates the presence of C3 symmetry on average. The resulting
CDW state after training is thus chiral, but preserves C3 symmetry, which points out that the
physics behind the CPGE experiments [186, 187] with training is different than that of the STM
experiments [52–54, 56]. There have been a few proposals to explain the CPGE experiments [186,
187], but no consensus has been reached. We will shortly discuss these and propose a new
interpretation of the CPGE results in the discussion Section 1.6.3.

In this thesis we focus on the equilibrium CDW of TiSe2 and the C3-symmetry breaking
observed in STM. We provide an alternative explanation for the C3-symmetry breaking which
requires only the standard L−

1 order parameter ∆⃗ and does not necessarily involve the breaking of
inversion symmetry. Such an spontaneous electronic nematic order has also been observed with
STM in kagome AV3Sb5 metals [48–50] and moiré heterostructures [188, 189]. In particular, we
show that electron doping of the CDW of monolayer TiSe2 drives further electronic instabilities to
C3-breaking states, first in the form nematic 3Q/2Q CDW states consistent with Refs. [52–54],
and then as a 1Q stripe CDW at further doping, reminiscent of Ref. [56]. The uncontrolled native
doping ubiquitously found in TiSe2 samples can therefore explain the variability of symmetries
observed. Our theory pertains to the low-doping case only, x < xCDW ∼ 0.06e/f.u., where the
CDW remains commensurate. We will discuss how our theory could be generalized to address
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bulk TiSe2 and the coupling to circularly polarized light.

1.2 k.p model

In this section, we construct a continuum k · p model that reproduces the low-energy valence
and conduction bands of TiSe2, constrained by the symmetries of the high temperature phase (space
group P3̄m1, point group D3d). The group-theoretical analysis needed to construct the model can
be found in Appendix 1.A. Then, we add the symmetry-allowed coupling to the mean-field order
parameter of the CDW, and analyze the ground state as a function of different parameters.

1.2.1 Monolayer model

p hole bands at Γ

We begin by considering the continuum k · p model for monolayer TiSe2. Its low-energy band
structure is sketched in Fig. 1.3. The two band eigenstates at Γ transform as Γ−

3 , which corresponds
to the Eu irreducible representation (irrep) of the little group D3d. We define their annihilation
operators p = {px, py}. We can now classify their Hermitian fermion bilinears p† p according to
symmetry as :

Γ+
1

(
A1g
)
→p†

x px + p†
y py, (1.5)

Γ+
2
(

A2g
)
→− i

(
p†

x py − p†
y px

)
, (1.6)

Γ+
3
(
Eg
)
→
{

p†
x px − p†

y py,−
(

p†
x py + p†

y px

)}
, (1.7)

where the notation in parenthesis corresponds to the little group irreps. Now, crystal momentum
k = (kx, ky) transforms as Eu in D3d, and therefore its quadratic combinations transform as:

A1g →k2
x + k2

y := k2, (1.8)

Eg →
{

k2
x − k2

y,−2kxky

}
, (1.9)

where the A2g combination kxky − kykx vanishes since it is antisymmetric. Using the multiplication
rules of Appendix 1.A.2, the second quantized Hamiltonian Ĥ0

pp = ∑k p†H0
pp(k)p to quadratic

order in momentum reads as:

H0
pp(k) =

(
apk2 + bp(k2

x − k2
y) bp2kxky

bp2kxky apk2 − bp(k2
x − k2

y)

)
, (1.10)
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where bp induces a splitting between the two isotropic hole bands at nonzero momentum:

ε0
p±(k) = (ap ± bp)k2, (1.11)

and parametrizes the orbital texture of their eigenvectors:

p0
+(k) =

kx

k
px +

ky

k
py, (1.12)

p0
−(k) = − ky

k
px +

kx

k
py. (1.13)

Ab initio calculations [145] show that the top valence band has px character along the ΓM line,
i.e., it is odd under the mirror mx along kx = 0 and becomes M−

1 at M, which sets bp < 0.
We take the value bp/ap = 0.25 from Refs. [125, 141]. While we will not consider SOC in our
calculations, here we write the hole Hamiltonian with SOC for completeness. The Pauli matrices σ

corresponding to the spin degree of freedom transform as σ0 → A1g, σz → A2g, {σx, σy} → Eg,
with the latter two being time-reversal odd. To lowest order in momentum, the SOC between
the hole bands is therefore λτyσz, where τy is the Pauli matrix in the orbital {px, py} space
corresponding to the combination (1.6). The Hamiltonian with SOC can thus be separated in spin
up and down components with opposite coupling ±λ, giving rise to a splitting between the two
valence bands:

ε0λ
p±σ(k) = apk2 ∓ σ

√(
bpk2

)2
+ λ2, (1.14)

with σ = ± for spin up/down.

d electron bands at M

Now, we derive the Hamiltonian of the three electron pockets at the M points, which transform
as M+

1 (A1g of the little group C2h). We define their annihilation operators d = {d1, d2, d3}, where
di represents the band at Mi, with (see Fig. 1.3(b)):

M1 = 2π√
3
(0, 1), (1.15)

M2 = 2π√
3
(−

√
3

2 ,− 1
2 ), (1.16)

M3 = 2π√
3
(
√

3
2 ,− 1

2 ). (1.17)

In the normal state, the three electron bands are uncoupled. Therefore, we can derive the energy of,
for example, d1, and then obtain the dispersions of d2 and d3 by applying the threefold rotational
symmetry connecting the three M points. The little group C2h of M1 is generated by {C2x, i},
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with irreps {A1g, A1u, A2g, A2u}. The bilinear d†
1d1 transforms as A1g. The crystal momenta

transform as kx → A1u and ky → A2u, and therefore their quadratic combinations can be classified
as k2

x → A1g, k2
y → A1g, and kxky → A2g, all of them being even under time-reversal symmetry

(TRS). Therefore, the dispersion of the d electron bands reads:

εd1(k) = ad⊥k2
x + ad∥k2

y = ad(k2
x + k2

y) + bd(k2
x − k2

y), (1.18)

εd2(k) = ad(k2
x + k2

y) + bd[− 1
2 (k

2
x − k2

y)−
√

3kxky], (1.19)

εd3(k) = ad(k2
x + k2

y) + bd[− 1
2 (k

2
x − k2

y) +
√

3kxky], (1.20)

where we have defined the average curvature ad = 1
2 (ad⊥ + ad∥) and the ellipticity bd = 1

2 (ad⊥ −
ad∥). Since the electron pockets have the long axis along the ΓM direction, bd > 0. DFT
calculations predict a large ellipticity value, bd/ad ∼ 0.87 [141, 149, 159], which we take as the
realistic value for the rest of this work. This value is also within the range of the experimentally
reported conduction band masses (see Table 1.C.1). The second quantized Hamiltonian Ĥ0

dd =

∑k d†H0
dd(k)d corresponding to the d electron pockets is then:

H0
dd(k) = diag [εd,1(k), εd,2(k), εd,3(k)] . (1.21)

The Hamiltonian H0
dd could have also been easily obtained using the multiplication rules in

the extended point group of Appendix 1.A.2. The extended point group is a convenient approach to
deal with the symmetry properties of CDWs [190–192]. The extended point group is the symmetry
group that includes the original point group of the normal state and the translations that are broken
by the CDW. For monolayer TiSe2, the extended point group is the symmetry group of a 2 × 2
supercell in the normal state. It has irreps Γ±

1 , Γ±
2 and Γ±

3 that do not involve translations, and
irreps M±

1 and M±
2 that characterize the observables with a Q = ΓM modulation. See Appendix

1.A.2 for more details. To rederive the conduction band Hamiltonian H0
dd, we use the fact that the

d†d bilinears transform under the symmetry of the extended point group as

Γ+
1

(
A1g
)
→d†

1d1 + d†
2d2 + d†

3d3, (1.22)

Γ+
3
(
Eg
)
→
{

d†
1d1 −

1
2

d†
2d2 −

1
2

d†
3d3,

√
3

2

(
d†

2d2 − d†
3d3

)}
, (1.23)

M+
1 →

{
d†

2d3 + d†
3d2, d†

3d1 + d†
3d1, d†

1d2 + d†
2d1

}
, (1.24)

M+
2 →i

{
d†

2d3 − d†
3d2, d†

3d1 − d†
3d1, d†

1d2 − d†
2d1

}
. (1.25)

The combinations of (1.22) and (1.23) with the crystal momentum terms (1.8) and (1.9), respec-
tively, lead to the Hamiltonian H0

dd (1.21). We note that a k-independent SOC does not affect the
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electron pockets in the k · p model.

Anticipating the 2 × 2 CDW phase transition, we work in the folded Brillouin zone where the
M point is folded to Γ. In the basis {d1, d2, d3, px, py}, the bare k · p Hamiltonian is

H0(k) =

( Eg
2 + H0

dd(k) 0
0 − Eg

2 + H0
pp(k)

)
, (1.26)

where Eg is the gap in the normal state, which is at most |Eg| < 100 meV. . The presence of a small
indirect gap (Eg > 0) or overlap (Eg < 0) is still debated [126, 127, 142–144], but our conclusions
remain qualitatively the same in both cases. We stress again that we do not consider SOC, since it
does not qualitatively affect the CDW [146]. The bands of the model (1.26) are displayed as grey
dotted lines in Fig. 1.8(a-c).

Coupling to the CDW

Next, we consider the CDW order parameter with M−
1 symmetry and even under time-reversal

symmetry, denoted ∆⃗ = (∆1, ∆2, ∆3), which hybridizes the valence and conduction bands. The
order parameter ∆⃗ can be thought of as the amplitude of the condensed M−

1 phonon displacement
in normal coordinates after a Hubbard-Stratonovich transformation, or as the excitonic order
parameter of the same symmetry obtained from a mean-field decoupling. In order to derive the
form of the coupling, we need the symmetry classification of the d† p bilinears in the extended
point group:

M−
1 →

{
d†

1 px, d†
2

(
−1

2
px +

√
3

2
py

)
, d†

3

(
−1

2
px −

√
3

2
py

)}
, (1.27)

M−
2 →

{
d†

1 py, d†
2

(
−1

2
py −

√
3

2
px

)
, d†

3

(
−1

2
py +

√
3

2
px

)}
. (1.28)

Each M−
i bilinear allows for two Hermitian combinations: the time-reversal even (d† p)M−

i
+ h.c.,

and the time-reversal odd i[(d† p)M−
i
− h.c.].

The time-reversal-symmetric M−
1 order parameter ∆⃗ couples to the time-reversal even (1.27).

To lowest order in |⃗∆| =
√

∆2
1 + ∆2

2 + ∆2
3 and k, the symmetry-allowed coupling to ∆⃗ is therefore

described by the following total Hamiltonian:

H =

( Eg
2 + H0

dd(k) Hdp(∆⃗)
H†

dp(∆⃗) − Eg
2 + H0

pp(k)

)
, (1.29)
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Figure 1.8: Folded bands in the presence of the order parameter ∆⃗ in the momentum directions
ΓK1 and ΓM1. The configurations of ∆⃗ are (a) (∆, ∆, ∆), (b) (∆, 0, 0), and (c) (0, ∆, ∆). The
lowest conduction band for (c) (0, ∆, ∆) is twofold degenerate in the ΓK1 and ΓM1 directions.
Grey dashed lines show the bands for ∆⃗ = 0.

where

H†
dp(∆⃗) =

 √
2
3 ∆1 − 1√

6
∆2 − 1√

6
∆3

0 1√
2
∆2 − 1√

2
∆3

 . (1.30)

As deduced from Eqs. (1.27), three other order parameters would also couple the electron and
hole pockets: a TRS odd M−

1 , and a TRS even and odd M−
2 . In the isotropic bp = bd = 0 case,

the four order parameters have exactly the same effect on the band eigenvalues. Away from this
limit, the M−

1 and M−
2 order parameters differ, but the time reversal even and odd combinations

are still degenerate. As we will discuss in Section 1.4.1, this degeneracy arises due to the artificial
U(1) symmetry of the k · p model representing the separate charge conservation in the valence
and conduction bands in the normal state. In the k · p model, this degeneracy can only be broken
by adding umklapp interactions [193], but it is naturally lifted in a tight-binding model. Here we
consider only the coupling to the time-reversal even M−

1 order parameter, which is the only one of
the four that condenses in TiSe2.

With the k · p Hamiltonian H of Eq. (1.29), we can study the resulting bands from the
condensation of different configurations of ∆⃗. The C3-symmetric 3Q state [154] is represented by
∆⃗ = |⃗∆|√

3
(1, 1, 1). This order parameter causes a repulsion between the doublet of valence bands

and a doublet of conduction bands (see Fig. 1.8(a)), leaving the band edge of the third conduction
band unaffected by the CDW transition, as seen in ARPES [126, 127]. Figs. 1.8(b,c) show the bands
for the 1Q ∆⃗ = |⃗∆|(1, 0, 0) and 2Q ∆⃗ = |⃗∆|√

2
(0, 1, 1) states, respectively. In the 1Q case, only one

conduction band is repelled to high energies, and one of the valence bands is left unaffected.
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1.2.2 Bulk model

In bulk TiSe2, the electron pockets occur at the L points and have L+
1 symmetry, resulting in

an order parameter with L−
1 symmetry. The bulk k · p model follows from replacing these labels

in the monolayer model, and adding the kz dispersion. The momentum kz transforms as A2u in
the point group D3d, and the quadratic combinations as k2

z → A1g and {−kzky, kzkx} → Eg. The
bare Hamiltonian is then modified as

εkz
d1(k) = εd1(k) + cdk2

z − ddkzky, (1.31)

εkz
d2(k) = εd2(k) + cdk2

z + dd

(
1
2

kzky +

√
3

2
kzkx

)
, (1.32)

εkz
d3(k) = εd3(k) + cdk2

z + dd

(
1
2

kzky −
√

3
2

kzkx

)
, (1.33)

H0kz
pp (k) = H0

pp(k) +

(
cpk2

z − dpkzky −dpkzkx

−dpkzkx cpk2
z + dpkzky

)
, (1.34)

Our proposed mechanism for rotation symmetry breaking in principle applies to both mono-
layer and bulk samples with the corresponding replacement of the symmetry labels, so for simplicity
we now focus on the monolayer.

1.2.3 k.p ground state

The M−
1 CDW order parameter ∆⃗ = (∆1, ∆2, ∆3) has three symmetry-related components,

allowing for distinct ground states. Depending on the resulting symmetry group of the CDW, five
cases can be distinguished in the monolayer:

∆⃗ Space group Point group
C3-symmetric 3Q (∆, ∆, ∆) P321 (#149) D3

Stripe 1Q (∆, 0, 0) C2/c (#15) C2h
Nematic 2Q (0, ∆, ∆) C2/m (#12) C2h
Nematic 3Q (∆1, ∆2, ∆2) C2 (#5) C2

Generic (∆1, ∆2, ∆3) P1 (#1) 1

While all components of the M−
1 order parameter ∆⃗ are odd under inversion with respect to the

Ti sites, there is another inversion center on the bond connecting Ti sites. Both ∆⃗ = (∆, 0, 0) and
∆⃗ = (0, ∆, ∆) preserve at least one such inversion center, so they are achiral. States ∆⃗ = (∆, ∆, ∆)
and ∆⃗ = (∆1, ∆2, ∆2), however, do break all inversion centers in the monolayer and they are chiral.
In bulk TiSe2, the order parameter ∆⃗ transforms as L−

1 and all ordered phases are achiral, since an
interlayer inversion symmetry is always preserved. Chiral structures could be obtained with an M−

1
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order parameter, which is not the leading bulk instability [194]. Alternatively, the simultaneous
condensation of both L−

1 and L+
2 order parameters also gives rise to a chiral CDW [178–182].

Motivated by the contradictory experimental evidence [52, 54, 114, 154, 178–182], we now
focus on the problem of the symmetry of the ground state in monolayer TiSe2 and its stability upon
doping. These questions can be partially addressed within the continuum k · p model without
knowledge of the precise nature or structure of the interaction that gives rise to ∆⃗. The direction
of ∆⃗ for fixed magnitude |⃗∆| can be obtained at zero temperature by minimizing the total energy
of the occupied bands E =

∫ d2k
(2π)2 ∑n εn(k)θ[µ − εn(k)] where Hψn(k) = εn(k)ψn(k). This

approximate method can be applied if the interaction giving rise to the CDW only depends on
|⃗∆|2 = ∆2

1 + ∆2
2 + ∆2

3, which holds when any local four-fermion interaction is decoupled only in
the chosen channel. Note that nothing can be said about the magnitude |⃗∆| with this approach,
since the interaction energy cost cannot be considered. Therefore, the results of this section should
be interpreted as the preferred direction of ∆⃗ assuming that the interactions are such that the
CDW condenses with the magnitude |⃗∆|. Phase diagrams should therefore not be thought of as
the experimental phase diagrams obtained by varying the corresponding parameters: for instance,
the change in |⃗∆| and eventual disappearance of the CDW with doping cannot be captured. This
physics can only be captured with a self-consistent calculation of ∆⃗, assuming a given microscopic
interaction, as we will describe in Section 1.4. Nevertheless, the advantage of the approximate
method is that no particular interaction is assumed, and that it allows for an easier interpretation of
the origin of the different phases.

We have identified the electron doping x and the conduction band ellipticity bd/ad as the
crucial parameters determining the symmetry of the ground state. Fig. 1.9(a) shows a phase
diagram for fixed |⃗∆| and Eg = +50meV, as a function of x and bd/ad. The bare density of

states (DOS) ρ = 1/(4π
√

a2
d − b2

d) is kept constant by varying ad, to emphasize the role of the
ellipticity. The phase diagram reveals the appearance of four different phases. At stoichiometry
and low doping, the ground state is the C3-symmetric 3Q phase for any bd, as expected from
DFT calculations [141, 177]. Below certain ellipticities, bd/ad < 0.7, there is a sharp 3Q to 1Q
transition at a critical doping x1Q. Additionally, at higher values of bd/ad, a nematic 3Q phase
emerges where |⃗∆| = (∆1, ∆2, ∆2), with |∆1| ̸= |∆2|. Further increasing bd/ad, ∆1 vanishes and
the nematic phase becomes 2Q with |⃗∆| = (0, ∆, ∆). As explained above, this 2Q state differs
from the nematic 3Q phase in an extra inversion symmetry centered in the Ti-Ti bond.

The 3Q to 1Q transition can be understood most clearly in the isotropic case bp = bd = 0, for
which the energies of the two phases can be computed and integrated analytically. The analytical
derivation of the total energy of each state can be found in Appendix 1.B. At charge neutrality, if
there is a gap between valence and conduction bands in the CDW state, only the valence bands are
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Figure 1.9: (a) Constant |⃗∆| k · p phase diagram for Eg = +50meV and |⃗∆| = 100meV as a
function of electron doping x and ellipticity of the conduction bands bd/ad. The black dotted line
indicates the realistic ellipticity bd/ad = 0.87. (b) The same as (a) but with Eg = −100meV
and on a larger x range.

filled. The C3-symmetric 3Q state has the minimum total energy in this case since in this phase
both valence bands are pushed downwards in energy the most (see Fig. 1.8). When adding carriers,
the chemical potential in the 1Q state is lower than in the 3Q phase, since the lowest conduction
band is twofold degenerate only in the 1Q case (see Fig. 1.8(b)). Consequently, the energy of the
3Q phase increases faster relative to the 1Q state, eventually making the latter lower in energy at
a critical doping x1Q, which in the Eg = 0 limit takes the simple form n1Q = |⃗∆|

π

√
log 2

3ad(ad−ap)
,

with n1Q = x1Q/Vunit cell the electron density. This mechanism is still at work at finite bd, as we
observe numerically in Fig. 1.9.

The 3Q/2Q nematic phase has a different origin. Fig. 1.10(a) shows a close up of the
dispersion of the lowest-lying conduction band εc1 along ΓM as a function of bd for fixed ad and ∆⃗ =
|⃗∆|√

3
(1, 1, 1). Fig. 1.10(b) shows the corresponding DOS. Increasing the ellipticity first produces

a kink in the dispersion (a relative minimum of dεc1
dky

), which eventually gives rise to a van Hove
singularity with diverging DOS. When the filling is close to that of the six symmetry-equivalent
incipient van Hove singularities, breaking the C3 symmetry can lower the energy by splitting these
saddle points in energy, a known mechanism for nematicity in the doped honeycomb lattice [138]
and in Kagome superconductors [139]. Indeed, such splitting is observed in Fig. 1.10(c,d) in the
nematic state, explaining its origin. In Fig. 1.9(a), this 3Q/2Q nematic phase develops even at
values of bd where the van Hove singularities are not fully developed and there is only a finite but
sizable DOS peak. Eventually, for higher doping, the 1Q stripe phase always develops.

Fig. 1.9(b) shows the phase diagram for the semimetallic case with Eg = −100meV, which
displays the following differences with respect to Eg > 0. First, there is an intermediate nematic
3Q/2Q state also at small ellipticity, which occurs at fillings where the second conduction band, of
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Figure 1.10: (a) Lowest conduction band along the ΓM direction and corresponding DOS in the
C3-symmetric 3Q phase with Eg = +50meV and |⃗∆| = 100meV for constant ad and ellipticities
bd/ad = 0, 0.39, 0.60, 0.78, 0.88, 0.92, 0.95. A kink in the band is signaled by gray dots, and a
van Hove singularity by black dots. (b) Corresponding DOS for each band in (a). (c) Conduction
bands along the ΓM1 and ΓM2 directions (ΓM3 is equivalent to ΓM2) in the C3-symmetric 3Q
(blue) and nematic 2Q (red) phases with Eg = +50meV, |⃗∆| = 100meV and bd/ad = 0.87.
Horizontal dotted lines indicate the chemical potentials for x = 0.0182, where the C3-symmetric
3Q phase is unstable towards the 2Q state. (d) Corresponding DOS for each band in (c). The
three equivalent incipient van Hove singularities of the lowest conduction band in the symmetric
3Q state disappear in the 2Q state, which has higher DOS at lower energy and therefore lower
total energy.

approximate mexican hat shape for ∆⃗ = |⃗∆|√
3
(1, 1, 1), begins to be populated. Since the DOS is also

large there, a similar mechanism as the one for large ellipticity drives the transition to the nematic
3Q/2Q phase. Furthermore, at high ellipticity, including the realistic value bd/ad ∼ 0.87, a
reentrant C3-symmetric 3Q phase appears between the nematic 3Q state and the 1Q stripe phase.
In this region, the doping is well above the incipient van Hove singularities, so that no nematic
instability occurs, but the 1Q state energy is still higher. This reentrant phase shows that the
mechanisms for the 1Q and 2Q/3Q nematic states are indeed different.

Finally, we mention that the particular ratio ∆1
∆2

in the 2Q/3Q nematic phase is likely dependent
on the higher order terms in crystal momentum beyond our k · p. Nevertheless, the instability
towards a nematic phase is a strong prediction of our theory. Indeed, we will show in Section 1.4.1
that it is reproduced by our self-consistent mean-field calculations in a lattice model.

1.3 Ginzburg-Landau theory

In this section, we write down the uniform Ginzburg-Landau free-energy functional of the M−
1

order parameter ∆⃗ to grasp a complementary understanding of the nematic and stripe CDWs. The
Ginzburg-Landau functional is an expansion of the microscopic free-energy in powers of the order
parameter. Therefore, it is strictly applicable when ∆⃗ is small, which typically occurs close to the
CDW transition, although qualitative information can be also extrapolated to lower temperatures.
The Ginzburg-Landau theory is useful for predicting the configuration of ∆⃗ that condenses at
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TCDW. Here, we show that, while the 3Q to 1Q transition can be captured within this framework,
the nematic 2Q/3Q phase cannot be obtained from this approach.

The uniform Ginzburg-Landau free-energy density up to fourth order in ∆⃗ reads

F∆ = a∆ |⃗∆|2 + b∆ |⃗∆|4 + c∆(∆4
1 + ∆4

2 + ∆4
3), (1.35)

where b∆ > 0 and b∆ > −c∆ for F∆ to be well-defined in the limit of large ∆⃗. When a∆ < 0, ∆⃗
condenses into a state determined by the sign of c∆. For c∆ > 0 we have the 3Q C3-symmetric
ground state ∆ = ∆0

1√
3
(1, 1, 1), while for c∆ < 0 we have the 1Q stripe phase ∆ = ∆0(0, 0, 1).

Therefore, the k · p results would correspond to starting from c∆ > 0 at stoichiometry, with electron
doping changing the sign of c∆ at x1Q. We emphasize that this analysis is phenomenological and
only valid close to the critical temperature, where |⃗∆| is small, as opposed to our k · p analysis.
Other perspective from this observation is that the fact that both C3-symmetric 3Q and 1Q stripe
phases can be obtained from this Ginzburg-Landau functional to fourth order suggests that the
critical temperatures of both phases should be similar. While we have not explicitly computed
the Ginzburg-Landau coefficients from a microscopic model to prove that, our self-consistent
microscopic calculations of Section 1.4.2 will show that this is indeed the case.

The 2Q/3Q nematic phase cannot be obtained from the free energy (1.35). Indeed, this
is in agreement with the fact that a perturbation series in ∆⃗ is not able to properly reproduce
the saddle point in the dispersion of the C3-symmetric 3Q CDW state3. This suggests that the
instability towards the 2Q/3Q nematic CDW might occur at a lower temperature than that of the
C3-symmetric 3Q and stripe 1Q states. In Section 1.4.2, we will show that our self-consistent
microscopic calculations reproduce this prediction. Moreover, in Section 1.5 we will explain an
additional mechanism favouring a nematic CDW based on the coupling of ∆⃗ to another order
parameter.

1.4 Tight-binding model

The continuum k · p model provides a compelling basic understanding of the CDW phase
diagram as a function of doping, purely based on energetic considerations. To obtain a more
refined understanding based on a model which includes microscopic interactions, in this section
we develop an effective tight-binding lattice model and study its ground state phase diagram within
self-consistent Hartree-Fock theory. We construct a minimal tight-binding model that accurately

3Including sixth-order terms in the Ginzburg-Landau functional could give rise to a 2Q/3Q nematic CDW for
appropriately chosen coefficients. However, since ∆⃗ is nonperturbative in this phase, as exhibited also by the considerably
lower critical temperature in the self-consistent calculations of Section 1.4.2, this mechanism for nematicity might be
different than the one we have demonstrated here.
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captures the band dispersion and eigenstate symmetry near the Fermi level and reproduces the
low-energy k · p model when expanded near Γ and M. By considering quasi-local interactions
that induce the CDW of appropriate symmetry, we show that the mean-field calculations support
the doping-induced nematic and stripe CDWs predicted by the k · p model.

1.4.1 Construction of the model

Realistic tight-binding model

The lattice of 1T-TiSe2 has lattice vectors

a1 = a (1, 0, 0) , (1.36)

a2 = a
(

1
2 ,

√
3

2 , 0
)

, (1.37)

a3 = c (0, 0, 1) , (1.38)

with a ≃ 3.54 Å and c ≃ 6.00 Å the lattice parameters [195], and consists of three atoms per unit
cell:

• One Ti atom at the 1a Wyckoff position rTi = (0, 0, 0),

• Two Se atoms at the 2d Wyckoff position
{

rSe1 =
(

a√
3

√
3

2 , a√
3

1
2 ,−zSe

)
,

rSe2 =
(

a√
3

√
3

2 ,− a√
3

1
2 , zSe

)}
,

with zSe ≃ 1.55 Å. Although the overall symmetry is trigonal, the environment of the Ti atoms is
approximately cubic (zcubic

Se = a√
6
≃ 1.45 Å).

A realistic tight-binding model of TiSe2 representing the low-energy bands with the atomic
orbitals that contribute the most would consist of at least 7 orbitals per unit cell [196]:

• The approximate t2g triplet of Ti d orbitals {dab, dca, dbc}, with a, b, c the approximately
cubic directions, which are actually split in a singlet d2z2−x2−y2 → A1g and a doublet

∼ {
√

2√
3
dx2−y2 + 1√

3
dzy,−(

√
2√
3
dxy +

1√
3
dzx)} → Eg in the point group D3d;

• The doublet of {px, py} orbitals per each Se atom, which transform as the E representations
of the site symmetry group C3v of the Se site.

In 2D and in the absence of SOC, the low-energy physics is dominated by the antibonding-like
combination of Se-p orbitals transforming as Γ−

3 at Γ, and a mixture of the Ti-d orbitals transforming
as M+

1 at the three M points. In bulk TiSe2, a pz orbital per each Se atom should be included,
since its antibonding-like combination Γ−

2 at Γ lies close to the Γ−
3 pocket [28, 145]. This set of 7

(or 9) bands are isolated and can be Wannierized [145, 196].
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Effective lattice model

Here we have considered instead an effective lattice model for monolayer TiSe2 with the same
space group P3̄m1 that reproduces the band dispersion and eigenstate symmetry of the electron
and hole pockets near the Fermi level. Our tight-binding model can thus be regarded as a lattice
regularization of the k · p model. We have chosen a regularization with 3 orbitals per unit cell,
all of them sitting at the same 1a Wyckoff position r = (0, 0, 0) of a triangular lattice (see Fig.
1.11(a)):

• One orbital, denoted dz2 , transforms as A1g and gives rise to the conduction band M+
1 at M;

• A doublet, called {px, py}, transforms as Eu and reproduces the valence bands Γ−
3 at Γ.

We stress that these orbitals should not be thought of the real atomic orbitals, but rather as
appropriate combinations of them. As such, the dz2 and the {px, py} orbitals can be regarded as
Wannier orbitals fitting the band structure close to M and Γ, respectively. Far from these points,
however, these bands would mix with the ones coming from the other combinations of orbitals in
the realistic model. For instance, the lowest lying conduction band at Γ, which is higher than the
M conduction pockets and does not play a role in the CDW, is a Γ+

3 in reality, while our conduction
band is always totally symmetric by construction and thus Γ+

1 . However, since the low-energy
pockets close to the Fermi level play the major role in the physics of the CDW, this will not affect
our conclusions. Finally, although formally our model also has a mz mirror symmetry, it plays no
role, since all orbitals are located at z = 0 and belong to the mz even sector.

We include 8 symmetry-allowed parameters in our effective 2D lattice model: onsite energies
εp and εd, hoppings up to third nearest neighbours t(n)dd for the dz2 orbital, nearest-neighbour σ and
π hoppings for the {px, py} orbitals, and an interorbital nearest-neighbour hopping tdp:

H0 =∑
i

(
εdd†

i di + εp p†
i · pi

)
+

3

∑
n=1

∑
⟨ij⟩n

t(n)dd d†
i dj − ∑

⟨ij⟩1

itdp

(
d†

i r̂ij · pj − h.c.
)

−∑
⟨ij⟩1

[(
tppσ + tppπ

)
(p†

i · r̂ij)(r̂ij · pj)− tppπ p†
i · pj

]
.

(1.39)

Here ⟨ij⟩n are the nth nearest neighbours, pi =
(

pxi, pyi
)

is the vector of p orbitals, and r̂ij =

(rj − ri)/|rj − ri| is the unit vector from site i to site j. As in the k · p model, in the Hamiltonian
(1.39) we have neglected SOC. While this can quantitatively change the critical temperature and
related quantities, we expect that the qualitative picture remains the same [146].

The Hamiltonian parameters are chosen to reproduce the gap and masses of the bands near
the Fermi level. In particular, we solve for the noninteracting gap Eg, the masses mv1, mv2 of
the two valence bands at Γ, the masses mcx, mcy of the conduction bands at M perpendicular and
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Figure 1.11: (a) Triangular lattice of the effective tight-binding model with our choice of lattice
vectors and supercell. (b) Band structure of the effective lattice model (1.39) for Eg = 0. Purple
(grey) indicate the conduction (valence) bands, which are mainly composed of d (p) orbitals.
(c) Band structure of the realistic tight-binding model of Ref. [126]. Adapted from Ref. [126],
scaling the energy and momentum axes to be equal to (b).

parallel to the ΓM direction, and the energy εcΓ of the conduction band at Γ. The resulting system
of equations would be underconstrained, so we choose to leave tdp as a free parameter. Since the
valence bands are of p character while the conduction bands are of d character, tdp only affects
the band curvatures to second order with an energy denominator dominated by εd − εp, so its
influence on the bands is almost negligible (see Appendix 1.C.1). Nevertheless, we choose to
keep it finite because it breaks the artificial U(1) gauge symmetry representing the separate charge
conservation in the conduction and valence bands. This artificial symmetry is present in the k · p
model and can give rise to spurious results in a self-consistent mean-field calculation. The subtle
but important role of tdp in selecting a mean-field solution is further explained below in Section
1.4.1. The relationships between the Hamiltonian parameters and the gap and masses are displayed
in Eqs. (1.90)-(1.102) in Appendix 1.C.1. Here we take the gap and masses from Ref. [125] based
on ARPES measurements on monolayer TiSe2: mv1 = −0.7me, mv2 = (50/3)mv2 = −0.42me,
mcy = 10mv1 = 7me, mcx = mcy/14 = 0.5me (see table 1.C.1 for a comparison of these values
with other works). The resulting band structure for Eg = 0 is shown in Fig. 1.11(b), compared to
the bands of the tight-binding model of Ref. [126] in Fig. 1.11(c).

Interactions and CDW

To account for the CDW, we consider a supercell with superlattice vectors 2ai, with a1 =

a(1, 0) and a2 = a( 1
2 ,

√
3

2 ) and label the supercell sites by j = 1, 2, 3, 4, as in Fig. 1.11(a). Without
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loss of generality, we choose the origin of coordinates of a cell at r1 = (0, 0), so r2 = a(1, 0),
r3 = a(− 1

2 ,−
√

3
2 ), and r4 = a( 1

2 ,−
√

3
2 ).

We choose the CDW order in the effective lattice model to be represented by the local p-d
hybridization, encoded in the fermion bilinear ⟨d†

j pαj⟩, with j = 1, ..., 4 running over the sites of
the 2x2 supercell (see Fig. 1.11(a)). There are eight ⟨d†

j pαj⟩, which represent an onsite orbital
order and transform under symmetry as Γ−

3 ⊕ M−
1 ⊕ M−

2 , with the real and imaginary parts being
even and odd under TRS, respectively. The symmetry adapted operators read

⟨d† p⟩α
Γ−

3
=

1
2 ∑

j
⟨d†

j pαj⟩, (1.40)

⟨d† p⟩a
M−

1
=

1
2 ∑

j
eiMa·rj⟨d†

j pj⟩ × M̂a, (1.41)

⟨d† p⟩a
M−

2
=

1
2 ∑

j
eiMa·rj⟨d†

j pj⟩ · M̂a, (1.42)

where the subindices label the irrep of the extended point group according to which the operators
transform, and the superindices α = 1, 2 and a = 1, 2, 3 label the different components of the
multidimensional irreps. We have defined v × w = vxwy − vywx, and M̂a = Ma

|Ma| , with the
momenta Ma defined in Eqs. (1.15)-(1.17).

We complete the model with the most local interaction that is attractive only for the M−
1

channel, which is

Hdp1 = Vdp ∑
⟨ij⟩1

(
d†

i pi

)†
·
(
1 − 2r̂ij ⊗ r̂ij

)
·
(

d†
j pj

)
, (1.43)

with Vdp > 0. We have defined the rank-two tensor T = v ⊗ w with components Tαβ = vαwβ.
We now show that, at the mean-field level, Hdp1 is attractive with coupling −2Vdp for the M−

1

channel, whereas it is repulsive with +2Vdp for the M−
2 channel, and it does not couple to the Γ−

3

channel.

The mean-field Hamiltonian HMF in real-space is obtained by decoupling the Hamiltonian
H0 + Hdp1 of Eqs. (1.39), (1.43) in the onsite orbital order ⟨d†

j pαj⟩ channel, which corresponds to
the Fock channel of the Vdp interaction. We obtain HMF = H0 + HMF

dp1, with

HMF
dp1 = Vdp ∑

⟨ij⟩

{[
⟨d†

i pi⟩∗ ·
(
2r̂ij ⊗ r̂ij − 1

)
·
(

d†
j pj

)
+ h.c.

]
−

−⟨d†
i pi⟩∗ ·

(
2r̂ij ⊗ r̂ij − 1

)
· ⟨d†

j pj⟩
}

,
(1.44)
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with the expectation values taken in the self-consistent mean-field ground state. We can write this
mean-field interaction as a matrix in the basis {d†

1 px1, d†
1 py1, d†

2 px2, d†
2 py2, d†

3 px3, d†
3 py3, d†

4 px4,
d†

4 py4}:

Vdp⟨d† p⟩∗ ·



0 0 1 0 − 1
2

√
3

2 − 1
2 −

√
3

2

0 0 0 −1
√

3
2

1
2 −

√
3

2
1
2

1 0 0 0 − 1
2 −

√
3

2 − 1
2

√
3

2

0 −1 0 0 −
√

3
2

1
2

√
3

2
1
2

− 1
2

√
3

2 − 1
2 −

√
3

2 0 0 1 0√
3

2
1
2 −

√
3

2
1
2 0 0 0 −1

− 1
2 −

√
3

2 − 1
2

√
3

2 1 0 0 0

−
√

3
2

1
2

√
3

2
1
2 0 −1 0 0


· d† p (1.45)

Diagonalizing this matrix, we get eigenvalue −2 for the eigenvectors ⟨d† p⟩M−
1

(1.41), +2 for
⟨d† p⟩M−

2
(1.42), and 0 for ⟨d† p⟩Γ−

3
(1.42). Consequently, we can recast HMF

dp1 in Eq. (1.44) as

HMF
dp1 = ∑

supercells

{
−2Vdp

(
⟨d† p⟩∗M−

1

[
d† p
]

M−
1

+ h.c. −
∣∣⟨d† p⟩M−

1

∣∣2)+

+2Vdp

(
⟨d† p⟩∗M−

2

[
d† p
]

M−
2

+ h.c. −
∣∣⟨d† p⟩M−

2

∣∣2)} .

(1.46)

As we anticipated, the mean-field Hamiltonian (1.44) is only attractive in the M−
1 channel.

The last step to write the explicit expression of the order parameter ∆⃗ is to determine its
normalization so that it couples to the k · p at k = 0 as in Hdp(∆⃗) of Eq. (1.29). For that, we
express the low-energy k · p eigenfunctions {dkp

1 , dkp
2 , dkp

3 , pkp
x , pkp

y } in the basis of tight-binding
orbitals {dj, pxj, pyj}4

j=1 in the 2 × 2 supercell. Taking into account that dkp
a have momentum ΓM

and pkp
α have zero momentum, and that the eigenfunctions at Γ and M are purely p and purely d in

the tight binding, respectively, we obtain:

dkp
a =

1
2 ∑

j
eiMa·rj dj, (1.47)

pkp
α =

1
2 ∑

j
pα, (1.48)
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The projection of the time-reversal symmetric M−
1 component of HMF

dp1 onto the k · p bands at
momentum k = 0 of the CDW Brillouin zone is therefore as in Eq. (1.29) with

H†
dp =

1
2
(
−2Vdp

)
Re

 ⟨d† p⟩1
M−

1
− 1

2 ⟨d† p⟩2
M−

1
− 1

2 ⟨d† p⟩3
M−

1

0
√

3
2 ⟨d† p⟩2

M−
1

−
√

3
2 ⟨d† p⟩3

M−
1

 . (1.49)

Comparing this expression to Eq. (1.30), we conclude that the explicit expression of the time-
reversal symmetric M−

1 CDW order parameter ∆⃗ in the tight binding is

∆a =

√
3
8
(
−2Vdp

)
Re⟨d†

j pj⟩a
M−

1
= −

√
3
8

Vdp ∑
j

eiMa·rj Re⟨d†
j pj⟩ × M̂a, (1.50)

Our mean-field decoupling (1.44) allows for another three order parameters. One is the TRS
odd M−

1 counterpart of ∆⃗, which corresponds to taking the imaginary part instead of the real part
in Eq. (1.50). In the presence of separate charge conservation for the p and d orbitals, the time-
reversal even and odd M−

1 order parameters would be degenerate [193]. However, the presence of
a small tdp hopping breaks their degeneracy in favor of the real part ∆⃗ in all cases. Indeed, the TRS
odd M−

1 order parameter is identically zero in our calculations. The other two order parameters

transform as TRS even and odd M−
2 , Ψa± = +

√
3
8 Vdp ∑j

1
2 (e

iMa·rj⟨d†
j pj⟩ · M̂a ± h.c.), and the

interaction is repulsive for both4. Ψ⃗+ is nonzero but small only in the nematic phase, where it is
symmetry allowed, with ∆⃗ = (∆1, ∆2, ∆2) and Ψ⃗+ = (0, Ψ+,−Ψ+). Therefore, our interacting
tight-binding model only favors time-reversal even M−

1 instabilities, as required. Our interacting
tight-binding Hamiltonian therefore serves as a minimal model to analyze the energetics of the M−

1

CDW order.

1.4.2 Self-consistent mean-field calculations

In this section, we discuss the mean-field T-x phase diagrams obtained by self-consistently
solving the Hamiltonian HMF (1.44) for different values of the initial gap Eg. These calculations
corroborate that the existence of C3-breaking phases is qualitatively robust.

For each Eg, we choose Vdp such that the critical doping for the disappearance of the commen-
surate CDW is xCDW ∼ 0.06e/f.u., as determined experimentally [24, 25, 127, 197]. Indeed, in
our simplified effective model with a given initial gap Eg, it is not generically possible to choose a
value of the interaction that reproduces both the critical temperature TCDW and the critical doping
xCDW for the disappearance of the CDW. Our aim is not to reproduce these values quantitatively,

4Curiously, if the interaction were attractive in the M−
2 channel, the tdp would favor the time-reversal breaking CDW.
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Figure 1.12: Temperature-doping phase diagrams obtained by self-consistently solving the mean-
field Hamiltonian of Eq. (1.44) for different gaps, and thus, as explained, different interaction
strengths and critical temperatures. The intensity of the color of each phase is proportional to
|⃗∆|. TCDW is the critical temperature at stoichiometry.
(a) Eg = +50meV, Vdp = 890meV, TCDW = 576K;
(b) Eg = +25meV, Vdp = 845meV, TCDW = 459K;
(c) Eg = 0, Vdp = 800meV, TCDW = 378K;
(d) Eg = −25meV, Vdp = 740meV, TCDW = 269K;
(e) Eg = −27.5meV, Vdp = 733meV, TCDW = 259K;
(f) Eg = −30meV, Vdp = 725meV, TCDW = 249K;
(g) Eg = −35meV, Vdp = 716.5meV, TCDW = 239K;
(h) Eg = −50meV, Vdp = 650meV, TCDW = 145K;

which would require including physics well beyond our model like electron-phonon coupling,
lattice anharmonicity [198], doping-dependent screening, the effect of the substrate [125, 199],
fluctuation corrections to mean field [200], etc., but rather to show the generic existence of C3-
breaking phases. Because of this, we choose interaction strengths to match the critical doping above
which the commensurate CDW dies and present the phase diagrams as a function of T/TCDW,
noting that the critical temperature at charge neutrality TCDW generally changes for different values
of Eg. The critical doping we take, xCDW ∼ 0.06e/f.u. [24, 25, 127, 197], is only an approximate
estimate, since at this doping there is a crossover to an incommensurate CDW, where the ground
state consists of commensurate domains separated by domain walls [13, 18, 25, 157].

Fig. 1.12 displays the resulting phase T-x diagrams for decreasing gap from Eg = +50meV
to Eg = −50meV. States (∆, ∆, ∆), (∆1, ∆2, ∆2), and (∆, 0, 0) appear in all cases, while a 2Q
(0, ∆, ∆) phase develops only for a sufficiently negative gap (Eg ≲ −30meV). At zero temperature,
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the C3-symmetric 3Q phase (∆, ∆, ∆) is the most stable at low doping, while the 1Q-stripe order
only develops at high doping, with the nematic 3Q/2Q phase developing in between, in agreement
with our k · p predictions of Fig. 1.9. While the 3Q nematic and the 1Q stripe phases share a
boundary for positive gaps, they separate for sufficiently negative gaps (Eg ≲ −25meV), where
the reentrant C3-symmetric 3Q phase is also observed between the nematic 3Q and the 1Q phases.
This clearly indicates that the origin of these two phases is different, in agreement with our theory.
Starting from high temperature, the first transition is always to the C3-symmetric 3Q phase. At
high doping, the 1Q phase develops at a lower but comparable temperature, as expected from
the Ginzburg-Landau analysis of Section 1.3. On the other hand, the nematic 3Q/2Q phase only
appears at low temperature (Tnematic ∼ 0.2 TCDW), which is expected for a secondary instability of
the 3Q CDW state. Regarding the dependence of the phase diagram on the gap, the most prominent
feature is the shift of the 1Q stripe phase to higher doping for decreasing gap, until this phase
disappears. This is consistent with the k · p predictions of Fig. 1.9, which show that the doping
above which the 1Q solution is more stable than the 3Q increases with decreasing gap. Finally, the
relative extension of the 2Q phase with respect to the 3Q nematic phase increases with decreasing
gap. Nevertheless, we stress again that the actual nematic state, i.e., the ratio ∆1/∆2, might depend
on details beyond our model, such as anharmonic effects.

1.5 Robustness of the nematic state and secondary order parameter

Recent bulk X-ray diffraction experiments have identified a secondary order parameter [184],
in the form of out-of-plane Se displacements with symmetry M+

1 in bulk samples, which was
also found in ab initio calculations [177]. This M+

1 order parameter Φ⃗ = (Φ1, Φ2, Φ3) is
symmetry allowed in the CDW produced by ∆⃗ in both bulk and monolayer, as it breaks no
further symmetries. Indeed, it develops at TCDW and linearly but slowly increases with decreasing
temperature. Remarkably, below a given T∗ ∼ 165K, its associated X-ray diffraction peak
undergoes a sharp increase, indicating that below this temperature Φ⃗ is not only symmetry-induced
but its condensation is energetically favorable. Incidentally, T∗ coincides with the maximum of the
electrical resistivity discussed in Section 1.1.3, although whether these two features are actually
connected remains unknown.

In this section, we discuss the effect of Φ⃗ in the bands of the k · p model, and show that it
can enhance the DOS peak associated to the incipient saddle point in the CDW conduction band.
By adding further interactions to the effective lattice model that decouple in the Φ⃗ channel, we
demonstrate that the nematic CDW is robust and even enhanced.
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1.5.1 k.p model

By symmetry, to linear order, Φ⃗ can only couple the Ti d bands with themselves as

HΦ
dd(Φ⃗) =

 0 Φ3 Φ2

Φ3 0 Φ1

Φ2 Φ1 0

 . (1.51)

We note that the coupling is the same in the bulk, since the three electron pockets are separated
by the momentum M; for example, L1 + L2 = −M3 + Gz, with Gz = (0, 0, 2π/c) a reciprocal
lattice vector. The total Hamiltonian can be obtained by adding Eqs. (1.29) and (1.51):

H =

( Eg
2 + H0

dd(k) + HΦ
dd(Φ⃗) Hdp(∆⃗)

H†
dp(∆⃗) − Eg

2 + H0
pp(k)

)
, (1.52)

It is useful to define the “sign” of Φ⃗ as sign(Φ1Φ2Φ3). As opposed to ∆⃗, which produces the
same band structure for either sign, the bands are sensitive to the sign of Φ⃗. Indeed, when ∆⃗ = 0,
a C3-symmetric 3Q Φ⃗ = (Φ, Φ, Φ) splits the three electron pockets in a singlet with band edge at
energy Eg

2 + 2Φ and a doublet at Eg
2 − Φ (see Figs. 1.13(a,b)). Therefore, Φ > 0 raises the singlet

conduction band with respect to the doublet, while Φ < 0 lowers it. In the presence of a finite
∆⃗ = (∆, ∆, ∆), the sign of Φ⃗ has the same effect. In this case, the electron pockets are already split
in singlet and doublet by ∆⃗, and Φ⃗ shifts them depending on its sign, as shown in Figs. 1.13(c-f).
Moreover, via the finite p-d coupling induced by ∆⃗, Φ⃗ also affects the valence bands. Indeed, the
conduction and valence band edges at k = 0 for ∆⃗ = (∆, ∆, ∆) and Φ⃗ = (Φ, Φ, Φ) are:

εsinglet
c (k = 0) =

Eg

2
+ 2Φ, (1.53)

εdoublet
c (k = 0) = −Φ

2
+

√(
Eg − Φ

2

)2

+ ∆2, (1.54)

εdoublet
v (k = 0) = −1

2
Φ −

√(
Eg − Φ

2

)2

+ ∆2, (1.55)

With this in mind, we now analyze which sign of Φ⃗ is energetically favorable. At stoichiometry
and for a positive gap, only the energies of the filled valence bands matter. Φ⃗ couples to the valence
bands only indirectly via ∆⃗. It shifts them downward when Φ > 0, which is thus the preferred state
at charge neutrality. For finite electron doping, this effect competes against the energy gain coming
from the direct Φ⃗ coupling of conduction bands when the singlet is shifted to lower energies instead
(see Appendix 1.D.1, where we analytically and numerically determine this energy gain from the



1.5. Robustness of the nematic state and secondary order parameter 49

−0.5 0.0 0.5

k · a

−0.1

0.0

0.1

E
[e

V
]

K1 M1

|∆| = 0,Φ > 0

−0.5 0.0 0.5

k · a

−0.1

0.0

0.1

E
[e

V
]

K1 M1

|∆| = 0,Φ < 0

−0.5 0.0 0.5

k · a

K1 M1

∆ 6= 0,Φ > 0

−0.5 0.0 0.5

k · a

K1 M1

∆ 6= 0,Φ < 0

0 10

DOS [eV−1a−2]

∆ 6= 0

Φ = 0

Φ > 0

0 10

DOS [eV−1a−2]

∆ 6= 0

Φ = 0

Φ < 0

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.13: k · p bands in the C3-symmetric 3Q state with ∆⃗ = (∆, ∆, ∆) and Φ⃗ = (Φ, Φ, Φ).
The k · p parameters are Eg = 40meV, ad = 0.33eV/a, bd/ad = 0.87, ap = −0.58eV/a,
bp/ap = 0.25, |⃗∆| = 120meV, |Φ⃗| = 20meV. (a) ∆ = 0 and Φ > 0. (b) ∆ = 0 and Φ < 0.
The grey dotted lines in (a) and (b) are the noninteracting bands with ∆ = 0 and Φ = 0. (c)
∆ ̸= 0 and Φ > 0. (d) ∆ ̸= 0 and Φ < 0. (e) DOS corresponding to the bands at (c) with ∆ ̸= 0
and Φ > 0. (f) DOS corresponding to the bands at (d) with ∆ ̸= 0 and Φ < 0. The grey dotted
lines in (c), (d), (e), (f) correspond to the case ∆ ̸= 0 and Φ = 0.

conduction bands). As we will show in our effective lattice model, this competition induces a sign
change of Φ⃗ at a finite doping.

The conduction band singlet displays an incipient saddle point in the presence of ∆⃗, which
drives the nematic state, as explained in Section 1.2. When Φ > 0, which is the preferred sign at
low doping, this band is shifted to higher energies. This shift is k-dependent, being larger at k = 0
(see Fig. 1.13(c)). This effect enhances the peak in the DOS associated to the incipient van Hove
singularity, as shown in Fig. 1.13(e). Indeed, for the parameters used in this figure, the saddle
point is not fully developed for Φ = 0, so there is just a finite peak in the DOS. Φ > 0 induces a
real van Hove singularity. This enhancement of the DOS peak can enhance the nematic instability.
Our self-consistent mean-field calculations in the effective lattice model of Section 1.5.3 confirm
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this prediction. On the other hand, Φ < 0 has the opposite effect: it weakens the peak in the DOS.

1.5.2 Ginzburg-Landau theory

Before moving on to the mean-field calculations in the lattice model, we analyze how Φ⃗ enters
in the Ginzburg-Landau theory, and show that it couples to the primary order parameter ∆⃗. The
Ginzburg-Landau free-energy functional of Φ⃗ alone is similar to that of ∆⃗ of Eq. (1.35), but it
allows for an additional cubic term, which is even under inversion for Φ⃗:

FΦ = aΦ|Φ⃗|2 + dΦΦ1Φ2Φ3 + bΦ|Φ⃗|4 + cΦ(Φ4
1 + Φ4

2 + Φ4
3). (1.56)

This manifests that sign(Φ1Φ2Φ3) has physical meaning, as shown in the k · p model. As we
discussed in the previous section, for ∆⃗ = 0, Φ⃗ prefers Φ1Φ2Φ3 < 0, which determines that
dΦ > 0 in the Ginzburg-Landau free-energy.

Now, ∆⃗ and Φ⃗ are also coupled in the free-energy density. The coupling of lowest order reads

F(3)
∆Φ = d∆Φ(Φ1∆2∆3 + Φ2∆3∆1 + Φ3∆1∆2). (1.57)

The sign of the coefficient d∆Φ, at least close to stoichiometry, can be determined from the fact
that the total energy is reduced when Φ⃗ pushes the valence bands to lower energies via ∆⃗. In this
case, Φ1Φ2Φ3 > 0, which indicates that d∆Φ < 0 (see Appendix 1.D.2).

The cubic coupling F(3)
∆Φ illustrates that Φ⃗ is induced as soon as ∆⃗ condenses. Indeed, for

finite ∆⃗, F(3)
∆Φ is linear in Φ⃗, making Φ⃗ finite even if its quadratic coefficient aΦ is positive. This is

consistent with the X-ray observation of a small linear increase of the Se displacements with M+
1

below TCDW [184]. The change of slope at T∗ might originate from the quadratic coefficient aΦ

becoming negative at this temperature, which increases Φ⃗.

Finally, we mention a complementary mechanism by which the nematic CDW can be enhanced
due to the coupling with the secondary order parameter Φ⃗. The cubic term F(3)

Φ = dΦΦ1Φ2Φ3

has coefficient dΦ > 0, which, in the C3-symmetric 3Q state ∆⃗ = (∆, ∆, ∆), Φ⃗ = (Φ, Φ, Φ),
favours Φ < 0. On the other hand, the cubic coupling F(3)

∆Φ has coefficient d∆Φ < 0, which favours
Φ > 0 instead. At low doping, F(3)

∆Φ dominates and Φ > 0. Instead, at moderate doping, before
the transition to the 1Q stripe phase, it is F(3)

Φ that dominates and Φ < 0, since dΦ increases with
doping (see Appendix 1.D.2). In the intermediate region, both terms compete, and can enhance
the nematic state. Indeed, the change of sign of Φ⃗ in our self-consistent mean-field calculations in
the lattice model occurs within the nematic phase, as we show in Appendix 1.D.3. Besides the shift
of the incipient saddle point by Φ⃗ explained in the previous section, this cubic term competition
might further favour nematiciy. We thoroughly describe this mechanism in Appendix 1.D.2.
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1.5.3 Effective lattice model: additional interactions

In this section we include further interactions in the effective lattice model of Eqs. (1.39) and
(1.43), and show that the nematic and stripe phases are robust. Indeed, the new interactions give
rise to the secondary order parameter Φ⃗, and the nematic dome is slightly enlarged, likely due to
the change in the incipient saddle point and the competition of the Ginzburg-Landau cubic terms.

Defining the additional interactions and order parameters

We include two new interactions: an onsite density-density d-p interaction

Hdp0 = Udp ∑
i

(
d†

i di − nd0

) (
p†

i · pi − np0

)
(1.58)

and a nearest-neighbour density-density d-d interaction

Hdd1 = Vdd ∑
⟨ij⟩1

(
d†

i di − nd0

) (
d†

j dj − nd0

)
, (1.59)

where nd0 = ⟨d†
i di⟩0(T = 0) and np0 = ⟨p†

i · pi⟩0(T = 0) are the densities at zero temperature
computed in the ground state of the initial noninteracting Hamiltonian H0 of Eq. (1.39). We
subtract these noninteracting densities nd0 and nd+p0 to exclude renormalizations of the bands
and, in particular, of the gap, that would arise due to double-counting of the interactions and
doping5. That way, we isolate the effect of the CDW. The total interaction Hamiltonian becomes
Hint = Hdp1 + Hdp0 + Hdd1.

To find a mean-field solution, we consider the decoupling in the onsite orbital order ⟨d†
j pαj⟩,

as well as in the onsite charge densities ndi = ⟨d†
i di⟩ and npi = ⟨p†

i · pi⟩. This corresponds to the
Fock channel of Hdp1 (HMF

dp1 in Eq. (1.43)), the Hartree and Fock channels of Hdp0, and the Hartree
channel of Hdd1. The total mean-field Hamiltonian is HMF = H0 + HMF

dp1 + HMF
dp0 + HMF

dd1, with

HMF
dp0 =Udp ∑

i

{
np,i

(
d†

i di − nd0

)
+ nd,i

(
p†

i · pi − np0

)
− nd,inp,i

}
−

− Udp ∑
i

{[
⟨d†

i pi⟩∗ ·
(

d†
i pi

)
+ h.c.

]
− ⟨d†

i pi⟩∗ · ⟨d†
i pi⟩

}
,

(1.60)

HMF
dd1 = Vdd ∑

⟨ij⟩1

{
nd,j

(
d†

i di − nd0

)
+ nd,i

(
d†

j dj − nd0

)
− nd,ind,j

}
, (1.61)

5In reality, doping might induce a band renormalization. However, since our lattice model has effective orbitals
and interactions, it does not accurately capture it. Therefore, the phase diagrams we present should be interpreted as
providing the phases that would appear at a given doping if the normal state gap at this doping is Eg.
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where nd,i = ⟨d†
i di⟩ − nd0 and np,i = ⟨p†

i · pi⟩ − np0 are the excess charge densities with respect
to the noninteracting system at zero temperature, with the expectation values taken in the mean-field
ground state.

Now, we perform the symmetry analysis of the new order parameters involved in the total
mean field Hamiltonian. As described in Section 1.4.1, the onsite orbital orders ⟨d†

j pαj⟩ transform
as Γ−

3 ⊕ M−
1 ⊕ M−

2 (see Eqs. (1.40)-(1.42)). The onsite charge orders nd,j and np,j transform as
time-reversal even Γ+

1 ⊕ M+
1 . The symmetry adapted expressions read as

nc,Γ+
1
=

1
2 ∑

j
nc,j, (1.62)

na
c,M+

1
=

1
2 ∑

j
eiMa·rj nc,j, (1.63)

where c = d, p. The Γ+
1 components are just the normalized total excess charge in the supercell

with respect to the noninteracting value, which are therefore subject to the charge conservation
law nd,Γ+

1
+ np,Γ+

1
= 0; note that we defined nc,j = ⟨c†

j cj⟩ − ⟨c†
i ci⟩0(T = 0). The M+

1 channels
correspond to a CDW, and will compose the secondary order parameter Φ⃗.

The next step is writing down the expressions for the order parameters that enter in the mean-
field Hamiltonian HMF. As worked out in Section 1.4.1, HMF

dp1 has an attractive coupling −2Vdp

in the ⟨d† p⟩M−
1

channel and a repulsion +2Vdp for ⟨d† p⟩M−
2

. Now, the Fock term of HMF
dp0 can be

rewritten as[
HMF

dp0

]
Fock

= −Udp ∑
supercells

∑
γ=M−

1 ,M−
2 ,Γ−

3

(
⟨d† p⟩∗γ

[
d† p
]

γ
+ h.c. −

∣∣⟨d† p⟩γ

∣∣2) . (1.64)

Therefore, it is attractive with coupling −Udp in all the ⟨d† p⟩M−
1

, ⟨d† p⟩M−
2

, and ⟨d† p⟩Γ−
3

channels.
In the onsite charge sector, the Hartree term of HMF

dp0 can be rewritten as

[
HMF

dp0

]
Hartree

= Udp ∑
supercells

∑
γ=Γ+

1 ,M+
1

{
nd,γ

([
p† p
]

γ
− np0

)
+ np,γ

([
d†d
]

γ
− nd0

)
− nd,γnp,γ

}
.

(1.65)
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Finally, in the basis {d†
1d1, d†

2d2, d†
3d3, d†

4d4}, HMF
dd1 can be recast as

HMF
dd1 = ∑

supercells
{2Vddnd ·


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ·
(

d†d − nd0

)
− Vddnd ·


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 · nd}.

(1.66)
The eigenvalues of this matrix are +3 and −1 for the

[
d†d
]

Γ+
1

and
[
d†d
]

M+
1

eigenvectors, respec-
tively. Therefore, HMF

dd1 can be expressed as

HMF
dd1 = ∑

supercells

{
6Vdd

[
nd,Γ+

1

([
d†d
]

Γ+
1

− nd0

)
− 1

2
n2

d,Γ+
1

]
−2Vdd

[
nd,M+

1

([
d†d
]

M+
1

− nd0

)
− 1

2
n2

d,M+
1

]}
,

(1.67)

showing that it has a repulsive coupling +6Vdd in the Γ+
1 channel and an attraction −2Vdd in the

M+
1 CDW.

With this information, we can write down the explicit expressions for the primary M−
1 ∆⃗ and

secondary M+
1 Φ⃗ order parameters:

∆a = −
√

3
8
(
Udp + 2Vdp

) 1
2 ∑

j
eiMa·rj Re⟨d†

j pj⟩ × M̂a, (1.68)

Φa =
1
4 ∑

j
eiMa·rj

(
−2Vddnd,j + Udpnp,j

)
, (1.69)

which couple to the low-energy electron and hole pockets as described in the k · p model in
Eqs. (1.30) and (1.51), respectively.

Besides these two order parameters, which dominate the CDW physics, our mean-field decou-
pling HMF allows for other 8 mean-field terms in the Hamiltonian:

• The TRS even M−
2 CDW orbital order discussed in Section 1.4.1, which is only nonzero but

small in the nematic phase, where it is symmetry allowed.

• The TRS odd M−
1 and M−

2 CDW orbital orders discussed in Section 1.4.1, which always
vanish in our calculations.

• The TRS even and odd Γ−
3 nematic orbital orders now have an attraction due to the onsite

interaction Udp. However, they are highly unfavorable from the kinetic band energy per-
spective, since they couple the valence bands with the conduction band at the same k, where
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the direct gap is large. Therefore, they vanish in our calculations.

• The Γ+
1 terms coming from the total charge for the valence and conduction bands. They

induce a rigid shift of the conduction and valence bands separately, and therefore renormalize
the gap, but without breaking any symmetry. Indeed, the d band shifts by and amount
ρd = (6VddndΓ+

1
+ UdpnpΓ+

1
), and the p band by ρp = UdpndΓ+

1
. Charge conservation

implies that npΓ+
1
= −ndΓ+

1
, so the gap is renormalized as Eg → Eg + (ρd − ρp) = Eg +

2(3Vdd − Udp)ndΓ+
1
. Since ndΓ+

1
is the excess charge with respect to the zero-temperature

value in the normal state H0 for each doping, only temperature renormalizes the gap via
this mechanism. Since the DOS of the conduction bands is larger than that of the valence
bands, we always have ndΓ+

1
≥ 0 and increasing with temperature, so the gap increases with

increasing temperature if 3Vdd > Udp, and it decreases otherwise.

• The M+
1 CDW charge order of the p bands. It does not directly couple the low-energy valence

bands, but it is symmetry-induced in the M−
1 CDW state due to an indirect energy gain via

∆⃗ involving higher energy bands. However, it is smaller than the M+
1 order parameter Φ⃗ of

the d band.

Self-consistent mean-field calculations

Fig. 1.14 shows T-x phase diagrams for gaps Eg = +50, 0,−25,−30,−50meV. We compare
the results with finite Vdp, Udp and Vdd interactions (Eqs. (1.43), (1.58) and (1.59)) in the top row,
to those with only Vdp in the bottom row. The nematic and stripe CDWs are robust against the new
interactions, and the phase diagrams remain qualitatively the same as with only Vdp. Moreover,
the 2Q/3Q nematic dome is expanded, with Tnematic reaching up to 0.3TCDW. Within the nematic
dome, the relative extension of the 2Q phase with respect to the 3Q nematic state also increases
when including the Udp and Vdd interactions. On the other hand, the 1Q stripe phase is slightly
suppressed and pushed to higher dopings.

Now, the C3-symmetric 3Q and nematic phases also have a symmetry allowed Φ⃗ component.
The C3-symmetric 3Q phase is ∆⃗ = (∆, ∆, ∆), Φ⃗ = (Φ, Φ, Φ), the nematic 3Q state is ∆⃗ =

(∆1, ∆2, ∆2), Φ⃗ = (Φ1, Φ2, Φ2), and the 2Q phase is ∆⃗ = (0, ∆, ∆), Φ⃗ = (Φ, 0, 0). The
enhanced nematic phase is consistent with the enhanced DOS peak of to the incipient conduction
band saddle point by Φ⃗, as well as with the competition of the Ginzburg-Landau cubic terms (see
Appendix 1.D.3). Instead, Φ⃗ vanishes in the 1Q stripe phase, since it is not allowed by symmetry
there. This could be deduced from the cubic Ginzburg-Landau coupling of Eq. (1.57), which
vanishes in the stripe phase. Since a finite Φ⃗ contributes to the energy gain, the vanishing Φ⃗ in the
stripe phase might explain why it is suppressed.
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Figure 1.14: Temperature-doping phase diagrams obtained by self-consistently solving the mean-
field Hamiltonian HMF of Eqs. (1.44), (1.60), (1.61) for different gaps and interaction strengths.
The intensity of the color of each phase is proportional to |⃗∆|. The first row displays the results
for finite Vdp, Udp, and Vdd interactions, which are compared to the results with only finite Vdp
in the second row. TCDW is the critical temperature at stoichiometry.
(a1) Eg = +50meV, Vdp = 450meV, Udp = 900meV, Vdd = 400meV, TCDW = 596K;
(a2) Eg = +50meV, Vdp = 890meV, Udp = 0, Vdd = 0, TCDW = 576K;
(b1) Eg = 0, Vdp = 400meV, Udp = 800meV, Vdd = 400meV, TCDW = 358K;
(b2) Eg = 0, Vdp = 800meV, Udp = 0, Vdd = 0, TCDW = 378K;
(c1) Eg = −25meV, Vdp = 400meV, Udp = 680meV, Vdd = 400meV, TCDW = 259K;
(c2) Eg = −25meV, Vdp = 740meV, Udp = 0, Vdd = 0, TCDW = 269K;
(d1) Eg = −30meV, Vdp = 400meV, Udp = 650meV, Vdd = 400meV, TCDW = 239K;
(d2) Eg = −30meV, Vdp = 725meV, Udp = 0, Vdd = 0, TCDW = 249K;
(e1) Eg = −50meV, Vdp = 400meV, Udp = 520meV, Vdd = 400meV, TCDW = 155K;
(e2) Eg = −50meV, Vdp = 650meV, Udp = 0, Vdd = 0, TCDW = 145K;

1.6 Discussion

Motivated by the contradictory STM experiments of refs. [52–54, 56, 114], we have analyzed
the doping dependence of the symmetry of the commensurate CDW in monolayer TiSe2. Based
on general arguments from the k · p model and on self-consistent mean-field calculations in a
minimal tight-binding model, we have established that electron doping drives two transitions to
C3-symmetry-broken phases within the CDW. As typically predicted by DFT calculations [141,
177], the CDW is a C3-symmetric 3Q state at stoichiometry. The lowest conduction band in the
CDW develops an incipient saddle point with a high DOS. When the electron doping is close to
this van Hove filling, the system undergoes a nematic instability towards a nematic 3Q/2Q CDW.
Further increasing the doping, there is a transition to a 1Q stripe CDW driven by the gain in
electronic energy.

We now discuss whether this picture can be translated to bulk TiSe2, and propose other
experimental techniques to probe the nematic and stripe states. We also propose a new interpretation
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for the light-induced chiral state in bulk TiSe2 [186, 187], whose origin is different from the C3-
broken states observed in STM [52–54, 56, 114]. We close this Chapter with a discussion of the
open problems in the field.

1.6.1 Bulk TiSe2: comparison to STM experiments

Our calculations assume a monolayer for simplicity, but we expect the existence of doping-
induced transitions to carry over to the bulk limit, because TiSe2 is a quasi 2D van der Waals
material with weak band dispersion in the kz direction. In the bulk, the primary order parameter
has L−

1 symmetry, and the secondary order parameter transforms as M+
1 , which preserves all the

symmetries of the L−
1 .

Our mechanism driving the nematic phase relies on the DOS peak associated to the incipient
saddle point in the lowest conduction band. While the DOS will never be divergent in 3D, it is
also not divergent for realistic parameters in the monolayer, and yet the nematic phase appears,
due to the strong-coupling character of the CDW in TiSe2. The DOS peak will be reduced in the
bulk, but our k · p calculations predict a nematic dome for considerably smaller conduction band
ellipticity, and thus DOS peak (see Fig. 1.8). This suggests that our proposal for nematic states is
compatible with the C3-breaking states observed in STM [52–54], where one CDW Bragg peak
is much smaller than the other two. The uncontrolled native doping ubiquitously present in TiSe2

samples can then explain the variability of the ground state symmetry observed [114].

Remarkably, the L−
1 order parameter preserves the inversion center between layers, and there-

fore none of the bulk versions of our proposed states is chiral. This differentiates our theory from
previous proposals [178–181], which require the condensation of an additional L+

2 phonon. It is
also worth noting that the DFT calculations of Ref. [185] predict a chiral CDW at stoichiometry
with two condensed phonons: the L−

1 in a (0, ∆, ∆) configuration plus the M−
1 in a (Ψ, 0, 0)

state. This predicted structure has space group C2 and therefore breaks C3 symmetry, so it is a
candidate for the STM experiments of Refs. [52–54]. The change of this state with doping and
temperature should be studied to analyze whether it could also explain the variability of the ground
state symmetry. Its robustness against different exchange-correlation functionals [146] should also
be evaluated.

Regarding our predicted 1Q stripe phase, Ref. [56] reported STM measurements on Cu-doped
TiSe2 showing the coexistence of short-range domains of the C3-symmetric 3Q CDW and the 1Q
stripe CDW at intermediate dopings. Further doping renders the CDW incommensurate, where
all the domains become 3Q again. Modeling phase coexistence in such inhomogeneous states is
beyond the scope of this Thesis, but our predicted 1Q stripe phase at high doping is a good starting
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point. The fact that the 3Q to 1Q transition is first order is also compatible with the observed phase
separation.

Finally, we caution however that, since STM is a surface probe and doping need not be
homogeneous, the bulk and surface CDW states need not be the same. Furthermore, the effect of
a surface termination might favor the rotational symmetry breaking (see Appendix 1.D.2).

1.6.2 Experimental signatures of the nematic and stripe states

Our prediction of a robust, doping-induced C3-breaking phase in TiSe2, motivated by different
STM experiments, can solve the long-standing puzzle of the symmetry of the CDW. Our theory
can be further confirmed with several other probes. The existence of a nematic transition can be
quantified by elastoresistance measurements, which directly measure the nematic susceptibility.
An early experiment [201] indeed detected a sharp change in elastoresistance below 200K. This
signature has also been recently found in kagome AV3Sb5 metals [50], which display a nematic
CDW too [48–50].

C3-symmetry breaking can also be detected in low frequency Raman spectroscopy, as observed
in 2H-TaSe2 [202]. For instance, the broken C3 symmetry would split the E CDW phonon mode,
which would be twofold degenerate otherwise. ARPES experiments may also detect different
intensity for the three conduction band pockets in the C3 breaking states, due to the different
backfolded spectral weight. Another unique set of techniques sensitive to the symmetry of the
ground state relies on nonlinear optics or transport. In particular, the existence of the nematic state
in monolayer samples could be demonstrated by the nonlinear Hall effect [203], which vanishes
for D3 symmetry but becomes possible once it is broken.

1.6.3 Bulk TiSe2: light-induced CPGE

Bulk samples cooled in the presence of circularly polarized light display a longitudinal circular
photogalvanic effect (CPGE) below TCPGE < TCDW, which is consistent with C3 symmetry [186,
187]. We emphasize that this light-induced chiral state is unrelated to the one observed in STM.
The interpretation of Ref. [186] of this light-induced chiral state is based on the secondary transition
at TCPGE to the chiral CDW of Refs. [55, 178–182]. In particular, Ref. [186] proposes that, without
training, domains of opposite chirality coexist so that inversion symmetry is present on average,
but the training favors one chirality via the coupling to the circularly polarized light. However, the
presence of C3 symmetry discards the chiral CDW proposed by Refs. [178–182] generated by the
condensation of L−

1 and L+
2 phonons, as well as the chiral CDW determined by Ref. [185] with

L−
1 (0, ∆, ∆) + M−

1 (Ψ, 0, 0).
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Instead, this light-induced chiral state is likely induced by the condensation of phonons with
M−

1 symmetry [194] aided by the presence of circular light. Indeed, a C3-symmetric 3Q CDW
with order parameter M−

1 , as in the monolayer, has space group P321 and point group D3, and
is therefore chiral, C3-symmetric and compatible with the experiments [186, 187]. Note that
the M−

1 is not the leading bulk instability, so the interpretation in terms of chiral domains does
not apply, and an alternative explanation is required. Ref. [194] suggested that the M−

1 state
could be stabilized in the nonequilibrium situation where the electronic temperature is increased
by the training light. This is consistent with the fact that the in-plane order is set at a higher
temperature Tin-plane, and the long-range order in the out-of-plane stacking direction is only set at
TCDW < Tin-plane [173]. This means that between Tin-plane and TCDW the CDW can be regarded
as an incoherent superposition of the L−

1 and the M−
1 order parameters. Moreover, this goes also

along the lines of the out-of-equilibrium experiment of Ref. [171], where light first suppresses the
long-range out-of-plane order, since this is set by the excitonic correlations, which have a much
faster timescale than phonons. However, we note that since the training light is removed once low
temperatures are reached and the M−

1 is not the leading bulk instability, this explanation is not
complete.

Instead, we propose that the chiral state M−
1 in this theory has to be metastable, although

sufficiently close in energy to the centrosymmetric CDW ground state so that it has a long lifetime.
By applying the training light in the normal state and cooling, the metastable chiral state might
become the lowest energy stationary state due to coupling to the light. When the training light
is removed at low temperature, the system can be trapped in the local minimum of the chiral
state, and thermal fluctuations might drive the system to the achiral ground state only above
TCPGE. In Appendix 1.E, we analyze the possible existence of a metastable chiral state within a
Ginzburg-Landau functional coupling the time-reversal symmetric L−

1 and M−
1 order parameters.

We conclude that a metastable M−
1 state can indeed exist if the coupling between both order

parameters is strong.

Finally, we suggest an additional mechanism via which the light might favour the M−
1 state

beyond the higher electronic temperature. The circularly polarized light in normal incidence
can be effectively represented by a coupling Λ = [E × E∗]z, where E is the in-plane electric
field. Λ transforms as the time-reversal odd A2g irrep of the TiSe2 point group D3d. Therefore,
time-reversal symmetry prevents terms linear in Λ in the Ginzburg-Landau functional. Since Λ2

transforms as time-reversal even A1g, the coefficients of F∆Ψ can be renormalized by the circularly
polarized light to order Λ2. In the microscopic k · p or tight-binding models, Λ couples linearly to
the time-reversal odd A2g combination of the valence bands at Γ of Eq. (1.6), −i

(
p†

x py − p†
y px

)
.

Physically, this coupling can be thought to arise from a Floquet-like effective picture. This coupling
effectively splits the valence bands, and might also favour the metastable M−

1 CDW in the stationary
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state. Studying whether this is actually the case is an interesting problem for the future.

1.6.4 Outlook

We have developed a theory that predicts a nematic CDW arising from an incipient saddle
point in the CDW conduction band, and a stripe CDW coming from the electronic energy gain
when doping the CDW, and we have discussed their applicability to different experiments.

Our theory opens up a number of avenues for further work. The most direct follow-up would
be improving our effective lattice model by adding, for example, SOC. While the incipient saddle
point would still be present with SOC, whether the SOC quantitatively enhances or shrinks the
nematic and stripe states remains to be settled. Our understanding of the effect of the normal
state gap, together with the impact of SOC, can allow us to compare TiSe2 to other isostructural
materials, which might display a wider nematic region. For instance, 1T-ZrTe2 is semimetallic
and has higher SOC [204, 205]. While a few experiments have focused on the role of excitonic
correlations in its CDW [204, 205], the presence of nematicity has not been tackled yet.

Extending the effective lattice model to bulk 3D TiSe2 is also straightforward by adding an
interlayer hopping for the d and p orbitals. This would allow to quantify the persistence of the
nematic states. Simulating a surface or a substrate is also possible by adding hoppings with the
appropriate A2u symmetry, which become allowed once that inversion and C2x symmetries are
broken. This would enable us to resolve whether the nematic phases are a bulk phase or live only
on the surface in certain regions of the parameter space. Analogously, as discussed before, an
effective coupling to the light could be added to evaluate whether the chiral metastable scenario is
applicable to the experiments [186, 187].

The impact of disorder and defects on the CDW local symmetry is also crucial. A first
approach to this problem could use perturbation theory in the k · p model coupled to a given
impurity potential. A more accurate modelling would require solving the mean-field equations in
real space with the realistic tight-binding model. Defects might strongly affect the local symmetry
of the CDW. For instance, they could drive an inhomogeneous solution with domains with different
symmetry nucleating from regions close or far from the defects. This becomes even more pressing
at high doping, where the discommensurations appear. Also at high doping, while several studies
have pointed to the relation of the network of commensurate domains and domain walls to super-
conductivity [23, 24, 26, 156, 157, 160, 161], there is still room for further study. For instance,
superconductivity appears when doping is close to filling the second conduction band, where the
DOS is enhanced. Whether these two observations are related is not known yet.

Despite their different band structure, TiSe2 shares several analogies with the kagome AV3Sb5

metals, which have recently attracted considerable attention. Kagome AV3Sb5 metals have
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P6/mmm space group and D6h point group, which is just the D3d point group of TiSe2 with
an additional mz mirror symmetry [51]. They exhibit van Hove singularities close to the Fermi
level and support a 2 × 2 × 2 CDW phase, where the Ginzburg-Landau functional describing the
CDW order parameters is analogous to the one discussed here for TiSe2 (see Eq. (1.110)) [51].
Remarkably, they undergo a second transition to a nematic CDW at lower temperatures [48–50],
and they also become superconducting. A thorough investigation of their analogies could allow to
apply some of the theories developed for these materials to TiSe2, and vice versa.

We believe that our theory sets the foundation to understand the symmetry of the CDW in
TiSe2. In conjunction with new experiments, we hope that it will finally serve to settle this
long-standing problem.
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Appendices

1.A Group theory: extended point group and symmetries of the dif-
ferent ground states

In this Appendix, we describe the space group of the normal state of TiSe2, we introduce its
extended point group to study its CDW. This group-theoretical analysis is used to construct the
k · p and tight-binding models, and classify their ground states.

1.A.1 Space group

The normal state of TiSe2 has the symmorphic space group P3̄m1 (#164), with point group
D3d. We will only consider the symmetry groups without spin. The generators of D3d are
{C3z, C2x, i}, with the center located in a Ti site. Its irreducible representations (irreps) are
{A1g, A2g, Eg, A1u, A2u, Eu} (see Ref. [206] for the character table). The subindex 1/2 in the A
irreps indicates the parity under C2x, and the subindex g/u refers to the parity under the intralayer
inversion i.

The little group of the Γ point, under which Γ remains invariant, is also D3d. Its irreps, in
space group notation, are {A1g ≡ Γ+

1 , A2g ≡ Γ+
2 , Eg ≡ Γ+

3 , A1u ≡ Γ−
1 , A2u ≡ Γ−

2 , Eu ≡ Γ−
3 }.

On the other hand, the commensurate CDW has wavector L in the bulk and M in the monolayer.
Their little cogroup, which leaves the wavevector invariant, is C2h. For instance, with the choice
of the three Q = ΓL, ΓM of Fig. 1.3,

Q1 = (0,
2π√

3
, Qz), (1.70)

Q2 = (−
√

3
2

2π√
3

,−1
2

2π√
3

, Qz), (1.71)

Q3 = (

√
3

2
2π√

3
,−1

2
2π√

3
, Qz), (1.72)

with Qz = π, 0 for L, M, the little cogroup of Q1 has generators {C2x, i}. Their irreps are {Q±
1/2},

which are all one-dimensional, where the superindex ± indicates the parity under the intralayer
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inversion i, and the subindex 1/2 refers to the parity under C2x. We will take the irreps {Q±
1/2}

to mean the irreps of the space group. Since there are three symmetry-equivalent Q points in the
star, {Q±

1/2} are three-dimensional.

1.A.2 Extended point group

A convenient approach to deal with the symmetry classification of Q = ΓL, ΓM instabilities
is the so-called extended point group [190–192], where the translations that are broken by the CDW
are included in the point group. This approach consists of determining the symmetry group of the
2× 2(×2) supercell, and classifying the observables according to the irreps of this extended point
group. The extended point group approach reorganizes the division of the space group S as the
semidirect product of the point group P with the translation group T, S = P ∧ T, by defining the
extended point group P̃ = P ∧ T1, where T1 is the subgroup of translations broken in the CDW, so
that S = P̃ ∧ T2, with T = T1 × T2.

For monolayer TiSe2, where Q = ΓM, we perform group multiplication of the original point
group D3d with the group {E, t1, t2, t3}, where t1 represents the translation by a1 = a(1, 0), t2

by a2 − a1 = a(− 1
2 ,

√
3

2 ), and t3 by −a2 = a(− 1
2 ,−

√
3

2 ). Due to the imposed translational
symmetry with a 2 × 2 unit cell, the group multiplication rules are titi = E and titj = tk, with
i ̸= j ̸= k. The extended point group in the monolayer, D(M)

3d = D3d ∧ {E, t1, t2, t3}, turns
out to be isomorphic to the cubic point group Oh. We label the irreps of the extended point
group D(M)

3d with the space group notation, {Γ±
1 , Γ±

2 , Γ±
3 , M±

1 , M±
2 }. which are in one-to-one

correspondence to the irreps od Oh, {A1g/u, A2g/u, Eg/u, T2g/u, T1g/u}. The generators of D(M)
3d

are {C3z, C2x, i, t1, t2}, which are related to the generators {C3[111], C2[1−10], i, C2[001], C2[100]} of
Oh via the isomorphism. The character table of D(M)

3 (from which D(M)
3d is obtained by the direct

product with the intralayer inversion i) and its correspondence with the point group O is shown
in table 1.A.1. The classes are 3t = {t1, t2, t3}, 6C2 = {C2l , tlC2l} (C2 rotations and products
of translations along axis l times C2 rotations with the same axis l), 8C3 = {C±

3z, tlC±
3z}, and

6tC2 = {tlC2m} (products of translations along axis l times C2 rotations with different axis m).
The representation matrices of the generators of D(M)

3 are shown in table 1.A.2.

In the bulk, Q = ΓL, and the extended point group D(L)
3d is the direct product of D(M)

3d with the
out-of-plane translation tz by one unit cell (0, 0, c), which commutes with all the other symmetry
operations. Correspondingly, the irreps of D(L)

3d just carry an additional label ± indicating whether
the irrep is even (the same in consecutive layers) or odd (opposite in consecutive layers) under tz.
Alternatively, the product of tz with the intralayer inversion i gives an interlayer inversion symmetry
I, with center in the midpoint between two Ti sites in adyacent layers, which also commute with
all the other symmetry operations. Therefore, the additional label can be chosen to indicate the
parity under this interlayer inversion instead.
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1E 3t(≡ 3C2[100]) 6C2(≡ 6C2[1−10]) 8C3 6tC2(≡ 6C4)

Γ1(≡ A1) 1 1 1 1 1
Γ2(≡ A2) 1 1 -1 1 -1
Γ3(≡ E) 2 2 0 -1 0

M1(≡ T2) 3 -1 1 0 -1
M2(≡ T1) 3 -1 -1 0 1

Table 1.A.1: Character table of the extended point group D(M)
3 , and one-to-one correspondence

with the cubic point group O.

t1 t2 C3z C2x
Γ1 1 1 1 1
Γ2 1 1 1 -1

Γ3

(
1 0
0 1

) (
1 0
0 1

) (
− 1

2 −
√

3
2√

3
2 − 1

2

) (
1 0
0 −1

)

M1

1 0 0
0 −1 0
0 0 −1

 −1 0 0
0 1 0
0 0 −1

 0 0 1
1 0 0
0 1 0

 1 0 0
0 0 1
0 1 0


M2

1 0 0
0 −1 0
0 0 −1

 −1 0 0
0 1 0
0 0 −1

 0 0 1
1 0 0
0 1 0

 −1 0 0
0 0 −1
0 −1 0


Table 1.A.2: Representation matrices of the generators of the extended point group D(M)

3 .

Now, we provide the multiplication rules for the irreps in the extended point group D(M)
3 ,

which can be obtained from the character table and representation matrices. Adding the parity
under intralayer and interlayer inversion symmetries follows straightforwardly. Let the basis of the
irreps be Γ2, Γ3 → (Γ1

3, Γ2
3), M1 → (M1

1, M2
1, M3

1), and M2 → (M1
2, M2

2, M3
2). Then:

• Γ2 ⊗ Γ3 = Γ3

□ [Γ2 ⊗ Γ3]Γ3
→
(
−Γ2Γ2

3 , +Γ2Γ1
3
)

• Γ2 ⊗ M1/2 = M2/1

□ [Γ2 ⊗ M1/2]M2/1
→
(

Γ2M1
1/2 , Γ2M2

1/2 , Γ2M3
1/2

)
• Γ3 ⊗ Γ′

3 = Γ1 ⊕ Γ2 ⊕ Γ3

□ [Γ3 ⊗ Γ′
3]Γ1

→ Γ1
3Γ′1

3 + Γ2
3Γ′2

3

□ [Γ3 ⊗ Γ′
3]Γ2

→ Γ1
3Γ′2

3 − Γ2
3Γ′1

3

□ [Γ3 ⊗ Γ′
3]Γ3

→
(

Γ1
3Γ′1

3 − Γ2
3Γ′2

3 , −(Γ1
3Γ′2

3 + Γ2
3Γ′1

3)
)
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• Γ3 ⊗ M1 = M1 ⊕ M2

□ [Γ3 ⊗ M1]M1
→
(

M1
1Γ1

3 , M2
1

(
− 1

2 Γ1
3 +

√
3

2 Γ2
3

)
, M3

1

(
− 1

2 Γ1
3 −

√
3

2 Γ2
3

))
□ [Γ3 ⊗ M1]M2

→
(

M1
1Γ2

3 , M2
1

(
−

√
3

2 Γ1
3 − 1

2 Γ2
3

)
, M3

1

(√
3

2 Γ1
3 − 1

2 Γ2
3

))
• Γ3 ⊗ M2 = M1 ⊕ M2

□ [Γ3 ⊗ M2]M1
→
(

M1
2Γ2

3 , M2
2

(
−

√
3

2 Γ1
3 − 1

2 Γ2
3

)
, M3

2

(√
3

2 Γ1
3 − 1

2 Γ2
3

))
□ [Γ3 ⊗ M2]M2

→
(

M1
2Γ1

3 , M2
2

(
− 1

2 Γ1
3 +

√
3

2 Γ2
3

)
, M3

2

(
− 1

2 Γ1
3 −

√
3

2 Γ2
3

))
• Mi ⊗ M′

i = Γ1 ⊕ Γ3 ⊕ M1 ⊕ M2 (i = 1, 2)

□ [Mi ⊗ M′
i]Γ1

→ 1√
3

(
M1

i M′1
i + M2

i M′2
i + M3

i M′3
i

)
□ [Mi ⊗ M′

i]Γ3
→
√

2
3

(
M1

i M′1
i − 1

2 M2
i M′2

i − 1
2 M3

i M′3
i ,

√
3

2 (M2
i M′2

i − M3
i M′3

i )
)

□ [Mi ⊗ M′
i]M1

→ 1√
2

(
M2

i M′3
i + M3

i M′2
i , M3

i M′1
i + M1

i M′3
i , M1

i M′2
i + M2

i M′1
i

)
□ [Mi ⊗ M′

i]M2
→ 1√

2

(
M2

i M′3
i − M3

i M′2
i , M3

i M′1
i − M1

i M′3
i , M1

i M′2
i − M2

i M′1
i

)
• M1 ⊗ M2 = Γ2 ⊕ Γ3 ⊕ M1 ⊕ M2

□ [M1 ⊗ M2]Γ2
→ 1√

3

(
M1

1 M1
2 + M2

1 M2
2 + M3

1 M3
2
)

□ [M1 ⊗ M2]Γ3
→
√

2
3

(
M1

1 M1
2 − 1

2 M2
1 M2

2 − 1
2 M3

1 M3
2 ,

√
3

2 (M2
1 M2

2 − M3
1 M3

2)
)

□ [M1 ⊗ M2]M1
→ 1√

2

(
M2

1 M3
2 − M3

1 M2
2 , M3

1 M1
2 − M1

1 M3
2 , M1

1 M2
2 − M2

1 M1
2
)

□ [M1 ⊗ M2]M2
→ 1√

2

(
M2

1 M3
2 + M3

1 M2
2 , M3

1 M1
2 + M1

1 M3
2 , M1

1 M2
2 + M2

1 M1
2
)

The character table, representation matrices and multiplication rules allow us to build the
symmetry constrained k · p Hamiltonian and its coupling to any order parameter. To do this, we
remind that the momentum transforms as an Eu irrep {kx, ky}, the fermionic states transform as
M+

1 {d1, d2, d3} for the conduction bands and as Γ−
3 {px, py} for the valence bands, and the order

parameter ∆⃗ = (∆1, ∆2, ∆3) transforms as M−
1 . By multiplying irreps as desired and demanding

that the total Hamiltonian be a scalar Γ+
1 , all terms in Sections 1.2 and 1.5.1 can be derived.

1.B k.p model: analytical solution for the 3Q-1Q critical doping x1Q

The existence of a critical doping x1Q above which a 1Q solution for ∆⃗ is obtained can be
shown analytically in the k · p model in the simplified case where bp = bd = 0. Consider a generic
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state ∆⃗ = (∆1, ∆2, ∆3) parametrized as

∆⃗ = |⃗∆|[cos(θ), sin(θ) cos(φ), sin(θ) sin(φ)], (1.73)

with |⃗∆| =
√

∆2
1 + ∆2

2 + ∆2
3, θ ∈ [0, π], and φ ∈ [0, 2π]. The eigenvalues of the k · p Hamilto-

nian of Eq.(1.29) for bp = bd = 0 are:

εc0(k) =
Eg

2
+ adk2, (1.74)

εc±(k) =
1
2

[
(ad + ap)k2 +

√[
Eg + (ad − ap)k2

]2
+ 4

3

(
|⃗∆|2 ±

√
3
2 (∆

4
1 + ∆4

2 + ∆4
3)− 1

2 |⃗∆|4
)]

=

=
1
2

[
(ad + ap)k2 +

√[
Eg + (ad − ap)k2

]2
+ 4

3 |⃗∆|2 f±(θ, φ)

]
, (1.75)

εv±(k) =
1
2

[
(ad + ap)k2 −

√[
Eg + (ad − ap)k2

]2
+ 4

3

(
|⃗∆|2 ±

√
3
2 (∆

4
1 + ∆4

2 + ∆4
3)− 1

2 |⃗∆|4
)]

=

=
1
2

[
(ad + ap)k2 −

√[
Eg + (ad − ap)k2

]2
+ 4

3 |⃗∆|2 f±(θ, φ)

]
, (1.76)

where k = |k| and we have defined

f±(θ, φ) = 1 ±
√

3
2 (cos4(θ) + sin4(θ) cos4(φ) + sin4(θ) sin4(φ))− 1

2 . (1.77)

εv± are the two valence bands, εc0 is the lowest conduction band, which always remains uncoupled,
and εc± are the two highest conduction bands.

The energies only depend on the direction of ∆⃗ via the quartic invariant (∆4
1 +∆4

2 +∆4
3), which,

for a given modulus |⃗∆|, is minimum for ∆⃗ = |⃗∆|√
3
(1, 1, 1), and maximum for ∆⃗ = |⃗∆|(1, 0, 0).

We assume that the CDW phase displays a gap between valence and conduction bands so that the
valence bands are fully filled at stoichiometry x = 0, for which Eg > 0 is a sufficient condition.
Then the ground state in the undoped case x = 0 has to be either the 3Q C3-symmetric state
∆⃗ = |⃗∆|√

3
(1, 1, 1) or the 1Q stripe state ∆⃗ = |⃗∆|(1, 0, 0). For the 3Q C3-symmetric state, two pairs

of valence and conduction bands are repelled and remain degenerate:

ε3Q
c+(k) = ε3Q

c−(k) = ε3Q
c (k) =

1
2

[
(ad + ap)k2 +

√[
Eg + (ad − ap)k2

]2
+ 4

3 |⃗∆|2
]

, (1.78)

ε3Q
v+(k) = ε3Q

v−(k) = ε3Q
v (k) =

1
2

[
(ad + ap)k2 −

√[
Eg + (ad − ap)k2

]2
+ 4

3 |⃗∆|2
]

, (1.79)
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while for the 1Q stripe state, only one pair of valence and conduction bands is repelled:

ε1Q
c+(k) =

1
2

[
(ad + ap)k2 +

√[
Eg + (ad − ap)k2

]2
+ 8

3 |⃗∆|2
]

, (1.80)

ε1Q
c−(k) = εc0(k), (1.81)

ε1Q
v+(k) =

1
2

[
(ad + ap)k2 −

√[
Eg + (ad − ap)k2

]2
+ 8

3 |⃗∆|2
]

, (1.82)

ε1Q
v−(k) = −Eg

2
+ apk2, (1.83)

In order to determine the ground state, we compute the difference in total energy density at zero
temperature δE = E − E3Q between a generic state ∆⃗ = (∆1, ∆2, ∆3) and the ∆⃗ = |⃗∆|√

3
(1, 1, 1)

phase. At stoichiometry x = 0,

δE(x = 0) =
∫ d2k

(2π)2

[
εv+(k) + εv−(k)− 2ε3Q

v (k)
]
=

=
1

8π(ad − ap)

{
Eg

2

[√
E2

g +
4
3 |⃗∆|2 f+(θ, φ) +

√
E2

g +
4
3 |⃗∆|2 f−(θ, φ)− 2

√
E2

g +
4
3 |⃗∆|2

]
+

+
4
3
|⃗∆|2

[
log
(
−Eg +

√
E2

g +
4
3 |⃗∆|2

)
−

−1
2

f+(θ, φ) log

−Eg +
√

E2
g +

4
3 |⃗∆|2 f+(θ, φ)

f+(θ, φ)

−

−1
2

f−(θ, φ) log

−Eg +
√

E2
g +

4
3 |⃗∆|2 f−(θ, φ)

f−(θ, φ)

 .

(1.84)

δE(x = 0) is always a non-negative quantity, and it is equal to zero only if ∆⃗ = |⃗∆|√
3
(1, 1, 1), when

f±(θ, φ) = 1. Therefore, the ground state at charge neutrality is the 3Q C3-symmetric state, and
the 1Q stripe state has the highest energy:

δE1Q(x = 0) =
1

8π(ad − ap)

[
Eg

2

(√
E2

g +
8
3 |⃗∆|2 + Eg − 2

√
E2

g +
4
3 |⃗∆|2

)
+

+
4
3
|⃗∆|2 log

2
−Eg +

√
E2

g +
4
3 |⃗∆|2

−Eg +
√

E2
g +

8
3 |⃗∆|2

 .
(1.85)

In the limit Eg → 0 we have simply δE(x = 0) = |⃗∆|2
24π(ad−ap)

[ f+ log ( f+) + f− log ( f−)], and

δE1Q(x = 0) = |⃗∆|2
12π(ad−ap)

log 2. For finite Eg, δE(x = 0) decreases with increasing Eg for fixed

|⃗∆|.
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Now consider doping a small carrier density n = x/Vunit cell such that only the lowest
conduction band εc0 is populated. This assumption holds in the majority of the k · p phase
diagrams of Fig. 1.9, except for a small region in the case of large negative gap and small ellipticity
where a nematic phase appears, as explained in Section 1.2.3. This assumption is also verified
in all the self-consistent mean-field calculations. Except for the 1Q phase, the lowest conduction
band is non-degenerate and equal for all |⃗∆|, so that the total energy difference δE(x) remains the
same as δE(x = 0).

However, the 1Q stripe phase displays a doubly-degenerate lowest conduction band. In this
case, for a given carrier density n, the chemical potential is lower for the 1Q state than for the
3Q one, which allows the possibility of a transition to the 1Q phase at a critical doping, as we
show below. The lowest conduction band is uncoupled by the order parameter, and thus remains
parabolic with constant DOS 1/(4πad). The chemical potential is set by the carrier density:

n =
∫ µ3Q

0
dε

1
4πad

θ(ε − Eg/2) =
µ3Q − Eg/2

4πad
(1.86)

n =
∫ µ1Q

0
dε

2
4πad

θ(ε − Eg/2) =
µ1Q − Eg/2

2πad
(1.87)

And the total energy density difference is

δE1Q(x)− δE1Q(x = 0) =
∫ µ1Q

0
dε

ε

2πad
θ(ε − Eg/2)−

∫ µ3Q

0
dε

ε

4πad
θ(ε − Eg/2) =

=
1

8πad

[
2(2πadn)2 − (4πadn)2] = −πadn2 (1.88)

The transition to the 1Q state occurs at the x1Q such that δE1Q(x1Q) = 0, so

n1Q = 2

√
δE1Q(x = 0)

πad
, (1.89)

where we have added a factor 2 to take into account the spin degeneracy. In the limit Eg → 0, we

have n1Q = |⃗∆|
π

√
log 2

3ad(ad−ap)
.

We can estimate x1Q from this calculation taking ap = −0.89h̄2/me and ad = 0.27h̄2/me,
with me the electron mass, which reproduce the same normal-state DOS as the realistic values ap =

−0.95h̄2/me, bp = −0.24h̄2/me, ad = 0.54h̄2/me and bd = 0.46h̄2/me used in our effective
tight-binding model. From the ARPES experiment on monolayer TiSe2 of Ref. [127], where the
normal-state gap is Eg ∼ 80meV and the low-temperature gap is Eg/2+

√
(Eg/2)2 + 4|⃗∆|2/3 ∼

180meV, one obtains an order parameter |⃗∆| ∼ 230meV in the low-doping case. Using these
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numerical values, we can estimate the critical doping for the transition from the 3Q to the 1Q states
to be x1Q ∼ 0.07e/f.u.. Despite neglecting bp and bd, this value is of the order of magnitude
of that obtained in the self-consistent mean-field calculations. The quantitative agreement is even
better for a smaller |⃗∆|, which accounts for its decrease with increasing doping. The numerical
results for x1Q for Eg > 0 and nonzero bp and bd are displayed in Fig. 1.9(a), which demonstrates
that if the CDW survives at high enough doping, a 1Q phase universally appears for any ellipticity
and gap.

1.C Tight-binding model and mean-field theory

Here we describe the choice of the parameters of the effective tight-binding model, and the
details of the self-consistent mean-field calculations.

1.C.1 Effective lattice model: choice of parameters

The Hamiltonian of our three-orbital triangular lattice model is given by Eq. (1.39). Its
parameters are the onsite energies εp and εd, the hoppings up to third nearest neighbours t(n)dd for
the dz2 orbital, the σ and π nearest-neighbour hoppings tppσ and tppπ for the p orbitals, and the
nearest-neighbour interorbital hopping tdp. We choose these Hamiltonian parameters by solving
for the noninteracting gap Eg, the masses mv1, mv2 of the two valence bands at Γ, the masses
mcx, mcy of the conduction bands at M perpendicular and parallel to the ΓM direction, and the
energy εcΓ of the conduction band at Γ, leaving tdp as a free parameter. The gap, the masses and
εcΓ depend on the hoppings as:

Eg = εd − εp −
[
2t(1)dd + 2t(2)dd − 6t(3)dd − 3tppσ + 3tppπ

]
(1.90)

εcΓ = εd + 6
[
t(1)dd + t(2)dd + t(3)dd

]
(1.91)

m̃−1
v1 =

3
4
[
tppσ − 3tppπ

]
(1.92)

m̃−1
v2 = −3

4

−3tppσ + tppπ +
24t2

dp

εd − εp + 3
(

2t(1)dd + 2t(2)dd + 2t(3)dd + tppσ − tppπ

)
 (1.93)

m̃−1
cy = 3

t(1)dd − t(2)dd − 4t(3)dd +
6t2

dp

εd − εp −
(

2t(1)dd + 2t(2)dd − 6t(3)dd + 3tppσ + tppπ

)
 (1.94)

m̃−1
cx = −t(1)dd + 9t(2)dd − 12t(3)dd +

2t2
dp

εd − εp −
(

2t(1)dd + 2t(2)dd − 6t(3)dd − tppσ − 3tppπ

) (1.95)
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where we have defined m̃ = ma2/h̄2, where a is the lattice constant. Inverting these relationships,
we find that the hoppings as a function of the gap, the masses, εcΓ and tdp can be expressed as:

εd =
1

256

(
48m̃−1

cx + 80m̃−1
cy +

288t2
dp

8m̃−1
v1 − 3Eg

−

− 15(8m̃−1
v2 − 3Eg)(2εcΓ + Eg)2

(8m̃−1
v2 − 3Eg)(2εcΓ + Eg) + 288t2

dp

+ 70εcΓ + 123Eg

) (1.96)

εp =m̃−1
v1 + m̃−1

v2 +
36t2

dp

2εcΓ + Eg
− Eg

2
(1.97)

t(1)dd =
1

256

(
16(m̃−1

cy − m̃−1
cx ) +

96t2
dp

3Eg − 8m̃−1
v1

−

− 3(8m̃−1
v2 − 3Eg)(2εcΓ + Eg)2

(8m̃−1
v2 − 3Eg)(2εcΓ + Eg) + 288t2

dp

+ 30εcΓ − 9Eg

) (1.98)

tppσ =− m̃−1
v1
6

+
m̃−1

v2
2

+
18t2

dp

2εcΓ + Eg
(1.99)

tppπ =− m̃−1
v1
2

+
m̃−1

v2
6

+
6t2

dp

2εcΓ + Eg
(1.100)

t(2)dd =
1

256

(
16(m̃−1

cx − m̃−1
cy ) +

96t2
dp

8m̃−1
v1 − 3Eg

−

− 3(3Eg − 8m̃−1
v2 )(2εcΓ + Eg)2

(8m̃−1
v2 − 3Eg)(2εcΓ + Eg) + 288t2

dp

+ 2εcΓ − 7Eg

) (1.101)

t(3)dd =
1

1536

(
−48m̃−1

cx − 80m̃−1
cy +

288t2
dp

3Eg − 8m̃−1
v1

−

− 15(3Eg − 8m̃−1
v2 )(2εcΓ + Eg)2

(8m̃−1
v2 − 3Eg)(2εcΓ + Eg) + 288t2

dp

− 6εcΓ − 27Eg

) (1.102)

When inverting Eqs. (1.90)-(1.95), we have chosen the Eqs. (1.96)-(1.102) that give tppσ + tppπ <

0, which sets the correct px character for the top valence band along the ΓM line. This choice
implies that, for equal attraction in M−

1 and M−
2 channels, the M−

1 is preferred, since its repels
more the top px band. The interorbital hopping tdp also favors the time-reversal even M−

1 with
respect to the M−

2 order parameter6.

Table 1.C.1 shows different values of the masses of the bands extracted from previous works.

6Above a certain value of tdp, the time-reversal odd M−
2 becomes more favored by tdp. However, in our calculations,

we will always set a larger attraction in the M−
2 channel.
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Reference Technique mv1
me

mv2
me

mcy
me

mcx
me

mv2
mv1

−mcy
mv2

mcy
mcx

[125] ARPES 2D −0.7 −0.45 7.1 ? 0.64 16 ?
[122, 123] ARPES 3D ? −0.23 5.5 2.2 ? 24 2.5

[124] ARPES 3D ? ? 6 0.5 ? ? 12
[159] DFT 2D ? −0.19 3.46 0.22 ? 18 16
[141] DFT 2D −0.25 −0.15 5.6 0.4 0.60 37 14
[149] DFT 3D ? −0.22 4.3 0.29 ? 20 15

Table 1.C.1: Values of the masses of the valence and conduction bands obtained in previous
works.

Here, we choose the values of Ref. [125] based on ARPES measurements on monolayer TiSe2:
mv1 = −0.7me, mv2 = (50/3)mv2 = −0.42me, mcy = 10mv1 = 7me, mcx = mcy/14 = 0.5me.
Then, for gap Eg = 0, as shown in Fig. 1.12, the hopping parameters are εd ≃ 0.329eV,
εp ≃ −2.016eV, t(1)dd ≃ −0.017eV, t(2)dd ≃ 0.092eV, t(3)dd ≃ −0.030eV, tppσ ≃ −0.429eV,
tppπ ≃ 0.243eV, and tdp ≃ 0.1eV.

1.C.2 Mean-field theory: calculation details

We perform self-consistent mean-field calculations on the Hamiltonian HMF of Eq. (1.44) in
the 2× 2 supercell defined in Fig. 1.11(a). We introduce a initial seed for the order parameters, and
recompute them iteratively until convergence is reached, defined as

√
∑ |⟨c†c⟩n+1 − ⟨c†c⟩n| < ϵ0.

Since we work in the canonical ensemble, in each iteration we set the chemical potential to keep
the number of particles fixed.

In order to find the ground state which minimizes the free energy, we initialize the self-
consistent loop with different seeds: ∆⃗ = (∆, ∆, ∆), ∆⃗ = (∆, 0, 0), ∆⃗ = (0, ∆, ∆), and ∆⃗ =

(∆1, ∆2, ∆2). To guarantee that each seed converges to the phase that we want, we first run the
self-consistent loop by symmetry-restricting the mean-field parameters to have the symmetry they
initially have. Once convergence has been reached, we run unrestricted self-consistent loops whose
seeds are the solutions of the restricted loops.

1.D Secondary order parameter

In this Appendix, we first compute the energy of the conduction bands in the k · p model
and show that the sign Φ1Φ2Φ3 < 0 is always preferred by Φ⃗ alone. Then we explain the
complementary mechanism where the coupling to the secondary M+

1 order parameter Φ⃗ can
enhance the nematic CDW based on the competition of the Ginzburg-Landau cubic terms.
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Figure 1.D.1: Difference of total energy of the k · p conduction bands between the states
Φ = +|Φ| and Φ = −|Φ| for ∆⃗ = 0 and Φ⃗ = (Φ, Φ, Φ). Both the realistic case with
bd/ad = 0.87 and the isotropic case with bd = 0 are shown.

1.D.1 k.p model: total energy of the Φ > 0 and Φ < 0 states

As discussed in Section 1.5.1, the sign of Φ⃗, defined as sign(Φ1Φ2Φ3), has a different effect
on the bands. In a C3-symmetric 3Q configuration with Φ⃗ = (Φ, Φ, Φ), Φ > 0 raises the singlet
conduction band with respect to the doublet, while Φ < 0 lowers it (see Fig. 1.13). To analyze
which case is favored by Φ⃗, we compute the total energy of the conduction bands as a function
of doping x for ∆⃗ = 0. In this case, Φ⃗ only couples the conduction bands with themselves, and
therefore only affects the energetics at finite doping. Numerically, we have determined that, for
∆⃗ = 0 and Φ⃗ = (Φ, Φ, Φ) at finite doping x, lowering the singlet has the lowest energy regardless
of x (see Fig. 1.D.1). Therefore, Φ⃗ favors Φ1Φ2Φ3 < 0. Fig. 1.D.1 shows that the energy
difference between Φ1Φ2Φ3 > 0 and Φ1Φ2Φ3 < 0 increases until the doublet of conduction
bands begins to be populated in the Φ1Φ2Φ3 < 0 case. From then on, it decreases until the three
conduction band edges are populated in both cases, where the energy difference becomes zero.

The total energy of the conduction bands for ∆⃗ = 0 can indeed be computed analytically in
the isotropic bd = 0 case. The starting point is the Hamiltonian for the 3 conduction bands alone
in 2D, given by Eqs.(1.21) and (1.51):

Hdd(k) =adk2 + bd

[
k2

x − k2
y

]
Φ3 Φ2

Φ3 adk2 + bd

[
− 1

2

(
k2

x − k2
y

)
−
√

3kxky

]
Φ1

Φ2 Φ1 adk2 + bd

[
− 1

2

(
k2

x − k2
y

)
+
√

3kxky

]
,

(1.103)
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with k2 = k2
x + k2

y. The energies can be obtained analytically as

εn(k) = adk2 +

√
b2

dk4 +
4
3
|Φ⃗|2 cos

[
θn(k, Φ⃗)

]
, (1.104)

where

θn(k, Φ⃗) =
1
3

arccos

(
b3

dk(6) + 8ΦA − 2bd[(k2
x − k2

y)Φx − 2kxkyΦy]

(b2
dk4 + 4

3 |Φ⃗|2)3/2

)
− 2π

3
(n − 1),

(1.105)
with ΦA = Φ1Φ2Φ3, {Φx, Φy} = {2Φ2

1 − Φ2
2 − Φ2

3,+
√

3(Φ2
2 − Φ2

3)}, k(6) = k6
x − 15k4

xk2
y +

15k2
xk4

y − k6
y = k6 cos(6φ), and φ the azimuthal angle between k ad the x axis. Remarkably, the

only Φ⃗-dependent terms entering the single-particle energies are |Φ⃗|, {Φx, Φy} and Φ1Φ2Φ3.
This means that the Ginzburg-Landau free-energy density can only depend on functions of these.
In particular, the direction dependence is set by {Φx, Φy} and Φ1Φ2Φ3, the latter term being the
same as the cubic term in Eq. (1.56).

In order to treat the problem analytically, we consider the case with bd = 0. In this case, Φ⃗
only acts as a rigid shift of the bands, whose dispersion becomes:

εn(k) = adk2 +
2√
3
|Φ⃗| cos

1
3

arccos

8Φ1Φ2Φ3

( 2√
3
|Φ⃗|)3

− 2π

3
(n − 1)

 . (1.106)

In this case, the direction dependence of the free energy has to be ∼ Φ1Φ2Φ3, i.e., the same as the
cubic term in Eq. (1.56).

In particular, we compute the zero-temperature free-energy densities for the C3-symmetric
order parameters Φ⃗ = (Φ, Φ, Φ), with Φ > 0 and Φ < 0. As explained in Section 1.5.1, the
bands in these cases are split into a singlet at energy 2Φ and a doublet at energy −Φ. For a given
|Φ|, there exist two regimes for the electron density n: either only the lower set of bands (doublet
for Φ > 0 and singlet for Φ < 0) is occupied, or the three bands have a nonzero filling. The total
energy densities E+ and E− for Φ > 0 and Φ < 0, respectively, with respect to the normal-state
energy E0 = n2/(2ρ) for Φ = 0, are:

E+ − E0 =

 1
4

n2

ρ − nΦ, if n < 2ρΦ,

−ρΦ2, if n > 2ρΦ,
(1.107)

E− − E0 =

 n2

ρ − 2n|Φ|, if n < ρ|Φ|,
−ρ|Φ|2, if n > ρ|Φ|,

(1.108)
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where ρ = 3/(4π
√

a2
d − b2

d) is the total density of states (DOS) of the three bands. Therefore,
the difference between them is

E+ − E− =


− 3

4
n2

ρ + n|Φ|, if n < ρ|Φ|,
1
4

n2

ρ − n|Φ|+ ρ|Φ|2, if ρ|Φ| < n < 2ρ|Φ|,
0, if n > 2ρ|Φ|.

(1.109)

As anticipated, the energy of the Φ < 0 state is lower than that of the Φ > 0, and the energy
difference increases with the electron density for small enough n filling just the lower set of bands,
which is the only region where the self-consistent Hartree-Fock calculations predict a charge-
density wave instability. This analytical result for bd = 0 is shown in Fig. 1.D.1, which also shows
that the numerical result for bd ̸= 0 has the same qualitative features.

1.D.2 Ginzburg-Landau theory: complementary nematic mechanism and nonana-
lyticities

In this section, we write down the full symmetry-derived Ginzburg-Landau free-energy density
coupling the L1− and M+

1 order parameters, ∆⃗ and Φ⃗, respectively, up to fourth order. We
thoroughly explain the complementary mechanism that can enhance the nematicity based on the
competition between the two cubic terms of Eqs. (1.56) and (1.57). Finally, we comment on the
possible nonanaliticities of the Ginzburg-Landau functional at zero temperature, and their role in
the nematic enhancement.

Ginzburg-Landau functional up to fourth order

Using group theory, the Ginzburg-Landau free-energy density coupling ∆⃗ and Φ⃗ up to fourth
order is

F∆Φ = F∆ + FΦ + F(3)
∆Φ + F(4)

∆Φ, (1.110)

where F∆, FΦ and F(3)
∆Φ are defined in Eqs. (1.35),(1.56),(1.57) and F(4)

∆Φ is the fourth order coupling:

F∆ = a∆ |⃗∆|2 + b∆ |⃗∆|4 + c∆

(
∆4

1 + ∆4
2 + ∆4

3

)
, (1.111)

FΦ = aΦ|Φ⃗|2 + dΦΦ1Φ2Φ3 + bΦ|Φ⃗|4 + cΦ

(
Φ4

1 + Φ4
2 + Φ4

3

)
, (1.112)

F(3)
∆Φ = d∆Φ

(
Φ1∆2∆3 + Φ2∆3∆1 + Φ3∆1∆2

)
, (1.113)

F(4)
∆Φ = e∆Φ |⃗∆|2|Φ⃗|2 + g∆Φ |⃗∆ · Φ⃗|2 + h∆Φ

(
∆1∆2Φ1Φ2 + ∆1∆3Φ1Φ3 + ∆2∆3Φ2Φ3

)
.

(1.114)
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Incidentally, since they share the same point group and 2 × 2 nature of the CDW, this Ginzburg-
Landau functional is analogous to the one of kagome AV3Sb5 metals [51], where a nematic CDW
has also been found.

Cubic competition and nematicity

As discussed in Section 1.5.2, the signs of the cubic coefficients are dΦ > 0, since, for
∆⃗ = 0, Φ⃗ favors Φ1Φ2Φ3 < 0, and d∆Φ < 0, since for ∆⃗ ̸= 0, Φ1Φ2Φ3 > 0 decreases
the energy of the valence bands. At finite doping, these two cubic terms, f (3)Φ = Φ1Φ2Φ3 and
f (3)∆Φ = Φ1∆2∆3 + Φ2∆3∆1 + Φ3∆1∆2, are therefore frustrated. Close to stoichiometry, d∆Φ

dominates and the ground state is C3 symmetric with Φ1Φ2Φ3 > 0. At high doping (but before
the transition to the 1Q stripe phase), it is dΦ that dominates instead (as we will discuss in
Appendix 1.D.2, dΦ ∝ x), so Φ1Φ2Φ3 < 0. At intermediate doping where both cubic terms
are of the same order, the frustration can be relieved by breaking C3 symmetry, with a nematic
solution ∆ = (∆1, ∆2, ∆2) and Φ = (Φ1, Φ2, Φ2) (see Appendix 1.D.2). This solution can lower
the energy penalty dΦΦ1Φ2Φ3 while maintaining Φ1Φ2Φ3 > 0. This mechanism can therefore
enhance the nematic CDW in TiSe2.

While the main role in this nematic scenario is played by the cubic terms, the last quartic
coupling of Eq. (1.114), f (4)∆Φ = ∆1∆2Φ1Φ2 + ∆3∆1Φ3Φ1 + ∆2∆3Φ2Φ3, which depends on the
relative signs between ∆⃗ and Φ⃗, might also have an effect. To show this explicitly, we assume a
3Q C3-symmetric solution with ∆⃗ = |∆0|(1, 1, 1) and Φ⃗ = |Φ0|(x1, x2, x3), where xi = ±1.
Depending on the relative signs between ∆⃗ and Φ⃗, the Ginzburg-Landau terms can take four
different combinations of values:

Φ⃗
|Φ0|

f (3)Φ
|Φ0|3

f (3)∆Φ
|∆0|2|Φ0|

f (4)∆Φ
|∆0|2|Φ0|2

(+1,+1,+1) +1 +3 +3
(−1,+1,+1) −1 +1 −1
(+1,−1,−1) +1 −1 −1
(−1,−1,−1) −1 −3 +3

(1.115)

Considering just the cubic terms, the solution Φ⃗ = |Φ0|(1, 1,−1) satisfies the sign requirements
preferred by both cubic terms. One could then expect this solution in the intermediate regime
where both cubic terms are of the same order, instead of the 3Q nematic phase. However, if
the quartic coefficient h∆Φ is large, it can restrict the possible solutions to those with f (4)∆Φ ≷ 0
depending on h∆Φ ≶ 0.

In Appendix 1.D.3, we will discuss how the self-consistent mean-field calculations in the
effective lattice model with Φ⃗ are compatible with the proposal of the competition of the cubic
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terms.

Effect of a surface or a substrate

In the presence of a surface for the bulk, or a substrate for the monolayer, inversion and C2x

symmetries are broken and the point group becomes C3v, so two new terms are allowed in the
Ginzburg-Landau free energy density coupling the M−

1 and the M+
1 order parameters:

Fsurf
∆Φ = l∆Φ[∆1Φ1(Φ2

2 − Φ2
3) + ∆2Φ2(Φ2

3 − Φ2
1) + ∆3Φ3(Φ2

1 − Φ2
2)]+

+ m∆Φ[Φ1∆1(∆2
2 − ∆2

3) + Φ2∆2(∆2
3 − ∆2

1) + Φ3∆3(∆2
1 − ∆2

2)].
(1.116)

These new terms also have a direction dependence of the order parameters, and are not minimized
by the C3-symmetric 3Q solution. Indeed, for generic parameters within the 3Q region (c∆ > 0,
cΦ > 0), in Appendix 1.D.2 we numerically find that increasing the coefficients l∆Φ and m∆Φ favors
the nematic 3Q phase, which is now symmetry-equivalent to the 2Q phase, since the inversion
symmetry differing them is now broken (see Section 1.2.3). Therefore, it is possible that the C3

symmetry is broken at a higher temperature in the surface.

Ginzburg-Landau phase diagrams

In this section we study the ground state of the Ginzburg-Landau free-energy functional F∆Φ of
Eqs. (1.110) and (1.116) coupling the M−

1 ∆⃗ and M+
1 Φ⃗ order parameters. We show that nematicity

can indeed emerge from the competition of the cubic terms, and it is enhanced by a surface or
a substrate. We remark that, since F∆Φ is perturbative in ∆⃗, it does not capture the nematicity
from the conduction band incipient saddle point, which is the main mechanism for nematicity in
realistic TiSe2. Therefore, the results in this section should be interpreted as a signature that the
nematic state induced by the incipient saddle point can be enhanced by the order parameter Φ⃗ via
this competition of cubic terms.

We have not determined the values of the Ginzburg-Landau coefficients from the microscopic
theory, and we set them to arbitrary values, with the following considerations. First, the quadratic
coefficients a∆, aΦ are related to the difference between the actual temperature and the critical
temperature, being negative below TCDW. Since ∆⃗ condenses first and Φ⃗ only onsets at a lower
temperature, we take a∆ < aΦ. The isotropic quadratic coefficients b∆, bΦ have to be positive so
that F∆Φ goes to infinity as |⃗∆| and |Φ⃗| go to infinity. We are interested in the study of the nematic
∆⃗ = (∆1, ∆2, ∆2) state, which appears as an instability within the region where the 3Q phase is
more stable, so we choose the quartic coefficients c∆, cΦ positive to favor the 3Q versus the 1Q
state. We set the cubic term of |Φ⃗| dΦ > 0 as determined from the k · p model. With these
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Figure 1.D.2: Phase diagram obtained solving the global minimum of the Ginzburg-Landau
functional of Eq. (1.110). (a) Resulting point groups in the monolayer. The C3-symmetric 3Q
phase, with point group D3, is represented in black. The 3Q nematic phase, with point group
C2, is plotted in red. (b) Phase diagrams indicating where the threefold rotational symmetry is
present. Black indicates that both bulk and surface are C3-symmetric, blue signals the regions
where C3 is broken in both the bulk and the surface, and red represents the regions where the bulk
is C3-symmetric but the surface is nematic. The red regions, where C3 is preserved in the bulk but
broken in the surface, grow with decreasing temperature. We have chosen the following values
for the coefficients: a∆ = −0.3, aΦ = −0.1, c∆ = 0.5, dΦ = 0.5, cΦ = 0.5, e∆Φ = −0.5,
g∆Φ = 0.5. The surface in (b) is simulated using l∆Φ = 2 of Eq. (1.116).

considerations, we fix the coefficients and study the phase diagram as a function of the cubic d∆Φ

and quartic h∆Φ couplings, which play an important role in the nematic mechanism.

Fig. 1.D.2(a) shows such a phase diagram in the CDW state (a∆ < aΦ < 0). Black indicates
the C3-symmetric 3Q CDW, while red signals the nematic ∆⃗ = (∆1, ∆2, ∆2) state. As required
by the cubic-competition mecahnism, the nematicity only occurs when d∆Φ < 0, and when both
cubic terms are of the same order, d∆Φ ∼ dΦ. The quartic term h∆Φ also plays a crucial role, since
it favors nematicity when it is positive.

Fig. 1.D.2(b) shows the comparison of the same phase diagram with and without a large
surface term l∆Φ > 0. Blue represents the regions where the state is nematic in both cases.
Interestingly, red indicates the regions where the surface term induces a nematic state from an
otherwise rotationally symmetric phase in the bulk.

nonanalyticity in the zero-temperature free energy

Strictly speaking, the Ginzburg-Landau free-energy density of Eq. (1.110) is only valid when
both ∆⃗ and Φ⃗ order parameters are small, i.e., close to the transition temperature or close to the
critical doping. At low temperatures and dopings, the full series should be considered, which
can result in some of the coefficients being nonanalytic if computed at zero temperature. For
instance, a typical temperature dependence is ∝ 1/T. Indeed, we will show that the cubic
term dΦΦ1Φ2Φ3 becomes nonanalytic at zero temperature, which can be easily understood from
dimensional analysis. Nevertheless, our intuitive explanation for the enhancement of the 3Q
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nematic state still applies, since it only relies on the competition between the different relative
signs of the order parameters, and the nonanalyticity changes the dependence on the modulus
of the order parameters, but the sign dependence is set by symmetry. Importantly, we will not
only show that there exists a nonanalytic linear-in-Φ⃗ term in the free-energy density, but that the
coefficient of this term increases with electron doping, as mentioned in Section 1.5.2.

The fact that the cubic term is actually nonanalytic can be derived from dimensional analysis of
the possible terms that might enter in the free energy density of the order parameter Φ⃗ coupling the
conduction bands. At zero temperature, the only dimensional parameters in the k · p Hamiltonian
are the effective masses m or the density of states ρ, with dimensions [m] = [1/ρ] = EL2, the
electron density [n] = 1/L2, and the order parameter [Φ] = [E]7. The free-energy density has
dimensions [F] = [E/L2]. The units of the coefficient of the lth term, cl |Φ⃗|l , are [cl ] = E1−l/L2,
so cl ∝ n(ρ/n)l−1. In particular, c1 ∝ n, c2 ∝ ρ, and cl+2 = ρl+1/nl . The free energy should
vanish for zero electron doping n = 0, since, in the absence of ∆, Φ⃗ only modifies the dispersion of
the conduction bands, which are empty in this case. Therefore, at zero temperature, the free-energy
density has to depend on |Φ⃗| as

FΦ = α
n2

ρ
+ βn|Φ⃗|+ γρ|Φ⃗|2. (1.117)

The dimensionless coefficients α, β and γ could also have a nonanalytic Φ⃗ dependence as a
dimensionless function, such as a Φ1Φ2Φ3/|Φ⃗|3. The linear term is nonanalytic, but a part
of it should have a direction dependence as the cubic term of Eq. (1.56), i.e., ∼ Φ1Φ2Φ3/|Φ⃗|2.
Importantly, the linear term increases with the electron doping. We note that, at finite temperatures,
the additional parameter [T] = E allows cl ∝ n/Tl−1 or cl ∝ ρ/Tl−2.

Indeed, starting from the k · p model in the isotropic bd = 0 limit, in Appendix 1.D.1 we have
determined analytically the exact form of Eq. (1.117) for Φ⃗ = ±|Φ⃗|(1, 1, 1). Equations (1.107)
and (1.108) confirm that indeed the zero-temperature free energy has a linear-in-|Φ⃗| term which is
linear in the electron density n, and a quadratic-in-|Φ⃗| term which is proportional to the DOS.

The nonanalyticity is crucial for the possibility of enhancing the nematic phase. First, since
the term with the Φ1Φ2Φ3 direction dependence is linear in |Φ⃗|, and not cubic, it is of the same
order in |Φ⃗| as the cubic coupling F(3)

∆Φ, which allows their competition. It is also key for this
scenario that the coefficient multiplying the term ∼ Φ1Φ2Φ3 increases with the electron doping,
so that at intermediate doping there is frustration with the cubic coupling F(3)

∆Φ.

7An additional parameter with units of energy is the attraction g in the Φ⃗ channel. This would enter in the mean-field
energy cost to develop order, which is proportional to |Φ⃗|2/g.
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1.D.3 Self-consistent calculations in the effective lattice model

The self-consistent mean-field calculations in the effective lattice model with Φ⃗ are compatible
with the proposal of the competition of the cubic terms. Fig. 1.D.3 shows the T − x phase diagrams
with nonzero Vdp, Udp and Vdd interactions, together with the values of the cubic and quartic terms

f (3)Φ = Φ1Φ2Φ3, (1.118)

f (3)∆Φ = Φ1∆2∆3 + Φ2∆3∆1 + Φ3∆1∆2, (1.119)

f (4)∆Φ = ∆1∆2Φ1Φ2 + ∆1∆3Φ1Φ3 + ∆2∆3Φ2Φ3. (1.120)

For all the parameters studied, we find that the quartic term f (4)∆Φ ≥ 0. Within the C3-symmetric
3Q CDW, this is only compatible with Φ⃗ = ±|Φ0|(1, 1, 1) (see Table (1.115)). This suggests
that the quartic coupling constant h∆Φ of Eq. 1.114 is large and negative. The cubic terms choose
Φ⃗ = |Φ0|(1, 1, 1) for low doping, where d∆Φ dominates, and Φ⃗ = −|Φ0|(1, 1, 1) for high doping,
where dΦ dominates instead. The intermediate region where both cubic terms are of the same
order and Φ1Φ2Φ3 changes sign occurs around the same doping as the nematic dome driven by
the conduction band incipient saddle point. In Section 1.5.3, we showed that this nematic dome is
enhanced by the Udp and Vdd interactions, and we discussed how this can be related to the effect
of Φ⃗ in the incipient saddle point. Now, the agreement with the cubic term competition picture
suggests that also this mechanism might further promote the nematicity. Finally, we note that the
nematic phase appears first as a 3Q/2Q nematic state with f (3)Φ ≤ 0, f (3)∆Φ < 0 and f (4)∆Φ ≥ 0,
and then the cubic signs change giving rise to a 3Q nematic phase with f (3)Φ > 0, f (3)∆Φ > 0 and
f (4)∆Φ > 0.

1.E Light-induced gyrotropic state: Ginzburg-Landau theory

In this Appendix, we study the Ginzburg-Landau functional coupling the time-reversal sym-
metric L−

1 (⃗∆) and M−
1 (Ψ⃗) order parameters, and analyze the conditions under which a metastable

chiral minimum exists. The Ginzburg-Landau functional F∆Ψ reads

F∆Ψ = F∆ + FΨ + F(4)
∆Ψ , (1.121)
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Figure 1.D.3: Temperature-doping phase diagrams obtained by self-consistently solving the
mean-field Hamiltonian of Eqs. (1.44), (1.60), (1.61) for different gaps, using the same Vdp, Udp
and Vdd interactions as in the first row of Fig. 1.14:
(a) Eg = +50meV, Vdp = 450meV, Udp = 900meV, Vdd = 400meV, TCDW = 596K;
(b) Eg = 0, Vdp = 400meV, Udp = 800meV, Vdd = 400meV, TCDW = 358K;
(c) Eg = −25meV, Vdp = 400meV, Udp = 680meV, Vdd = 400meV, TCDW = 259K;
(d) Eg = −30meV, Vdp = 400meV, Udp = 650meV, Vdd = 400meV, TCDW = 239K;
(e) Eg = −50meV, Vdp = 400meV, Udp = 520meV, Vdd = 400meV, TCDW = 155K.

TCDW is the critical temperature at stoichiometry. The first row indicates the symmetry of the
CDW: C3-symmetric 3Q, 1Q stripe or 3Q/2Q nematic. The intensity of the color of each
phase is proportional to |⃗∆|. The second, third and four rows display the combinations of
order parameters f (3)∆Φ (1.119), f (3)Φ (1.118) and f (4)∆Φ (1.120), respectively, normalized by their
corresponding maximum value in each plot. Within the C3-symmetric 3Q state, the sign of both
cubic terms changes when crossing the nematic 3Q/2Q dome, while the quartic term remains
always positive.

where F∆ and FΨ are the individual free energies given by Eq. (1.35), F(4)
∆Ψ is the coupling between

them in the absence of light, whose lowest order is quartic:

F∆ = a∆ |⃗∆|2 + b∆ |⃗∆|4 + c∆

(
∆4

1 + ∆4
2 + ∆4

3

)
, (1.122)

FΨ = aΨ|Ψ⃗|2 + bΨ|Ψ⃗|4 + cΨ

(
Ψ4

1 + Ψ4
2 + Ψ4

3

)
, (1.123)

F(4)
∆Ψ = e∆Ψ |⃗∆|2|Ψ⃗|2 + g∆Ψ |⃗∆ · Ψ⃗|2 + h∆Ψ

(
∆1∆2Ψ1Ψ2 + ∆1∆3Ψ1Ψ3 + ∆2∆3Ψ2Ψ3

)
.

(1.124)
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The circularly polarized light in normal incidence can be effectively represented by a coupling
Λ = [E × E∗]z, where E is the electric field in the plane. Λ transforms as the time-reversal
odd A2g irrep of the TiSe2 point group D3d. Therefore, time-reversal symmetry prevents terms
linear in Λ in the Ginzburg-Landau functional. Since Λ2 transforms as time-reversal even A1g, the
coefficients of F∆Ψ can be renormalized by the circularly polarized light to order Λ2. The electronic
temperature might also renormalize the coefficients. We mention that Ref. [186] proposed that
the coupling to the circularly polarized light is via Λ̃ = [E × ∂E∗

∂z ]z, which depends on the electric
field gradient along the out-of-plane direction in the sample. While Λ̃ is time-reversal even A1g

and therefore can couple linearly to the order parameters, the dispersive effects, i.e., the optical
effects depending on the gradient of the electric field, or equivalent on a nonzero momentum of
the light, are typically weaker.

With this in mind, we now analyze the relative minima of F∆Ψ to study whether a metastable
chiral phase with partial or full M−

1 order parameter exists. Given the presence of C3 symmetry
in the CPGE experiments [186, 187], we consider the particular case with ∆⃗ = (∆, ∆, ∆) and
Ψ⃗ = (Ψ, Ψ, Ψ). F∆Ψ reduces to:

FC3
∆Ψ = t∆∆2 + v∆∆4 + tΨΨ2 + vΨΨ4 + u∆Ψ∆2Ψ2, (1.125)

where

t∆ = 3a∆, (1.126)

v∆ = 9b∆ + 3c∆, (1.127)

tΨ = 3aΨ, (1.128)

vΨ = 9bΨ + 3cΨ, (1.129)

u∆Ψ = 9e∆Ψ + 3g∆Ψ + 3h∆Ψ. (1.130)

For the free energy FC3
∆Ψ to be well defined, v∆ > 0, vΨ > 0, and u∆Ψ > −2

√
v∆vΨ.

There are four relative extremal solutions:

• No CDW (0):

(0)


∆ = 0
Ψ = 0
FC3

∆Ψ = 0

(1.131)
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• Single order parameter (α), with α = ∆, Ψ and β = Ψ, ∆:

(α)


α2 = − tα

2vα

β = 0

FC3
∆Ψ = − t2

α
4vα

(1.132)

• Coexistence (∆Ψ):

(∆Ψ)


∆2 = − 2vΨt∆−u∆ΨtΨ

4v∆vΨ−u2
∆Ψ

Ψ2 = − 2v∆tΨ−u∆Ψt∆
4v∆vΨ−u2

∆Ψ

FC3
∆Ψ = − v∆t2

Ψ+vΨt2
∆−u∆ΨtΨt∆

4v∆vΨ−u2
∆Ψ

(1.133)

Assuming both quadratic coefficients to be negative, tα < 0 and tβ < 0, and defining the
order α such that 2vα

tβ

tα
< 2vβ

tα
tβ

, as a function of the coupling u∆Ψ we have the following minima:

• One minimum with coexistence for u∆Ψ < 2vα
tβ

tα

• One minimum with a single order α for 2vα
tβ

tα
< u∆Ψ < 2vβ

tα
tβ

• Two relative minima with a single order each (with that of α being the ground state) for
u∆Ψ > 2vβ

tα
tβ

For a metastable state to exist, strong coupling u∆Ψ > 2vβ
tα
tβ

is required. In the absence of light, we
have α = ∆. If the system is in the regime with a metastable minimum, and light renormalizes the
coefficients such that 2vΨ

t∆
tΨ

becomes smaller than 2v∆
tΨ
t∆

(if vΨ decreases and tΨ increases faster
than the corresponding ∆ quantities), then the explanation based on the light-induced metastable
M−

1 state might apply.
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Chapter 2

Superconducting collective modes in
1H-NbSe2

Superconductivity is the emblematic example of a collective emergent phenomenon in con-
densed matter physics. Understanding unconventional superconductivity beyond the electron-
phonon driven s-wave spin-singlet pairing is one of the main ongoing challenges in the field.
In this Chapter, we study the superconducting transition metal dichalcogenide 2H-NbSe2 in its
monolayer form. While its ground state is likely a conventional superconductor, it also displays
unconventional features. Indeed, the in-plane critical magnetic field displays several signatures
pointing to the presence of a subleading f -wave spin-triplet pairing. Motivated by the recent
observation of satellite peaks in the scanning tunneling microscopy (STM) experiments performed
by our collaborators [2], in this Chapter we analyze the effect of the subleading f -wave spin-triplet
pairing on the collective mode spectrum of the superconducting state of monolayer NbSe2. In
particular, in combination with the spin-orbit coupling and the absence of inversion symmetry,
we show that the subleading pairing leads to a Leggett mode, consisting of the fluctuation of the
relative phase between the pairings in the spin-split bands of monolayer NbSe2. We determine its
energy, and show that it is undamped and well-defined as long as the interaction remains attractive
in the subleading pairing channel. We also demonstrate that it leaves fingerprints in the electron
spectral function, and could thus be detected in tunneling experiments. Finally, we discuss the
possible interpretation of the STM resonances of Ref. [2] in terms of the Leggett mode.
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2.1 Introduction

In this section, we present an overview of the field of superconductivity. After explaining
the defining properties of a superconductor, we focus on general aspects relevant to our study
of the superconducting state of monolayer NbSe2. We first discuss the subtleties appearing in
defining superconductivity in 2D. We then move on to describe the microscopic BCS theory of
superconductivity. We provide a general formulation, defining the pairing operators and order
parameters for a general interaction, which will be useful for the analysis of NbSe2 in Section
2.2.2 and in Appendix 2.B. We also pay special attention to the symmetry classification of the
superconducting pairings. With a view to interpreting the STM resonances of Ref. [2], we introduce
the collective modes that might appear in a superconductor in a general setting. We then describe
the particular features of monolayer 2H-NbSe2, comparing it to its bulk counterpart. We describe its
band structure and symmetry properties, as well as its CDW and superconducting instabilities. We
conclude this section by thoroughly describing the recent experiments uncovering unconventional
signatures in the superconducting state of monolayer NbSe2, including the twofold-anisotropic
in-plane critical magnetic field [115, 116] and the bosonic resonances observed in STM [2]. In
subsequent sections, we introduce a simple k · p model for monolayer NbSe2, and study its possible
superconducting instabilities within BCS theory, as well as its collective mode spectrum.

2.1.1 Superconductivity

Definition and macroscopic effective description

Superfluidity and its charged counterpart, superconductivity, are ordered phases consisting of
a coherent state made of bosonic quasiparticles. In the case of superconductors, which can be
regarded as charged superfluids, these bosonic quasiparticles are Cooper pairs of two electrons
[59] (or higher even numbers [207]). The broken symmetry of the coherent state in superfluids
is the particle number conservation, which is well-defined in the grand canonical ensemble, when
the system can interchange particles with a bath. This symmetry is associated with the U (1)
complex phase of their order parameter, which in the simplest case is a scalar complex quantity
∆(r) = |∆(r)|eiφ(r), which can be interpreted as the expectation value of the appropriate field
operator ∆̂(r). Indeed, the particle number N and the phase φ are conjugate variables, and thus they
obey the uncertainty relation (δφ)(δN) ≳ 1 [57]. In a coherent state, the phase is well-defined,
and therefore the particle number is strictly ill-defined. However, in the canonical ensemble, where
the particle number is fixed, such an expectation value with a defined phase can never develop.
Nevertheless, the order parameter and broken symmetry manifest in the correlation functions at
long distances:

⟨∆̂†(r′)∆̂(r)⟩
ODLRO
−−−−→
|r′−r|≫

∆∗(r′)∆(r) = constant. (2.1)



2.1. Introduction 85

This is the defining property of off-diagonal long-range order (ODLRO) [57, 208], of which
superfluidity and superconductivity are the paradigmatic examples. In the thermodynamic limit,
the canonical and grand-canonical ensembles become equivalent, since the uncertainty in the phase
and the relative uncertainty in the particle number (δN)

N can be both made negligible, given that
(δφ) (δN)

N ≳ 1
N → 0. Therefore, from now on, we will work in the grand-canonical ensemble for

simplicity.

The defining properties of a superconductor are the persistent current superflow in equilibrium,
with its associated zero resistance, and the Meissner effect, which stands for the full expulsion of
magnetic fields by the superconductor. In order to describe them, the Ginzburg-Landau theory
is effective. A phenomenological Ginzburg-Landau free-energy functional can be written on the
basis of symmetry, without having to resort to the particular microscopic theory from which it is
derived. We start by considering a s-wave spin-singlet pairing of a neutral superfluid with full
rotational invariance, whose Ginzburg-Landau functional reads

F[∆] =
∫

ddr

[
h̄2

2m∗ |∇∆|2 + r|∆|2 + 1
2

u|∆|4
]

, (2.2)

where m∗ is the mass of the bosonic quasiparticles that condense, u > 0, and, in a homogeneous
system, r changes sign at the mean-field transition temperature TMF, so it is conventional to write
r = a(T − TMF) with a > 0. The Ginzburg-Landau theory is valid to describe the low-energy

phenomenology at length scales larger than the coherence length ξ0 =
√

h̄2

2am∗TMF
. In particular,

the Ginzburg-Landau theory describes this low-energy physics by the spatial fluctuations of the
collective order parameter ∆(r) = |∆(r)|eiφ(r).

Within this effective description, we first review the persistent superflow in the context of
neutral superfluids. A twist in the condensate phase φ gives rise to a coherent particle current
density, Jn = ns

h̄
m∗∇φ, where ns ∝ |∆|2 is the superfluid density, which measures the rigidity

of the phase, i.e., the cost of spatial fluctuations of the phase, and therefore controls the phase
coherence. This expression can be rewritten as Jn = nsvs, where vs =

h̄
m∗∇φ is the superfluid

velocity. This superflow is topologically stable due to the topology associated with the winding
number of the order parameter (technically, its first homotopy group π1) [57, 209]. A conventional
s-wave spin-singlet order parameter, whose manifold under which it is invariant is U(1), has
winding π1[U(1)] = Z, which means that the circulation of the phase of the order parameter
around the sample is an integer multiple of 2π,

∮
dr ·∇φ = 2πnφ. The number of twists nφ is a

topological invariant, since it cannot be changed by continuous deformations of the phase. As long
as ns > 0, it can only change by creating domain walls with vanishing amplitude, |∆| = 0, whose
energetic cost is exponentially large in the thermodynamic limit. Since the superfluid velocity is
proportional to the phase gradient, vs =

h̄
m∗∇φ, the superflow is topologically protected. More



86 Chapter 2. Superconducting collective modes in 1H-NbSe2

concretely, the circulation of the velocity around the sample, or vorticity, is quantized∮
dr · vs =

h
m∗ nφ (2.3)

Eq. (2.3) is called Onsager-Feynman quantization. Similar reasoning allows to regard vortices,
which are singular lines in the superfluid around which the phase winds an integer multiple of 2π,
as topological defects. For completeness, we mention that other order parameter manifolds have a
winding different from Z, and their superflow can therefore decay through continuous reduction
of the winding number [209]. These order parameters arise from the condensation of bosons with
finite angular momentum, such as the complex vector order parameter of the A phase of 3He with
manifold SO(3) [209].

Until now, we have discussed the persistent superflow in the case of neutral superfluids. We
now consider superconductors, where the charged Cooper pairs couple to the electromagnetic field,
so that the changes in the phase of the order parameter are linked to the gauge vector potential A.
Their Ginzburg-Landau functional has to consider the coupling to the electromagnetic field too.
For a s-wave spin-singlet rotationally-invariant superconductor, the Ginzburg-Landau free energy
reads

F[∆, A] =
∫

ddr

[
h̄2

2m∗

∣∣∣∣(∇− i
e∗

h̄
A
)

∆
∣∣∣∣2 + r|∆|2 + 1

2
u|∆|4 + 1

2µ0
(∇× A)2

]
, (2.4)

where e∗ = 2e is the charge of the Cooper pairs, with e the electron charge, and µ0 the vacuum
magnetic permeability. The Ginzburg-Landau functional (2.4) is explicitly gauge invariant, since
gauge transformations act as ∆(r) → ∆(r)eiα(r), A(r) → A(r) + h̄

e∗∇α(r). Although a gauge
choice for ∆(r) has to be selected for explicit calculations, observables are gauge invariant. Indeed,
the U(1) local gauge invariance in superconductors cannot be broken [60], and consequently no
local gauge-invariant observable associated with superconductivity exhibits long-range order [61–
63]. An alternative understanding of superconductivity where gauge invariance is always explicitly
preserved describes superconductivity as topological order [61–63]. As such, it displays a ground-
state degeneracy dependent on the genus of the manifold where the superconductor lives, as well
as fractionalization of excitations [61–63]. Nevertheless, here we will consider their pragmatic
description as charged superfluids with an order parameter ∆(r).

From the Ginzburg-Landau functional (2.4), we can derive the charge current density Jc =

e∗nsvs, where vs =
h̄

m∗ (∇φ − e∗
h̄ A) is the superfluid velocity. The superflow in a superconductor

is also topologically protected against phase deformations, and we will later show that its decay into
single-particle excitations is protected by the gap in the spectrum. Cooper pairs in solid-state su-
perconductors might also condense with a finite relative orbital angular momentum. Nevertheless,
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unlike in rotationally invariant superfluids, crystal fields and spin-orbit coupling usually reduce
the continuum symmetry to be U(1) always, which guarantees the topological protection of the
supercurrent. Due to the coupling to the electromagnetic field, the quantization of the circulation
implies the quantization of the magnetic flux Φ = nφΦ in the vortices. Finally, we note that, while
a consequence of the persistent superflow is a vanishing longitudinal resistance, the latter is not
unique to superconductors. For instance, the longitudinal resistance also vanishes in the quantum
Hall effect (see Chapter 3).

Besides the persistent superflow, superconductors are characterized by the Meissner effect,
which also naturally arises due to the coupling between Cooper pairs and the electromagnetic
field. By minimizing the Ginzburg-Landau functional (2.4), one can derive that the magnetic field
verifies that ∇2B = 1

λ2
L
B, where λ2

L = m∗

µ0nse∗2 is the London penetration depth [57, 210]. The
only uniform solution in the superconducting state, where ns > 0, is B = 0. In the presence
of an external magnetic field, the magnetic field near the surface or around the vortices decays
exponentially within a distance λL, B ∼ e−|r|/λL . Beyond a certain critical external field Hc,
the uniform Meissner effect is no longer stable, and the system transitions to the normal state.
Depending on the ratio λL

ξ0
between the London penetration depth λL and the coherence length

ξ0, which determines the surface energy of a superconductor-normal state interface, two types of
superconductors can be distinguished. In type I superconductors, the coherence length is larger that
the penetration depth, ξ0 > λL, the interface energy is positive, and there is a first-order transition
to the normal state at Hc. On the other hand, the coherence length is smaller that the penetration
depth in type II superconductors, ξ0 < λL, which implies a negative interface energy. Type II
superconductors exhibit two critical fields, Hc1 < Hc2. Below the lower critical field Hc1, the
homogeneous Meissner effect completely expels the magnetic field. Between Hc1 and the upper
critical field Hc2, the magnetic field partially penetrates the bulk in the form of vortices, which
form an Abrikosov flux lattice.

Superconductivity in 2D

The Ginzburg-Landau theory, within a mean-field treatment, has allowed us to explain the
two defining properties of superconductivity, namely the persistent supercurrent and the Meissner
effect. Before concluding this section, it is worth discussing the subtleties that arise in 2D
superconductivity, where fluctuations beyond mean-field theory have a crucial effect. The main
message of this discussion will be that superconductivity exists in 2D at finite temperatures, it has
been experimentally observed in thin films and 2D materials, and several of its features, especially
those related to symmetries, are accurately described within the mean-field BCS theory explained
in the next section.
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The first aspect to consider is Mermin-Wagner(-Hohenberg-Wegner) theorem [211–214],
which states that no long-range order spontaneously breaking a continuous symmetry can develop
in 2D systems with sufficiently short-range interactions at finite temperature in the thermodynamic
limit. It applies to the particular case of the U(1) symmetry in superfluids [212], but also to the
O(2) symmetry of magnetic XY models [211, 213] and 2D crystals [214]. The reason is that the
long-wavelength soft phase fluctuations renormalize the correlation function of Eq. (2.1) so that it
decays as a power law at long distances:

⟨∆̂†(r′)∆̂(r)⟩
2D

−−−−→
|r′−r|≫

|∆0|2
(

ξ

|r′ − r|

)η

, (2.5)

where ξ is an appropriate correlation length and ∆0 is an appropriate amplitude. In 1D, the situation
is even worse and the correlation function decays exponentially:

⟨∆̂†(r′)∆̂(r)⟩
1D

−−−−→
|r′−r|≫

|∆0|2 exp
(
−|r′ − r|

ξ

)
. (2.6)

There are certain roundabouts around Mermin-Wagner theorem. For quasi-2D systems, such
as the layered superconducting cuprates, a small interlayer coupling stabilizes long-range order1
[215]. In the case of purely 2D superconductors, the key observation is that Mermin-Wagner
theorem is strictly valid only in the thermodynamic limit, for a sufficiently large system. For
realistic parameters, the length scale above which Mermin-Wagner theorem would apply is larger
than typical system sizes [215–217], so effectively long-range order can develop in a finite purely
2D sample below a nonzero temperature. All these ideas can be applied to superconductivity even
if the local U(1) gauge symmetry is never broken [215].

A different crucial aspect to be considered in 2D is that, even in the thermodynamic limit,
there is a finite temperature phase transition between a disordered state and the quasi-long-range
ordered state with power-law correlations (2.5), known as Berezinskii-Kosterlitz-Thouless (BKT)
transition [215, 218–222]. All derivatives of the thermodynamic potential are continuous across
the transition, but the superfluid density ns abruptly drops to zero at the transition. The physical
picture is that below the transition temperature TBKT, vortices of opposite winding are paired due
to energetic reasons, and do not destroy the superflow, at least for a small vs and for a TBKT rather
small compared to the mean-field transition temperature TMF. Above TBKT, entropy allows the
proliferation of unpaired vortices, which can move across the supercurrent and damp it. This effect
applies to superfluids as well as superconductors, although several subtleties appear for the latter

1While the minimum interlayer coupling allowing long-range order is infinitesimally small for a exponent η < 2 in
Eq. (2.5), the case η > 2 requires an interlayer coupling larger than a finite but small cutoff [215].
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due to the coupling with the electromagnetic field [215, 222–224].

In summary, 2D superconductivity can exist below TBKT for realistic finite sample sizes. At
low enough temperatures, where fluctuations are suppressed, mean-field theory should correctly
describe different properties, such as the magnitude of the superconducting order parameter, and
especially the features associated with the symmetry of the order parameter. Indeed, in this work we
will use mean-field theory to describe a 2D superconductor. In the following section we describe
the microscopic mean-field theory of superconductivity.

Microscopic description of superconductivity: BCS theory

Until now we have described superconductivity within the effective Ginzburg-Landau formal-
ism, where the free-energy functional can be phenomenologically derived from the symmetries of
the problem. However, to describe certain features, a microscopic theory becomes necessary. The
first and simplest microscopic theory of superconductivity was developed by Bardeen, Cooper and
Schrieffer (BCS) [64]. It is based on the observation by Cooper that, starting from a filled Fermi
sea, an infinitesimally weak electron-electron attraction induces a two-particle bound state [59],
now called Cooper pair. If c†

α(r) is the electron creation operator at position r and with internal
degrees of freedom α (e.g., spin), we define the two particle operator

Φ̂†
αβ(r, R) = c†

α(R + 1
2 r)c†

β(R − 1
2 r), (2.7)

where r is the relative coordinate and R is the center of mass position. In momentum space,

Φ̂†
αβ(k, q) = c†

α(k + 1
2 q)c†

β(−k + 1
2 q), (2.8)

where q is the total momentum of the pair, and k is the relative momentum of the electrons forming
the pair. The Cooper pair creation operator with pair wavefunction ϕαβ(r, R) thus reads

Φ̂† =
∫

ddR
∫

ddr ∑
αβ

ϕαβ(r, R)Φ̂†
αβ(r, R) = ∑

q
∑
k

∑
αβ

ϕαβ(k, q)Φ̂†
αβ(k, q), (2.9)

where ϕαβ(k, q) is the Fourier transformed Cooper pair wavefunction.

Before explaining the BCS theory, we mention that the dependence on the total momentum
q, or equivalently on the center of mass position R, characterizes the spatial modulation of the
pairing. Unless otherwise stated, we will focus on homogeneous superconductors, where the
pairing ϕαβ does not depend on R and therefore the total momentum q vanishes. We will set
ϕαβ(k) = ϕαβ(k, q = 0). Superconductors whose order parameter has q ̸= 0 are called pair
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density waves (PDWs) or Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states [225–227], and break
translational symmetry, analogously to the charge density waves studied in Chapter 1.

Inspired by the Cooper pair instability, the BCS theory describes a superconductor as a co-
herent condensate of Cooper pairs, whose wavefunction is |BCS⟩ = exp[Φ̂†]|0⟩, with |0⟩ the
electron vacuum. This ground state is the static mean-field solution of a microscopic Hamilto-
nian, whose key ingredient is a frequency-independent attractive electron-electron interaction V.
Originally, the BCS theory was applied to conventional superconductors, where this attraction is
mediated by the phonons and induces an isotropic s-wave spin-singlet order parameter [64]. BCS
theory has been generalized to account for anisotropic pairings, and it works irrespective of the
source of the attraction. However, it is only accurate within the weak-coupling regime, where the
attraction V is small, and when the dynamical effects of the frequency-dependent interaction are
not relevant. Since, as we will see, the critical temperature Tc depends on the magnitude of V,
its quantitative validity is restricted to low-Tc superconductors. Nevertheless, it can also capture
certain qualitative features of high-Tc superconductors, such as the d-wave pairing symmetry of
cuprate superconductors [10].

Explicitly, the static BCS Hamiltonian in momentum space with an attraction V reads:

HBCS = H0 + ∑
kk′q

∑
αβ,γδ

Vαβ,δγ(k, k′, q)c†
α(k + 1

2 q)c†
β(−k + 1

2 q)cγ(−k′ + 1
2 q)cδ(k′ + 1

2 q) =

= H0 + ∑
kk′q

∑
αβ,γδ

Φ̂†
αβ(k, q)Vαβ,δγ(k, k′, q)Φ̂δγ(k′, q),

(2.10)

where in the second line we have used the two-particle operators defined in Eq. (2.8), and H0 is
the single-particle Hamiltonian

H0 = ∑
k

∑
αβ

c†
α(k)h0,αβ(k)cβ(k). (2.11)

According to our sign convention, V is attractive where it is negative. Hermiticity requires that
Vαβ,δγ(k, k′, q) = V∗

δγ,βα(k
′, k, q), which allows to regard it as a q-dependent Hermitian matrix

V(q) with rows labelled by α, β, k. Until now, this Hamiltonian is a general static interacting
Hamiltonian, and the second row is just an appropriate rewriting for taking the mean-field so-
lution. For instance, the long-range density-density Coulomb interaction for a spinful band in
3D would read Vαβ,δγ(k, k′, q) = e2

ε0|k′−k|2 δαδδβγδq,0. Originally, the BCS theory was applied
to a one-band system with full rotational and inversion symmetries, and without spin-orbit cou-
pling. The attraction was assumed to be constant in momentum space for the spin-singlet channel:
Vαβ,δγ(k, k′, q) = − g

Vsyst
[−iσy]αβ[iσy]γδδq,0. As we will show below, the artificially assumed
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constant attraction leads to a divergence in the integrals that determine the order parameter of the
theory. This issue is solved by restricting the attraction to electrons with energy below a cutoff Λ.
Physically, in the case of phonon-mediated superconductors, this energy cutoff Λ corresponds to
the Debye energy, which determines the onset of the low-energy attractive interaction.

The BCS wavefunction is the mean-field ground state of the BCS Hamiltonian (2.10) when
decoupled in the Cooper channel, which corresponds to considering only the expectation values
of the particle-particle operators Φ̂†

αβ(k, q), but not of the particle-hole operators (i.e., neglecting
the Hartree and Fock channels). In particular, the pairing order parameters read:

∆̄δγ(k′, q) = −∑
k

∑
αβ

⟨Φ̂†
αβ(k, q)⟩Vαβ,δγ(k, k′, q), (2.12)

∆αβ(k, q) = −∑
k′

∑
γδ

Vαβ,δγ(k, k′, q)⟨Φ̂δγ(k′, q)⟩ = ∆̄∗
βα(k, q). (2.13)

The pairings ∆ are the order parameters of superconductivity. Their transformations under
symmetries determine the symmetries broken in the superconductor. They can be classified
according to the irreps of the symmetry group of the system. For instance, for a system without spin-
orbit coupling and therefore with SU(2) spin rotation symmetry, the pairing can be differentiated
in spin-singlet, with zero total spin S = 0, and spin-triplet, with S = 1 and Sz = 1, 0,−1. In
particular, writing explicitly the spin degree of freedom, and taking q = 0 for simplicity, we can
separate

∆(k) =
[
∆S(k)σ0 + ∆⃗T(k) · σ⃗

]
iσy, (2.14)

where σµ are the spin Pauli matrices, ∆S(k) is a complex function representing the spin-singlet
pairing, and ∆⃗T(k) are the spin-triplet pairings. If there are additional orbital degrees or freedom,
∆S(k) and ∆µ

T(k) are matrices. The fermion anticommutation forces ∆S(k) to be a even function
of k, ∆S(k) = ∆S(−k), and ∆⃗T(k) to be an odd function of k, ∆⃗T(k) = −∆⃗T(−k). The singlet
and triplet components can be further classified according to the irreps of the point group, which
allows to analyze the spatial symmetries broken by the order parameter. For example, with full
rotational invariance, ∆S(k) and ∆µ

T(k) can be decomposed in spherical harmonics. In this case,
depending on their orbital angular momentum L, which is encoded in their k dependence and
orbital structure, the pairings are called s-wave (L = 0), p-wave (L = 1), d-wave (L = 2), f -wave
(L = 3), etc. Fermion anticommutation forces even orbital angular momenta to be spin-singlet,
and odd orbital angular momenta to be spin-triplet.

In a crystalline lattice, rotational symmetries are reduced, and the pairings can only be classified
according to the irreps of the point group. In other words, the pairing multiplets corresponding to an
orbital angular momentum split into different components, which transform according to the irreps
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of the point group, and no longer have degenerate critical temperatures. Nevertheless, the L-wave
notation is still conventionally used, with the meaning that an L-wave irrep with full rotational
symmetry would reduce to the corresponding irrep of the actual point group, and that the pairing
has the same nodal structure as a function of k as an L-wave pairing with full rotational symmetry.
As an example, we consider a 2D triangular lattice with point group D3h (see the the character
table in Appendix 2.A), which applies to monolayer 2H-NbSe2 (see Sections 2.1.4 and 2.2). The
s-wave spin-singlet pairing is always symmetric under all the operations of the point group. Certain
components of other multiplets, such as the d3z2−x2−y2 spin-singlet pairing, are also invariant under
all the symmetries, and are therefore called s-wave too since they are indistinguishable in terms
of symmetry. The other four components of the d-wave spin-singlet pairing transform as the 2D
irreps {dx2−y2 ,−dxy} and {dxz, dyz}, but are still dubbed d-wave. To refer to one of the two irreps,
the L-wave notation is not enough and one has to further specify. For instance, in our example,
the two irreps differ by the parity under the out-of-plane mirror symmetry mz. Alternatively, the
{dx2−y2 ,−dxy} pairings have 4 sign changes when going around the Brillouin zone in 2D, while
{dxz, dyz} only have 2. When spin-orbit coupling is nonzero, the spin-singlet and spin-triplet
labels are no longer applicable, since the orbital and spin parts of the pairing become intertwined.
The full pairing should be labelled as the irreps of the corresponding point group. Again, the
spin-singlet and spin-triplet notation is still used, referring to the corresponding pairing that would
be obtained for vanishing SOC. This is illustrated by the f -wave spin-triplet pairing in our example
with point group D3h. In particular, we focus on the fx(x2−3y2) component that has 6 sign changes
and spatial dependence cos(3θ) in the Brillouin zone, and transforms as a 1D irrep of D3h with
well-defined spin-triplet in the absence of SOC. With SOC, it splits into two irreps. The f -wave
opposite-spin pairing, which has total spin Sz = 0 and is characterized by an out-of-plane vector
∆⃗Sz=0

T (k) = (0, 0, ∆z
T), is symmetric under all point group operations, and therefore can mix with

the s-wave spin-singlet; this is a consequence of the absence of inversion symmetry that will be
further explained in Sections 2.1.4 and 2.2. The f -wave equal-spin pairing components, with total
spin Sz = ±1 and in-plane vector ∆⃗Sz=±1

T (k) = (∆x
T, ∆y

T, 0), transform as a different 2D irrep.

To conclude the discussion about the symmetry transformation properties of the superconduct-
ing pairing, we mention the case of time-reversal symmetry. Due to the gauge freedom in choosing
its global phase, the superconducting order parameter cannot be directly assigned a parity under
time-reversal symmetry (see more details in Section 3.1.1 of Chapter 3). Instead, only relative
phases have physical meaning. Consequently, time-reversal symmetry can only be broken when
the superconducting order parameter has several components that condense with a complex relative
phase distinct from 0 or π. Usually, the components are associated with a multidimensional irrep,
as in the long-sought p + ip superconductor, but they can belong to different irreps that are almost
degenerate accidentally, as in a s + id state [228].
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With the aid of symmetries, we can separate the pairing in different components. We now
show, in the general case, how to self-consistently determine each component and their effect
in the electronic dispersion. The BCS theory is the mean-field theory of the static Hamiltonian
(2.10) when decoupled only in the Cooper or superconducting channel, i.e., neglecting the Hartree
and Fock decouplings, which would give rise to electron-hole order parameters of the form ∼
⟨c†c⟩. With this in mind, the mean-field BCS Hamiltonian in terms of the superconducting order
parameters ∆ of Eqs. (2.12-2.13) reads:

HMF
BCS = H0 − ∑

kq
∑
αβ

[
∆̄αβ(k, q)Φ̂αβ(k, q) + Φ̂†

αβ(k, q)∆αβ(k, q)
]
−

− ∑
kk′q

∑
αβγδ

∆̄αβ(k, q)
[
V−1(q)

]
αβ,δγ

(k, k′)∆δγ(k′, q),
(2.15)

where V−1(q) is the inverse of V(q), defined as ∑µνp Vαβ,µν(k, p, q)
[
V−1(q)

]
µν,δγ

(p, k′) =

δαδδβγδkk′ . From now on, we will focus on homogeneous superconductors, where q = 0.

The order parameter ∆ is obtained by self-consistently solving the mean-field BCS Hamiltonian
HMF

BCS. While HMF
BCS is quadratic, it is not number conserving. A useful approach to solve the problem

is to transform it to a usual ψ†ψ bilinear form by doubling the degrees of freedom in Nambu space.
Nambu spinors are combinations of electron and hole operators

ψ†(k) =
[
c†(k), c(−k)

]
=
[
c†
↑(k), c†

↓(k), c↑(−k), c↓(−k)
]

, (2.16)

where c†(k) is a vector of creation operators running over the internal degrees of freedom, and in
the second equality we have explicitly written down the spin degree of freedom. Nambu spinors
fulfill the fermionic anticommutation relation {ψα(k), ψ†

β(k)} = δαβδkk′ , where now α, β label
the internal degrees of freedom as well as the Nambu electron/hole degree of freedom. In Nambu
space, the mean-field BCS Hamiltonian becomes

HMF
BCS =

1
2 ∑

k
ψ†(k) · HBdG(k) · ψ(k)− ∑

kk′
∆̄(k) · V−1(k, k′) · ∆(k′) + C, (2.17)

where C = 1
2 ∑k tr [h0(k)] is a constant independent of the Nambu spinors and of the order

parameter, and the Bogoliubov-de-Gennes Hamiltonian HBdG(k) is

HBdG(k) =

(
h0(k) −∆(k)
−∆̄(k) −hT

0 (−k)

)
, (2.18)

where now we regard the order parameter ∆(k) as a matrix in the spin-orbital space and, from
Eqs. (2.12-2.13), ∆̄αβ(k) = ∆∗

βα(k) is the Hermitian conjugate of ∆αβ(k). We note that hT
0 (−k) =
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h∗0(−k) is the time-reversal conjugate of the noninteracting Hamiltonian (see Chapter 3). Assuming
time-reversal invariance in the normal state, hT

0 (−k) = h0(k).

HBdG is a quadratic Hamiltonian which can be diagonalized, and therefore allows to self-
consistently solve for ∆αβ(k) defined in Eqs. (2.12-2.13). The self-consistent equation for ∆αβ(k)
is called gap equation. If a nontrivial self-consistent solution with ∆αβ(k) ̸= 0 is found, a gap
is opened at all k in the Fermi surface where ∆αβ(k) ̸= 0. Pairings transforming according
to different irreps of the point groups have separate gap equations and do not couple with each
other. The pairing that condenses is the one that has a higher critical temperature Tc, which can
be obtained from the gap equation in the limit ∆(k, T → T−

c ) → 0. In Section 2.2.2, we will
determine the gap equations for the relevant pairings in monolayer NbSe2 using the functional
integral formalism [57], which is more convenient than diagonalizing HBdG in multiband cases.

In the BCS theory, the particular value of Tc and of the zero-temperature order parameter ∆
depend on nonuniversal parameters. Nevertheless, for a constant effective attraction V = − g

Vsyst
,

with Vsyst the volume of the system, they both display the same exponential dependence with the
effective attraction, ∝ exp(− 1

N0g ), with N0 the density of states (DOS) in the normal state, and
their ratio is a universal prediction of BCS theory

2∆
kBTc

≃ 2πe−γE ≃ 3.53, (2.19)

with γE ≃ 0.577 the Euler-Mascheroni constant. Another defining property of the weak-coupling
BCS theory is that the superfluid weight, which controls the phase coherence, is set at the same Tc

as the one where the gap develops.

These predictions are verified by a variety of weak-coupling superconductors. However, as the
interaction becomes stronger, the properties of superconductors depart from the BCS theory, even in
the case of conventional phonon-mediated superconductors. One reason is that, in these cases, the
frequency-dependence of the effective electron-electron attraction becomes crucial. The mean-field
theory that properly considers these dynamical effects is called Migdal-Eliashberg theory [65, 66].
Generalizations of Migdal-Eliashberg theory apply to any type of boson mediating the interaction,
as in the case of quantum critical fluctuations close to magnetic or nematic phase transitions. The
main requirement of Migdal-Eliashberg theory is that the dynamics of the mediating boson is
much slower than that of the electrons, which typically means that the characteristic energy scale
of the boson Λ is much smaller than the Fermi energy, Λ ≪ EF [229]. As for the BCS theory
formulation above, this prevents its direct applicability to low-density systems. Another property
of strong-coupling superconductors is that the temperatures where the superconducting gap and
the superfluid weight onset are not generally the same. First, an incoherent ∆ becomes nonzero,
leading to a pseudogap phase, and the phase coherence is only reached at a lower Tc.
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Before concluding this section, we mention that the pair-breaking effect of a magnetic field
previously explained in the context of the Meissner effect can be divided in two contributions
within the microscopic theory. In 3D, the strongest contribution which determines the critical
magnetic field is called orbital effect, and is due to the minimal coupling to the electromagnetic
gauge potential, as in Eq. (2.4). Intuitively, the orbital effect describes the tendency of the magnetic
field to localize the electron motion in cyclotron orbits. The other pair-breaking contribution is
the Zeeman spin splitting of the bands. The Zeeman field breaks time-reversal symmetry, and
therefore the Kramers pairs ck↑ and c−k↓ are no longer degenerate. This introduces an energy
cost for homogeneously pairing opposite spins, suppressing spin-singlet and Sz = 0 spin-triplet
pairings. In 2D, due to the confined motion in the out-of-plane direction, the Zeeman effect is the
main mechanism determining the in-plane critical magnetic field.

2.1.2 Collective modes in a superconductor

Collective modes are excitations related to the dynamical fluctuations of bosonic modes which
are sufficiently long-lived. Depending on the nature of the bosonic mode, two types of collective
modes can be distinguished. Particle-hole collective modes are related to fluctuations of the form
∼ ⟨c†c⟩, such as phonons [76], spin resonances [230, 231] or nematic fluctuations [232]. In
superconductors, collective modes also emerge in the particle-particle channel ∼ ⟨c†c⟩, as we will
describe below. In order to describe collective modes, one needs an action decoupled in the desired
channels. It is worth pointing out that several collective modes are directly related to spontaneously
broken-symmetry phases. For instance, within the broken-symmetry state, the fluctuations of the
order parameter around the mean-field configuration define collective modes. Moreover, collective
modes also arise if there is a tendency towards a subleading broken-symmetry phase. Examples
of both cases are magnons in magnetically-ordered states and paramagnons in metals close to
a magnetic instability. While collective modes are generically gapped, if a continuous global
symmetry is broken, Goldstone theorem guarantees the presence of certain gapless collective
modes, the so-called Goldstone modes [7]. In this section, we study collective modes appearing
in superconductors. It is worth mentioning that, while particle-hole collective modes are not
necessarily linked to superconductivity, their features might only appear in the superconducting
state, where the gap opening reduces the Landau damping, i.e., their decay into quasiparticles.
In the following we focus on the particle-particle channel. In Section 2.3, we will show that
particle-particle collective modes might leave signatures in the tunneling spectrum of NbSe2 [2].

In the simplest single-band s-wave spin-singlet scenario in 3D, superfluids and superconductors
are characterized by a complex order parameter ∆, with an amplitude |∆| and a phase φ. We assume
a homogeneous mean-field configuration, where ∆ is position independent. The long-wavelength
spatial fluctuations of ∆ in a neutral superfluid are described by the Ginzburg-Landau functional
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of Eq. (2.2). A simple way to understand the emergence of collective modes is constructing an
action from this free energy, by adding a dynamical term involving the time derivative of the order
parameter

S[∆] =
∫

dt
∫

ddr
[

h̄2
(
|∂t∆|2 −

1
2m∗ |∇∆|2

)
− r|∆|2 − 1

2
u|∆|4

]
. (2.20)

For simplicity, we have included only the second derivative in time, which renders the theory
Lorentz invariant, but a first time derivative, related to damping, generically appears [233]. There
are two collective modes associated with the dynamics of ∆ = |∆|eiφ, resulting from the fluctua-
tions of the amplitude |∆| and the phase φ, respectively [234]. Their propagators can be obtained by
expanding the action to quadratic order in the fluctuations around the mean-field solution, and their
energy dispersion is given by the poles of their propagators. In this case, if ∆ = (|∆|+ a)ei(φ+θ),
one expands in a and θ. The resulting collective modes occur in the particle-particle channel, since
the superconducting order parameter is a particle-particle expectation value ∆̄ ∼ ⟨c†c†⟩.

The amplitude fluctuations a define the Higgs mode, which is gapped [234]. The Higgs
mode is challenging to observe experimentally, since it does not directly couple to external probes.
Moreover, in a single-band s-wave singlet BCS superconductor, the gap of the Higgs mode coincides
exactly with the quasiparticle gap 2|∆|, and therefore the Higgs mode can decay into quasiparticle
pairs and is damped. This might be circumvented when a particle-hole collective mode couples to
the Higgs mode. In this case, the resulting hybrid mode might have an energy smaller than 2|∆|,
and therefore it can be long-lived. This scenario has been proposed in bulk NbSe2, where the
Higgs mode couples to the CDW amplitude phonon mode [235–239].

On the other hand, the phase fluctuations θ give rise to a gapless Goldstone mode, associated
with the broken continuous U(1) symmetry [7, 234]. Phase fluctuations are soft in the long-
wavelength limit, Ω → 0 as q → 0, since the action is invariant under a homogeneous shift of the
phase. In a neutral superfluid, the Goldstone mode has linear dispersion, Ω ∝ |q|.

In a superconductor, the charged Cooper pairs couple to the electromagnetic field. Then,
gauge invariance requires adapting the action with the minimal coupling

S[∆, A] =
∫

dt
∫

ddr

[
h̄2

(∣∣∣∣(∂t + i
e∗

h̄
A0

)
∆
∣∣∣∣2 − 1

2m∗

∣∣∣∣(∇− i
e∗

h̄
A
)

∆
∣∣∣∣2
)
−

−r|∆|2 − 1
2

u|∆|4 − 1
2µ0

(∇× A)2
]

,

(2.21)

Now, while the Higgs mode can be determined analogously to that of a neutral superfluid, the phase
mode is radically different. The U(1) symmetry relevant in a superconductor is the local gauge
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redundancy, which cannot be broken. Therefore, Goldstone theorem does not apply, and there is
no protected gapless mode. Indeed, due to the coupling with the electromagnetic field, the phase
mode, which is associated with the longitudinal fluctuations of the electromagnetic field, becomes
gapped in 3D via the so-called Anderson-Higgs mechanism [77–79]. Indeed, due to its direct
link to the plasmon, the mass of the phase mode becomes the plasma frequency. The transverse
fluctuations of the electromagnetic field are also gapped, which gives rise to the Meissner effect,
with the gap being related to the London penetration depth.

The above discussion only applies to 3D, where actual long-range order exist. As we men-
tioned before, only quasi-long-range order can develop in 2D in the thermodynamic limit, and no
continuous symmetry can be explicitly broken. In 2D, the phase mode of both superfluids and
superconductors is gapless, but its dispersion is renormalized, Ω ∝

√
|q|. Again, in superconduc-

tors, this reflects the connection between the phase mode and the plasmon, which also shows this
dispersion in 2D metals.

Additional particle-particle collective modes can be defined when we consider further degrees
of freedom. In a single-band system, they generally occur when a subleading superconducting
instability in a channel with different symmetry from the ground state appears near in energy.
The subleading superconducting pairings are self-consistent solutions of the gap equation with
a lower Tc than the ground state, and correspond to extrema (relative minima or saddle points)
of the free energy. The fluctuation from the ground state towards these channels, with a given
relative phase, constitutes collective modes called Bardasis-Schrieffer modes [80]. Bardasis and
Schrieffer studied such collective modes in the case of a s-wave spin-singlet ground state fluctuating
towards higher angular momentum pairings, but they can be generalized to a nontrivial ground
state [228, 240]. Usually, the fluctuation with π/2 relative phase with respect to the ground state,
or imaginary fluctuation, is lower in energy, while that with 0 relative phase, or real fluctuation,
does not usually show a pole [80, 233]. For a gapped superconducting ground state, as long as
there is an attraction in a subleading channel, the energy of the Bardasis-Schrieffer mode is lower
than the quasiparticle gap 2∆, and therefore it is a well-defined collective mode. Importantly,
the mass of Bardasis-Schrieffer modes is not renormalized by the Anderson-Higgs mechanism.
Signatures of a Bardasis-Schrieffer mode have been proposed and observed in the Raman spectra
of iron-based superconductors [83, 241–245], where the s-wave and d-wave pairings compete.
Bardasis-Schrieffer modes can also leave fingerprints in other optical responses, such as the near-
field terahertz response [233] and nonlinear optics [246]. An important point to note is that
Bardasis-Schrieffer modes, and in general collective modes in the particle-particle channel, can
couple and hybridize with particle-hole collective modes with the same symmetry. This has been
proposed to occur in iron-based superconductors, where nematic fluctuations can couple to the
Bardasis-Schrieffer mode associated with the fluctuation to the subleading d-wave pairing [247].
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In multiband systems, besides the Bardasis-Schrieffer modes, another type of superconducting
collective modes emerges, the so-called Leggett modes [81]. In this case, an order parameter
∆n = |∆n|eiφn can be associated with each band, whose relative phase φn − φn′ is fixed by the
interband coupling in the ground state. The Leggett modes are associated with the fluctuation
of the relative phases, i.e., with the phases fluctuating out of phase, towards the π-shifted state.
For instance, Leggett considered a 2-band system, with amplitude and phase fluctuations in both
bands, ∆1 = (|∆1|+ a1)ei(φ1+θ1) and ∆2 = (|∆2|+ a2)ei(φ2+θ2). These fluctuations are generally
coupled to each other, defining a 4× 4 matrix, whose eigenmodes are the total amplitude (a1 + a2)

Higgs mode, the total phase (θ1 + θ2) Goldstone mode, the relative phase (θ1 − θ2) Leggett
mode, and the relative amplitude (a1 − a2) mode. Only one of the two latter modes displays
an actual pole; the Leggett mode is well-defined as long as the intraband pairing interaction is
larger than the interband one [248–251], so that the state with π shift in the relative phase is an
extremum, which is the usual case [81]. If the interband pairing interaction vanishes, there is
no preferred relative phase difference, and the Leggett mode is gapless. Increasing the interband
pairing interactions gaps the Leggett mode, but its mass is smaller than 2∆ as long as the interband
pairing interaction remains smaller than the intraband one, and therefore the Leggett mode is a
well-defined, undamped collective mode. As the Bardasis-Schrieffer mode, the Leggett mode
mass is not renormalized by Coulomb interactions [81, 250–252]. Indeed, the Leggett mode can
be regarded as a Bardasis-Schrieffer-like mode involving the fluctuation from the ground state (e.g.
s++) to an excited state with the same symmetry but opposite relative superconducting phase (e.g.
s+−). In more complicated situations with several order parameters and spin-orbit coupling, a
collective mode might fit into more than one of these categories [253].

A particular scenario for the emergence of a Leggett mode, relevant to the case of monolayer
NbSe2 analyzed in this Chapter, is when the two bands stem from the spin-orbit splitting of a band in
a noncentrosymmetric system [252]. In systems with more than two bands, several Leggett modes
can be defined [254–257]. Leggett modes leave fingerprints in Raman spectroscopy [258, 259],
linear [260] and nonlinear optics [261, 262], ARPES [263], and Josephson junctions [264, 265].
The prototypical material where Leggett modes have been observed is the two-band superconductor
MgB2 [263, 266, 267], but they have also been proposed in iron-based superconductors [268, 269]
and in Sr2RuO4 [270]. Additionally, analogous collective modes can be realized in other broken
symmetry phases, such as magnetic systems [271] and structural transitions [272].

When a multicomponent order parameter condenses in the ground state, as in time-reversal
symmetry breaking superconductors, more particle-particle collective modes emerge. They are
generically called clapping modes [273, 274], and they are generalizations of the Bardasis-
Schrieffer and Leggett modes involving relative phase or amplitude fluctuations. A particular
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example are the spin-wave-like modes in time-reversal breaking spin-triplet (e.g. p + ip) super-
conductors [275].

For completeness, we enumerate other collective modes that can appear in superconductors.
Carlson-Goldman modes [276] are charge-neutral gapless collective modes that arise in the presence
of normal quasiparticles (e.g. close to Tc), and consist of the out-of-phase oscillation of the
superfluid and normal densities. Although not a collective mode, we also mention Mcmillan-
Rowell oscillations, which are oscillations in the tunneling spectrum when tunneling to a thin
metallic film on a superconductor [277], or to a superconducting film on a metal [278, 279], arising
from the interference of Andreev-reflected quasiparticles within the film.

2.1.3 2H transition metal dichalcogenides

In Chapter 2, we have analyzed 1T-TiSe2, a transition metal dichalcogenide (TMD) with the
octahedral 1T polytype. In this Chapter, we will focus on 2H-NbSe2, a different TMD with the
trigonal prismatic 2Ha polytype (see Fig. 1). The bulk unit cell of 2H TMDs consists of two unit
layers, with each monolayer displaying the chalcogens one on top of the other, unlike in the 1T
structure. While the monolayer, usually denoted 1H, is noncentrosymmetric, the 3D bulk stackings
2Ha and 2Hc restore an interlayer inversion symmetry (see Fig. 1.1). Commonly used transition
metals are Nb and Ta in group V, whose band structure is metallic with a half-filled band coming
from the metal d orbitals, as well as Mo and W in group VI, which are insulators with this d band
completely filled. The insulating group VI 2H-TMDs, such as WSe2, MoSe2 and MoTe2, have
been widely studied due to their optical properties. Moreover, electron or hole doping has been
proposed to drive interesting correlated phases in these materials, such as magnetic states [280]
or topological superconductivity [281]. The metallic group V 2H-TMDs, such as NbSe2, TaSe2,
NbS2 and TaS2, usually display a 3× 3 CDW instability in their bulk or monolayer form. However,
the CDW does not completely gap the Fermi surface, and most of them become superconducting
at lower temperatures. In the following, we will focus on NbSe2, although we will also comment
a few features of the related compounds TaSe2, NbS2 and TaS2, which share an almost analogous
band structure.

2.1.4 2H-NbSe2: state of the art

In this section, we will describe the electronic structure and instabilities of NbSe2. We will
mainly focus on monolayer 1H-NbSe2, since, besides having simpler electronic structure and
symmetries, our contribution applies to the monolayer. Nevertheless, we will also mention the
differences with bulk 2H-NbSe2, which has been widely studied.
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Figure 1: (a) Side and (b) top views of the lattice of 2Ha-NbSe2. Only the top view of the top
layer is shown in (b) for visualization purposes.

Normal state

Monolayer 1H-NbSe2 crystallizes in the symmorphic space group P6̄m2 (#187), with point
group D3h, whose generators are the out-of-plane threefold symmetry C3z, the in-plane mirror
symmetry mx, and the out-of-plane mirror symmetry mz [282] (see Appendix 2.A for the character
table). Crucially, it is non-centrosymmetric, which provides 1H-NbSe2 with several interesting
properties. Its electronic band structure shows a half-filled band crossing the Fermi level, with
large hole pockets around Γ and around K± := ±K = 4π

3a (±1, 0) (see Figs. 2(a,b)). This band
mainly derives from the Nb d orbitals. In particular, at Γ the band has dz2 character and symmetry
Γ1 (A′

1 of the little group), while the orbital character is d± = dx2−y2 ∓ idxy at the K± points, and
therefore have symmetry K3 (+1E′) and K5 (−1E′), respectively. At the Fermi level, where the hole
pockets lie away from the Γ and K± points, the orbitals slightly mix, but the dominant character
remains the same. There is a gap to the other d-derived bands, which lie at higher energies.
Incidentally, the inversion of orbital character between the Γ and K points implies that the band
crossing the Fermi level is obstructed, with the Wannier functions centered at the triangular lattice
not occupied by neither Nb or Se (see Chapter 3) [283].

Due to the absence of inversion symmetry, SOC breaks the spin-degeneracy of the bands. The
stronger SOC is local, which only couples the d± states inducing a rigid energy shift, but leaves the
dz2 unaffected. Consequently, the SOC splitting is stronger in the K pockets, and almost negligible
in the Γ pocket, where moreover vanishes in the ΓM direction due to symmetry. In the absence of a
substrate, the out-of-plane mirror symmetry mz imposes that Sz is a good quantum number, which
gives rise to the so-called Ising SOC. Each state can therefore be labelled with the actual spin up or
down (see Fig. 2(b)). Moreover, time-reversal symmetry induces a spin-valley coupling: the top
band at valley K+ has spin down (d+↓), while the top band at valley K− has spin up (d−↑). This
special type of SOC grants interesting properties to the superconducting state, as we will describe
below. Finally, we note that the substrate-induced Rashba SOC breaks the mz mirror symmetry,
reducing the point group to C3v, and breaking the conservation of the spin Sz.
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(a) (b) (c)

Figure 2: Electronic band structure of the normal state of NbSe2 (or related compounds). (a)
Bands of monolayer TaS2 with and without Ising SOC. The color and line width indicate the
main orbital composition at each k. Extracted from Ref. [284]. (b) Fermi surface of monolayer
NbSe2 with Ising SOC. The color indicates spin up (blue) and spin down (red). Extracted from
Ref. [285]. (c) Bands of bulk NbS2 without SOC. The color and line width indicate the main
orbital composition at each k. Note the additional 3D band around Γ coming from the Se pz
orbital. Extracted from Ref. [286].

It is worth highlighting the differences with bulk 2H-NbSe2, whose unit cell is doubled in the
z direction and is now composed of two layers, with an additional interlayer inversion symmetry
(space group P63/mmc, #194, point group D6h) [282]. Due to the inversion symmetry, the bands
are spin-degenerate in the bulk. However, the bands are doubled due to the layer degree of freedom.
The qualitative shape of the bands remains the same, with quasi-2D d± and dz2 hole pockets around
the K± and Γ points, respectively (see Fig. 2(c)). The main difference is the appearance of a new
3D band around the Γ point with Se pz character.

Charge density wave state

Irrespective of the number of layers, NbSe2 undergoes a transition to a quasi-commensurate
3 × 3 CDW state, driven by the strong anisotropic electron-phonon coupling [12, 31, 287–291].
In the CDW, a longitudinal phonon with symmetry Σ1 (A′

1) condenses at momentum Q = 2
3 ΓM,

mainly involving the in-plane displacement of Nb atoms. The transition temperature TCDW ≃ 33K
is similar in both bulk and monolayer samples [12, 287, 288, 290], although in the monolayer
it can depend on substrate and synthesis conditions [289, 290, 292]. Nevertheless, a significant
difference between the CDW in bulk and monolayer NbSe2 is the energy of the CDW amplitude
phonon mode, which is quite higher in the monolayer, as displayed in its Raman spectrum [289,
293].

While the quasi-commensurate 3 × 3 periodicity has been established, the exact atomic ar-
rangement has not been fully settled. There are several almost-degenerate structural distortions due
to a phase degree of freedom related to the center of the modulation [294]. Indeed, distinct struc-
tures have been experimentally observed to coexist in STM experiments [294, 295] (see Fig 3(a)),
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(a) (b) (c)

Figure 3: Charge density wave of NbSe2. (a) Real space STM map of bulk NbSe2 showing two
domains with different atomic arrangements within the 3 × 3 CDW. Extracted from Ref. [294].
(b) Reconstructed Fermi surface of one CDW state of monolayer NbSe2 without SOC. Extracted
from Ref. [297]. (c) STM spectrum of monolayer NbSe2 showing the V-shaped feature of the
CDW. Extracted from Ref. [2].

which naturally arise from the incommensurate nature of the CDW [32]. Moreover, a different
distortion was proposed based on X-ray diffraction of the bulk material [296].

The effect of the CDW on the electronic bands is qualitatively the same for all distortions: it
opens partial gaps at the Fermi surface, especially at the K pockets, where there are hot spots of the
electron-phonon coupling connected by the CDW wavevectors [31, 297] (see Fig 3(b)). While this
reduces the DOS at the Fermi level, the system remains metallic. The DOS becomes V-shaped,
with coherence peaks at ∼ ±4meV, arising from the partial gaps [290] (see Fig 3(c)).

It is also instructive to discuss the effect of the CDW on the spin fluctuations, which are
predicted to be strong in monolayer NbSe2 [33, 297–299]. Indeed, in the absence of CDW, DFT
calculations predict that the spin fluctuations would drive the system to an antiferromagnetic state
[297], with a competing ferromagnetic phase near in energy too [300, 301]. However, by reducing
the DOS, the CDW suppresses the spin fluctuations, and the CDW state remains nonmagnetic
[297, 301]. Nevertheless, accurately determining the spin fluctuations in the presence of the CDW
remains an open problem.

Superconducting state

Further lowering the temperature drives both bulk and monolayer NbSe2 to a superconducting
state [29], coexisting with the CDW. The superconductivity is usually accepted to occur in a
conventional s-wave channel, which fully gaps the Fermi surface. The general belief is that
superconductivity is driven by the same phonons responsible for the CDW transition [31–33,
286] (see however [30]). The coexistence between CDW and superconductivity is allowed since
the CDW only partially gaps the Fermi surface. Nonetheless, both ordered states compete, and
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superconductivity is enhanced when the CDW is suppressed due to the increased DOS and electron-
phonon coupling [31]. Experimental signatures of this competition appear when suppressing the
CDW with pressure [302, 303] or disorder [304, 305].

Unlike the CDW, the superconducting critical temperature significantly decreases from the
bulk (T3D

CDW ≃ 7K) to the monolayer (T2D
CDW ≃ 2K) [290]. One of the factors contributing

to this suppression might be the lower DOS in the CDW state of monolayer NbSe2. Surface
effects, weaker screening and enhanced spin fluctuations might also play a role [33, 298]. Indeed,
since Coulomb interactions are stronger in the monolayer, the superconducting pairing induced
by repulsive interactions in the absence of electron-phonon coupling has been studied, obtaining
an extended s+−-wave spin-singlet state with the gap changing sign between the Γ and K pockets
[306], or an Sz = 0 f -wave spin-triplet state, with gap changing sign from K+ to K− [285, 306].

The single- or multi-gap nature of NbSe2 has been a source of discussion. While tunneling
spectra of the monolayer are consistent with a single gap [307], bulk samples show signatures
of two-gap superconductivity [308]. On the other hand, ab initio Migdal-Eliashberg calculations
show a quite anisotropic s-wave gap, whose distribution exhibits the maximum gaps at hot spots
in the K pockets [31, 33]. It is therefore generally believed that the two-gap superconductivity in
the bulk comes from a large gap arising from these hot spots in the K pockets and a smaller gap
mainly coming from the Γ bands. Although it remains not completely settled, several arguments
have been proposed to explain why only one gap is observed in single- and few-layer samples. One
proposal is that the stronger CDW in the monolayer gaps the hot spots which would have the larger
superconducting gap [31]. On the other hand, the fact that the bulk has the additional Se pz band
at Γ points to the importance of tunneling selectivity [33]. Indeed, tunneling is naturally more
sensitive to the Se pz orbitals, and, besides the 3D Se pz band at Γ in the bulk, the weight of the Se
pz orbitals also peaks at certain hot spots of the K pockets. It is tempting then to associate the two
gaps in the bulk to the Γ Se pz pocket and to the K pockets, and the single gap in the monolayer to
the K pockets. Nevertheless, to explain the shape of the tunneling spectrum of the whole band in
the monolayer, a higher sensitivity to the Γ Nb pocket compared to the K pockets is required [309].
We also mention that the CDW backfolds the K points to Γ, and thus their tunneling sensitivity
could be comparable at low energies [308].

Even if the ground state has a conventional s-wave pairing, the superconductivity in monolayer
NbSe2 displays unusual features. First of all, due to the band splitting induced by Ising SOC in
the noncentrosymmetric structure, only opposite-spin Cooper pairs can form as weak-coupling
instabilities with zero total momentum. This feature is called Ising superconductivity. Of these
pairings, two are momentum independent, and correspond to the fully-gapped s-wave spin-singlet
state, and the out-of-plane f -wave spin-triplet state with Sz = 0, which is gapped at the K± pockets
but has six nodes at the Γ pocket. We will explicitly define them in Section 2.2.1. In conventional
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Figure 4: Magnetoresistance of few-layer NbSe2 in the superconducting transition. Extracted
from Ref. [115]. (a) Magnetoresistance, in units of the normal state resistance, as a function of
the azimuthal angle of the in-plane magnetic field at T ≃ 4.2K, for different magnitudes of the
field. (b) Polar plot of (a). (c) Magnetoresistance as a function of the azimuthal angle of the
in-plane magnetic field at H ≃ 8T, for different temperatures. (d) Polar plot of (c).

centrosymmetric 2D superconductors, the critical in-plane field is determined by the competition
between the pairing and the Zeeman field, which tends to align spins parallel to it and therefore
suppresses the s-wave spin-singlet state, giving rise to the Pauli paramagnetic limit. On the other
hand, the strong out-of-plane locking of the spins by the Ising SOC protects the superconductivity
against in-plane magnetic fields, endowing monolayer NbSe2 with a high in-plane critical field way
beyond the Pauli limit [310–313]. We note that few-layer samples also show an enhanced critical
field due to the same mechanism, which still applies there thanks to the fact that interlayer coupling
is small and the pairing is mainly intralayer. Incidentally, for a s-wave or Sz = 0 f -wave state,
a high in-plane magnetic above the Pauli limit but below the critical field can drive a topological
superconductor with nodes at the momenta in the Γ pocket where the Ising SOC vanishes [306,
314].

Another unusual property, generic to noncentrosymmetric superconductors with SOC [315,
316], is that the labels spin-singlet and spin-triplet are no longer good quantum numbers. In other
words, spin-singlet and spin-triplet pairings are symmetry-allowed to mix in the ground state. In
monolayer NbSe2, this mixing occurs between the s-wave spin-singlet and the Sz = 0 f -wave
spin-triplet pairings [317]. In the absence of SOC, the orbital part of the s-wave singlet transforms
according to the A′

1 irrep of D3h, while the one of the f -wave triplet is actually an A′
2, whose

angular dependence is like cos(3θ). Spin bilinears transform as Sz → A′
2 and {Sx, Sy} → E′′ in

D3h. Therefore, with Ising SOC, while the s-wave singlet ∆S still transforms as A′
1, the f -wave

triplet splits, with the out-of-plane, opposite spin Sz = 0 triplet ∆z
T transforming as A′

1, and the
in-plane, equal-spin Sz = ±1 triplets ∆

xy
T transforming as E′′. The symmetry-allowed mixing is

reflected in the fact that ∆S and ∆z
T belong to the same A′

1 irrep. In monolayer NbSe2, however,
the mixing is thought to be small, with a dominant ∆S and about 10% ∆z

T contribution.
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Unconventional features in the superconducting state of single- and few-layer NbSe2

More recently, despite its assumed conventional pairing, Refs. [115, 116] have found that the
superconducting state of monolayer and few-layer NbSe2 exhibits twofold-symmetric magneto-
transport, breaking the underlying threefold symmetry of the lattice (see Fig. 4). In particular, the
in-plane critical magnetic field and the trace of the magnetoconductivity in the superconducting
transition region are twofold anisotropic [115, 116]. Importantly, the twofold anisotropy disappears
in the normal state, where the magnetotransport recovers the expected threefold symmetry. The
twofold-anisotropic magnetotransport requires the coupling of the superconducting order parame-
ter to a tensorial quantity [318], for which several microscopic mechanisms have been proposed. A
possible explanation relies on the presence of a component of a nematic superconducting pairing,
which spontaneously breaks the rotational symmetry of the lattice, similar to the nematic CDW
discussed in Chapter 1. Candidates for the nematic pairings include a d-wave spin-singlet pairing
(E′ irrep of D3h; see Appendix 2.A), which would couple to strain [115], or the in-plane, equal-spin
Sz = ±1 f -wave spin-triplet pairing (E′′), which couples to the magnetic field [116]. Even if
the ground state is the conventional s-wave spin-singlet, these nematic pairings can be induced by
strain or the in-plane magnetic field as long as they are subleading instabilities [115, 319, 320]. We
note that, in the presence of substrate-induced Rashba SOC, the d-wave spin-singlet and in-plane
f -wave spin-triplet nematic pairings have the same symmetry. The scenario involving a subleading
in-plane f -wave spin-triplet nematic pairing is further supported by the tunneling spectroscopy
experiments of Ref. [313]. In particular, to fit the temperature-dependent in-plane critical magnetic
field, Ref. [313] needs to consider an in-plane f -wave component induced by the field [319, 320].
Ref. [321] has proposed an alternative scenario, also based on NbSe2/ferromagnet tunnel junction
experiments [322], where the nematic magnetoresistance originates from the magnetic exchange
of intrinsic defects in NbSe2.

Another unconventional feature of monolayer NbSe2 reveals in the local tunneling spectroscopy
experiments performed by our collaborators [2]. In the superconducting state, the STM spectra
display resonances beyond the superconducting coherence peak (see Fig 5(a)). These resonances,
observed as dip-hump satellite features usually symmetrically with respect to the Fermi level,
have been confirmed for several samples, tips, sample locations and substrates, and they only
appear in the monolayer, but not in the bulk. In particular, three resonances are observed, whose
energies nearly coincide with a resonance and their higher harmonics. Indeed, measured from the
coherence peaks, their average energies are Ωn ≃ n0.53meV (see Fig 5(b)). Substrate effects are
discarded, since the same phenomenology appears both in a metallic substrate (bilayer graphene
on SiC(0001)) and an insulating one (hBN on Ir(111)), with the average superconducting gap
∆ ≃ 0.4meV being the same in both substrates. Tip artifacts can also be ruled out, since several
tips are used and calibrated in known materials. Band structure effects can also be discarded, since
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Figure 5: STM spectra and statistics of resonances on a graphene substrate. Extracted from
Ref. [2]. (a) Four representative dI/dV curves acquired in monolayer NbSe2 at T = 0.34K.
The arrows identify the fundamental Ω1 mode (yellow) and the harmonics Ω2 (orange) and Ω3
(red). (b) Histogram of the resonance energies from 2855 dI/dV curves acquired on different
locations, and using different samples and tips. Three clear peaks can be identified for energies
larger than the superconducting gap (∆). A Gaussian fit to the peaks yield the following values:
Ω1 = 0.53meV, Ω2 = 1.02meV and Ω3 = 1.62meV.

there are no features at these energies. We therefore interpret the resonances as signatures of a
collective bosonic mode and its harmonics. We highlight that the first resonance lies below the
quasiparticle edge, Ω1 < 2∆, indicating that it is undamped, since it cannot decay into fermionic
quasiparticles. However, the energies of the higher harmonics are greater than 2∆. A microscopic
calculation would be required to determine whether higher harmonics are overdamped, which
might depend on the boson-boson interactions.

The resonances are intrinsically related to superconductivity. Indeed, when increasing the
temperature, they fade out at ∼ 1.4K, below the critical temperature Tc ≃ 2K (see Fig. 6(a)).
As shown in Fig. 6(b), the amplitude of the peaks decays faster than thermal broadening, and
therefore their decay is correlated to the weakening of superconductivity. Their disappearance
with temperature also discards band structure and extrinsic effects. Furthermore, the resonances
also gradually smear out with increasing out-of-plane magnetic field, and disappear within the
vortex state (see Fig. 6(c)). Fig. 6(d) shows that the normalized energy of the resonances Ωn

2∆

increases nonlinearly with magnetic field. When represented versus ∆, Ωn
2∆ anticorrelates with ∆,

with an approximately linear dependence. Note that the resonances disappear soon after the energy
of the first resonance Ω1 surpasses the quasiparticle edge 2∆. The energy of the higher resonances,
however, always remains above 2∆.
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Figure 6: Temperature and magnetic field dependence of the dip-hump features on a graphene
substrate. Extracted from Ref. [2]. (a) Evolution of the resonances with temperature from 0.4K
up to 1.4K. (b) Normalized amplitude of the Ω2 mode for empty states in (a) as a function of the
temperature T (black dots). This amplitude decays faster than thermal broadening (black curve).
The superconducting gap ∆ (red circles) and its BCS fit (red line) are also shown. (c) Evolution
of the resonances with perpendicular magnetic field B⊥ up to 2T. The energies of the resonances
are marked, as well as dashed lines connecting the energies of the fundamental mode Ω1. (d)
Ratio Ω1

2∆ versus ∆ extracted from the B⊥-evolution in (c), for both filled (Ω1F, circles) and empty
(Ω1E, squares) states. A linear fit is shown as a dashed line. The inset represents the nonlinear
energy dependence of the fundamental mode Ω1 with the magnetic field.

The anticorrelation between Ωn
2∆ and ∆ does not only occur when they change under a magnetic

field, but also for their local values taken at different positions of a sample. Indeed, Fig. 7 shows
such an anticorrelation, with the three modes Ωn displaying similar slope. Crucially, the energy
Ω1 of the fundamental mode is smaller than the quasiparticle edge 2∆, indicating that this bosonic
mode cannot decay into Bogoliubov quasiparticles and is thus undamped.

In summary, the STM experiment of Ref. [2] on monolayer NbSe2 displays three satellite peaks
at energies ∆ + nΩ1, with Ω1 < 2∆. These resonances gradually disappear with temperature and
out-of-plane magnetic field before the superconductivity dies. The energies Ω1

2∆ are anticorrelated
with the gap ∆. We can discard tip and band structure effects at these small energy scales.
We will interpret them as a collective bosonic mode Ω1 and its harmonics, which couple to the
fermionic quasiparticles and renormalize their tunneling spectrum. The purpose of this chapter is
to decide what is the most likely collective mode. Three classes of candidates might be considered:
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Figure 7: Anticorrelation of the local Ωn(r)
2∆(r) as a function of ∆(r). Results from 1974 dI/dV

curves measured at T = 0.34K in several samples and with several tips on a graphene substrate
are provided. Black lines are linear fits for each mode. Extracted from Ref. [2].

phonons, particle-hole modes such as spin fluctuations, and superconducting collective modes.
First, according to Raman experiments [289, 293] and to DFT calculations [31, 32, 323], there
are no relevant phonon features below ∼ 3meV, neither in the normal or in the CDW state.
In particular, the energy of the CDW amplitude mode is noticeably raised from the bulk to the
monolayer (8.6meV). Secondly, enhanced spin fluctuations have been predicted in monolayer
NbSe2 due to the weaker screening. Indeed, in the absence of the CDW, the system is close to
an instability towards an antiferromagnetic state [33, 297–299], with a competing ferromagnetic
state near in energy too [300, 301]. Spin fluctuations can indeed give rise to resonances in
the spectral function [324], and they would also disappear with temperature and magnetic field
within the superconducting state. However, spin fluctuations are suppressed by the CDW, and the
magnetic instabilities are killed [297]. Nevertheless, properly studying the spin fluctuations in the
CDW remains an open problem. Finally, superconducting collective modes in the particle-particle
channel could also describe the phenomenology. The Goldstone mode, which is gapless in 2D, and
the Higgs mode, which lies at 2∆ and cannot couple to the CDW phonon mode in the monolayer due
to its higher energy, can be discarded. On the other hand, the twofold nematic magnetotransport in
the superconducting state suggests the possibility of a competition between pairing channels, which
naturally gives rise to Bardasis-Schrieffer-like or Leggett-like modes. In the rest of the Chapter,
we present a simple microscopic model of monolayer NbSe2, where such a competition appears
naturally. We compute the energy of the Bardasis-Schrieffer/Leggett mode, and demonstrate that
it gives rise to features in the spectral function. Finally, we compare these predictions to the STM
experiment.
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2.2 Microscopic k.p model

In this section, we will introduce a minimal model for monolayer NbSe2, and discuss the
different interactions and pairing channels. We will also determine its superconducting ground
state, on top of which we will study the collective fluctuations in the next section.

2.2.1 Definition of the model

A k · p model considering the three hole pockets at Γ, K+, and K− of monolayer NbSe2

was introduced by Ref. [306]. Here we consider instead a minimal model with two bands,
representing the hole pockets at K±. To justify why we neglect the Γ pocket, we need to analyze
the possible pairing channels of this multiband superconductor, which have been discussed by
Refs. [300, 306]. It is instructive to start the discussion without SOC, and for simplicity to restrict
to momentum-independent pairing within each band. In this case, the Γ pocket can only have
spin-singlet pairing with s-wave orbital symmetry, which transforms as the A′

1 irrep of the point
group D3h. However, the K± valleys might support two different pairings: either spin-singlet
pairing with s-wave symmetry (A′

1), which has the same gap in the two valleys (see Fig. 8(a)),
or spin-triplet pairing with f -wave orbital symmetry (A′

2), which has gap of opposite sign in the
two valleys (see Fig. 8(b)). When Ising SOC is included, pairing channels cannot be classified
independently by orbital and spin symmetry. Indeed, the spin c†c bilinears transform according
to the point group irreps as c†σ0c → A′

1, c†σzc → A′
2, and {c†σxc, c†σyc} → E′′, where σµ are

the Pauli matrices acting on the spin degree of freedom. Then, the spin cc bilinears transform
as cσ0iσyc → A′

1, cσziσyc → A′
2, and {cσxiσyc, cσyiσyc} → E′′. Multiplying the orbital and

spin symmetry transformation properties, we obtain that the f -wave spin-triplet splits into the
opposite-spin pairing, with spin Sz = 0 and spin vector ∆⃗Sz=0

T (k) = (0, 0, ∆z
T) pointing in the out-

of-plane direction, which transforms as an A′
1 irrep, and the equal-spin pairing, with spin Sz = ±1

and in-plane ∆⃗Sz=±1
T (k) = (∆x

T, ∆y
T, 0) vector, corresponding to an E′′ irrep. As mentioned in

section 2.1.4, the out-of-plane triplet has the same symmetry as the standard s-wave singlet and can
therefore mix with it in the ground state. Indeed, Figs. 8(c,d) show that the out-of-plane triplet can
be regarded as an extended s-wave pairing with opposite sign in the spin-split bands. According
to the Migdal-Eliashberg calculations of phonon-mediated superconductivity [30–33], the ground
state is mainly composed by the standard s-wave spin-singlet. Moreover, based on the enhanced
electronic correlations and spin fluctuations, and on the nematic magnetotransport experiments, we
assume the f -wave triplet to be a close subleading competitor. In this picture, the superconducting
pairing in the Γ pocket is a spectator, since it just assumes a s-wave symmetric gap, with the same
sign as the K± pockets due to the interband coupling. This justifies our model neglecting the Γ
pocket to simplify the discussion.
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no SOC

SOC

(a) (b)

(d)(c)

Figure 8: Sketch of the s-wave spin-singlet and f -wave spin-triplet pairings in the K pockets.
Colors indicate the sign of the gap: red is positive and blue is negative. (a) Singlet (A′

1) and (b)
triplet (A′

2) in the absence of SOC. (c) Singlet (A′
1) and (d) out-of-plane triplet (A′

1) with SOC.
In (c,d), we define the gap as the pertinent expectation value in the order spin-up spin-down,
⟨d↑d↓⟩. For the outer pocket, this corresponds to ∆ = ⟨dK+↑dK−↓⟩ at both K± valleys. Instead,
for the inner pocket, this corresponds to ∆ = ⟨dK−↑dK+↓⟩ at both K± valleys. The choice of the
absolute phase is arbitrary.

With this in mind, we now construct our minimal model for the K± valleys. We define the
fermionic operators in the band basis as ψ = (dK+↑, dK+↓, dK−↑, dK−↓) for the two valleys and spins.
To a first approximation, the operators dK±σ in the band basis can be thought of combinations of
the orbitals {dx2−y2 , dxy}. Indeed, if the Fermi surface lied exactly at the K± points, dK±σ =

d±σ = dx2−y2 ∓ idxy. We consider a non-interacting Hamiltonian H0 = ∑k ψ†(k)H0(k)ψ(k)
with isotropic parabolic dispersion and constant Ising SOC:

H0(k) = ξ(k)τ0σ0 + λτzσz, (2.22)

where τµ are the Pauli matrices acting on the valley index {dK+ , dK−}, ξ(k) = − k2

2m − µ is
the single-particle energy without SOC with µ the chemical potential, and λ is the constant
Ising SOC. Throughout this work, we will use bold symbols to denote two-dimensional vectors
like the momentum k = (kx, ky), and arrows to denote three-dimensional vectors like the spin
S⃗ = (Sx, Sy, Sz).

The eigenvalues of H0(k) are just the original dispersion rigidly shifted by the constant Ising
SOC λ, ε±(k) = ξ(k)± λ, where the + corresponds to K+ ↑ and K− ↓, while the − applies to
K+ ↓ and K− ↑. In particular, the DOS remains unchanged by the k-independent Ising SOC, and
the spin-split bands have the same constant DOS N01 = m

2π associated with a 2D parabolic band
of mass m. Therefore, the symmetry-allowed singlet-triplet mixing in the superconducting state,
which is proportional to the difference between the DOS of the spin-split bands [316], vanishes
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Figure 9: Sketch of the intraband density-density g2 and interband pair-hopping g3 interactions
in our model of the K pockets of NbSe2.

identically in this model. In Appendix 2.B, we will introduce a different DOS via a k-dependent
Ising SOC. Given that it does not qualitatively modify the superconducting collective modes, we
will first neglect it for simplicity.

Interactions

Ref. [306] considered all symmetry-allowed momentum-independent spin-symmetric inter-
actions in their 3-band model. Following their notation, the momentum-independent interactions
that respect the SU(2) spin symmetry in our 2-band model read

Hint =
1

Vsyst

{
g5 ∑

Qτ

[
nτ↑(Q)nτ↓(−Q)

]
+ g2 ∑

Q
[nK+(Q)nK−(−Q)] +

+g3 ∑
kk′q

∑
σσ′

[
d†

K+σ(k)d
†
K−σ′(−k + q)dK+σ′(−k′ + q)dK−σ(k′)

]}
,

(2.23)

where τ = K±, nτ = nτ↑ + nτ↓, nτσ(Q) = ∑k d†
τσ(k)dτσ(k+ Q), g2 is an intervalley intraband

density-density interaction involving the K± valleys, g3 is an intervalley interband pair-hopping
interaction between the K+ and K− pockets, g5 is the intravalley intraband Hubbard-like repulsion,
and Vsyst is the volume of the system (see Fig. 9). From now on, we omit the momentum
labels for simplicity, as well as the factor 1/Vsyst, which will indeed cancel out when we take the
homogeneous mean-field approximation. In this shorthand notation, Eq. (2.23) reads

Hint = g5 ∑
τ

nτ↑nτ↓ + g2nK+nK− + g3 ∑
σσ′

(d†
K+σd†

K−σ′dK+σ′dK−σ). (2.24)

Ref. [300] has also classified the interactions between the bands at the K± valleys, expressing
them in terms of spin operators S⃗τ = d†

τ⃗σdτ. Rewriting our interaction Hamiltonian (2.24) in this
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notation, we arrive to

Hint = g5 ∑
τ

nτ↑nτ↓ +
(

g2 −
1
2

g3

)
nK+nK− − g3S⃗K+ · S⃗K− , (2.25)

which reflects that the spin-spin interaction comes from the intervalley pair-hopping interaction
g3. As discussed in Refs. [300, 306], the microscopic origin of these couplings might be a
combination of electron-phonon interactions, Coulomb interactions, or spin fluctuations, the latter
especially in the case of g3. In our sign convention, repulsive interactions would be positive,
gi > 0, and attractive interactions negative, gi < 0. Finally, we mention that a similar model has
been considered by Ref. [325] in the context of exciton-mediated spin-triplet superconductivity in
lightly-doped semiconductors (in their notation, g5 → g0, (g2 − 1

2 g3) → g1, g3 → g2).

To further illuminate the microscopic origin of the different interactions, it is illustrative
to consider a microscopic model for the local Coulomb repulsion. As mentioned before, in
the limit of a small Fermi surface, the bands have an approximately constant orbital character,
with dK±σ = d±σ = dx2−y2 ∓ idxy. Therefore, we consider the two-orbital Slater-Kanamori
Hamiltonian [326], which includes all the allowed interactions between orbital and spin degrees of
freedom:

HSK
int = U ∑

γ

nγ↑nγ↓ + ∑
σσ′

∑
γ ̸=γ′

[
U′

2
nγσnγ′σ′ +

J
2

d†
γσd†

γ′σ′dγσ′dγ′σ +
J′

2
d†

γσd†
γσ′d′γ′σ′dγ′σ

]
,

(2.26)

where σ =↑, ↓ labels the spin and γ = x2 − y2, xy runs through the d orbitals. U is the intraorbital
Hubbard repulsion, U′ is the interorbital Hubbard interaction, J is the Hund exchange coupling,
and J′ is the pair hopping interaction. The combination of D3h orbital symmetry and SU(2) spin
rotation symmetry of the interactions forces J′ = U −U′ − J, which we assume from now on (full
rotational invariance would also add the constrain U − U′ = 2J). Using the approximate change
from the orbital to the band basis, dK±σ = d±σ = dx2−y2 ± idxy, we find that the interactions in
the band basis are related to the Slater-Kanamori interactions as:

g2 = U − J, (2.27)

g3 = U − U′, (2.28)

g5 = U′ + J. (2.29)
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Superconducting pairings and interactions

In this work, we only focus on instabilities in the particle-particle channel. While monolayer
NbSe2 displays coexisting CDW order and superconductivity, we do not consider the CDW. This
approximation is justified since the CDW only partially gaps the Fermi surface, quantitatively
changing the DOS and the electron-phonon coupling strength, but it does not qualitatively affect
superconductivity [31, 33]. With this in mind, it is useful to rewrite the interaction Hamiltonian of
Eqs. (2.24) and (2.25) in terms of pairing operators:

Hint = (g2 + g3)Φ̂†
SΦ̂S + g5Φ̂†

S′ · Φ̂S′ + (g2 − g3)
⃗̂Φ†

T · ⃗̂ΦT, (2.30)

where

Φ̂S(k) = 1
2 ψ(−k)τxiσyψ(k), (2.31)

Φ̂S′(k) = 1
2 ψ(−k){τ0, iτz}iσyψ(k), (2.32)

⃗̂ΦT(k) = 1
2 ψ(−k)iτy⃗σiσyψ(k) = 1

2 ψ(−k)iτy{−σz, iσ0, σx}ψ(k), (2.33)

Here, Φ̂S is the spin-singlet s-wave (A′
1) channel, Φ̂S′ is a spin-singlet d-wave (E′) channel, and

⃗̂ΦT is the spin-triplet f -wave pairing. We have implicitly dropped the sum over the total Cooper
pair momentum Q in Eq. (2.23). Since Φ̂S′ couples electrons within the same valley, it can only
lead to a pair density wave with nonzero total momentum, so we neglect it; in any case, we assume
g5 > 0 to be repulsive. Indeed, for simplicity we will omit g5 in our calculations.

Regarding the values of the interactions, we assume that the intervalley density-density inter-
action is attractive, g2 < 0, which favors both the s-wave and f -wave channels. Microscopically
this can arise from the electron-phonon interaction. Crucially, we also assume that |g2| > |g3|,
so that the interaction is attractive in both channels. The choice between the two is made by the
sign of g3. When g3 = 0 both channels have the same attraction, while the s-wave singlet ground
state is favoured when g3 < 0. For convenience, we define the attraction in the singlet and triplet
channels as gS = g2 + g3 = 2U − U′ − J and gT = g2 − g3 = U′ − J, respectively. The fact
that g3 < 0 favors interorbital triplet pairing is consistent with the observation made for several
other multiorbital systems that the repulsive Hund coupling J can lead to triplet superconductivity
if it can overcome the interorbital Hubbard U′ [327–330]. While microscopically U′ > J, this
can change when these values are renormalized as high-energy degrees of freedom are integrated
out in a low-energy model. Here we assume g3 < 0 instead, so that the ground state is the
s-wave spin-singlet, as predicted by ab initio calculations [30–33]. In summary, the interaction
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Hamiltonian that we will use to compute the superconducting collective modes becomes

Hint = gSΦ̂†
SΦ̂S + gT

⃗̂Φ†
T · ⃗̂ΦT, (2.34)

with gS < gT < 0.

We remark that we consider interactions that respect the SU(2) spin rotation symmetry.
However, in the presence of SOC, interactions only need to fulfill the double point group of the
system. Indeed, interactions are affected by Ising SOC in two ways. On the one hand, the triplet
coupling gT becomes different for the out-of-plane triplet Φ̂z

T = 1
2 ψiτyσxψ with A′

1 symmetry
(gT → gz

T) and for the in-plane triplet Φ̂
xy
T = 1

2 ψiτy{iσ0,−σz}ψ with E′′ symmetry (gT → gxy
T ).

This effect can be easily taken into account in our model just by substituting gT → gz
T and

gT → gxy
T in the Leggett and Bardasis-Schrieffer energy expressions given below, respectively. On

the other hand, a new interaction
(
Φ̂†

SΦ̂z
T + h.c.

)
mixing the A′

1 singlet with the A′
1 out-of-plane

triplet is allowed to appear, which also induces a singlet-triplet mixed ground state. We will now
omit this term for simplicity, and discuss its effects in Appendix 2.B.

Tendency towards magnetism

Before moving on to determining the superconducting ground state, it is instructive to discuss
the possible magnetic instabilities of our model. For that, we need to reinsert the intraband
Hubbard-like repulsion g5. We define the magnetizations in the z direction Mτ of valley τ = K±
by expressing the densities as nτ↑ = 1

2 (nτ + Mτ), nτ↓ = 1
2 (nτ − Mτ). Within the Stoner picture,

assuming that spins polarize in the z direction, the interaction becomes

Hint ≈
g5

4
(
n2

K+
+ n2

K− − M2
K+

− M2
K−

)
+
(

g2 −
g3

2

)
nK+nK− − g3

2
MK+ MK− , (2.35)

As usual, the Hubbard like repulsion g5 > 0 favors the independent spin polarization of each band.
But the existence of ferromagnetism is decided by g3, where g3 > 0 favors it, while g3 < 0 simply
favors a renormalization of the Ising SOC (MK+ = −MK−). Since we always assume that g3 < 0,
ferromagnetism is not favored in this simple picture.

More realistic calculations predict monolayer NbSe2 to be close to a ferromagnetic instability.
Our model is too simple to capture the simultaneous leading attraction in the s-wave spin-singlet
channel, subleading attraction in the f -wave spin-triplet channel, and tendency towards ferromag-
netism. These three conditions can be fulfilled when including the Γ pocket. The important
ingredient is the interpocket pair-hopping interaction between the Γ and K± pockets, named g4 in
Ref. [306]. If this coupling is large, the s-wave spin-singlet channel can be the leading attraction
even if g3 > 0, so that the f -wave spin-triplet channel is subleading (see Eqs. (23-25) of Ref.
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[306]), and ferromagnetism is preferred compared to the SOC renormalization. Nevertheless, it is
worth highlighting that the interactions we consider apply to low energies. In particular, the signs
of g2 and g3 at higher energies might change, and a ferromagnetic instability coming from the
whole band might still occur even if g3 < 0 at low energies.

2.2.2 Superconducting gap equations

In summary, our model consists of the single-particle Hamiltonian (2.22), with the interactions
(2.34) in the s-wave spin-singlet Φ̂S and in the f -wave spin-triplet ⃗̂ΦT channels, which can be
thought to be local in real space:

H = ∑
k

ψ†(k) [ξ(k)τ0σ0 + λτzσz]ψ(k) + ∑
r

[
gSΦ̂†

S(r)Φ̂S(r) + gT
⃗̂Φ†

T(r) · ⃗̂ΦT(r)
]

, (2.36)

where

Φ̂S(r) = 1
2 ψ(r)τxiσyψ(r), (2.37)

⃗̂ΦT(r) = 1
2 ψ(r)iτy⃗σiσyψ(r). (2.38)

Ising SOC splits the triplet in the out-of-plane A′
1 and in-plane E′′ components:

Φ̂z
T(r) =

1
2

ψ(r)iτyσziσyψ(r), (2.39)

Φ̂
xy
T (r) =

1
2

ψ(r)iτy{σx, σy}iσyψ(r), (2.40)

which can be easily accommodated in the interaction by assigning these components different
interactions gz

T and gxy
T .

Hubbard-Stratonovich transformation

The next step towards modeling the collective modes in NbSe2 is to determine and solve
the gap equation for the Hamiltonian H of Eq. (2.36). In the introduction, we have shown
how to derive the gap equation by performing a mean-field approximation of H in the Cooper
channel ∆i = −gi⟨Φ̂i⟩, i = S, Tz, Tx, Ty, transforming to Nambu space, and diagonalizing the
resulting BdG Hamiltonian. Here, due to the Hamiltonian being a larger matrix, it is simpler to
work in the functional integral formalism, which is also convenient to determine the collective
mode fluctuations. For that, the fermion operators with canonical anticommutation relations
{ψ†

α, ψβ} = δαβ are replaced by fermion fields that anticommute {ψ̄α, ψβ} = 0. We will apply the
imaginary time Matsubara formalism to account for the finite temperature. Within this formalism,
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the inverse bare electron and hole Matsubara Green’s functions read[
G(p)

0

]−1
(k) = iωnτ0σ0 − H0(k) = iωnτ0σ0 − [ξ(k)τ0σ0 + λτzσz] , (2.41)[

G(h)
0

]−1
(k) = iωnτ0σ0 + H∗

0 (−k) = iωnτ0σ0 + [ξ(k)τ0σ0 + λτzσz] , (2.42)

where iωn = 2π
β (n + 1

2 ) are the fermionic Matsubara frequencies, with n ∈ Z, β = (kBT)−1 and
T the temperature. The action in imaginary time τ for the fermions S =

[∫
x ψ̄(x)∂τψ(x) + H

]
reads

S [ψ̄, ψ] = −
∫

k
ψ̄(k)

[
G(p)

0

]−1
(k)ψ(k) + gS

∫
x

Φ̄S(x)ΦS(x) + gT

∫
x
⃗̄ΦT(x) · Φ⃗T(x), (2.43)

where the pairing operators ΦS and Φ⃗T are given by Eqs. (2.37) and (2.38) in terms of fermion
fields, and we have used the shorthand notations x ≡ (τ, r), k ≡ (iωn, k),

∫
x ≡

∫ β
0 dτ

∫
d2r, and∫

k ≡ 1
β ∑iωn

∫ d2k
(2π)2 .

Since we have assumed attractive interactions in both singlet ΦS and triplet Φ⃗T pairing
channels, gS < gT < 0, we can perform a Hubbard-Stratonovich transformation in both channels2.
This transformation amounts to introducing the new bosonic fields ∆i(x) ∼ −giΦi(x) to rewrite
the partition function Z in terms of a new action S̃ which depends on the new bosons ∆ and only
quadratically on the fermions ψ:

Z =
∫

Dψ̄Dψe−S [ψ̄,ψ] =
∫

Dψ̄Dψ ∏
i

D∆̄iD∆ie−S̃ [ψ̄,ψ,∆̄,∆], (2.44)

where i = S, Tz, Tx, Ty. Using the following identity derived from Gaussian integrations [332]

exp
[
−gi

∫
x

Φ̄i(x)Φi(x)
]
=

=
∫

D∆̄iD∆i exp
[
−
∫

x

(
−∆̄i(x)Φi(x)− Φ̄i(x)∆i(x)− 1

gi
∆̄i(x)∆i(x)

)]
,

(2.45)

we obtain the new action

S̃ [ψ̄, ψ, ∆̄, ∆] =−
∫

k
ψ̄(k)

[
G(p)

0

]−1
(k)ψ(k)−

−
∫

x
∑

i

[
∆̄i(x)Φi(x) + Φ̄i(x)∆i(x) +

1
gi

∆̄i(x)∆i(x)
]

,
(2.46)

2If the interaction were repulsive in a given channel, a modified Hubbard-Stratonovich procedure would be required;
see e.g. Appendix A of Ref. [331] and references therein.
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which is quadratic in the fermion fields ψ.

With a view to deriving the gap equation, it is useful to write the action (2.46) fully in
real space. We define the matrices Mi of the pairing operators as Φi =

1
2 ψMiψ, so from Eqs.

(2.37-2.40) we get

MS = τxiσy, (2.47)

Mz
T = iτyσziσy, (2.48)

Mx
T = iτyσxiσy, (2.49)

My
T = iτyσyiσy. (2.50)

We also define the matrix pairing fields

∆̂i = M†
i ∆i. (2.51)

In real space, the inverse Matsubara Green’s function, which only depends on the relative position
of the fermions, reads[

G(p)
0

]−1
(x, x′) =

[
G(p)

0

]−1
(x′ − x) =

∫
k

e−ik(x′−x)
[

G(p)
0

]−1
(k), (2.52)

while the local superconducting pairings are ∆i(x, x′) = ∆( x+x′
2 )δ(x − x′). The new action in

real space, using matrix notation in both internal and spatial indices and the Einstein summation
convention, becomes

S̃[ψ̄, ψ, ∆̄, ∆] = −ψ̄
[

G(p)
0

]−1
ψ − ∑

i

(
1
2

ψT ˆ̄∆iψ +
1
2

ψ̄∆̂iψ̄
T +

1
4

Tr
[

ˆ̄∆ig−1
i ∆̂i

])
. (2.53)

Nambu space

In order to integrate out the fermion fields of the new action (2.53), it is useful to introduce
the Nambu spinor fields Ψ = (ψ, ψ̄T)T = (dK+↑, dK+↓, dK−↑, dK−↓, d̄K+↑, d̄K+↓, d̄K−↑, d̄K−↓). We
will use the notation ρµ to denote the Pauli matrices in Nambu space. Particle and hole Matsubara
Green’s functions are related by3:

ψ̄[G(p)
0 ]−1ψ = ψT[G(h)

0 ]−1ψ̄T. (2.54)

3The identity 2.54 is true for fields due to the equivalence between partition functions up to a numerical constant.
For operators, one should add the term − 1

2 tr[H0(k)] arising from the anticommutation relation of a creation and an
annihilation operator of the same state; see Eq. (2.17).
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The normal term in the action (2.53) can be rewritten as:

ψ̄
[

G(p)
0

]−1
ψ =

1
2

{
ψ̄
[

G(p)
0

]−1
ψ + ψT

[
G(h)

0

]−1
ψ̄T
}

=
1
2

Ψ̄G−1
0 Ψ, (2.55)

where we have defined the inverse normal bare Gorkov Green’s function in Nambu space G−1
0 as

G−1
0 =


[

G(p)
0

]−1
0

0
[

G(h)
0

]−1

⇒ G−1
0 (k) = iωnρ0 − H0(k)ρz. (2.56)

The anomalous terms can also be reexpressed as:

1
2

ψT ˆ̄∆iψ +
1
2

ψ̄∆̂iψ̄
T =

1
2

Ψ̄
(

ˆ̄∆i
1
2

ρ− + ∆̂i
1
2

ρ+

)
Ψ. (2.57)

Inserting the identities (2.55) and (2.57) in the action (2.53), the action in Nambu space reads

S̃ [Ψ̄, Ψ, ∆̄, ∆] = −
{

1
2

Ψ̄G−1Ψ + ∑
i

1
4

Tr
[

ˆ̄∆ig−1
i ∆̂i

]}
, (2.58)

where the inverse full Gorkov BdG Green’s function is:

G−1 = G−1
0 + ∑

i

(
ˆ̄∆i

1
2

ρ− + ∆̂i
1
2

ρ+

)
=


[

G(p)
0

]−1
∑i ∆̂i

∑i
ˆ̄∆i

[
G(h)

0

]−1

 . (2.59)

Effective action and gap equation

The final step to derive the gap equation is integrating out the fermions in the action (2.58),
which gives rise to the following effective action for the superconducting fields:

Seff[∆̄, ∆] =− ∑
i

1
4

Tr
[

ˆ̄∆ig−1
i ∆̂i

]
− Tr

[
log G−1

]
=

=−
∫

x

[
1
gS

∆̄S(x)∆S(x) +
1

gT

⃗̄∆T(x) · ∆⃗T(x)
]
− Tr

[
log G−1

]
,

(2.60)

where the functional trace is defined as

Tr
[
log G−1

]
=
∫

x
tr
{[

log G−1
]
(x, x)

}
. (2.61)
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The gap equation can be obtained as the saddle point of the effective action with respect to the
Hubbard-Stratonovich fields ∆i,

δSeff[∆̄,∆]
δ∆̄i(x) = 0:

1
gi

∆i(x) = −tr [G(x, x)Miρ−] . (2.62)

We will assume that the superconducting pairing fields ∆i are spatially-homogeneous, so that
∆i(x) = ∆i, or equivalently ∆i(q) = (2π)2βδ(q)∆i. In this case, the Gorkov BdG Green’s
function depends just on the relative momentum k, G−1(k, q) = (2π)2βδ(q)G−1(k), with

G−1(k) =

(
iωnτ0σ0 − H0(k) −∆Sτxiσy − ∆⃗T · iτy(σx,−σy, σz)iσy

∆̄Sτxiσy + ⃗̄∆T · iτy(σx, σy, σz)iσy iωnτ0σ0 + H0(k)

)
.

(2.63)
Applying this ansatz to the gap equation (2.62), using the fact that G(x, x) =

∫
k G(k), we arrive

at the following gap equation in momentum space:

1
gi

∆i = −
∫

k
tr [G(k)Miρ−] . (2.64)

Ground state

We now determine the superconducting ground state of our model by solving the gap equation.
The gap equation (2.64) is general for the interactions of the form (2.36). In particular, it allows for
singlet-triplet mixing between ∆S and ∆z

T in principle. However, we now explicitly show, as we
advanced, that the mixing vanishes in our model since the DOS of the spin-split bands is the same.
We assume that either only an A′

1 potentially singlet-triplet mixed state of ∆S and ∆z
T condenses,

or only one component of the E′′ in-plane triplet ∆
xy
T condenses. The quasiparticle energies in the

superconducting state with SOC are, for the A′
1 potentially singlet-triplet mixed state:

E±(k) =
√

ε2
±(k) + |∆S ± ∆z

T|2 =
√

ε2
±(k) + |∆±|2, (2.65)

with ∆± = ∆S ± ∆z
T, and for a component of the E′′ triplet:

Exy
± (k) =

√
ε2
±(k) + |∆i|2, (2.66)

with i = Tx, Ty, and the band energies with SOC are ε±(k) = ξ(k)± λ. In the absence of SOC,
there is no singlet-triplet mixing, and the quasiparticle energies in this case are

E(k) =
√

ξ2(k) + |∆i|2, (2.67)
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for i = S, Tz, Tx, Ty.

After performing the sum over Matsubara frequencies, we obtain the following gap equations
for the A′

1 singlet ∆S and triplet ∆z
T and for the E′′ triplet ∆

xy
T :

− 1
gS

∆S = ∆S

∫ d2k
(2π)2

 tanh
[

β
2 E+(k)

]
E+(k)

+
tanh

[
β
2 E−(k)

]
E−(k)

+

+ ∆z
T

∫ d2k
(2π)2

 tanh
[

β
2 E+(k)

]
E+(k)

−
tanh

[
β
2 E−(k)

]
E−(k)

 ,

(2.68)

− 1
gT

∆z
T = ∆z

T

∫ d2k
(2π)2

 tanh
[

β
2 E+(k)

]
E+(k)

+
tanh

[
β
2 E−(k)

]
E−(k)

+

+ ∆S

∫ d2k
(2π)2

 tanh
[

β
2 E+(k)

]
E+(k)

−
tanh

[
β
2 E−(k)

]
E−(k)

 ,

(2.69)

− 1
gT

∆
xy
T = ∆

xy
T

∫ d2k
(2π)2

tanh
[

β
2 (E(k) + λ)

]
+ tanh

[
β
2 (E(k)− λ)

]
E(k)

. (2.70)

In general, the gap equations (2.68) and (2.69) of ∆S and ∆z
T are coupled, giving rise to singlet-

triplet mixing. However, we now show that, in the presence of just constant Ising SOC, these
gap equations become decoupled. For that, we change the momentum integration by an energy
integration with an energy cutoff Λ4,

∫ d2k
(2π)2 → N±

∫ Λ
−Λ dε±, where N+ = N− = m

2π is the
DOS of each spin-split band in the normal state. First, the mixing term vanishes at Tc, since the
linearized gap equations are analogous to Eqs. (2.68) and (2.69) but with the quasiparticle energies
E± substituted by the energies in the normal state ε±, and the energy integrations over ε+ and ε−
are exactly equal. The singlet-triplet mixing also vanishes at lower temperatures. In particular, at
T = 0, we arrive to the following gap equations for ∆± = ∆S ± ∆z

T in the A′
1 channel:

−∆+ = 2(gS + gT)∆+N+argsinh
(

Λ
|∆+|

)
+ 2(gS − gT)∆−N−argsinh

(
Λ

|∆−|

)
, (2.71)

−∆− = 2(gS + gT)∆−N−argsinh
(

Λ
|∆−|

)
+ 2(gS − gT)∆+N+argsinh

(
Λ

|∆+|

)
. (2.72)

Since N+ = N− for momentum-independent Ising SOC, the solutions of these equations are
∆+ = ∆− = ∆S, ∆z

T = 0, and ∆+ = −∆− = ∆z
T, ∆S = 0. The superconducting gaps in these

4The same high-energy cutoff Λ applies to both spin-split bands as long as the chemical potential µ is much
larger than Λ, which is of the order of the Debye frequency. Indeed, this is the relevant situation for NbSe2, where
µ ∼ 500meV ≫ Λ ∼ 20meV.
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cases are, respectively,

∆S =
Λ

sinh
[
− 1

ḡS

] ≃ 2Λ exp
[
− 1

ḡS

]
, (2.73)

∆z
T =

Λ

sinh
[
− 1

ḡT

] ≃ 2Λ exp
[
− 1

ḡT

]
, (2.74)

where we have defined the dimensionless coupling constants ḡi as

ḡi = N0gi (2.75)

with N0 = 2N+ + 2N− = 4 m
2π the total DOS in the normal state. Therefore, effectively the gap

equations (2.68) and (2.69) become decoupled for constant Ising SOC, and we could rewrite them
as

− 1
gi

∆i = ∆i

∫ d2k
(2π)2

tanh
[

β
2 E+(k)

]
E+(k)

+
tanh

[
β
2 E−(k)

]
E−(k)

=

= N0∆i

∫ Λ

−Λ
dε

tanh
[

β
2

√
ε2 + ∆2

i

]
2
√

ε2 + ∆2
i

,

(2.76)

with E±(k) =
√

ε2
±(k) + ∆2

i as in Eq. (2.66), and i = S, Tz. In particular, both gap equations
are identical and unaffected by the Ising SOC. Again, this is a consequence of the fact that the A′

1

singlet ∆S and the A′
1 triplet ∆z

T pair electrons with opposite spins, which are those available at
the Fermi level with zero momentum pairing.

On the other hand, the gap equation (2.70) for the E′′ in-plane triplet ∆
xy
T shows that it is

suppressed by Ising SOC, and eventually killed when the Ising SOC λ becomes bigger than the
energy cutoff Λ, which is the situation in NbSe2. This is due to the fact that the E′′ triplet ∆

xy
T

involves pairing between equal-spin states, but zero momentum Cooper pairs at the Fermi level can
only be made with opposite spins. Therefore, in the absence of a substrate or an in-plane magnetic
field, the E′′ in-plane triplet ∆

xy
T cannot be the ground state. Nevertheless, if the attraction gT in the

f -wave spin-triplet channel is sizable, the E′′ in-plane part ∆
xy
T could be induced with an in-plane

magnetic field B∥, which also transforms as an E′′ irrep of the point group. This could explain
the previous magnetotransport experiments displaying signatures of a nematic pairing [115, 116].
Another observation in this direction is that the Rashba SOC ∝ (kxσy − kyσx)τ0 induced by the
breaking of the out-of-plane mirror symmetry by a substrate would suppress the A′

1 singlet and
the A′

1 triplet, while not affecting the E′′ triplet [306]. However, we will not consider substrate or
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in-plane magnetic field effects here.

In summary, assuming |gS| > |gT|, the ground state is a conventional s-wave spin-singlet
superconductor with order parameter given by the usual expression (2.73) at zero temperature. The
ground state is described by the following effective action:

S (0)
eff [∆̄, ∆] = −

∫
x

[
1
gS

∆̄S(x)∆S(x)
]
− Tr

[
log G−1

0

]
, (2.77)

where, choosing a real positive gap ∆S(x) = ∆, with ∆ > 0 given by Eq. (2.73), the ground state
bare inverse Gorkov BdG Green’s function is:

G−1
0 (iωn, k) = iωnτ0σ0ρ0 − ξ(k)τ0σ0ρz − λτzσzρz + ∆τxσyρy. (2.78)

Inverting it explicitly,

G0(iωn, k) =
1
2

[
iωn

(iωn)2 − E2
+(k)

+
iωn

(iωn)2 − E2
−(k)

]
τ0σ0ρ0+

+
1
2

[
ε+(k)

(iωn)2 − E2
+(k)

+
ε−(k)

(iωn)2 − E2
−(k)

]
τ0σ0ρz+

+
1
2

[
iωn

(iωn)2 − E2
+(k)

− iωn

(iωn)2 − E2
−(k)

]
τzσzρ0+

+
1
2

[
ε+(k)

(iωn)2 − E2
+(k)

− ε−(k)
(iωn)2 − E2

−(k)

]
τzσzρz−

− 1
2

[
∆

(iωn)2 − E2
+(k)

+
∆

(iωn)2 − E2
−(k)

]
τxσyρy−

− 1
2

[
∆

(iωn)2 − E2
+(k)

− ∆
(iωn)2 − E2

−(k)

]
τyσxρy,

(2.79)

with E±(k) =
√

ε2
±(k) + ∆2. Crucially, since gT < 0 too, the out-of-plane f -wave triplet ∆z

T is
subleading, meaning that it represents a self-consistent solution of the gap equation characterized
by a relative minimum in the free-energy functional. This is essential for the collective fluctuations
described in the next section.

2.3 Particle-particle collective modes

Particle-particle collective modes in superconductors might occur when there is a subleading
attraction in a pairing channel besides the ground state. Our model has an A′

1 ground state, which
is fully s-wave spin-singlet for constant Ising SOC, and, crucially, an attractive interaction in the
f -wave spin-triplet channels. Therefore, in principle, we have two possible collective modes in



2.3. Particle-particle collective modes 123

our model, defined by the fluctuations toward the imaginary part of the out-of-plane A′
1 and the

in-plane E′′ f -wave triplets. In the absence of singlet-triplet mixing in the ground state, both
correspond to Bardasis-Schrieffer collective modes. For the former A′

1 mode, the attraction in the
triplet channel guarantees that it is well-defined, with energy ΩL < 2∆ [251]. However, due to
the Ising SOC suppression of the E′′ channel, the E′′ mode is likely pushed to higher energies and
damped, and therefore unobservable. We note that, for a general singlet-triplet mixed ground state,
the former A′

1 mode can be better described as a Leggett mode. In this case, the spin-split pockets
have gaps in the band basis ∆± = ∆S ± ∆z

T, and the collective mode corresponds to the relative
phase fluctuation of these two gaps. Henceforth, we refer to the A′

1 mode as the Leggett (L) mode
and to the E′′ mode as the Bardasis-Schrieffer (BS) mode. We note that, in the absence of Ising
SOC, where SU(2) spin rotation symmetry is recovered, both modes become the same, since both
components of the triplet are degenerate.

From a computational point of view, collective modes are defined whenever their correspond-
ing propagator displays a pole (or strong enough divergence) with vanishing imaginary part at zero
temperature. This requires the energy of the collective mode to be below the quasiparticle edge,
Ω < 2∆. We will show that the Leggett mode fulfills that and is indeed well-defined. We will
determine the propagators at the random phase approximation (RPA) level in the long-wavelength
limit, by expanding the effective action of (2.60) to quadratic order in the fluctuating fields [233].
The coefficients multiplying these fluctuating fields define their corresponding propagators, whose
poles determine the energies of the collective modes. We will also show that the Leggett and
Bardasis-Schrieffer modes couple to the fermionic degrees of freedom, modifying their spectral
function and therefore leaving signatures detectable in tunneling experiments. We will eventually
discuss how an anticorrelation between the mode energy and the superconducting gap, as observed
in the STM experiments of Ref. [2], is compatible with the Leggett mode. We therefore propose
the Leggett mode as a possible candidate for explaining the resonances in the STM experiments [2],
which constitutes a further signature for the subleading f -wave spin-triplet pairing in monolayer
NbSe2.

2.3.1 Collective mode energies with constant Ising SOC

In the case of vanishing singlet-triplet mixing with a real positive s-wave singlet gap, the
fluctuating bosonic fields ϕL and ϕBS correspond to the imaginary parts ∆z

T = iϕL and ∆
xy
T = iϕBS

of the f -wave spin-triplet pairings. From the Gorkov BdG Green’s function (2.63), we obtain that
the Leggett and Bardasis-Schrieffer fluctuations couple to the ground state Gorkov BdG Green’s
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function via the matrices:

ML = τyσxρx, (2.80)

MBS =
(
−τyσzρx, τyσ0ρy

)
. (2.81)

Note that, since the chosen ground state gap ∆ couples to Nambu space via ρy, then the ρx in ML

and Mx
BS indicates that the fluctuations have a π

2 phase shift with respect to the ground state, as
required. My

BS also has a π
2 phase shift, but it corresponds to ρy due to the additional − sign of

∆y
T in the Gorkov BdG Green’s function (2.63). Now, we expand the total effective action (2.60)

to quadratic order in the fluctuating fields Φi, i = L, BS, obtaining:

Seff[∆, ϕi]− S (0)
eff [∆] =

∫
q

D−1
i (q)ϕi(q)ϕi(−q), (2.82)

whereS (0)
eff [∆] is the effective action (2.77) of the ground state with no fluctuating fields, and D−1

i (q)
is the inverse propagator of the Leggett (i = L) or Bardasis-Schrieffer (i = BS) collective mode.
This inverse propagator D−1

i (q) is related to the RPA susceptibility χi(q) in the corresponding
channel via:

D−1
i (q) = − 1

gT
+ χi(q), (2.83)

where the susceptibility is given by:

χi(q) =
1
2

∫
k

tr[G0(k)MiG0(k + q)Mi], (2.84)

with G0(k) the ground state bare Gorkov BdG Green’s function (2.79), and Mi the coupling
matrices defined in Eqs. (2.80) and (2.81).

Performing the traces, we obtain the following Leggett and Bardasis-Schrieffer susceptibilities:

χL(iΩm, q) = 2
∫

k

{
iωn(iΩm + iωn)− [ε+(k)ε+(k + q) + ∆2]

[(iωn)2 − E2
+(k)][(iωn + iΩm)2 − E2

+(k + q)]
+

+
iωn(iΩm + iωn)− [ε−(k)ε−(k + q) + ∆2]

[(iωn)2 − E2
−(k)][(iωn + iΩm)2 − E2

−(k + q)]

}
,

(2.85)

χBS(iΩm, q) = 2
∫

k

{
iωn(iΩm + iωn)− [ε+(k)ε−(k + q) + ∆2]

[(iωn)2 − E2
+(k)][(iωn + iΩm)2 − E2

−(k + q)]
+

+
iωn(iΩm + iωn)− [ε−(k)ε+(k + q) + ∆2]

[(iωn)2 − E2
−(k)][(iωn + iΩm)2 − E2

+(k + q)]

}
.

(2.86)
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First, as expected, in the limit of vanishing Ising SOC, where ε±(k) → ξ(k) and E±(k) → E(k),
both susceptibilities are identical

χ0(iΩm, q) = 4
∫

k

iωn(iΩm + iωn)− [ξ(k)ξ(k + q) + ∆2]

[(iωn)2 − E2(k)][(iωn + iΩm)2 − E2(k + q)]
, (2.87)

confirming that the Leggett and Bardasis-Schrieffer modes become degenerate in this case. In
the presence of Ising SOC, the Leggett mode to the A′

1 triplet has two contributions, one from
each spin-split band ε±, indicating that it does not mix the bands with opposite SOC splitting.
Moreover, we will show that the Leggett mode is unaffected by the constant Ising SOC, and
χL(iΩm, q) = χ0(iΩm, q), implying that its energy is independent of the constant Ising SOC5.
On the other hand, the Bardasis-Schrieffer mode to the E′′ triplet does mix them, as illustrated
by the terms mixing ε+ and ε−. Consequently, the constant single-particle SOC λ will affect
the Bardasis-Schrieffer mode by increasing its energy with respect to the spinless case, while the
Leggett mode energy will be independent of λ, as expected.

After performing the sums over the fermionic Matsubara frequency iωn, the susceptibilities
in the long-wavelength limit q → 0 read as:

χL(iΩm) = −
∫ d2k

(2π)2

 tanh
[

β
2 E+(k)

]
E+(k)

{
1 +

(iΩm)2

[2E+(k)]2 − (iΩm)2

}
+

+
tanh

[
β
2 E−(k)

]
E−(k)

{
1 +

(iΩm)2

[2E−(k)]2 − (iΩm)2

} ,

(2.88)

χBS(iΩm) = −
∫ d2k

(2π)2

 tanh
[

β
2 E+(k)

]
E+(k)

{1 + B+(iΩm, k)}+

+
tanh

[
β
2 E−(k)

]
E−(k)

{1 + B−(iΩm, k)}

 ,

(2.89)

5For a k-dependent Ising SOC, the superconducting gap is modified due to the singlet-triplet mixing, and thus the
energy of the Leggett mode depends on the k-dependent part of the Ising SOC (see Appendix 2.B).
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where we have defined the quantities:

B+(iΩm, k) =

[
ε2
+ − ε2

− + (iΩm)2] [(ε+ − ε−)2 − (iΩm)2]
[iΩm + E+ + E−][iΩm + E+ − E−][iΩm − E+ + E−][iΩm − E+ − E−]

,

(2.90)

B−(iΩm, k) =

[
ε2
− − ε2

+ + (iΩm)2] [(ε+ − ε−)2 − (iΩm)2]
[iΩm + E+ + E−][iΩm + E+ − E−][iΩm − E+ + E−][iΩm − E+ − E−]

,

(2.91)

We have omitted the explicit k-dependence of the energies for simplicity. Note that, in the limit
of vanishing SOC, B±(iΩm, k) → (iΩm)2

[2E(k)]2−(iΩm)2 . Using the gap equation (2.76) and defining the
following functions:

F±
L (iΩm) =

1
N0

∫ d2k
(2π)2

tanh
[

β
2 E±(k)

]
E±(k)

(iΩm)2

[2E±(k)]2 − (iΩm)2 , (2.92)

F±
BS(iΩm) =

1
N0

∫ d2k
(2π)2

tanh
[

β
2 E±(k)

]
E±(k)

B±(iΩm, k), (2.93)

Fi(iΩm) = F+
i (iΩm) + F−

i (iΩm), (2.94)

we obtain the following collective mode propagators:

D−1
i (iΩm) = − 1

gT
+

1
gS

− N0Fi(iΩm) = N0

{(
1

|ḡT|
− 1

|ḡS|

)
− Fi(iΩm)

}
, (2.95)

where we have used the assumption gS, gT < 0. The collective mode energies are given by the
solution Ωi of:

D−1
i

(
iΩm → Ωi + i0+

)
= 0 ⇒ Fi (Ωi) =

(
1

|ḡT|
− 1

|ḡS|

)
. (2.96)

We will first consider the zero-temperature limit of the momentum integrations in Fi±(Ω),
where tanh

[
β
2 E±(k)

]
→ 1. We define the dimensionless energy of the collective mode Ω̄i as its

energy normalized by twice the superconducting gap

Ω̄i =
Ωi

2∆
. (2.97)

When Ω̄i < 1 the collective mode is undamped due to the absence of a quasiparticle decay channel,
while for Ω̄i > 1 damping becomes possible.
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(a) (b)

Figure 10: Normalized energy of the Leggett mode Ω̄L = ΩL
2∆ at zero temperature. (a) As

a function of the difference
(
|ḡT |−1 − |ḡS|−1). The red solid line corresponds to the exact

numerical solution of Eq. (2.99), while the blue dotted and dashed lines are the approximate
analytical expressions given in Eq. (2.100). (b) As a function of the ratio of triplet-to-singlet
attraction gT/gS, for several values of the attraction in the s-wave singlet channel gS. The
horizontal black dashed-dotted lines indicates the experimental expectation value Ω1

2∆ = 0.66 of
the resonance observed in STM in Ref. [2].

Leggett mode energy at zero temperature

First, we compute the energy of the Leggett mode. The functions FL±(Ω) relevant for this
mode can be computed analytically by changing variables to x = ε±/∆:

FL(Ω) =
1
2

∫ ∞

−∞
dx

1√
1 + x2

Ω̄2

1 + x2 − Ω̄2 =


Ω̄ arcsin (Ω̄)√

1−Ω̄2 , if |Ω̄| < 1,
|Ω̄|[−argsinh(

√
Ω̄2−1)+i π

2 sign(Ω̄)]√
Ω̄2−1

, if |Ω̄| > 1.
(2.98)

Note that the integral converges, so we do not need to invoke a high-energy cutoff. For gS < gT < 0,
− 1

gT
+ 1

gS
= 1

|ḡT | −
1

|ḡS| > 0, and thus the only solution of the real part of Eq. (2.96) lies in the
region ΩL < 2∆, where the Leggett mode is undamped. Therefore, the energy of the Leggett
mode is the solution of: (

1
|ḡT|

− 1
|ḡS|

)
=

Ω̄L arcsin (Ω̄L)√
1 − (Ω̄L)

2
. (2.99)

The exact numerical solution for Ω̄L is plotted in Fig. 10(a) as a function of the combination
of the couplings

(
|ḡT|−1 − |ḡS|−1), and in Fig. 10(b) as a function of the triplet-to-singlet ratio

gT/gS. Analytically, we can obtain the energy in the limits of small energy, where |ΩL| ≪ 2∆
and

(
|ḡT|−1 − |ḡS|−1) ≪ 1, and large energy, where |ΩL| ∼ 2∆ and

(
|ḡT|−1 − |ḡS|−1) ≫ 1

[233]:

Ω̄L ≃


√

1
|ḡT | −

1
|ḡS| , if |Ω̄L| ≪ 1,

1 − π2

8[1+(|ḡT |−1−|ḡS|−1)]
2 , if |Ω̄L| ∼ 1.

(2.100)

The Leggett mode energy is ΩL < 2∆ as long as there is attraction in the out-of-plane f -wave
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triplet channel, gT < 0. When this attraction goes to zero (gT → 0 ⇒ 1
|ḡT | −

1
|ḡS| → ∞), ΩL

approaches the quasiparticle edge 2∆, and becomes ill-defined for gT > 06. In the opposite limit,
when gT → gS, the Leggett mode becomes gapless, signaling the degenerate singlet and out-of-
plane triplet channels in the gT = gS limit. For gT < gS < 0, the out-of-plane triplet becomes the
ground state, and the Leggett mode would consist of the imaginary fluctuation towards the s-wave
singlet.

It is insightful to compare the energy of the Leggett mode with that of the resonance observed
in the STM experiments of our collaborators [2]. Assuming that the resonance is indeed a
manifestation of the Leggett mode, from the experimentally measured average value of ΩL

2∆ = 0.66
we can estimate the ratio gT/gS and hence how close the triplet state is. This first requires
an estimate of the dimensionless coupling ḡS = N0gS. Using our weak coupling BCS limit
with a superconducting gap of ∆ ∼ 0.4meV and a Debye frequency cutoff in the range of bulk
estimates Λ ∼ 20meV [333], this corresponds to ḡS ∼ 0.2. However, the ratio 2∆/kBTc ∼ 4.9
in our experiment indicates moderate to strong coupling, so the value of ḡS is likely larger.
From the energy of the Leggett mode Ω̄L as a function of gT/gS for ḡT = 0.2 − 0.6 displayed
Fig. 10(b), we can estimate that setting Ω̄L ∼ 0.66 produces a sizable triplet attraction in the range
gT/gS ∼ 0.7 − 0.9.

Bardasis-Schrieffer mode at zero temperature

We now turn to the Bardasis-Schrieffer mode. We have not been able to obtain analytical
expressions for the functions FBS±(Ω) relevant for the Bardasis-Schrieffer mode for a general Ising
SOC λ. Nevertheless, based on the suppression of the E′′ triplet pairing by the Ising SOC (in the
absence of Rashba SOC), we expect a damped Bardasis-Schrieffer mode with energy ΩBS > 2∆,
i.e., an ill-defined mode. What we can compute analytically is the series expansion of FBS±(Ω) in
small λ/∆ ≪ 1. Indeed, after the change of variables k → x = ξ(k)/∆, we obtain:

FBS±(Ω) = −1
4

∫ ∞

−∞
dx

1√
1 +

(
x ± λ

∆

)2

(
Ω̄2 ± x λ

∆

) (
Ω̄2 − λ2

∆2

)
Ω̄4 − Ω̄2

(
1 + x2 + λ2

∆2

)
+ x2 λ2

∆2

=

=
1
2

{
FL(Ω) +

1
2

(
λ

∆

)2 1
Ω̄2 − 1

[
1 +

FL(Ω)

Ω̄2

]
+O

[(
λ

∆

)4
]}

. (2.101)

6Indeed, our whole theory breaks down in the gT > 0 regime, since the Hubbard-Stratonovich transformation in the
triplet channel is only valid for attractive gT
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Despite not representing the experimentally relevant situation, this approximation predicts the
expected increase of the energy of the Bardasis-Schrieffer mode with the Ising SOC:

Ω̄BS ≃


√
(Ω̄L)

2
+
(

λ
∆

)2
+O

[(
λ
∆

)4
,
(

λ
∆

)2
(Ω̄L)

2
]

, when |Ω̄BS| ≪ 1,

Ω̄L +
1
2

(
λ
∆

)2
+O

[(
λ
∆

)3
,
(

λ
∆

)2
(1 − Ω̄L)

]
, when |Ω̄BS| ∼ 1.

(2.102)

Leggett mode at low temperature

Going back to the Leggett mode, we now estimate the temperature dependence of its energy
in the T ≪ ∆ limit, with ∆ the zero temperature gap. We will show that, as long as the
temperature is low, the energy of the Leggett mode is only slightly shifted upwards, with the same
exponential temperature dependence ∼ e−β∆ as the gap. This increase of the normalized energy
with temperature is expected, since the collective mode should be overdamped (i.e., Ω1 ≥ 2∆)
at the critical temperature [233]. Moreover, we would expect that it becomes overdamped at a
lower temperature, corresponding to the critical temperature where the out-of-plane f -wave triplet
pairing would condense in the absence of s-wave singlet. Indeed, this temperature sets the onset
of a relative minimum for the out-of-plane f -wave triplet solution in the free-energy functional.

We first determine the temperature dependence of the gap. Assuming also that T ≪ ∆(T),
then we can make the following approximation to leading order in temperature:

tanh
[

β∆(T)
2

√
x2 + 1

]
≃ 1 − 2 exp

(
−β∆

√
x2 + 1

)
. (2.103)

Then, the solution of the gap equation (2.76) gives the usual exponentially small correction to the
gap at low temperatures:

∆(T) ≃
(

1 − e−β∆

√
2π

β∆

)
∆. (2.104)

We now derive the temperature dependence of the Leggett mode energy. After the change of
variables x = ξ(k)/∆(T), we obtain that FL takes on the form:

FL(Ω, T) =
1
2

∫ ∞

−∞
dx

1
x2 + 1 − Ω̄2

tanh
[

β∆(T)
2

√
x2 + 1

]
√

x2 + 1
≃

≃ FL(Ω)−
∫ ∞

−∞
dx

1
x2 + 1 − Ω̄2

exp
(
−β∆

√
x2 + 1

)
√

x2 + 1
.

(2.105)
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While the last integration cannot be performed analytically, we can deduce that its temperature
dependence will be exponential, as in the case of the gap. Indeed, we can estimate it to be:

FL(Ω, T) ≃ FL(Ω)
[
1 − 2γ(Ω)e−β∆

]
, (2.106)

where γ(Ω) is a positive function of Ω of order 1. We mention here that γ(Ω) might also be
slightly temperature dependent, but its temperature dependence is polynomial at most. Therefore,
the inverse propagator of the Leggett mode at small T gets a exponential temperature correction:

D−1
L (Ω) = N0

{(
1

|ḡT|
− 1

|ḡS|

)
− FL(Ω)

[
1 − 2γ(Ω)e−β∆

]}
, (2.107)

This positive correction increases the dimensionless Leggett mode energy Ω̄L(T) = ΩL(T)
2∆(T) , as

expected. Indeed, since Ω̄L(T) will be exponentially similar to Ω̄L(T = 0), to leading order
in temperature we can write that γ [ΩL(T)] e−β∆ ≃ γLe−β∆, where we have defined γL =

γ [ΩL(T = 0)] ∼ 1. Therefore Ω̄L(T) can be obtained from Ω̄L(T = 0) simply rescaling(
|ḡT|−1 − |ḡS|−1) to

(
|ḡT|−1 − |ḡS|−1) (1 + 2γLe−β∆), i.e.,

Ω̄L

[
T,
(

1
|ḡT|

− 1
|ḡS|

)]
= Ω̄L

[
T = 0,

(
1

|ḡT|
− 1

|ḡS|

)(
1 + 2γLe−β∆

)]
. (2.108)

The same argument would apply to the energy of the Bardasis-Schrieffer mode in the case of
small Ising SOC, and therefore its normalized energy would also be exponentially increased by
temperature in the T ≪ ∆ limit.

2.3.2 Tunneling current and coupling to the fermionic self-energy

Until now, we have determined that, in the presence of constant Ising SOC, the Leggett mode
consisting of the fluctuation from the s-wave spin-singlet ground state to the out-of-plane f -wave
spin-triplet subleading channel is well-defined with energy ΩL < 2∆ given by Eq. (2.99) and
displayed in Fig. 10. The pertinent question to determine whether the Leggett mode might explain
the STM experiment [2] is whether it couples to the electron spectral function, which is the quantity
measured in tunneling experiments. Most works to date have attributed satellite peaks to particle-
hole excitations like spin waves, which become undamped in the presence of superconductivity
due to the gap opening and consequent decrease of the possible decay channels. However, we
now show that particle-particle collective modes, and in particular the Leggett and the Bardasis-
Schrieffer modes, should also leave fingerprints in the spectral function, in particular peaks at
the energies ∆ + Ωi. This is consistent with the paradigmatic two-band superconductor MgB2,
where the Leggett mode has been observed in Raman [266] and terahertz spectroscopy [267], and
a signature at the same energies also appears in ARPES [263] and tunneling experiments [334].
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We now present a simplified calculation along the lines of Ref. [335] to show how coupling to a
particle-particle collective mode leads to peaks in the STM tunneling current.

Collective mode propagator

Bosonic excitations have elastic and inelastic contributions to the tunneling spectrum [336,
337]. The elastic contribution describes the self-energy corrections to the fermionic spectral
function due to the exchange of virtual bosons, in a process that conserves the energy of the
electron. The inelastic contribution refers to the excitation of real bosons in the tunneling process,
changing the energy of the electron. Both leave features in the tunneling current of superconductors,
with the elastic part producing more peak-like features, and the inelastic part giving rise to more
onset-like shoulder-dip features. The inelastic contribution is sizable when tunneling is effective at
all momenta, since there is a large phase space for the boson in tunneling [336, 337]. Conversely, the
inelastic tunneling contribution can be neglected when tunneling is dominated by small momenta.
The peak-like shape of the resonances observed in the STM experiment [2], as well as the fact
that a dominant tunneling selectivity at small momenta is required to reproduce the normal state
tunneling [309], suggest that it is the elastic contribution that dominates in monolayer NbSe2.
Therefore, we will not consider the inelastic contribution in this work, and will only determine the
elastic renormalization of the fermionic spectral function by the Leggett and Bardasis-Schrieffer
modes following the lines of Ref. [335].

The bare Gorkov BdG Green’s function unrenormalized by the boson is given in Eq. (2.79).
On the other hand, in the previous subsection we have obtained the collective mode propagator at
zero momentum to be:

D−1
i (iΩm) = N0

[(
1

|ḡT|
− 1

|ḡS|

)
− Fi(iΩm)

]
= N0 [Fi (Ωi)− Fi(iΩm)] , (2.109)

where we have used the fact that D−1
i (iΩm → Ωi + i0+) = 0. In order to simplify the calculations,

we expand the propagator about its poles at iΩ = ±Ωi to leading order:

Di(iΩm) ≃
Zi

(Ωi)
2 − (iΩm)2

, (2.110)
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where we have defined the residues of the Leggett and Bardasis-Schrieffer propagators

ZL =
8∆2

N0

1 − (Ω̄1L)
2

1 + (|ḡT |−1−|ḡS|−1)

(Ω̄1L)
2

, (2.111)

ZBS ≃ 8∆2

N0

 1 − (Ω̄1BS)
2

1 + (|ḡT |−1−|ḡS|−1)

(Ω̄1BS)
2

+

+

1 −
(
|ḡT|−1 − |ḡS|−1) [1 + (|ḡT|−1 − |ḡS|−1)][

(|ḡT|−1 − |ḡS|−1) + (Ω̄1BS)
2
]2

(λ

∆

)2

+O
[(

λ

∆

)4
] ,

(2.112)

where we have applied the low SOC λ/∆ expansion to the Bardasis-Schrieffer mode. We observe
that the residues of the propagators scale with ∆2, reflecting that the weights of these bosons are
suppressed as ∆ → 0. Moreover, the dimensionless function N0ZL

4∆2 , which is only a function of Ω̄L,

N0ZL

4∆2 = 2
1 − Ω̄2

L

1 + arcsin (Ω̄L)

Ω̄L
√

1−Ω̄2
L

, (2.113)

varies from 1 for Ω̄L = 0, to 0 for Ω̄L = 1, indicating that the weight of the propagator is greater
the smaller Ω̄L, or, equivalently, the greater the triplet attraction.

Boson-fermion effective action and fermionic self-energy

Particle-particle collective modes are formed by the fermions, glued by their interactions. The
renormalizations of the fermionic spectral function due to these collective modes should therefore
be fully included by solving the microscopic model of interacting fermions. Here, we take a
simplified approach inspired by the spin-fermion model [338]. We assume that the collective
mode is an efficient independent bosonic degree of freedom at low energies, which couples to
the low-energy fermions. Despite this approximation, we expect that the qualitative features,
and particularly the fact that the Leggett mode renormalizes the fermionic spectral function, still
apply. We therefore propose the following phenomenological action coupling the fermions Ψ to
the collective boson ϕi in Nambu space, which can be thought of as integrating out the high-energy
fermionic degrees of freedom from action (2.58):

S = −1
2

∫
k

Ψ†(k)G−1
0 (k)Ψ(k) +

∫
q

ϕi(q)D−1(q)ϕi(−q)− αi√
2

∫
k

∫
q

Ψ†(k)ϕi(q)MiΨ(k + q),

(2.114)
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where the matrices Mi via which the Leggett and Bardasis-Schrieffer modes couple to the fermions
were defined in Eqs. (2.80)-(2.81). The coupling strengths αi should be computed from the
microscopic interacting fermion model, and it will depend on the interaction gT. Here, we take it
as a parameter.

The coupling of the fermions to the collective mode induces a quasiparticle self-energy7

Ξ(iωn), which consists of a normal part Σ̃(iωn) in the ρ0 channel including lifetime effects, and
an anomalous part Φ̃(iωn) in the ρy channel modeling the effect of superconducting pairing. To
one loop, the self-energy reads:

Ξi(iωn) = = α2
i

∫
p

MiG0(p)MiDi(k − p) =

= α2
i

1
β ∑

iνm

∫ d2 p
(2π)2 MiG0(iνm, p)MiDi(iωn − iνm).

(2.115)

As we will see below, we can parametrize this self-energy as:

Ξi(iωn) = Σ̃i(iωn)τ0σ0ρ0 + Φ̃i(iωn)τxσyρy. (2.116)

Therefore, the renormalized inverse Green’s function becomes:

G−1
i (iωn, k) = G−1

0 (iωn, k) + Ξi(iωn) =

= Σi(iωn)τ0σ0ρ0 − ξ(k)τ0σ0ρz − λτzσzρz + Φi(iωn)τxσyρy,
(2.117)

where, for convenience, we have redefined Σi and Φi by introducing the frequency iωn and the
gap ∆, respectively, i.e.:

Σi(iωn) = iωn + Σ̃i(iωn), (2.118)

Φi(iωn) = ∆ + Φ̃i(iωn). (2.119)

7Due to our assumption of a non-dispersive boson propagator, the self-energy is also momentum-independent
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Thus, we arrive at the following renormalized Matsubara Green’s function:

Gi(iωn, k) =
1
2

[
Σi(iωn)

Σi(iωn)2 − Φi(iωn)2 − ε2
+(k)

+
Σi(iωn)

Σi(iωn)2 − Φi(iωn)2 − ε2
−(k)

]
τ0σ0ρ0+

+
1
2

[
ε+(k)

Σi(iωn)2 − Φi(iωn)2 − ε2
+(k)

+
ε−(k)

Σi(iωn)2 − Φi(iωn)2 − ε2
−(k)

]
τ0σ0ρz+

+
1
2

[
Σi(iωn)

Σi(iωn)2 − Φi(iωn)2 − ε2
+(k)

− Σi(iωn)

Σi(iωn)2 − Φi(iωn)2 − ε2
−(k)

]
τzσzρ0+

+
1
2

[
ε+(k)

Σi(iωn)2 − Φi(iωn)2 − ε2
+(k)

− ε−(k)
Σi(iωn)2 − Φi(iωn)2 − ε2

−(k)

]
τzσzρz−

− 1
2

[
Φi(iωn)

Σi(iωn)2 − Φi(iωn)2 − ε2
+(k)

+
Φi(iωn)

Σi(iωn)2 − Φi(iωn)2 − ε2
−(k)

]
τxσyρy−

− 1
2

[
Φi(iωn)

Σi(iωn)2 − Φi(iωn)2 − ε2
+(k)

− Φi(iωn)

Σi(iωn)2 − Φi(iωn)2 − ε2
−(k)

]
τyσxρy.

(2.120)

Tunneling DOS: general case

To obtain the tunneling DOS Ni(ω), we first define the integration over momenta of the
spectral function Ai(ω):

Ai(ω) = − 1
π

∫ d2k
(2π)2 G′′

i (iωn → ω + i0+, k), (2.121)

where f ′′(x) = Im [ f (x)]. Ni(ω) is then obtained from the upper left block (ρ0 + ρz) as

Ni(ω) = tr
[(

ρ0 + ρz

2

)
Ai(ω)

]
. (2.122)

Transforming the momentum integration into an energy integration,
∫ d2k

(2π)2 → N0
4

∫ ∞
−∞ dε±, we

obtain the general expression

Ni(ω) = N0Im

[
Σi(ω)√

Φi(ω)2 − Σi(ω)2

]
. (2.123)

Tunneling DOS: bare case without collective modes

In the bare case without the boson renormalization (Σi(ω) = ω + iδ, Φi(ω) = ∆) we find:

A0(ω) =
N0

4

[ |ω|√
ω2 − ∆2

τ0σ0ρ0 −
∆sign(ω)√

ω2 − ∆2
τxσyρy

]
Θ(ω2 − ∆2), (2.124)
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where Θ(x) is the Heaviside step function, and thus we obtain

N0(ω) = N0
|ω|√

ω2 − ∆2
Θ(ω2 − ∆2), (2.125)

so the DOS is zero for ω < ∆, displays the usual square-root-singular coherence peak at ω = ∆,
and decays to the normal DOS at large ω (see the dashed blue line in Fig. 11).

Tunneling DOS: effect of the Leggett or Bardasis-Schrieffer mode

Extra structure in the ω dependence of the DOS can appear when there is structure in Σi(ω)

and Φi(ω). Now, we will show that, in the presence of a boson with gap Ωi, both self energies
develop a singularity at ω = ∆ + Ωi, when fermionic quasiparticles can decay into the boson.
In particular, we compute the self-energy to one loop in order to derive the renormalized DOS.
Applying the spectral representation to the Matsubara Green’s functions of both electrons and
bosons, and performing the sum over Matsubara frequencies using the standard procedure, the
imaginary part of the self-energy can be written as:

Ξ′′
i (ω) = α2

i

∫ ∞

−∞
dϵMi A0(ϵ)MiD′′

i (ω − ϵ) [1 + nB(ω − ϵ)− nF(ϵ)] , (2.126)

where nB and nF are the Bose-Einstein and Fermi-Dirac distribution functions, respectively.

Now, substituting the particular form of the approximate boson propagator that we are consid-
ering, D′′

i (ϵ) =
πZi
2Ωi

[δ (ϵ − Ωi)− δ (ϵ + Ωi)], the imaginary part of the self-energy becomes:

Ξ′′
i (ω) =

πα2
i Zi

2Ωi
Mi {A0 (ω − Ωi) [nB (Ωi) + 1 − nF (ω − Ωi)] +

+A0 (ω + Ωi) [nB (Ωi) + nF (ω + Ωi)]} Mi.
(2.127)

At zero temperature, the previous expression simplifies to:

Ξ′′
i (ω) =

πα2
i Zi

2Ωi
Mi {A0 (ω − Ωi)Θ (ω − Ωi) + A0 (ω + Ωi)Θ (−ω − Ωi)} Mi, (2.128)

and we see that in this approximation the self-energy simply gets at copy of A0(ω) shifted by Ωi.
For ω > 0, this further reduces to:

Ξ′′
i (ω > 0) =

πα2
i ZiN0

8Ωi
Θ (ω − ∆ − Ωi) ·

·
 |ω − Ωi|√

(ω − Ωi)
2 − ∆2

τ0σ0ρ0 +
∆√

(ω − Ωi)
2 − ∆2

τxσyρy

 .
(2.129)
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Figure 11: Density of states as a function of energy in the superconducting state. Blue dashed
line: bare DOS N0(ω) without coupling to the Leggett mode (2.125). Red solid line: DOS
renormalized by the Leggett mode to first order computed using Eqs. (2.123), (2.130), (2.131).
We have used a coupling α2

L = 16ΩL
πZL N2

0
, and we have added a finite broadening via a constant

imaginary part η = 10−2∆ in the frequency, ω → ω + iη.

Therefore, the zero-temperature imaginary parts of the normal and anomalous self-energies read
as:

Σ̃′′
i (ω > 0) =

πα2
i ZiN0

8Ωi

|ω − Ωi|√
(ω − Ωi)

2 − ∆2
Θ (ω − ∆ − Ωi) , (2.130)

Φ̃′′
i (ω > 0) =

πα2
i ZiN0

8Ωi

∆√
(ω − Ωi)

2 − ∆2
Θ (ω − ∆ − Ωi) . (2.131)

The nonzero imaginary part of the self-energy means that there is a finite lifetime due to the
coupling to the boson. In particular, the imaginary part of both the normal Σ̃′′

i (ω) and the
anomalous Φ̃′′

i (ω) self-energies have a square-root singularity at |ω| = ∆ + Ω1, and are zero
below it. By the Kramers-Kronig relation, the real parts must also display the same singularity.

We can then go back to Eq. (2.123) to compute the DOS, and the peaks in the self-energies
will lead to a peak in the DOS at ∆ + Ωi. Despite the different matrix structure of our problem, the
analytical expressions for the self-energy we have obtained are exactly the same as in Ref. [335],
and therefore the functional form of N(ω) is that of Fig. 13(a) of Ref. [335], displaying the
mentioned peak at ∆ + Ωi, as we also show in Fig. 11. When computing the self-energy to higher
orders, further satellites at |ω| = ∆ + nΩi are expected to appear in the DOS.

2.3.3 Comparison with the STM resonances

The Leggett mode, which for constant Ising SOC corresponds to the fluctuation from the
s-wave spin-singlet ground state to the out-of-plane f -wave spin-triplet subleading channel, is
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Figure 12: Allowed values of the energy of the Leggett mode Ω̄L = ΩL
2∆ as a function of the

superconducting gap ∆ normalized to a given value ∆0. The blue lines are obtained when the
DOS N0 changes over a range of values for a fixed triplet to singlet interaction ratio gT/gS =

g(0)T /g(0)S . The blue band is then obtained by allowing a set of interaction ratios. The red lines
and band are obtained analogously, but for an interaction ratio that correlates with the DOS,
gT/gS = g(0)T /g(0)S + αN0, with α > 0.

well-defined with energy ΩL < 2∆ as long as there is an attraction in the triplet channel, and
leaves signatures in the electron spectral function at ∆ + ΩL and higher harmonics. We now
discuss whether it might be responsible for the STM resonances [2].

With increasing temperature, while their energy remains approximately the same, the ampli-
tude of the STM resonances is suppressed near but below Tc. These facts are consistent with the
small exponential dependence on temperature of ΩL (see Eq. (2.108)), and with the residue of the
Leggett propagator scaling as ∆2 (see Eq. (2.111)). On the other hand, the energy of the resonances
significantly increases with the out-of-plane magnetic field, surpassing 2∆ at moderate fields. A
precise modeling of this situation would require considering the vortex mixed state. Nevertheless,
the changes in the energy likely do not originate just from variations of the gap, and the effect
of the magnetic field might be reducing the triplet attraction gT, by, for instance, hardening spin
fluctuations.

What we can address is the anticorrelation between the local normalized resonance energy
and the local gap. For that, we analyze a simplified situation where local variations of the model
parameters, in particular gS, gT and the DOS N0, induce changes in the local gap and local
Leggett mode energy analogous to changing the parameters in Eqs. (2.73) and (2.99), respectively.
If we assume that N0 varies spatially, while the interaction ratio gT/gS = g(0)T /g(0)S is kept
homogeneous, then both ∆ and Ω̄L change. In particular, increasing the DOS increases the gap
∆ but decreases Ω̄L, leading to a moderate anticorrelation. Fig. 12 shows such an anticorrelation
in blue, where we have also included a range of possible values of g(0)T , which gives rise to an
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anticorrelated “band”. Alternatively, we can additionally let gT depend on the DOS, for instance
linearly, so that gT/gS = g(0)T /g(0)S + αN0. In this case, assuming a positive coefficient α > 0,
Ω̄L is further decreased by increasing the DOS, inducing a larger anticorrelation (see red band in
Fig. 12). The analysis of other possible local variations suggests that the anticorrelation is a quite
generic feature of the Leggett mode. While more detailed calculations with actual local variations
of the parameters should be carried out, our simple modelling indicates that the Leggett mode is
compatible with the anticorrelation.

In conclusion, we believe that the Leggett mode, which we have derived in a simple model,
might be compatible with the STM experiment [2]. This suggests that the presence of the subleading
f -wave spin-triplet channel is a coherent picture to explain both the STM resonances and the nematic
magnetotransport [115, 116] in the superconducting state of monolayer NbSe2.

2.4 Discussion and conclusions

We have analyzed the superconducting collective modes of a model of the hole pockets at the
K points of monolayer NbSe2. In the presence of a subleading spin-triplet superconducting pairing,
a Leggett mode naturally arises. We have determined that its energy ΩL is smaller than twice the
superconducting gap 2∆, which allows the Leggett mode to be well-defined and long-lived. We
have also shown that it renormalizes the electron spectral function, leading to peaks at energies
∆ + ΩL in the tunneling spectrum. We have also discussed the possible interpretation of the
resonances observed in STM by Ref. [2] in terms of the Leggett mode. The suppression of the
resonances with temperature and magnetic field within the superconducting state, as well as the
anticorrelation of their energy with the superconducting gap are compatible with the Leggett mode.
The presence of a subleading spin-triplet pairing thus provides a coherent picture for monolayer
NbSe2, capable of explaining the STM resonances along with the twofold anisotropy of the in-plane
critical magnetic field [115, 116]. While other explanations remain possible, we believe this is the
most likely one. Our general message is therefore that one should also consider superconducting
collective modes in the particle-particle channel when interpreting tunneling experiments.

The main ingredients of our model are Ising SOC, which splits the bands with a spin-valley
locking, and static local interactions gS and gT that decouple into a s-wave spin-singlet ∆S and a
f -wave spin-triplet ∆⃗T superconducting pairing. The latter is split by the Ising SOC in out-of-plane
opposite-spin ∆z

T and in-plane equal-spin ∆
xy
T pairings. Assuming a s-wave ground state and a

subleading attractive interaction in the f -wave channel naturally gives rise to the Leggett collective
mode, which consists of the fluctuation of the relative phase between the spin-split bands. In the
absence of singlet-triplet mixing, the Leggett mode reduces to a Bardasis-Schrieffer fluctuation
towards the out-of-plane f -wave spin-triplet ∆z

T state with π
2 relative phase with respect to the
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s-wave ∆S ground state. Within the functional integral formalism, its propagator is given by the
expansion of the effective action to quadratic order in the field associated with ∆z

T. The pole
of its propagator in the long-wavelength limit defines its energy, which is always ΩL < 2∆ as
long as the interaction in the ∆z

T channel is attractive. Slightly increasing the temperature only
slightly increases its energy, but the quasiparticle residue of its propagator scales with ∆2, so its
amplitude decays below Tc. Considering elastic scattering only, and using a low-energy effective
action coupling the fermions in the superconductor with the Leggett mode, we have determined
the renormalized electron spectral function to first order in perturbation theory due to the coupling
to the Leggett mode. As we show in Appendix 2.B, this picture is robust to singlet-triplet mixing
in the ground state, and the energy of the Leggett mode is only slightly decreased.

As long as there is an attraction in the f -wave channel, we expect the Leggett mode to
survive against including more realistic features to the model, such as the hole pocket at Γ or gap
anisotropies along the pockets. The same applies to the effect of the CDW, which we have ignored
in our work since it only opens partial gaps in the Fermi surface. Regarding the effect of disorder,
Refs. [317, 320] have determined that, in a singlet-triplet mixed ground state, the triplet component
is rapidly suppressed. Nevertheless, the Leggett mode is defined also for a pure s-wave ground
state, which is robust to disorder, so we expect a certain robustness again disorder as long as the
triplet interaction remains attractive. The challenge in all these cases is determining the interaction
in the f -wave channel, and analyzing whether it remains attractive.

It is worth discussing the Migdal-Eliashberg calculations of monolayer NbSe2 performed
by Ref. [33] after the publication of our work [2]. By including electron-phonon interactions
determined ab initio, and adding spin fluctuations, they obtained an s-wave ground state with
small singlet-triplet mixing, but with a repulsive effective interaction in the f -wave channel. They
instead found a different subleading s± state, whose gap has opposite sign in the Γ and K pockets,
but the same sign in the inner and outer pockets at K. Incidentally, this s± state has been proposed
to arise from purely repulsive interactions if the interband coupling between Γ and K dominates
[306]. A Leggett mode would also arise from their calculation, but consisting of the relative phase
fluctuation between the Γ and K bands. We mention that the CDW was ignored in this prediction,
which might significantly affect both the electron-phonon coupling and the spin fluctuations [297].

It is interesting to analyze whether the Leggett mode carries on to isostructural transition
metal dichalcogenides, such as monolayer NbS2, TaSe2 and TaS2. Ref. [339] has observed dip-
hump features in the STM spectrum of monolayer 1H-TaS2. 1H-TaS2 displays similar CDW and
superconducting instabilities to 1H-NbSe2. However, the STM features in 1H-TaS2 have energies
Ω ≫ 2∆, and they survive to high magnetic fields beyond the critical field. This discards
the Leggett mode as a possible explanation in 1H-TaS2, and suggests a different origin. While
Ref. [339] speculated with a magnetic fluctuation responsible for the f -wave pairing interaction, the
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robustness against magnetic field remains to be explained. Moreover, in spin-fluctuation-mediated
superconductors, the gap opening strongly renormalizes the spin fluctuations, which acquire a gap
and become undamped only below Tc [335, 338]. Ref. [340] has also detected features in the STM
spectrum of the CDW state of monolayer 1H-NbS2, at energies ≳ 2.5meV. However, monolayer
1H-NbS2 does not become superconducting, and therefore the features have to originate from a
mechanism unrelated to superconductivity. Based on DFT calculations, Ref. [340] has proposed
the STM features to originate from inelastic scattering of the phase and amplitude CDW modes.
The temperature dependence of the resonances, whose energy should decrease with increasing
temperature in the case of CDW modes, might constitute a test for this interpretation.

2.4.1 Outlook

Several avenues remain open in NbSe2 and similar compounds, both on the theory side and
in the interpretation of the experiments. It would be interesting to determine the microscopic
interactions and the superconductivity in the presence of the CDW, and analyze whether a Leggett
mode survives. If the f -wave state is not subleading, a coherent picture for the experimental
evidence is lacking. This evidence is: twofold-anisotropic in-plane critical magnetic field in
few-layer NbSe2 [115, 116], enhanced in-plane critical magnetic field beyond Ising protection in
few-layer NbSe2 [313], and STM resonances within the superconducting state of monolayer NbSe2

with energy Ω < 2∆ [2]. The nematic magnetotransport could also arise from a d-wave order
parameter that couples to strain [115], or from other tensor perturbation not necessarily involving
a subleading superconducting pairing [318, 321]. In view of the TaS2 [339] and NbS2 [340]
STM resonances, which are not directly related to superconductivity, it would be interesting to
reevaluate the role of phonons in NbSe2. While the phonon energies in both the normal state and
the commensurate CDW are considerably higher than the resonance energy in NbSe2, the effect
of the slight incommensuration present in real samples has not been studied yet, and could give
rise to lower-energy CDW phonons. In summary, the next step in the theory side might need to
consider the effects of the CDW and its incommensuration in the superconducting pairings and the
collective modes.

On the experimental side, it would be desirable to further analyze the resonances observed in
STM. Raman spectroscopy and nonlinear optics are promising tools [258–262, 267], since they can
provide information on the symmetry of the bosonic mode. The Leggett mode is totally symmetric
(A′

1), so these techniques could verify this prediction or disprove the Leggett mode interpretation.
It would also be interesting to study other aspects that we have not explicitly mentioned so far,
namely the spatial distribution and amplitudes of the resonances. First, in individual spectra, the
amplitudes of the three resonances, which we have interpreted as harmonics, are not always in
descending order from the first the the third harmonic, as a perturbative calculation involving
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higher-order scattering processes would predict. For individual spectra, this might be related to
matrix elements and spatial fluctuations, but we would expect the average spectrum over the CDW
unit cell to have this monotonous decrease of the amplitudes. Further analysis of the experimental
data is needed to analyze this hypothesis. A more intriguing, perhaps related, observation is that
in a few individual spectra the third resonance appears when the second does not. Studying the
spatial distribution of these events might also shed light on their origin.

Other related TMDs where the ideas and models discussed in this chapter could be applied
are the 4Hb polytypes, whose stacking consist of alternating T and H layers (see Fig. 1.1). In
particular, 4Hb-TaS2 has raised a lot of attention due to signatures of two-component topological
superconductivity and time-reversal symmetry breaking [341–350], as well as twofold-anisotropic
critical field [346]. The superconductivity is thought to arise mainly from the H layer, analogous to
the one studied in this chapter. The study of the subleading pairings in H monolayers is therefore
relevant for 4Hb-TaS2, where an unconventional pairing might be stabilized. Indeed, the role of the
interlayer coupling to the T layer, which isolated supports a Mott insulating state, is unclear yet.

To sum up, we believe that out theory puts forward the investigation of potential superconduct-
ing collective modes in 2D transition metal dichalcogenides, which should be considered when
interpreting tunneling experiments. The potential presence of a subleading unconventional pairing
leads to interesting properties, and, under the right circumstances, could lead to unconventional
superconductivity in transition metal dichalcogenides, such as the 4Hb polytype.
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Appendices

2.A Group theory: point group of monolayer NbSe2

In this Appendix, we describe the space group P6̄m2 and point group D3h characterizing the
normal state of monolayer NbSe2. This group-theoretical analysis is used to construct the k · p
model, and classify the pairing symmetries.

The space group P6̄m2 is symmorphic. The Γ point has little group D3h with time reversal
symmetry T , whereas the K points are invariant under C3h and the anti-unitary combination mxT .

The point group D3h is generated by the out-of-plane threefold symmetry C3z, the in-plane
mirror symmetry mx, and the out-of-plane mirror symmetry mz [282]. Its character table is given
in Table 2.A.1. It has irreps Amz

1 , Amz
2 , Emz , where mz =′,′′ indicates the parity under mz, and

we have chosen the subindices 1, 2 to indicate the parity under the in-plane mirrors with a view
to easily including Rashba SOC. Indeed, Rashba SOC breaks the mz symmetry but preserves the
in-plane mirrors, rendering the point group C3v, with irreps A1, A2, E. For completeness, we also
present the character table of C3h in Table 2.A.2, which is isomorphic to the little group at the K
points.

D3h 1 E 2 C3z 3 mx 1 mz 2 mzC3z 3 C2y
A′

1 ≡ Γ1 1 1 1 1 1 1
A′

2 ≡ Γ2 1 1 -1 1 1 -1
E′ ≡ Γ5 2 -1 0 2 -1 0
A′′

1 ≡ Γ3 1 1 1 -1 -1 -1
A′′

2 ≡ Γ4 1 1 -1 -1 -1 1
E′′ ≡ Γ6 2 -1 0 -2 1 0

Table 2.A.1: Character table of the D3h point group. The labels for the little group at Γ are also
provided. The superindices ′ and ′′ indicate even and odd under mz, respectively. The subindices
1 and 2 indicate even and odd under mx.
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C3h 1 E 1 C3z 1 C−1
3z 1 mz 1 mzC3z 1 mzC−1

3z
A′ ≡ K1 1 1 1 1 1 1
A′′ ≡ K2 1 1 -1 -1 1 1
+1E′ ≡ K3 1 e+i2π/3 e−i2π/3 1 e+i2π/3 e−i2π/3

−1E′ ≡ K5 1 e−i2π/3 e+i2π/3 1 e−i2π/3 e+i2π/3

+1E′′ ≡ K4 1 e+i2π/3 e−i2π/3 -1 −e+i2π/3 −e−i2π/3

−1E′′ ≡ K6 1 e−i2π/3 e+i2π/3 -1 −e−i2π/3 −e+i2π/3

Table 2.A.2: Character table of the C3h point group. The labels for the little group at K are also
provided. The superindices ′ and ′′ indicate even and odd under mz, respectively.

2.B Effect of singlet-triplet mixing in the Leggett mode

In this Appendix, we consider a ground state with mixed s-wave spin-singlet ∆S and out-of-
plane f -wave spin-triplet ∆z

T, and show that the Leggett mode remains qualitatively the same. As we
mentioned in Section 2.2.1, there are two ways of introducing this mixing: including a k-dependent
Ising SOC that makes the DOS of the spin-split bands different, and adding a symmetry-allowed
interaction that explicitly mixes ∆S and ∆z

T. The general model H = H0 + Hint is therefore

H0(k) = ξ(k)τ0σ0 + λ(k)τzσz, (2.132)

Hint = gSΦ̂†
SΦ̂S + gz

TΦ̂z†
T Φ̂z

T + gST

(
Φ̂z†

T Φ̂S + Φ̂†
SΦ̂z

T

)
+ gxy

T Φ̂
xy†
T · Φ̂

xy
T , (2.133)

where, to leading order in k, the Ising SOC is

λ(k) = λ − η
k2

2m
, (2.134)

with η > 0 a dimensionless parameter, which we will show to be η = (N− − N+)/(N− + N+)

the relative difference of DOS of the spin-split bands. Physically, the η term arises due to the fact
that the atomic SOC only affects the d± orbitals, whose weight in the bands is exactly 1 in the
K points, but it decays to about 0.8 at the Fermi level due to mixing with the dz2 orbital [351].
Defining the Ising SOC at the Fermi level λF = λ(k = kF) = λ − η|µ|, we can estimate that
η = (λ − λF)/|µ| ∼ 0.2λ/|µ| ∼ 0.03. The singlet-triplet mixing due to this term will therefore
be small, as concluded by Ref. [306]. Regarding the interaction term, we will omit the in-plane
triplet, which is suppressed by SOC, and call gz

T = gT.

The single-particle energies are

ε±(k) = ξ(k)± λ(k) = −k2 − k2
F±

2m±
, (2.135)
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where the new masses are m± = m
1±η and the Fermi momenta are k2

F±
2m±

= −µ ± λ. We high-
light that the ± labels refer to the spin-split pocket shifted up and down by SOC, respectively.
Correspondingly, + is the outer pocket (dK+↑, dK−↓) and − is the inner pocket (dK+↓, dK−↑).
The DOS of these spinful bands is N± = m±

2π = N01
1±η , where N01 = m

2π = N0
4 is the DOS

of each band in the absence of SOC. The DOS difference between the spin-split bands is
N− − N+ = N01

2η
1−η2 ∼ 0.06N01. Note that the inner pocket has a higher DOS.

Due to the singlet-triplet mixing, the outer and inner pockets develop different superconducting
gaps ∆±, which we will define later. We assume a ground state with dominant s-wave spin-singlet,
where both ∆± have the same sign, which can be realized if gS < gT < −|gST| < 0. In particular,
we choose ∆± > 0. The Bogoliubov quasiparticle energies are

E±(k) =
√

ε2
±(k) + ∆2

±. (2.136)

In the following, we determine the gap equation to see the relation between the outer and inner
gaps ∆± and the mixing of singlet and triplet order parameters. We will then determine the Leggett
mode energy following the steps of section 2.3.1. The Leggett mode consists of the relative phase
fluctuation between the outer and inner pockets. In the general case with singlet-triplet mixing, this
no longer coincides with the Bardasis-Schrieffer mode related to the out-of-plane triplet, which
complicates the calculations, but the result remains analogous.

2.B.1 Gap equation and ground state

If gST = 0 and the mixing originates only from the single-particle η SOC, then the gap
equations for the coupled singlet ∆S = −gS⟨Φ̂S⟩ and triplet ∆z

T = −gT⟨Φ̂z
T⟩ channels are given

by Eqs. (2.68) and (2.69). In this case, ∆± = ∆S ± ∆z
T, and the gap equations in terms of ∆± read

−∆+ = 2(gS + gT)∆+ f+(T) + 2(gS − gT)∆− f−(T), (2.137)

−∆− = 2(gS + gT)∆− f−(T) + 2(gS − gT)∆+ f+(T), (2.138)

where we have defined

f±(T) =
∫ d2k

(2π)2

tanh
[

β
2 E±(k)

]
E±(k)

= N±
∫ Λ

−Λ
dε

tanh
[

β
2

√
ε2 + ∆2

±
]

2
√

ε2 + ∆2
±

, (2.139)

In particular, f±(T = 0) = N±argsinh
(

Λ
|∆±|

)
. The gap equations (2.137) and (2.138) can be

decoupled, giving rise to separate equations for ∆+ and ∆−.
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If gST ̸= 0, however, the previous gap equations are no longer applicable. More dramatically,
∆S = −gS⟨Φ̂S⟩ and ∆z

T = −gT⟨Φ̂z
T⟩ no longer couple to the Gorkov Green’s function (2.63) via

the matrices MS = τxiσy and Mz
T = yτyσziσy of Eqs. (2.47) and (2.48), respectively. Instead,

following the generalized BCS theory outlined in the Introduction, we define the interaction matrix

g =

(
gS gST

gST gT

)
. (2.140)

The adequate pairings ∆s and ∆z
t , that indeed couple to the fermions with MS and Mz

T, are defined
as

∆st =

(
∆s

∆z
t

)
= −g

(
⟨Φ̂S⟩
⟨Φ̂z

T⟩

)
=

(
−gS⟨Φ̂S⟩ − gST⟨Φ̂z

T⟩
−gT⟨Φ̂z

T⟩ − gST⟨Φ̂S⟩

)
. (2.141)

We stress that, while ∆s is mainly singlet and ∆z
t is mainly out-of-plane triplet, they are different

from the pure singlet ∆S = −gS⟨Φ̂S⟩ and pure out-of-plane triplet ∆z
T = −gT⟨Φ̂z

T⟩ pairings, and
they only become equivalent in the limit gST = 0. Indeed,

∆s = ∆S +
gST

gT
∆z

T, (2.142)

∆t = ∆z
T +

gST

gS
∆S, (2.143)

The effective action in terms of the new pairings ∆s and ∆z
t reads

Seff[∆̄, ∆] = −
∫

x

[
∆̄st · g−1 · ∆st

]
− Tr

[
log G−1

]
, (2.144)

where the Gorkov BdG Green’s function reads

G−1(k) =

(
iωnτ0σ0 − H0(k) −∆sτxiσy − ∆z

t iτyσziσy

∆̄sτxiσy + ∆̄tiτyσziσy iωnτ0σ0 + H0(k)

)
, (2.145)

which is analogous to Eq. (2.63) by replacing ∆S and ∆z
T by ∆s and ∆z

t , respectively. Here
we have also omitted the in-plane triplet, which remains unchanged by the singlet-triplet mixing.
Consequently, assuming real pairing, the outer and inner gaps are now

∆± = ∆s ± ∆z
t . (2.146)

It is useful to define the gap ∆ and mixing angle θ by

∆s = ∆ cos(θ), (2.147)

∆z
t = −∆ sin(θ). (2.148)
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In the limit gST = 0, θ is the singlet-triplet mixing angle: if θ = 0, the state is pure singlet, in
which case ∆ is the gap. We have chosen a minus sign in the second equation since ∆z

t < 0 for
η > 0. For gST ̸= 0, θ indicates the mixing between ∆s and ∆z

t . The outer and inner gaps in terms
of ∆ and θ read:

∆± = ∆ [cos(θ)∓ sin(θ)] , (2.149)

so

∆ =

√
1
2
(
∆2
+ + ∆2

−
)
. (2.150)

The effective action (2.144) is thus similar to (2.60), but now the inverse interaction matrix
g−1 is not diagonal:

g−1 =
1

det(g)

(
gT −gST

−gST gS

)
, (2.151)

where det(g) = gSgT − g2
ST. This leads to the following modified gap equations for the outer and

inner pockets:

−∆+ = 2(gS + gT + 2gST)∆+ f+(T) + 2(gS − gT)∆− f−(T), (2.152)

−∆− = 2(gS + gT − 2gST)∆− f−(T) + 2(gS − gT)∆+ f+(T), (2.153)

which are similar to the gap equations but with the additional factors ±2gST, which tend to make
the inner or outer pocket larger, depending on the sign of gST. The numerical solution of the gap
equations indicates that η > 0 and gST > 0 lead to a larger gap in the inner pocket, which has
a higher DOS, whereas gST < 0 has the opposite effect. Correspondingly, η > 0 and gST > 0
favour ∆z

T < 0 and ∆z
t < 0, and the opposite for gST < 0. The bare ground state action and

Gorkov BdG Green’s function read:

S (0)
eff [∆̄, ∆] =−

∫
x

[
gT

det(g)
cos2(θ) +

gS

det(g)
sin2(θ) + 2

gST

det(g)
sin(θ) cos(θ)

]
∆̄(x)∆(x)−

− Tr
[
log G−1

0

]
, (2.154)

G−1
0 (k) =iωnτ0σ0ρ0 − ξ(k)τ0σ0ρz − λ(k)τzσzρz + ∆sτxσyρy + ∆z

t τyσxρy, (2.155)

2.B.2 Leggett mode energy

Now, the Leggett mode is the relative phase fluctuation between the outer and inner pockets.
The fluctuating field corresponds to the phase φ such that ∆′

± = ∆±ei±φ ≃ ∆± ± iφ∆±. In terms
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of the s, tz basis, this becomes

∆′
s = ∆s + i∆z

t φ = ∆ cos(θ)− i sin(θ)ϕL, (2.156)

∆z
t
′ = ∆z

t + i∆s φ = −∆ sin(θ) + i cos(θ)ϕL, (2.157)

where we have defined the Leggett bosonic field in terms of the gap ∆ and the phase fluctuation φ

as ϕL = ∆φ. In the absence of singlet-triplet mixing. this recovers that the Leggett mode is the
fluctuation of the out-of-plane triplet with imaginary phase. In the general case, to compute the
Leggett mode propagator, we substitute ∆s and ∆z

t in the action (2.144) by ∆′
s and ∆z

t
′, and expand

to quadratic order in ϕL. We obtain:

Seff[∆, ϕL]− S (0)
eff [∆] =

∫
q

D−1
L (q)ϕL(q)ϕL(−q), (2.158)

where D−1
L (q) is the inverse Leggett propagator:

D−1
L (q) = −

[
gT

det(g)
sin2(θ) +

gS

det(g)
cos2(θ) + 2

gST

det(g)
sin(θ) cos(θ)

]
+ χL(q), (2.159)

with the susceptibility:

χL(q) =
1
2

∫
k

tr[G0(k)MLG0(k + q)ML]. (2.160)

The coupling matrix of the Leggett mode to the fermions is now

ML = τyσxρx cos(θ)− τyσyρx sin(θ). (2.161)

The susceptibility in the long-wavelength limit is similar to Eq. (2.88) but with an additional factor
depending on the mixing angle:

χL(iΩm) = χ+
L (iΩm) + χ−

L (iΩm), (2.162)

χ±
L (iΩm) = − [1 ∓ sin(2θ)]

∫ d2k
(2π)2

tanh
[

β
2 E+(k)

]
E+(k)

{
1 +

(iΩm)2

[2E+(k)]2 − (iΩm)2

}
.

(2.163)

We can identify the second term of (2.163) with the F±
L (iΩm) function that we defined in Eq.

(2.92), but now with the appropriate gaps and dispersion E±(k) =
√

ε2
±(k) + ∆2

±. This allows
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to define two normalized Leggett energies, one for each gap:

Ω̄±
L =

ΩL

2∆±
. (2.164)

Inserting the gap equation to simplify the first term of Eq. (2.163), after a few manipulations
we arrive at the following Leggett propagator

D−1
L (Ω) = N0 cos(2θ)

[ |ḡS| − |ḡT|
det(ḡ)

− 1
2

cos(θ)− sin(θ)
cos(θ) + sin(θ)

1
1 + η

FL(Ω̄+)−

−1
2

cos(θ) + sin(θ)
cos(θ)− sin(θ)

1
1 − η

FL(Ω̄−)
]

,
(2.165)

where det(ḡ) = N2
0 det(g), and FL(Ω̄) was defined in Eq. (2.94), whose analytical expression

at zero temperature is given by Eq. (2.98). The zeros of the inverse propagator (2.165) define
the energy of the Leggett mode. To compare it to the case without singlet-triplet mixing, it is
illustrative to analyze the low-energy limit ΩL ≪ ∆±, where

Ω̄L =
ΩL

2∆
=

√
|ḡS| − |ḡT|

|ḡS||ḡT| − ḡ2
ST

(1 − η2) cos(2θ), (2.166)

where cos(2θ) = ∆+∆−
∆2 . Comparing this expression to Eq. (2.100), we conclude that in the realistic

case with small mixing, i.e., small gST and η, the Leggett mode energy remains approximately the
same. Moreover, the mixing tends to decrease the Leggett energy, especially by the k-dependent
SOC.
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Chapter 3

Topological amorphous matter

The field of topology in condensed matter physics has allowed us to better understand and
classify quantum phases and phase transitions. This field has traditionally focused on crystalline
materials, where the translational and point-group symmetries simplify the classification and
characterization of topological phases. While the robustness against disorder has been studied
since the beginning of the field, only recently progress has been made in defining and characterizing
topological phases in noncrystalline systems, such as amorphous and quasicrystalline materials.
Despite the variety of phases and diagnostic tools in amorphous topological matter, there is
no generic and efficient method to characterize topology in noncrystalline solids. Here, we
introduce the structural spillage, a new indicator that predicts the unknown topological phase of a
noncrystalline solid, which is readily compatible with first-principles calculations. In particular,
the structural spillage compares the occupied states of a noncrystalline solid to its crystalline
counterpart, and provides a quantitative measure of the band inversions differentiating them.
We also adapt its formulation to tight-binding calculations, and illustrate its potential using 2D
amorphous bismuth models, predicting the bilayer to be a new topologically nontrivial material.
Finally, we present the density functional theory calculations implemented by our collaborators
[3], which demonstrate the suitability of the structural spillage.
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3.1 Introduction

In this section, we present an overview of the field of topological quantum matter. Focusing
on translationally-invariant crystals, we first describe the twofold role of symmetries in topological
matter: not only do they protect topological phases, but they also facilitate their classification. We
then briefly depict the basic structural properties of noncrystalline systems, mainly focusing on
amorphous materials. Finally, we describe the recent advances in realizing topological phases in
amorphous systems, paying special attention to the topological indicators available in the absence
of translational symmetry.

3.1.1 Topology in crystals

There are phase transitions which lie beyond the Landau paradigm of spontaneous symmetry
breaking. The emblematic case is that of topological phase transitions, where it is a topological
index, and not symmetry, what changes in the transition. Here, we will only focus on the topological
phases that can be described by quadratic noninteracting or mean-field Hamiltonians, and mainly
on gapped states. These are a subset of the so-called symmetry-protected topological (SPT)
phases1 [353, 354]. Unlike intrinsic topological order [352, 355], characteristic of fractional
quantum Hall phases [356, 357] and certain quantum spin liquids [358–361], topological properties
of SPTs are not stable against arbitrary strong interactions, but they are protected by certain
symmetries. In SPT phases, topological quantities are related to global properties of the occupied
wavefunctions, which cannot be differentiated by any measurement of the expectation value of a
local operator. States belonging to different topological classes cannot be connected to each other
by local adiabatic transformations of the Hamiltonian respecting the underlying symmetries2.
In particular, topologically trivial systems are those which can be smoothly connected to an
atomic insulator. The absence of adiabatic continuity between topologically distinct phases leads
to the bulk-boundary correspondence: an anomalous gapless boundary state should appear in
the boundary between two topologically distinct phases if the boundary respects the protecting
symmetries. Here, anomalous has a twofold meaning. First, anomalous boundary states cannot
be realized in a well-defined system in the dimensions of the boundary; they can only exist in the
boundary of the higher dimensional topological phase. For instance, 1D anomalous edge states
of a 2D topological phase cannot be realized in purely 1D systems. Second, anomalous boundary

1According to certain definitions of topological order [352], the integer quantum Hall state and the chiral topological
superconductor are topologically ordered, even if they can be described by quadratic Hamiltonians. However, a more
restrictive notion of topological order that requires nontrivial topological excitations excludes these phases from the
definition of topological order.

2If we include the requirement of preserving the number of occupied and/or unoccupied orbitals, two new types
of unstable topology appear, deemed delicate and fragile topology [362]. Unstable topological phases do not display
anomalous boundary states. Here, we will only consider stable topology.
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states cannot be removed by local symmetry-preserving perturbations at the boundary [362]. In
particular, anomalous boundary states are robust to Anderson localization, if the disorder preserves
the protecting symmetries3.

In this section we highlight the twofold role of symmetry within topological states of matter.
On the one hand, the possible topological phases depend on the symmetries present. In this sense,
symmetries can protect topological phases. On the other hand, even if certain symmetries are
not necessary for topological protection, they can greatly facilitate the topological classification in
practice by simplifying the expressions of the topological invariants.

Symmetries are transformations which leave the Hamiltonian invariant [98, 364, 365]. We
consider the second-quantized Hamiltonian of a free-fermion system Ĥ = ∑ c† · H · c, where c
are a basis of annihilation operators of the Hilbert space of interest. The matrix representation
H of the Hamiltonian is called the first-quantized Hamiltonian. The operator Ŝ associated to
a symmetry commutes with the second-quantized Hamiltonian, ŜĤŜ−1 = Ĥ, and leaves the
canonical anticommutation relations invariant, Ŝ{ca, c†

b}Ŝ−1 = {ci, c†
j }. Depending on their

matrix representation S, symmetries can be classified as linear and unitary, or anti-linear and anti-
unitary. While Ŝ always commutes with the second-quantized Hamiltonian Ĥ, S can commute or
anti-commute with the first-quantized Hamiltonian H. Therefore, four types of symmetry can be
distinguished based on the unitarity of S and its commutation with H:

• Unitary symmetries are represented by a unitary matrix U, and commute with H, UHU−1 =

H. Unitary symmetries are the only ones where H and U can be simultaneously block-
diagonalized, with each block transforming as an irreducible representation of the symmetry.
Spatial symmetries, such as translations and rotations, are unitary symmetries. Certain local
symmetries, such as rotations in the spin or orbital space, are also unitary.

• Anti-unitary symmetries are also known as time-reversal-like symmetries T̂, since time-
reversal symmetry (TRS) is their representative example. They are represented by the
product of a unitary matrix and complex conjugation T = UTK, and commute with H,
UT H∗U−1

T = H. Applying this relation twice and the unitarity of UT, we obtain that
T2 = ±1. Physical TRS can be represented as T = e−iπSyK, with Sy the spin projected
to the y direction. Therefore, T2 = +1 corresponds to spinless or integer spin particles,
and T2 = −1 to half-odd-integer spin particles. In the latter case, Kramers theorem
applies, which implies that time-reversed states are degenerate. Finally, we mention that
only operators with the same number of creation and annihilation operators, such as electron-
hole bilinears of the form c†c, can be classified as TRS even or odd, while the single-particle

3This view has been recently challenged [363].
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operators c cannot be labelled this way due to the gauge freedom in choosing the phase of
the state.

• Anti-unitary anti-symmetries P̂, also called particle-hole- or charge-conjugation-like sym-
metries after their archetypical example, are also represented by the product of a unitary
matrix and complex conjugation P = UPK, but anti-commute with H, UPH∗U−1

P = −H,
and impose that Tr[H] = 0. Again, P2 = ±1. Now, P relates a single-particle state with
energy E to other with energy −E. By construction, mean-field Bogoliubov-de Gennes
(BdG) Hamiltonians of superconductors have particle-hole symmetry (PHS).

• Unitary anti-symmetries Ĉ, also known as chiral symmetries, are represented by a unitary
matrix UC, but anti-commute with H, UC HU−1

C = −H. They can be regarded as the
product of a TRS and a PHS, Ĉ = T̂ · P̂, so UC = UTU∗

P. The chiral symmetry always
squares to +1, so it has eigenvalues ±1. As PHS, it relates single-particle states with
opposite energies. Finally, not only does chiral symmetry impose that Tr[H] = 0, but in the
eigenbasis of UC, H is block off-diagonal:

H =

(
0 h
h† 0

)
(3.1)

Within this context, a chiral system is defined as a system invariant under a chiral symmetry.
This should not be confused with the concept of chiral structure introduced in Chapter
1, which referred to the absence of any inversion, mirror or rotoinversion symmetry. Yet
another meaning of the term chiral is used in the field of superconductivity, where a chiral
superconductor is a time-reversal breaking topological superconductor whose pairing winds
in momentum space and has a finite orbital angular momentum. Moreover, edge states are
also dubbed chiral when they disperse only in one direction. For example, integer quantum
Hall states and 2D chiral topological superconductors display chiral edge states.

Depending on the nature of the protecting symmetries, topological phases have been tradition-
ally given different names. If the protecting symmetries are only combinations of the local TRS,
PHS and chiral symmetries, the phases are termed strong topological [95–98]. Other topological
phases require spatial symmetries for their protection as well, such as translational, rotational and
mirror symmetries. Since the field of topology has traditionally focused on translationally-invariant
crystals, these phases are known as weak or crystalline topological phases [99, 100].

The combinations of the TRS, PHS and chiral symmetries protecting strong topological phases
give rise to the ten Altland-Zirnbauer symmetry classes [94, 366], which are known as the tenfold
way. By including PHS and chiral symmetry, this classification extends the three Wigner-Dyson
classes [367] for TRS: the complex unitary class A with no symmetries, the real orthogonal class
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Class T P C d 0 1 2 3 4 5 6 7
A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI + 0 0 Z 0 0 0 2Z 0 Z2 Z2
BDI + + 1 Z2 Z 0 0 0 2Z 0 Z2
D 0 + 0 Z2 Z2 Z 0 0 0 2Z 0
DIII − + 1 0 Z2 Z2 Z 0 0 0 2Z

AII − 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII − − 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 − 0 0 0 2Z 0 Z2 Z2 Z 0
CI + − 1 0 0 0 2Z 0 Z2 Z2 Z

Table 1: Periodic table of strong topological gapped phases. d is the space dimension. If TRS
or PHS is present, the sign of its square is written. The possible topological phases can have
an integer (Z), even-integer (2Z), or Z2 topological index. 0 indicates absence of topological
phases.

AI with TRS squaring to T2 = +1, and the real symplectic class AII with TRS squaring to
T2 = −1. Strong topological phases are classified in the so-called periodic table (see table 1),
which determines the possible topological classes depending on the Altland-Zirnbauer symmetry
class and the dimensionality of the system [95–98, 368]. The possible topological invariants can
be either integer-valued4, such as the Chern and winding numbers, or Z2, like the Chern-Simons
and Fu-Kane invariants. Since TRS, PHS and chiral symmetry are local, strong topological
phases do not require spatial symmetries to be defined. Therefore, they are robust to disorder, as
long as it preserves the symmetry class and does not close the bulk mobility gap. Furthermore,
all the boundaries display anomalous boundary states, characterized by the so-called Anderson
delocalization, i.e., they cannot be localized by any amount of symmetry-preserving disorder on
the boundary. The number of anomalous boundary states is related to the value of the topological
invariants.

Spatial symmetries can enrich the topological classification and give rise to new phases [100].
For instance, weak topological phases are protected by translational symmetry. In particular, a 3D
weak topological insulator can be regarded as a stack of 2D topological insulators along a given
direction, and the Z2 invariant can still be defined in 3D thanks to the translational invariance
along this direction [372]. Anomalous boundary states only appear in the surfaces parallel to this
direction, since translational symmetry is only preserved there. Other crystalline topological phases
are protected by point-group symmetries, such as rotational symmetry [99], mirror symmetry
[373], and nonsymmorphic symmetries [374]. The general idea is that topological invariants can

4When adding many-body interactions, certain Z invariants become Z8 [369–371].
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Figure 1: Sketch of the chiral hinge states of a 3D HOTI protected by the combination C4zT of
fourfold rotational symmetry and time-reversal symmetry. Extracted from [375]

be defined at the subspaces of the Brillouin zone (BZ) which are invariant under the symmetry.
Anomalous boundary states only appear at the boundaries that respect the protecting symmetries.
This idea lead to the introduction of higher order topological insulators (HOTIs) [375]. For a
d-dimensional system, we define its nth order boundaries as the d − n dimensional boundaries.
For instance, the first order boundaries of a 3D system are its 2D surfaces, and its higher order
boundaries are its 1D hinges and 0D corners. The first order boundaries of a HOTI do not respect
the protecting symmetries and are therefore gapped, but some of its higher order boundaries are
gapless. In particular, the anomalous boundary states appear in higher order boundaries that are
the intersection of boundaries related by the protecting symmetries (see e.g. Fig. 1). Indeed, the
mass term in the symmetry-related boundaries has opposite sign, so it is forced to vanish in their
intersection, giving rise to the higher order boundary state. Even if the intersection is not perfectly
sharp, as in, e.g., a round corner, the previous argument guarantees that the boundary state appears
somewhere in this region.

Even if spatial symmetries are not required for their protection, they simplify the identification
and classification of topological phases. First of all, translational symmetry has been traditionally
assumed in the field of topological phases. For instance, the periodic table of strong topological
phases 1 was derived for Bloch Hamiltonians [95–98], taking advantage of the fact that the Brillouin
zone has the topology of a torus. The expressions of the topological invariants are also routinely
given in terms of integrations over the whole Brillouin zone, or a subspace of it in the case of
crystalline topological insulators. The Chern number C of a 2D system, for example, is the integral
of the Berry curvature Ωz

nm(k) over the Brillouin zone:

C =
1

2π

∫
BZ

d2kTr [Ωz(k)] , (3.2)
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where the Berry curvature is a gauge-invariant geometrical quantity defined in terms of the Berry
connection Aα

nm(k):

Aα
nm(k) = i⟨unk|∂αumk⟩, (3.3)

Ωz(k) = ϵzαβ 1
2

(
∂α Aβ − ∂α Aβ + [Aα, Aβ]

)
, (3.4)

with |umk⟩ the cell-periodic Bloch eigenstates, ∂α := ∂
∂kα

, α = x, y, and ϵγαβ the completely
antisymmetric tensor.

Even with the help of translational symmetry, computing the topological invariants is, in
general, computationally expensive, since it requires the knowledge of the Bloch wavefunctions
over the entire Brillouin zone with sufficient resolution. Space group symmetries remarkably
simplify this task thanks to the theories of symmetry indicators and topological quantum chemistry
[102–107]. Symmetry indicators provide a sufficient, but not necessary, condition for a set of Bloch
bands to be topological, based on its symmetry representations at the high symmetry points of the
Brillouin zone. Note that this assumes a noninteracting and translationally invariant Hamiltonian.
The sufficient criterion for topology of symmetry indicators is based on the fact that, by definition,
trivial atomic insulators can be described by fully-filled orbitals localized in real-space. Therefore,
all the possible sets of symmetry representations of bands that can be derived from atomic insulators
can be determined by Fourier transforming all the possible combinations of lattices and orbitals. If
a set of bands cannot be described in this way, it is topological. Furthermore, symmetry indicators
allow to partially determine the topological invariants [105, 376–378]. The paradigmatic example
is that of inversion symmetric topological insulators, where the strong and weak Z2 indices can
be determined from the parity under inversion symmetry of the eigenfunctions at the time-reversal
invariant momenta [101, 372].

The approach of topological quantum chemistry is therefore based on the obstruction to
Wannierize topological insulators [379–382]. For a given set of bands, Wannier functions are
real-space wavefunctions, labelled by a unit cell index and a band-like internal index, obtained
by a unitary transformation of the Bloch eigenstates. The Wannier obstruction refers to the
impossibility of finding exponentially-localized symmetry-preserving Wannier functions for the
occupied states of a topological insulator. Indeed, this feature is now taken as the definition of
topological insulators.

The viewpoint of topological quantum chemistry and symmetry indicators allows to differen-
tiate obstructed atomic insulators [383–385]. Two atomic limits can be topologically different, and
thus a bulk gap closing has to occur to transition between them while respecting the symmetries.
Obstructed atomic insulators are atomic limits which are not adiabatically connected to the atomic
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insulator with all the Wannier functions localized in the positions of the physical atoms. A subset
of them is symmetry-indicated [386]. Although they do not display anomalous boundary states,
generically they retain certain boundary signature, such as fractional corner charges and, typically,
gapped surface states within the bulk gap [385].

For completeness, we mention that there are also gapless topological materials [98, 387].
These materials display nodal points, lines or surfaces which cannot be fully gapped by small
perturbations local in momentum space and that respect the protecting symmetries, so that the bulk
gap is not affected far from the nodes. Therefore, even if topological nodes are defined using lattice
or continuous translations, they are robust against smooth perturbations in real space which vary
slowly on the lattice scale. A topological invariant can be associated to each node separately, which
is given as an integral over a submanifold of the Brillouin zone. However, the sum of topological
invariants over the Brillouin zone vanishes [388–390]. For instance, Weyl semimetals display an
even number of twofold crossings, each with an associated Chern number. A tenfold classification
analogous to that of topological gapped phases has been derived for gapless systems [98]. Further
spatial symmetries enrich the possible gapless topological phases, allowing for Dirac semimetals
[387], nodal line semimetals [391], multifold fermions [392], etc. Several topological semimetals
also display boundary states, such as Fermi arcs in the case of Weyl semimetals. The theory of
topological quantum chemistry is also useful to identify symmetry-enforced crossings, based on
the possible connectivities of the symmetry representations at the high symmetry points.

Finally, we review other methods that have been used to diagnose and characterize topological
phases beyond topological invariants and symmetry indicators. A defining property of topological
phases that has been used with this aim is the presence of quantized responses. For instance,
the Hall conductivity for Chern insulators [86, 87, 90], the thermal Hall conductivity for chiral
topological superconductors [393], the Witten effect for axion topological insulators [394–396],
the longitudinal electrical conductance for chiral edge states [397], and the longitudinal electrical
conductance for helical edge states in the absence of dephasing and inelastic interactions [398].
Related to this conductance quantization, the scattering matrix can be used to determine the topo-
logical invariants [399]. The presence of boundary states is also a signature of topological phases.
The topology also manifests in the entanglement spectrum [400], whose trace has discontinuities
as a consequence of the spectral flow in topological insulators. Another topological indicator is
the spin-orbit spillage [117], which will be described in Section 3.2.1.

3.1.2 Lack of translational symmetry

Condensed matter physics has commonly focused on the study of translationally-invariant
crystalline systems, with the preconception that disorder is generally detrimental to the development
of exotic states of matter, as well as to the performance of devices. Here, we confute this view
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(a) (b)

Figure 2: (a) Electron diffraction pattern of monolayer amorphous carbon showing broad Bragg
rings. (b) Electron diffraction pattern of nanocrystalline graphene. The well-defined Bragg rings
arise from the angle-average of the Bragg peaks of graphene single-crystalline domains, but they
are not broaden due to the well-defined atomic distances. Extracted from Ref. [411].

and discuss that not only can known topological phases be realized in noncrystalline systems,
but also that new phenomenology appears. In particular, we will mainly concentrate on the
recent developments on topological amorphous matter. In this section, we describe the basic
characteristics of amorphous and structurally disordered systems, while next section will be devoted
to the description of topological phases in such systems.

Amorphous and glassy materials are defined by an atomic structure without long-range or-
der [401]. However, they typically deviate from just an uncorrelated random distribution of atoms
[402–405]. Indeed, the local environments around the atoms, encoded in their coordination num-
bers, bond lengths and angles, are determined by the chemistry of the atoms, i.e., their electronic
configuration. For instance, covalently-bonded solids display short-range order, with approxi-
mately constant coordination number and well-defined nearest neighbour distances peaked around
the values of their crystalline counterparts [401–406].

The atomic structure of amorphous solids is revealed in their diffraction pattern [402–405,
407]. Since they are isotropic on average, the sharp Bragg peaks characteristic of crystalline
materials are replaced by rings (see Fig. 2(a)). These rings are broadened due to the fluctuations of
the bond lengths (compare Figs. 2(a) and (b)). The radii, width and intensity of the diffraction rings
can be used to determine the structure factor and estimate an average bond distance and coordination
number of the amorphous structure [408, 409]. The short-range order with its characteristic length
scales is also manifested in ARPES [410], where features reminiscent to Brillouin zone repetitions
appear.

The limited experimental data characterizing the complex structural motifs present in amor-
phous materials complicates the construction of phenomenological models. A paradigmatic class
of such models is based on continuous random networks [403, 404, 407], which, in the simplest
case, exhibit constant coordination numbers with no dangling bonds and a narrow distribution of
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bond lengths [401]. These continuous random network models have been applied to covalently-
bonded amorphous solids, such as amorphous silicon [405, 406, 412, 413]. On the other hand,
realistically modeling amorphous materials is challenging due to the large systems sizes required.
The standard method relies on ab initio molecular dynamics [414–416], where an initial crystalline
structure is melted, and then quenched to low temperatures and annealed. In 2D amorphous
materials, an ab initio bond-flipping method has also been proposed [417, 418], which iteratively
distorts randomly selected bonds and then relaxes the structure.

Similarly to crystals, amorphous materials display a variety of electronic properties. From a
transport perspective, they range from insulators and semiconductors to metals. Thanks to their
short-range order, the density of states (DOS) of amorphous solids might show features reminiscent
to crystals [406, 412, 413, 419], such as spectral gaps. Amorphous materials are an interesting
playground to study the physics of Anderson localization, and they can display exotic magnetic
textures [420]. Despite the disorder, amorphous superconductors have also been synthesized
[421, 422]. Indeed, to a first approximation, the isotropic superconducting gap in conventional
superconductors is unaffected by dilute disorder, a statement known as Anderson’s theorem [423–
425]. While stronger disorder usually suppresses the critical temperature Tc, in certain cases
the disorder-induced multifractality and rare regions might even give rise to an enhancement
of Tc [426–428]. Due to this mechanism or to the suppression of other non-superconducting
instabilities by the disorder, several amorphous materials display a higher Tc than their crystalline
counterparts. For example, amorphous Bismuth is a metal that becomes superconducting at
∼ 6K [429], while its crystalline counterpart is a low-density compensated semimetal which only
undergoes a superconducting transition below ∼ 0.5mK [430].

Besides their interesting physical properties, the growth of several amorphous materials re-
quires less stringent conditions than single crystals, and allows for a range of compositions. This
makes amorphous materials useful for several technological applications [401], from window glass
to computer memories and solar cells [431, 432]. For instance, phase-change materials, which can
transition between the amorphous and crystalline states in a controlled and reversible manner by
applying current or laser pulses [433], are used in computer memory-storage devices [431, 432].

Before concluding this section, it is worth mentioning quasicrystals [434–436], which lie
between the amorphous and crystalline limits. Quasicrystalline lattices are ordered, in the sense
that they are constructed from a set of composition rules using a given unit block called tile,
but they lack translational periodicity. They typically feature long-range rotational order [437],
which gives rise to sharp diffraction peaks [438–441]. Their energy spectrum shows interesting
fractal and localization properties [442]. A simple 1D example is given by an atomic chain
with an incommensurate potential, as in an incommensurate CDW [443]. In higher dimensions,
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the absence of perfect translational invariance in quasicrystals allows rotational symmetries not
compatible with crystals [435], including fivefold or eightfold rotations [444].

3.1.3 Topology in amorphous systems

The robustness of topological phases against disorder has been studied since the beginning
of the field with the integer quantum Hall effect [445–447]. In this case, not only are topological
properties robust, but a modest amount of disorder is crucial for the quantization of the conductivity
away from integer filling of a Landau level [445–447] (see however Ref. [448]). Indeed, for
symmetry class A in 2D, which applies to the quantum Hall effect, states at any energy are
localized by any amount of disorder except at a set of discrete energies, where a delocalized state
can appear [447, 449]. These are the energies where the topological transitions between phases
with different Chern numbers occur.

In lattice systems, disorder has been usually modelled by disordering the onsite energies,
and typically uncorrelated between different sites [450]. We will refer to this kind of disorder as
Anderson disorder. Within this point of view, the disordered energies are sampled from a probability
distribution characterized by an energy scale W. In the limit of infinite disorder, W → ∞, all
noninteracting systems are trivial localized Anderson insulators. However, topological insulators
are robust against moderate disorder preserving the protecting symmetries, as long as it does
not close the mobility gap. This especially applies to strong topological phases, which are only
protected by local non-spatial symmetries. Moreover, moderate disorder can renormalize the
parameters of the low-energy effective theory and favour and even induce a topological phase
from an otherwise trivial state [108, 109]. This so-called topological Anderson insulator [108,
109] or superconductor [451] is adiabatically connected to the disorder-free topological state. The
robustness against disorder extends to spatial-symmetry-protected topological phases, as long as the
disorder preserves the protecting symmetry on average [113, 452–457]. This protection is related
to the so-called statistical topological insulators [113], which are spectral insulators displaying
gapless boundary states. The symmetry class of d-dimensional statistical topological insulators
has to allow a topological phase in the (d − n)-dimensional boundary. Then, the gapless boundary
states are pinned to the critical point of a topological phase transition. Consequently, they behave
as critical (d − n)-dimensional states, and not like topological boundary states: for instance, the
conductance of a 1D critical state scales polynomially with size, instead of being constant. Certain
crystalline topological insulators might become statistical topological insulators when disorder is
added.

In this Thesis, we will focus on systems with structural disorder, i.e., disorder in the geometry
of the lattice itself. Although physical amorphous materials present both structural and Anderson
disorder, it is worth studying the former for several reasons. First of all, contrary to a random
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potential, structural disorder leads to a continuum low-energy theory where the metric is also
disordered [458], as in quenched quantum gravity, which can lead to a different localization length
critical exponent in a topological phase transition [458]. Secondly, identifying a characteristic
energy scale for structural disorder is not always obvious. Moreover, some of the methods to study
Anderson disorder in regular lattices, such as the transfer matrix method, can no longer be applied
with structural disorder, which calls for the development of other tools.

There are a variety of structurally-disordered models displaying topological phases, ranging
from strong topological states [120, 417, 418, 459–470] to spatial-symmetry-protected topological
phases [456, 471–477], as well as topologically ordered states in strongly correlated amorphous
systems [478–481]. A variety of topological phases have also been studied in quasicrystals [110,
482–494]. Amorphous strong topological states include 2D Chern insulators in class A [120,
459–466], 2D and 3D time-reversal invariant topological insulators in class AII [417, 418, 459,
465, 467, 468], and 2D time-reversal breaking topological superconductors in class D [469,
470]. Amorphous structures also support phases a priori protected by crystalline symmetries,
such as 2D reflection-symmetry-protected topological insulators [456], 2D and 3D higher-order
topological insulators [472–474, 477], 2D and 3D obstructed insulators [475], and 3D topological
metals [471, 476]. While structural disorder is detrimental to some of these states, it can also
induce nontrivial phases when starting from a trivial crystalline state [468, 471, 473], and it can
give rise to new phenomenology intrinsically associated with amorphous topological matter and
phase transitions [456, 465, 466, 471, 475–477].

A common starting point to study these models is a crystalline tight-binding Hamiltonian
known to host a topologically nontrivial phase. The hopping terms are generalized to account for
arbitrary angles and distances between sites. For example the angular dependence can be modelled
using the Slater-Koster parametrization [495], and the radial dependence can be accounted for by
an exponential [456, 459, 465, 466, 470–473, 496] or polynomial [468] decay with the distance.
There are several ways to introduce structural disorder, including lattices with uncorrelated random
sites [456, 459, 465, 466, 469–473, 496], more realistic random network models which preserve
the local coordination number [120, 462, 463, 475], and lattices with controllable deviations from
the crystalline limit [460, 461, 468, 473]. Alternatively, DFT and ab initio molecular dynamics are
also applied to generate realistic atomic structures [416–418]. In these methods, the noncrystalline
structures are modelled as periodic supercells, but only the zero momentum eigenstates are needed
for sufficiently large systems.

On the experimental side, amorphous topological matter has been mainly realized in synthetic
platforms, such as mechanical systems of coupled gyroscopes [462], and photonic lattices [497–
499]. The only direct evidence for an amorphous topological solid state system was reported in
amorphous Bi2Se3, grown by physical vapor deposition in Refs. [4, 410]. The crystalline phase
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of the van der Waals material Bi2Se3 is a textbook strong topological insulator. The amorphous
samples of Ref. [4] are characterized by a local environment similar to the crystal, but with no van
der Waals gap. ARPES shows surface states crossing the bulk electronic gap with a spin-momentum
locking in agreement with the spin-resolved spectral function of an amorphous topological model.
While Ref. [416] has studied an amorphous Bi2Se3 structure generated by ab initio molecular
dynamics and determined it to be topologically trivial, the obtained structure is different from the
experimental one. This indicates that the short- and medium-range structural orders are crucial for
the topological properties.

Characterizing topology without translational symmetry

Predicting which solids host nontrivial topological phases is a central problem in the field
of topological matter. As explained above, crystal symmetries are extremely useful to define
computationally efficient symmetry indicators to identify topological materials [102, 104–107].
However, symmetry-based methods cannot be generically applied to diagnose nontrivial topology in
materials that lack translational invariance such as amorphous, polycrystalline, and quasicrystalline
materials. We now review different topological indicators applicable far from the translationally
invariant limit.

For calculations modelling the noncrystalline structures as periodic supercells, Refs. [500,
501] have derived single k-point formulas to determine the Chern and spin Chern numbers.
Another wide-spread tool to characterize noncrystalline topological phases are topological markers,
which allow to determine the topological invariants from a real-space description of the system.
Topological markers can be local, i.e., defined for each real-space position, or nonlocal, i.e.,
globally defined for the whole real-space system.

The most studied local topological marker is the local Chern marker [502, 503], which
measures the Chern number in even dimensions. The local Chern marker C(r) is a gauge invariant
quantity essentially given by the diagonal elements of the Fourier transform of the Berry curvature,
traced over the internal degrees of freedom:

C(r) = −2πi ∑
α

⟨rα| [PX P, PYP] |rα⟩, (3.5)

where P is the projector onto occupied states, X , Y are the x, y components of the po-
sition operator, and the operator multiplication is defined as A = BC ⇒ ⟨r1α|A|r2β⟩ =

∑γ

∫
ddr3⟨r1α|B|r3γ⟩⟨r3γ|C|r2β⟩, with the integral over the whole real space, and α, β, γ the

internal degrees of freedom. If |ψN⟩ are the eigenstates of the system, the projector onto occupied
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Figure 3: Local Chern marker for a finite amorphous sample in a Chern insulating state. The
bulk of the system, indicated by a white dashed square, displays a relatively smooth local Chern
marker, whose integral over the bulk is quantized to −1, signaling the topological phase. The
boundary has a large contribution of opposite sign, so that the integral of the local Chern marker
over the whole open system vanishes, as required. Extracted from Ref. [120].

states P is defined as the sum over occupied states of the density operators:

P =
occ

∑
N
|ψN⟩⟨ψN |, (3.6)

so that P2 = P, and the trace of P is the number of occupied states. The local Chern marker
C(r) might spatially fluctuate, but, for a crystalline supercell with periodic boundary conditions,
its average over a unit cell is quantized to the Chern number, C = 1

Vcell

∫
cell ddrC(r). In the

case of noncrystalline lattices, obtaining the quantized Chern number requires averaging over a
large enough region far from the edges of the system, with the size of the region being model
dependent [503, 504]. The average has to be performed in the bulk far from the edges, or
alternatively for a supercell with periodic boundary conditions, since, in a finite sample with open
boundary conditions, the integral of C(r) over the whole system vanishes (see Fig. 3). Extending
to real space the derivation of the spin Chern number [505–507], which measures the Z2 invariant
in 2D time-reversal invariant systems, Ref. [508] has derived the local spin Chern marker. The
local markers of Refs. [509, 510] are similar to the local Chern marker, but they are directly
derived from and give the local Hall conductivity in the bulk of the system. Local topological
markers have also been extended to other symmetry classes by Ref. [504], which introduced the
chiral marker indicating the Z invariant of odd-dimensional phases with chiral symmetry, as well
as the Chern-Simons marker characterizing the Z2 invariant of phases with either time-reversal
or particle-hole symmetry in odd dimensions. Other local markers have also been developed
for systems with chiral symmetry [511, 512], for Dirac Hamiltonians [513], and for topological
crystalline insulators [514].

A different type of marker which is also locally defined is the spectral localizer [515–526].
It is an operator that quantifies the extent to which the Hamiltonian and the position operator can
be continuously transformed to commute by an adiabatic process respecting the symmetries of the
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system. The spectrum of the spectral localizer can signal strong [515, 516, 519–522, 524], weak
[110] and crystalline [526] topological insulators, as well as topological gapless systems [476,
525–527].

Another class of markers are nonlocal topological markers, which indicate the topological
indices globally. For instance, the Bott index [471, 518, 528–533], which is related to the spectral
localizer since it also measures the obstruction to make the projected position operators commute,
indicates the Chern number [534]. Analogously, the spin Chern number is signaled by the spin
Bott index [416, 491, 492]. Generalizations to all strong topological invariants have also been
developed [535]. Similar generalizations to determine the winding of the quadrupole and octupole
moments have also been proposed [472, 473]. Finally, the scattering matrix can also determine
topological invariants of d-dimensional noncrystalline systems attached to leads in one direction
and with (anti-)periodic boundary conditions in the other d − 1 dimensions [399].

The quantized response of topological phases is another useful tool in the absence of trans-
lational symmetry, such as the longitudinal conductance of 2D quantum Hall and quantum spin
Hall insulators [459], and the Witten effect [496]. The presence of anomalous boundary states
is signaled by the flow of the entanglement spectrum in noncrystalline topological insulators too,
which can be learned by neural networks [536]. Neural networks can also learn features associated
to topology directly from the wavefunctions [467].

Another efficient approach to determine topological transitions in noncrystalline matter is
based on the effective Hamiltonian [111, 120, 456]. The effective Hamiltonian Heff of a nonin-
teracting tight-binding model is defined as the inverse of the Green’s function G of the system
projected into plane waves:

Heff(p) = EF − G−1
eff (p, ω = EF), (3.7)

Gα,β
eff (p, ω) = ⟨pα|G(ω)|pβ⟩, (3.8)

G(ω) = lim
η→0+

[ω − H + iη]−1 , (3.9)

where H is the full Hamiltonian of the system, EF is the Fermi energy, p is the linear momentum,
α, β are the internal degrees of freedom (orbitals, spins...) of each site, and |pα⟩ is the plane-wave
state with momentum p and internal degree of freedom α:

|pα⟩ = 1√
Nsites

∑
r∈sites

eip·r|rα⟩. (3.10)

If the spectral gap of the total Hamiltonian closes, so does the spectral gap of Heff, allowing the
detection of topological phase transitions between gapped phases. Therefore, one can construct



166 Chapter 3. Topological amorphous matter

topological invariants defined in terms of Heff, which only change when its gap closes.

Finally, Ref. [120] has introduced average symmetry indicators for amorphous models dis-
playing average local symmetries. For instance, in a certain limit where the system is topologically
trivial, the model considered in Ref. [120] is symmetric under a local symmetry consisting of a
threefold rotation in orbital space. Away from this particular limit, this symmetry is only respected
on average, but the eigenstates can still be decomposed in the eigenbasis of the symmetry, and a
symmetry-resolved spectral function can be computed. A topological transition is signaled by a
crossing of states labelled by a different symmetry eigenvalue. Then, Ref. [120] has proposed a
symmetry indicator that determines the Chern number modulo three by summing the symmetry
eigenvalues of the occupied states. Moreover, at the momenta invariant under the symmetry, which
are p = 0, ∞, the eigenstates of the effective Hamiltonian can also be labelled by the symmetry,
which allows to construct symmetry indicators analogous to the crystalline ones.

3.2 Structural spillage

In this Chapter, we focus on the problem of predicting topologically nontrivial phases in
noncrystalline solids. As explained in previous sections, this task can be efficiently carried out in
crystals using symmetry indicators [102–107], which have allowed high-throughput topological
classifications based on DFT calculations [385, 537–542]. However, the lack of translational
invariance and crystalline symmetries prevents a generic definition of symmetry indicators in
amorphous, polycrystalline, and quasicrystalline materials. Real-space topological markers [462,
502, 504, 509–511, 513, 520, 522, 525, 526, 532, 543, 544] can be computationally costly and
require the system to be treated on a case-by-case basis. Efficient approaches based on the effective
Hamiltonian and average symmetry indicators have been applied in simple tight-binding models
[120, 456, 475, 536, 545]. However, these do not include the full chemical and structural specificity
found in real matter. Refs. [416–418] have modelled realistic amorphous materials using ab initio
methods, but the topological characterization required extracting a Wannier-based tight-binding
Hamiltonian, which is computationally demanding and system specific. Single-point formulas for
the Chern and Z2 numbers constitute powerful tools for given symmetry classes [500, 501], but
general and efficient formulas are still lacking.

To overcome this methodological problem, we introduce the “structural spillage”, which
is inherently compatible with first-principles approaches. The structural spillage is a method to
calculate the overlap between wavefunctions with different structural configurations. The structural
spillage is inspired by the spin-orbit spillage of Liu and Vanderbilt [117], which can identify
topological band inversions in insulating crystals by comparing the wavefunction overlap of the
same structure with and without spin-orbit coupling. In our case, we compare the wavefunctions
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of a noncrystalline target system with those of a crystalline reference state, whose topological
state can be efficiently determined by standard symmetry-based methods [102–107]. Based on
arguments concerning its connections with the SOC spillage [117], the strange correlators [118,
119], and the average symmetry indicators [120], we propose that the structural spillage can
signal the topological phase of noncrystalline materials. Indeed, we numerically demonstrate that
the structural spillage reproduces the topological phase diagrams determined by the longitudinal
conductance in amorphous tight-binding models inspired by bismuthene and a Bismuth bilayer.
By construction, the structural spillage is applicable to generic noncrystalline materials in any
symmetry class, and can be directly implemented in currently available DFT codes. Therefore, it is
suitable to establish a high-throughput catalogue of potential noncrystalline topological materials.

The rest of the chapter is organized as follows. First, we review the SOC spillage of Ref. [117].
Then, we introduce the structural spillage, in a formulation which is directly compatible with
first-principles calculations. We also comment the link between strange correlators and spillages.
Afterwards, we comment the subtleties that arise when trying to apply the structural spillage to
phenomenological tight-binding models, and adapt its formulation. In the following sections, we
introduce simple amorphous tight-binding models inspired by bismuthene and bilayer Bismuth. We
numerically determine their topological phase diagram using the structural spillage, benchmarking
its predictions against the longitudinal conductance results. Finally, we review the structural spillage
predictions for the DFT calculations of amorphous bilayer Bismuth performed by our collaborators
Paul Corbae et al. in Ref. [3]. The Appendices describe the explicit connection between the
structural spillage and the average symmetry indicators in the bismuthene tight-binding model,
as well as further details regarding the application of the structural spillage in the tight-binding
approximation.

3.2.1 Spin-orbit spillage

In Ref. [117], Liu and Vanderbilt introduced the spin-orbit (SOC) spillage for crystalline
insulators. The SOC spillage measures the mismatch between the occupied projectors of a given
crystalline structure with and without SOC as a function of the crystal momentum. Therefore, it
shows the band inversions induced by SOC in the Brillouin zone. Based on the Wannier obstruction
to find a smooth symmetric gauge for topological insulators, they showed that the SOC spillage
can indicate the topological transitions induced by SOC.

Consider the two projection operators P and P̃ onto the occupied states of a target and a
reference system, respectively (see Eq. (3.6) for the definition of the projector). Throughout this
Chapter, we will add a tilde to the quantities belonging to the reference system P̃, while the
quantities associated to the target system P will carry no tilde. Assume that both projectors have
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the same rank, i.e., that both systems have the same number of occupied states or filling Nocc:

Tr
[
P
]
= Tr

[
P̃
]
= Nocc, (3.11)

where Tr is the trace over the whole Hilbert space. Liu and Vanderbilt [117] defined the total
spillage γ between the two systems as

γ = Nocc − Tr
[
PP̃
]
= Tr

[
P(1 − P̃)

]
. (3.12)

When P = P̃, the spillage vanishes. However, when the overlap between the two projectors is
zero, it equals the total number of occupied states Nocc. Therefore, γ acts as an indicator of band
inversions caused by the parameters that differ in P and P̃ [117]. In particular, Liu and Vanderbilt
took the target system P to be a crystalline insulator with SOC, and the reference system P̃ to be
the same crystalline structure but without SOC. Taking advantage of the translational invariance,
the projectors can be decomposed as a function of the crystal momentum k in the Brillouin zone:

P = ∑
k

P(k), (3.13)

P(k) =
nocc

∑
n=1

Pn(k) =
nocc

∑
n=1

|ψnk⟩⟨ψnk| , (3.14)

where |ψnk⟩ is the Bloch eigenstate of band n at Bloch momentum k. nocc is the number of occupied
bands, which is independent of k for band insulators, and coincides in both target and reference
systems. We remark that P(k) is itself a projector, meaning that P(k)P(k′) = P(k)δkk′ . The
total spillage can therefore be decomposed as a sum of k-resolved SOC “Bloch” spillages γB(k):

γ = ∑
k

γB(k), (3.15)

γB(k) = nocc − tr
[
P(k)P̃(k)

]
= nocc −

nocc

∑
n,m=1

|Mnm(k)|2, (3.16)

where now the trace tr is taken over the bands at k, and we have defined the overlap matrix
Mnm(k) = ⟨ψnk|ψ̃mk⟩. With the goal to determine the SOC spillage with plane-wave based DFT,
Liu and Vanderbilt [117] provided the particular expression of the overlap matrix Mnm(k) in the
plane-wave basis. Plane-wave states |pα⟩ have a definite plane-wave continuum momentum p
not necessarily restricted to the first BZ, and a internal spin degree of freedom α, and form an
orthonormal basis of the Hilbert space, ⟨pα|p′β⟩ = δpp′δαβ. Bloch eigenstates are expressed in
this basis as:

|ψnk⟩ = ∑
Gα

⟨k + Gα|ψnk⟩|k + Gα⟩, (3.17)
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where G are the reciprocal lattice vectors, and therefore the overlap matrix is:

Mnm(k) = ⟨ψnk|ψ̃mk⟩ = ∑
Gα

⟨ψnk|k + Gα⟩⟨k + Gα|ψ̃mk⟩ (3.18)

It is also useful for our purposes to express the SOC Bloch spillage in terms of projector matrix
elements in the plane-wave basis Pαβ

p,p′ = ⟨pα| P |p′β⟩:

γB(k) = nocc − ∑
Gα

∑
G′β

Pαβ
k+G,k+G′ P̃

βα
k+G′,k+G (3.19)

We note that the SOC Bloch spillage can be also determined with local-basis DFT as well as with
Wannier and phenomenological tight-binding models; only the particular evaluation of the overlap
matrix will differ.

Liu and Vanderbilt [117] also unveiled the link between the SOC Bloch spillage and the
topological character of the target P and reference P̃ systems. They showed that if P and P̃ are in
a different topological phase, the SOC Bloch spillage has to be larger than 1 at least at one crystal
momentum k in the Brillouin zone, where the topological band inversion occurs. The proof is by
contradiction and is based on the Wannier obstruction. We assume that P is topological and P̃ is
trivial, so that a smooth symmetric gauge can be found for |ψ̃mk⟩. If we assume that γB(k) < 1, ∀k,
then the overlap matrix is nonsingular, det[M(k)] > 0. This would allow constructing a smooth
symmetric gauge for |ψnk⟩, which contradicts the assumption of P being topological. Therefore,
γB(k0) > 1 at least at one k0 in the Brillouin zone. If there is TRS, then a band inversion will
also occur at −k0, γB(−k0) > 1. In this case, if k0 is a time-reversal invariant momentum,
k0 = −k0 + G, then the band inversions add up, γB(k0) > 2. Moreover, Ref. [117] found
numerically that when comparing a trivial state with a Chern insulator, the SOC Bloch spillage is
larger that the absolute value of the Chern number.

The previous argument can be generalized, so that if P and P̃ are in a different topological
state and thus not adiabatically connected, then necessarily γB(k) > 1 at least at one k in the
Brillouin zone. The SOC Bloch spillage can therefore act as an efficient topological indicator
for strong and crystalline topological insulators induced by the SOC. Indeed, Refs. [546, 547]
have successfully applied the SOC spillage as a screening method in high-throughput searches for
topological crystals. Due to the sizable band inversion close to the nodes of several topological
semimetals, they observed that the SOC spillage can also signal them.

However, γB(k) > 1 is only a necessary but not sufficient condition for topology. For instance,
two band inversions can make the target system to have the same topology as the reference. Another
example relevant to the topic of this Thesis is when the periodic real-space unit cell is large and
complex, as an amorphous supercell. In this case, there can be many bands close to the Fermi
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Figure 4: (a) The spillage γ is high or low depending on whether the target wavefunction |ψ⟩
is in the same or different topological state compared to a known reference wavefunction |ψ̃⟩.
(b) The spin-orbit spillage [117] compares crystalline wavefunctions with and without SOC. The
structural spillage takes advantage of the knowledge of the topological state of a crystalline solid
to find the topological state of an amorphous solid.

level. Each of them can be slightly mixed by SOC, giving rise to a high SOC Bloch spillage even if
there is no topological band inversion. In this case of a big supercell, in order to identify the bands
that have been possibly inverted by SOC, Liu and Vanderbilt [117] proposed to use a band-resolved
spillage. However, this quantity is not gauge invariant under a unitary transformation of the
occupied or unoccupied subspaces, and its connection with the topological character is not clear.
Here, we propose a different path to tackle this situation. We introduce the structural spillage,
which is applicable to noncrystalline structures. We show that, by applying it to compare the
noncrystalline material with its corresponding crystal, the structural spillage can detect topological
band inversions.

3.2.2 Structural spillage: general formulation

In this section we introduce the structural spillage as an efficient method to screen non-
crystalline topological materials, from amorphous and disordered systems to quasicrystals and
nanocrystals. We propose to compare the noncrystalline target system with its crystalline coun-
terpart closest in local structure. The topological state of the latter can be readily characterized
with the well-developed methods for crystals, such as the symmetry indicators [104]. With this
information, the band inversions measured by the structural spillage can indicate the topological
state of the target noncrystalline material (see Fig. 4). The structural spillage can also be applied
to compare two crystalline systems with a different lattice structure, which allows to study the
topological transitions as a function of pressure or strain. Moreover, it is well defined even in the
absence of a spectral gap.
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We start by rewriting the expression for the total spillage between the target P and reference
P̃ systems of Eq. (3.12):

γ =
1
2

Tr
[(

P − P̃
)2
]
=

1
2
(

Nocc + Ñocc − Tr
[
PP̃ + P̃P

])
, (3.20)

where the trace Tr acts on the entire Hilbert space. If both systems have the same total number
of occupied states Nocc = Tr[P] = Tr[P̃] = Ñocc, Eq. (3.20) simplifies to Eq. (3.12). Even
if this is not the case and Nocc ̸= Ñocc, the formulation (3.20) has the advantage that γ ≥ 0
by definition. Actually, Eq. (3.20) allows the spillage to be interpreted as the variance between
two distributions with the same average. In what follows, we propose a spillage that compares a
noncrystalline system P with its crystalline counterpart P̃, defined as the crystalline phase of the
same composition which has the more similar local structural environment.

Here we formulate the structural spillage in a plane-wave basis, which enables its direct
incorporation into standard plane-wave-based DFT codes. Note that plane-wave states are well-
defined for crystalline and noncrystalline systems. By substituting the closure relation in the
plane-wave basis into Eq. (3.20), we can rewrite the full spillage γ in terms of the projector matrix
elements Pαβ

p,p′ = ⟨pα| P |p′β⟩:

γ =
1
2 ∑

pα
∑
p′β

[
Pαβ

p,p′P
βα
p′,p + P̃αβ

p,p′ P̃
βα
p′,p − Pαβ

p,p′ P̃
βα
p′,p − P̃αβ

p,p′P
βα
p′,p

]
. (3.21)

Any plane-wave momentum p can be uniquely decomposed as p = k + G, the sum of a crystal
momentum k in the first BZ of the reference crystal plus a reciprocal lattice vector G of the
reference crystal. We can therefore split the summations of Eq. (3.21) as ∑p = ∑k ∑G. Then, we
rewrite the total spillage as:

γ = ∑
k

γqB(k), (3.22)

where we have defined the structural quasi-Bloch spillage γqB(k):

γqB(k) =
1
2 ∑

k′
∑
GG′

∑
αβ

[
Pαβ

k+G,k′+G′P
βα
k′+G′,k+G − Pαβ

k+G,k′+G′ P̃
βα
k′+G′,k+G

]
+
[
P ↔ P̃

]
=

(3.23a)

=
1
2

{[
∑
Gα

Pαα
k+G,k+G

]
+ ñocc(k)− ∑

Gα
∑
G′β

[
Pαβ

k+G,k+G′ P̃
βα
k+G′,k+G + P̃αβ

k+G,k+G′P
βα
k+G′,k+G

]}
,

(3.23b)

To arrive at Eq. (3.23b), we have used the fact that the reference projector P̃ corresponds to a
crystal, which allows us to set k′ = k in terms involving at least one P̃, since there are no finite
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matrix elements (hereafter referred as scattering) between different crystal momenta k and k′ due
to the discrete translational symmetry. In Eq. (3.23b), ñocc(k) is the number of occupied bands of
the reference crystal at crystal momentum k:

ñocc(k) = ∑
k′

∑
GG′

∑
αβ

P̃αβ
k+G,k′+G′ P̃

βα
k′+G′,k+G = ∑

Gα

P̃αα
k+G,k+G = tr

[
P̃(k)

]
(3.24)

Note that γqB(k) fulfills the same sum rule (3.22) as the Bloch spillage in Eq. (3.15). Therefore,
when applied to two insulating crystals, γqB(k) recovers the Bloch spillage γB(k) of Eqs. (3.16)
and (3.19). The quasi-Bloch spillage is well-defined in the absence of a spectral gap. For instance,
when applied to semimetallic crystals, it simplifies to:

γcrystals
qB (k) =

1
2
[nocc(k) + ñocc(k)]− tr

[
P(k)P̃(k)

]
, (3.25)

which is similar to the Bloch spillage γB(k) of Eq. (3.16), but with nocc replaced by 1
2 [nocc(k) +

ñocc(k)], which accounts for the possibly different fillings at different k for the two systems P and
P̃. By construction, our quasi-Bloch spillage particularized to semimetallic crystals γcrystals

qB (k) of
Eq. (3.25) is bounded by zero, in contrast to recent extensions of the Bloch spillage semimetallic
crystals [546, 547].

Our key result is that the structural quasi-Bloch spillage, defined by Eq. (3.23), can be used
as an efficient topological indicator in noncrystalline systems. Crucially, it can be efficiently
computed with plane-wave-based DFT methods, since the projector matrix elements are an output
of the calculation. Consequently, this method is suitable for high-throughput identification of
noncrystalline topological materials. Eq. (3.23) can also be computed using localized-basis DFT
or Wannier-based tight-binding modelling, by determining the plane-wave coefficients using a
Fourier transform. However, as we will discuss in Section 3.2.3, Eq. (3.23) requires certain
recasting in order to be applicable within the tight-binding approximation to compare two systems
with different lattice structures. By tight-binding approximation, we refer to lattice models where
the only information about the wavefunctions is the position of their Wannier charge centers
and their transformation properties under symmetries, but their spatial structure is unknown and
therefore considered to be a Dirac delta. In the next section, we explain the approximations required
to adapt the structural quasi-Bloch spillage of Eq. (3.23) to the tight-binding approximation. The
connection between the average symmetry indicators and the structural spillage, explained in
Appendix 3.B, allows to justify these approximations and describes an alternative path to arrive at
the tight-binding formulation of the structural spillage.
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Rationale for the spillage: non-Wannierizability and strange correlators

Before concluding this section, we comment several arguments that support the application of
the structural spillage as a topological indicator. While we provide no formal mathematical proof
of the rigorous validity of the structural spillage, we give a qualitative discussion based on general
features that strongly support its applicability.

First, the structural spillage is an extension of Liu and Vanderbilt’s SOC spillage [117] that,
in the limit of vanishing disorder, recovers the latter. This justifies the validity of the structural
spillage in the weak-disorder case. We highlight that weak disorder here means that there is a
significant degree of short-range order, while the lack of long-range order does not have much
effect. This feature is usually displayed by covalently-bonded amorphous solids [401].

More generally, the main justification for the structural spillage comes from the obstruction
to Wannierization, which is also the reason why Liu and Vanderbilt’s SOC spillage works. This
Wannier obstruction has been shown to occur in strong topological phases irrespective of their
lattice structure, and therefore applies to noncrystalline systems as well. Mathematically, this
has been proven using the spectral localizer [515–526]. In particular, the Wannier obstruction
emerges as an obstruction to close the gap of the spectrum of the spectral localizer. While this
does not mathematically prove the validity of the structural spillage, the non-Wannierizability of
noncrystalline topological insulators suggests that there is no reason to believe why it should not
work. Accordingly, our numerical benchmarks in amorphous tight-binding models indicate this is
indeed the case.

Another argument justifying the validity of the structural spillage is the general relationship
between the spillage in noninteracting systems and the so-called strange correlators [118, 119].
Strange correlators are real-space quantities that diagnose the topology of symmetry protected
topological phases, based on the non-Wannierizability of short-range entangled topologically non-
trivial phases. Strange correlators compute the overlap of a given operator between the ground state
wavefunctions of a target and a trivial reference systems. For translationally-invariant noninteract-
ing systems, the operator can be chosen to be the identity, which then coincides with the Liu and
Vanderbilt’s SOC spillage when resolved in crystal momentum. However, the strange correlator is
not restricted to translationally-invariant systems. In this latter case, the strange correlator would
be related to our structural spillage by choosing the appropriate operator and Fourier transforming
to momentum space5.

5More precisely, what would be directly related to a strange correlator is the structural plane-wave spillage defined
in Eqs. (3.49) and (3.51) of Appendix 3.B.3, which indeed correctly works in tight-binding models. The additional
resummations of the structural quasi-Bloch spillage of Eq. (3.23) are added so that the structural spillage recovers Liu
and Vanderbilt’s spillage in the crystalline limit.
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A final argument justifying the validity of our structural spillage in noncrystalline systems
is its relation with average symmetry indicators, which were introduced by Ref. [120] in simple
amorphous tight-binding models. Amorphous average symmetry indicators evaluate the topology
by measuring the number of occupied states characterized by a given eigenvalue of an average
symmetry. Furthermore, these can be resolved in momentum by projecting to plane waves. In a
topological phase transition, these numbers change at a given momentum. The structural spillage
indeed measures band inversions. So when the band inversion changes the occupied symmetry
eigenvalues, the structural spillage is equivalent to the symmetry indicator6. With our amorphous
bismuthene model as an example, we will discuss their particular connection in Appendix 3.B.

In summary, the non-Wannierizability of noncrystalline topological states as well as the
connections to SOC spillage, strange correlators and average symmetry indicators, all suggest that
the structural spillage can signal the topology of noncrystalline solids, at least when there is a
certain degree of short-range order, as demonstrated by our numerical tight-binding benchmarks
in Sections 3.3 and 3.4.

3.2.3 Structural spillage in the tight-binding approximation

In this section, we explain why the structural quasi-Bloch spillage γqB(k) of Eq. (3.23) cannot
be directly applied within the tight-binding approximation, and we propose several approximations
to adapt it. The full details of the steps sketched here can be found in Appendix 3.C.

We mention again that the ingredients of the tight-binding approximation are the Wannier
centers of the orbitals, as well as the hopping values and their dependence on relative positions, but
not the real-space wavefunctions of the orbitals. It is the lack of this information that prevents the
direct application of Eq. (3.23) to compare two systems with different lattice structure. This same
lack of spatial information, together with the requirement of gauge invariance, forces the position
operator to be diagonal, with vanishing matrix elements connecting neighbouring orbitals. In other
words, orbitals wavefunctions in real space are considered to be Dirac deltas located at the Wannier
centers. This approximation not only affects the structural spillage, but also other quantities, such
as optical responses, which depend on the position operator matrix elements.

An implicit assumption in the general derivation of Eq. (3.23) is that the Hilbert space of the
system is the whole real space (with spin), in which the plane waves constitute an orthonormal basis.
While this is applicable in DFT (see Appendix 3.A), it is not true in the tight-binding approximation,
where the Hilbert space is just spanned by the positions of the Wannier charge centers with the
internal degrees of freedom of spin and orbital type. The fundamental problem for comparing two

6As with strange correlators, it is the plane-wave spillage (3.49) that exactly coincides with the symmetry indicator
(see Appendix 3.B).
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tight-binding systems with different lattice structures, as done by the structural spillage, stems from
the fact that their Hilbert spaces are different, and therefore, strictly, their overlap is ill-defined.
Nevertheless, we can derive a physically motivated expression for the structural spillage in the
tight-binding approximation. In Appendix 3.B, we show that this expression is directly linked
to the average symmetry indicators. In subsequent sections we will show numerically that this
approximation correctly captures the topological phase diagrams of tight-binding models.

Target and reference with the same lattice structure: non-orthogonal formalism

For pedagogical reasons, we first study the problem of applying the structural spillage to com-
pare target and reference systems with the same lattice structure, i.e., we compare two amorphous
or two crystalline systems. This case is exactly solvable, since the Hilbert spaces spanned by
the target and reference systems are the same. Moreover, it can be useful beyond its pedagogical
value, for example to study the effect of Anderson disorder in the onsite and hopping energies.
Afterwards, we will consider the general case of comparing two different lattice structures, which
requires several approximations.

With this in mind, we consider a tight-binding model with Nsites sites, each with Norb internal
degrees of freedom (spin and orbital). The Hilbert space of the tight-binding model is spanned by
the Dirac delta-like states

∣∣rα⟩, where r labels the position of each site and α labels the internal
quantum numbers. Plane-wave states with continuum momentum p in the tight-binding are defined
as in Eq. (3.10):

|pα⟩ = 1√
Nsites

∑
r

eip·r|rα⟩. (3.26)

These plane waves have two important properties.

First, while the set of plane-wave states is a basis of the real space, it constitutes an overcomplete
set when projected to the tight-binding Hilbert space. Therefore, we have to choose a subset of
them to form a basis. Consider the Hilbert space of a tight-binding model of a crystal with Ncell

unit cells, Ns/c sites per unit cell, and Norb orbitals, which has dimension Ncell × Ns/c × Norb =

Nsites × Norb, where Nsites = Ncell × Ns/c is the total number of sites. Before proposing a
well-defined plane wave basis, we note that Brillouin zones are labelled by the reciprocal lattice
vectors G: the momentum p = k + G belongs to the Brillouin zone G, with the first Brillouin
zone corresponding to G = 0. We can classify Brillouin zones G in different types depending
on the phase factors {eiG·t} which enter in the observables projected to a plane-wave momentum
p = k + G, where t are the relative positions of the sites inside the unit cell (see Appendix
3.C.2). Such classification is known in ARPES [548], since the intensities of photoelectrons
with momentum k and k + G are different in general. This is not just an effect of the ARPES
matrix elements [548], but it comes from the overlap between Bloch states and plane waves (see
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Figure 5: Types of Brillouin zones for the honeycomb lattice labelled by the phase factor e−iG·t,
with t = −a(0, 1/

√
3). The first Brillouin zone (red) is labelled by G = 0 and therefore a phase

factor 1. The nearest neighbour Brillouin zones have phase factors e±i2π/3.

also Eq. (3.29)). For instance, in the honeycomb lattice there are NBZs = 3 types of BZ, since
e−iG·t = eia2π/3, with a ∈ Z3 (see Fig. 5). With this in mind, a well-defined plane-wave basis
{|k + G⟩}G∈Ns/c BZs consists of a subset with Ncell momenta per Brillouin zone, in Ns/c Brillouin
zones labelled by an inequivalent G. For instance, in the honeycomb lattice with Ns/c = 2, we
can choose a basis with momenta in the first Brillouin zone G = 0 and one of the second Brillouin
zones, e.g. G = 4π√

3a
(0, 1): {|k + G0⟩, |k + G1⟩}.

Second, the plane waves projected to the tight binding are non-orthogonal in general. More-
over, their overlap for a given system depends on the atomic positions. Indeed, for a given system,
their overlap reads:

⟨p′β|pα⟩ = 1
Nsites

δαβ ∑
r

ei(p−p′)·r. (3.27)

For a sufficiently large amorphous system, where the size depends on the amount of structural
disorder, the large sum of random phases implies that plane waves are approximately orthogonal
(unless eip·r = eip′·r for all sites):

⟨p′β|pα⟩amorphous ≃ δαβδpp′ . (3.28)

On the other hand, for a crystal with Ns/c sites per unit cell at positions t with respect to the center
of the unit cell, the overlap is nonzero if the momenta are separated by a reciprocal lattice vector,

⟨p̃′β|p̃α⟩crystal ≃ δαβδp̃′,p̃+G
1

Ns/c
∑

t
e−iG·t. (3.29)

To apply the structural quasi-Bloch spillage to compare two systems with the same lattice
structure, we therefore have to generalize Eq. (3.23) using the formalism of non-orthogonal bases
(see e.g. [549]). Using the previous choice of basis within this formalism, the closure relation
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reads:

1 = ∑
k

basis

∑
GG′

∣∣k + G⟩
(

S−1
)

G,G′
⟨k + G′∣∣, (3.30)

where 1 is the identity operator, the sums over reciprocal lattice vectors run over the Brillouin
zones chosen in the basis, and the overlap matrix is defined as SG,G′ = ⟨k + Gα

∣∣k + G′α⟩,
which depends only on the difference G′ − G. We thus arrive at the following expression for the
quasi-Bloch spillage:

γnon-orth
qB (k) =

1
2 ∑

k′

basis

∑
G1G2G3G4

∑
αβ

[
Pαβ

k+G1,k′+G2

(
S−1

)
G2,G3

Pβα
k′+G3,k+G4

(
S−1

)
G4,G1

−

−Pαβ
k+G1,k′+G2

(
S−1

)
G2,G3

P̃βα
k′+G3,k+G4

(
S−1

)
G4,G1

]
+
[
P ↔ P̃

]
.

(3.31)

This expression is directly applicable within the tight-binding approximation, irrespective of
whether the target system had additional Anderson disorder in the onsite and hopping energies. In
particular, when comparing two insulting crystals, Eq. (3.31) exactly recovers the Bloch spillage.

Target and reference with different lattice structures: no-scattering approximation

We now focus on the general case where the target and reference systems have different
atomic structure. We recall that in this case their Hilbert spaces are different in the tight-binding
approximation, and therefore their overlap is ill-defined. This is reflected in the fact that the
overlap between plane waves projected to the noncrystalline target and plane waves projected to
the reference crystal is ill-defined:

crystal⟨p̃′β|pα⟩noncryst =
1

Nsites
∑

r
∑̃

r
eip·r−p̃′·r̃

crystal⟨r̃β|rα⟩noncryst, (3.32)

since the overlap ⟨r̃β|rα⟩ would require the knowledge of the real-space wavefunctions. Moreover,
the overlap between plane-waves projected to a given system depends on its atomic positions (see
Eqs. (3.27)-(3.29)). Therefore, the usual formalism for non-orthogonal bases [549] cannot be
applied.

The structural quasi-Bloch spillage of Eq.(3.23) contains the matrix elements of the products
of two projectors in the plane wave basis. By neglecting the momentum scattering, and thus
assuming that the projectors are diagonal in momentum space, Pαβ

p,p′ ∝ δp,p′ , we avoid the problem
of the disorder-dependent plane-wave overlaps. This approximation is justified for amorphous
and disordered systems, since we expect continuous translational symmetry to be recovered after
averaging over different disorder realizations [550]. This assumption has been successfully used
to determine the topology of noncrystalline systems, including amorphous and quasicrystalline
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models, using the effective Hamiltonian approach (see Eq. (3.7)) and the amorphous average
symmetry indicators [120, 456, 475, 493].

However, the no-scattering approximation introduces a new issue: the values of observables
depend on the choice of basis. For instance, the k-resolved number of occupied bands ñocc(k) =
tr[P̃(k)] in a crystal would read as

tr
[
P̃(k)

]
= ∑

α

basis

∑
G

basis

∑
G′

P̃αα
k+G,k+G′ ≃

no-scatt ∑
α

basis

∑
G

P̃αα
k+G, (3.33)

where we have defined the single plane-wave momentum projector P̃αβ
p = P̃αβ

p,p. In particular,
tr
[
P̃(k)

]
no-scatt depends on the types of Brillouin zones G chosen in the basis (see Appendix

3.C.2). This issue can be handled by replacing the sum over the Ns/c reciprocal lattice vectors G
in a basis by an average over the different types of Brillouin zone G, and multiplying by Ns/c. This
prescription gives exact results for the quantities containing matrix elements of just one projector
in the crystalline limit. For example, in Appendix 3.C we show that

tr
[
P̃(k)

]BZ-av
no-scatt =

Ns/c

NBZs
∑

G∈BZs
∑
α

P̃αα
k+G = ñocc(k), (3.34)

where the sum over G runs over one BZ of each of the NBZs types, and the key factor for the last
equality is that the average 1

NBZs
∑BZs

G e−iG·(t−t′) = δtt′ .

With these modifications, the structural quasi-Bloch spillage (3.23) can be defined in the
tight-binding approximation as

γTB
qB(k) =

[
γTB

qB(k)
]BZ-av

no-scatt
=

Ns/c

NBZs

BZs

∑
G

1
2

tr
[(

Pk+G − P̃k+G
)2
]

, (3.35)

where the sum over G runs over one BZ of each of the NBZs types, and the trace tr acts over
the internal degrees of freedom α. For later convenience, we define each term in the sum for a
momentum p = k+ G as a plane-wave-momentum resolved spillage γTB

pw(p) = 1
2 tr[(Pp − P̃p)2],

so that γTB
qB(k) =

Ns/c
NBZs

∑BZs
G γTB

pw(k + G). In particular, if the reference crystal has a single atom
per cell, Ns/c = NBZs = 1 and γTB

qB(k) = γTB
pw(k). Eq. (3.35) defines the structural spillage to be

used in the tight-binding approximation.

While our prescription gives the exact results for the quantities containing matrix elements of
just one projector in the crystalline limit, in the case of quantities containing matrix elements of
the product of two projectors, such as the structural spillage (3.35), our results in the crystalline
limit are not exact. However, we will numerically show for selected amorphous models that the
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results are similar in absolute value, and more importantly that the sharp changes in the spillage
that signal topological transitions still show up.

Phase transition criterion in the tight-binding approximation

In order to define our criterion for the topological transition in the structural spillage in the
tight-binding approximation, it is important to note that Eq. (3.35) does not exactly recover the
values of the Bloch spillage when applied to two crystals with and without SOC, because we
neglected scattering. However, we have numerically verified that it results in similar values. In
particular, we will show that the maximum spillage without scattering is max

[
γTB

qB(k = 0)
]
= 1.5

in the two models we have studied, which is a factor of 4/3 smaller than the exact spillage
max

[
γqB(k = 0)

]
= 2 that would be recovered after considering the scattering. There is no

reason to believe that this factor is universal, and thus we consider it model dependent.

With this in mind, in order to identify the topological phases in a tight-binding phase diagram,
we take the criterion that the topological transition occurs when the quasi-Bloch spillage of
Eq. (3.35) equals to half the maximum value of the spillage between two topologically different
crystals when scattering is neglected. In both our models, this critical value equals 0.75. However,
in general, this critical value of the tight-binding structural spillage will be model-dependent, and
must be determined in a case-to-case basis.

In summary, Eqs. (3.35) and (3.23) define the structural spillage to be used in the tight-
binding approximation and first-principles calculations, respectively. In the remainder of the
Chapter, we demonstrate how they capture topological phase transitions of amorphous systems,
using low-dimensional Bismuth as an example.

3.3 Amorphous tight-binding model: bismuthene on a substrate

In this section, we describe the method for generating the amorphous tight-binding models
based on the Voronoi tessellation [120, 462, 551]. In particular, we construct a 2D amorphous
tight-binding network inspired by amorphous bismuthene supported on a substrate [417, 418]. We
will show that its topological phase diagram can be correctly captured by the structural spillage.
In Appendix 3.B, we will use this model as an example to establish the connection between the
structural spillage and the average symmetry indicators.

3.3.1 Bismuthene model Hamiltonian

Crystalline bismuthene consists of a 2D honeycomb monolayer of Bismuth atoms. Experi-
ments suggest it to be a quantum spin Hall insulator with topological helical edge states when



180 Chapter 3. Topological amorphous matter

grown on SiC(0001) [552] or Ag(111) [553] substrates. The effect of the substrate is crucial: it
filters the pz orbitals away from the Fermi level leaving the px,y orbitals, resulting in a large gap
(∼ 0.67eV) and a non-zero strong Z2 topological index. Moreover, amorphous bismuthene on a
substrate is predicted to remain topological via first-principles calculations [417, 418], making it a
convenient system to benchmark our proposed structural spillage.

The low-energy physics of bismuthene is captured by a tight-binding model with px,y orbitals
in the honeycomb lattice [552], coupled by nearest-neighbour σ and π hoppings, a large onsite
SOC, and a substrate-induced Rashba SOC. In real space and in the basis

{
px↑, px↓, py↑, py↓

}
, the

Hamiltonian reads:

H =− 1
2 ∑

⟨ij⟩
p†

i ·
[
(tσ − tπ) τ0 + (tσ + tπ)

(
c(2)ij τz + s(2)ij τx

)]
σ0 · pj + ∑

i
p†

i ·
[
λτyσz

]
· pi+

+ ∑
⟨ij⟩

ip†
i ·
{

λA
R τ0

[
sijσx − cijσy

]
+ λE

R
[(

cijτx − sijτz
)

σx −
(
cijτz + sijτx

)
σy
]}

· pj,

(3.36)

where we have defined cij = cos(θij), sij = sin(θij), c(2)ij = cos(2θij), and s(2)ij = sin(2θij),
with θij the angle between the bond joining site i to site j and the x axis. τµ and σµ are the Pauli
matrices acting on the orbital

{
px, py

}
and spin {↑, ↓} degrees of freedom, respectively. tσ and tπ

are the σ and π nearest-neighbour hoppings, λ is the onsite SOC, and λA
R and λE

R are the orbital-
independent and orbital-dependent Rashba SOC, respectively. As in Ref. [552], here we will assume
that λA

R = λE
R = λR. The values used in Ref. [552] are tσ ≃ 2.0eV, tπ ≃ 0.21eV ≃ 0.11tσ,

λ ≃ 0.44eV ≃ 0.22tσ, and λR ≃ 0.032eV ≃ 0.074λ. In our calculations, we will take tσ as the
unit of energy, we will use the same value for tπ = 0.11tσ, and we will vary both the onsite SOC
λ as well as the Rashba SOC proportionally to the former, λR = 0.074λ.

The bismuthene Hamiltonian (3.36) can be readily applied to an amorphous structure once
we define which sites are nearest neighbours of each other. In principle, it could be generalized to
include a dependence on the distance in the hoppings, such as the Harrison law [554]. However,
we will consider fixed values for the hoppings, which can be a good approximation for covalently-
bonded amorphous solids, which usually display a rather narrow distribution of bond distances
[401]. Moreover, this approximation enables us to isolate the effect of structural disorder.

3.3.2 Construction of amorphous structures: Voronoi method

Covalently-bonded amorphous materials usually preserve local environments similar to the
ones in the corresponding crystals, since they are set by the strong covalent bonds. Therefore,
numerous amorphous materials have average coordination numbers, bond distances, bond angles,
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(a) (b) (c) (d)

Figure 6: (a,b) Examples of amorphous bismuthene structures obtained by the Voronoi method.
The structural disorder strengths are (a) r = 0.3 with a density of non-hexagonal plaquettes
ρnon-hex ≃ 0.53, and (b) r = 0.5 with ρnon-hex ≃ 0.65. (c,d) Histograms of the relative positions
of atoms for the two amorphous structures of (a,b), respectively.

etc., which are centered around those of the crystal [401]. With this in mind, our bismuthene
amorphous models preserve, for every site, the threefold coordination of the honeycomb lattice.
This is achieved by applying the Voronoi method similar to Refs. [120, 462, 551], but with a
modification that enables us to control the degree of amorphization.

Voronoi method.— We first construct a pointset forming a triangular lattice with lattice con-
stant a, whose points will be called seeds. If we performed the voronization of this triangular
pointset, it would produce its dual honeycomb lattice. To generate amorphous networks, however,
we randomly displace the seeds from their initial triangular positions. We sample their displace-
ments from an exponential distribution with characteristic distance r · a in the radial direction,
and from an uniform distribution in the angular direction. We then compute their corresponding
Voronoi diagram, which is defined by the Voronoi cells, i.e., the regions consisting of all points
closer to one seed point than to any other. The vertices of such cells, called Voronoi vertices, form
a threefold coordinated network with the edges of the Voronoi cells corresponding to the nearest-
neighbour bonds; only the vertices at the boundaries of the system have fewer than three neighbours.
The resulting amorphous network has threefold coordination, as the crystalline honeycomb lattice,
but with a finite density of non-hexagonal plaquettes (see Figs. 6(a,b)) [551].

Relaxation procedure.— The networks obtained in this way have large variances in the
bond angle and bond length distributions, which might not be very realistic due to the expected
short-range order. To reduce this artifact, we apply an iterative relaxation procedure. We select
the threefold coordinated sites one by one and displace them to the barycenter formed by their
three nearest neighbours. We iterate this process until convergence is reached, i.e., until the
displacements are smaller than a given small cutoff. This relaxation procedure tends to set the
bond angles as close as possible to the crystalline angle, 120◦. Finally, once the network is relaxed,
we rescale the distances so that the average nearest-neighbour distance is a/

√
3, which is the

corresponding value in the crystalline honeycomb lattice.
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Figs. 6(a,b) shows two example amorphous structures obtained by this procedure with structural
disorders parametrized by r = 0.3 and r = 0.5, respectively. Although the amorphousness is
reflected in the presence of plaquettes with different number of sides, every site in the bulk has
threefold coordination. The relaxation procedure, which favours angles close to 120◦, induces a
correlation between the size of a plaquette and its number of sides. Figs. 6(c,d) show the resulting
histograms of the relative positions of atoms for the two amorphous structures of Figs. 6(a,b),
respectively. They reveal that both structures are isotropic at long distances, although for small
disorder the nanocrystalline domains in Fig. 6(a) give rise to broad nearest neighbour peaks around
the crystalline positions in Fig 6(c). For strong disorder, the correlation hole for distances under
a/

√
3 and an annular peak are visible [4].

Structural disorder control.— The parameter r, characterizing the exponential distribution
by which the seeds are displaced from the regular triangular lattice, continuously controls the
amorphousness of the resulting Voronoi network. Indeed, since the Voronoi diagram of a triangular
lattice is a honeycomb lattice, we recover the crystal in the r → 0 limit. Increasing r introduces
non-hexagonal plaquettes in the Voronoi network, at least until r ≳ 1, when the seed becomes
completely random, since all the information from the initial triangular seed is lost. This can
be observed in Fig. 7(a), which shows that the configuration-averaged standard deviations of the
distributions of bond angles, bond distances, and plaquettes start to saturate at about r ≳ 0.6.

Structural disorder can be quantified by several physical properties of the network. These
include the standard deviations of the distributions of nearest-neighbour distances, angles and
plaquettes normalized by the corresponding average values, as well as the density of noncrystalline
plaquettes. In our models, where the crystalline limit consists of a honeycomb lattice, the noncrys-
talline plaquettes correspond to the non-hexagonal ones. In order to take into account the finite-size
effects, for each parameter r, we consider the configuration-average of these quantities over 100 dis-
order realizations. As shown in Fig. 7(a), all these configuration-averaged quantities have the same
qualitative dependence with the parameter r. In particular, there exists a one-to-one monotonous
correspondence between our control parameter r and any of these configuration-averaged quanti-
ties. However, for particular disorder realizations in a finite system, there are fluctuations that make
their relation to r not one-to-one before performing the configuration average. This is illustrated
by the distribution of ratios of non-hexagonal plaquettes ρnon-hex shown in Fig. 7(b) for different
disorder realizations with fixed r = 0.3. Therefore, we have chosen to physically characterize
the amorphousness of a system by the configuration-averaged density of non-hexagonal plaquettes
formed by the nearest neighbour sites ρnon-hex. This measure could be generalized to other models
whose crystalline limit consisted of lattices other than the honeycomb. Finally, Fig. 7(c) shows
an example distribution of plaquettes obtained for a particular disorder realization with r = 0.3,
which corresponds to ρnon-hex ≃ 0.55, while the configuration-average for this r corresponds to
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(a) (b) (c)

Figure 7: (a) Configuration-averaged structural quantities as a function of the parameter r
controlling the amorphousness: standard deviations (std) of the distributions of nearest neighbour
bond angles, bond distances (both for the planar bismuthene as well as for the buckled Bi bilayer),
and plaquettes, as well as density of non-hexagonal plaquettes. For each disorder intensity r, the
results have been averaged over 100 different realizations. (b) Distribution of the ratios of non-
hexagonal plaquettes ρnon-hex obtained with 100 disorder realizations with fixed disorder r = 0.3.
(c) Distribution of plaquettes for a given disorder realization with r = 0.3 (corresponding to
ρnon-hex ≃ 0.55).

ρnon-hex ≃ 0.53.

Periodic boundary conditions.— The above procedure generates structures with open bound-
ary conditions, which is useful to compute e.g. the local density of states at the edges or the lon-
gitudinal conductance once leads have been attached. However, for spectral quantities such as the
spillage, we can reduce the possible finite-size effects by imposing periodic boundary conditions, or
equivalently by putting the system on a torus. An amorphous system might have a different number
of atoms at opposite edges, so the periodic boundary conditions cannot be imposed directly, but
rather before computing the Voronoi tessellation, as described below.

Before explaining the procedure to impose the periodic boundary conditions, we note that our
periodic systems consist of a rectangular supercell with sides Lx and Ly. In order for the periodic
boundary conditions to be applicable to systems with an arbitrary amount of structural disorder,
including the crystalline limit, Lx and Ly are restricted to the values such that the supercell is
commensurate with the initial crystalline unit cell. In our models, where the crystalline limit is a
honeycomb lattice, the previous condition imposes that Lx = nxa and Ly = ny

√
3a, where a is

the lattice constant, and nx, ny are integer numbers.

Taking this into account, we now describe the procedure to impose periodic boundary condi-
tions on a system with an arbitrary amount of disorder. First, we generate a triangular seed within
the supercell x ∈ [0, Lx), y ∈

[
0, Ly

)
, and we disorder it choosing a finite value of r. Then,

we repeat this initial seed in the eight nearest-neighbour supercells, i.e., we copy the seed points
displaced from their initial positions x to x + L = x +

(
nxLx, nyLy

)
, with nx, ny ∈ {1, 0,−1}.

Then, the Voronoi tessellation of the whole system composed by the nine supercells is determined.
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This gives rise to a threefold coordinated network with the following convenient feature: the super-
cell defined by the sites inside the region x ∈ [0, Lx), y ∈

[
0, Ly

)
has the same number of sites in

opposite sides. Therefore, the periodic boundary conditions can be now applied to this supercell,
discarding all the sites outside this supercell. Finally, we carry out the relaxation procedure of this
supercell, being careful to preserve the periodic boundary conditions.

To conclude this section, we mention that we generate the systems with open boundary
conditions starting from a system with periodic boundary conditions, by first removing the bonds
at the edges of the supercell and then removing the dangling sites. This way, the bulk of the periodic
structure where the spillage is computed is the same as the bulk of the open system where the
conductance is determined, which allows us to safely compare their predictions of the topological
phase.

3.3.3 Calculation details

We use the Kwant software package [555] to generate the tight-binding Hamiltonians and
perform the calculations. To be able to treat larger system sizes, we apply the kernel polynomial
method (KPM) [556] to estimate the density of states (DOS) and the projector onto the occupied
states. The projector is computed following the procedure of Ref. [557] and using plane waves as
initial KPM vectors, which allows us to calculate the projector matrix elements ⟨pα|P|pβ⟩. We
use a KPM energy resolution of 0.01tσ (645 moments) for the bismuthene structures. The DOS
is computed by performing a KPM stochastic trace with 50 random vectors. The system sizes
considered are 21a × 12

√
3a.

The structural quasi-Bloch spillage is computed in the systems with periodic boundary con-
ditions using Eq. (3.35), which reduces to Eq. (3.76) of Appendix 3.C in our models, since the
crystalline phase has a honeycomb lattice. On the other hand, the conductance is determined with
the Kwant software in the systems with open boundary conditions. In order to avoid possible
artifacts arising from trivial edge states in a particular termination, the conductance is calculated
using leads in both x and y directions, such that in the crystalline case the edges are zigzag and
armchair, respectively. Since the aim of the conductance is to identify the insulating and topological
insulating regions, which have a quantized conductance of 0 and 2e2/h, respectively, regardless of
the shape of the leads, we use leads consisting of a 2D planar square lattice with nearest-neighbour
hoppings such that their bandwidth is larger than that of the system. These leads are attached to
all the atoms on the corresponding edge of the system. Fig. 8 shows two example configurations
with the leads in the y (armchair) and x (zigzag) directions.

Lastly, to compute the phase diagrams we only need a single disorder realization for each
r. The reason is twofold. First, we noticed that for sufficiently large systems sizes, as the ones
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(a) (b)

Figure 8: Example amorphous bismuthene structure (r = 0.3, ρnon-hex ≃ 0.53) where leads
have been attached to calculate the conductance. (a) System with leads in the x axis, which would
correspond to a zigzag ribbon in the crystalline case. (b) System with leads in the y axis, which
would correspond to an armchair ribbon in the crystalline case.

considered in this work, the fluctuations of the structural spillage for different disorder realizations
are rather small. Indeed, they are smaller than the fluctuations in the conductance, which is another
convenient feature for the use of the structural spillage in high-throughput searches for topological
amorphous materials. Second, while extracting a precise topological phase diagram from the
conductance would require a configuration average, it is not strictly necessary if we just aim to use
it as a benchmark for the structural spillage.

3.3.4 Topological phase diagram

In Fig. 9 we present the topological phase diagram of amorphous bismuthene as a function of
SOC λ and structural disorder, parametrized by the density of non-hexagonal plaquettes ρnon-hex.
We benchmark the structural spillage γTB

qB(k) against the two-terminal conductance results. In the
crystalline limit (ρnon-hex = 0), the system starts as a Dirac semimetal for vanishing vanishing SOC,
λ = λR = 0. The point nodes occur at the K points in the Brillouin zone, similar to graphene, but
with px,y orbitals instead of pz. Finite λ opens a topological gap, rendering the system to a quantum
spin Hall state. The onsite SOC λ here acts as the Kane-Mele SOC in graphene [558]. Increasing
λ widens the topological gap at K, while it shrinks the gap at Γ. Above a critical λ, where the gap
closes at the Γ point, the system becomes a topologically trivial insulator, adiabatically connected
to the atomic limit in which only the onsite SOC is non-zero.

Both the conductance (Figs. 9(b,c)) and the structural quasi-Bloch spillage (Fig. 9(d-f)) capture
the topological transition, even at finite structural disorder (ρnon-hex ̸= 0). The zero-temperature
conductance in the topological insulator phase is equal to 2e2/h, originating from the helical edge
states in the absence of inelastic scattering, while it reduces to zero after the phase transition to
the trivial insulator at a critical SOC. The fact that the conductances along the two perpendicular
“armchair” and “zigzag” directions coincide demonstrates that the quantized conductance does
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(a) (b)

(d) (e) (f)

Figure 9: Bismuthene model phase diagrams of different quantities as a function of SOC λ and
amorphousness, parametrized by the density of non-hexagonal plaquettes ρnon-hex. (a) Density
of states at the Fermi level of the system with periodic boundary conditions. (b, c) Two-terminal
longitudinal conductance in the “armchair” and “zigzag” ribbon configurations, respectively. (d-
f) Structural quasi-Bloch spillage γTB

qB(k = 0) comparing the amorphous system with SOC λ to
a different reference crystal. (d) The reference is a trivial bismuthene crystal with λ/tσ = ∞.
(e) The reference is a topological bismuthene crystal with λ = 0.1tσ. (d) The reference is the
bismuthene crystal with the same SOC λ as the amorphous target at each point. The vertical
dotted line indicated the critical SOC in the crystalline limit, which is needed for the topological
characterization of the amorphous structures.

indeed arise from topological helical edge states, and not from potential disorder-robust trivial
edge states present in one particular crystalline direction. In agreement with the DFT results
of Refs. [417, 418], we find that increasing disorder decreases the gap and hence the critical λ.
Nevertheless, the realistic value of λ ≃ 0.22tσ [552] lies in the topological phase also in the
amorphous case. Fig. 9(a) shows that the density of states at the Fermi level increases with ρnon-hex

when the SOC is such that the crystal is in the topological phase (λ ≲ 1.3tσ). This arises from the
band broadening due to the disorder, and also from the appearance of low-energy states induced
by a sublattice imbalance in a bipartite lattice [559]. This induces the band inversion that drives
the system from topological to trivial at a smaller critical SOC than in the crystal.

The topological transition at high SOC driven by a band inversion at Γ is also reproduced by
the structural quasi-Bloch spillage γTB

qB(k) at k = 0 with different reference sates in Figs. 9(d-f).
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In Fig. 9(d), we choose the reference system to be a trivial crystal, only with non-zero onsite λ.
Therefore, γTB

qB(k = 0) is large in the topological phase (∼ 1.5 as advanced in Section 3.2.3)
and drops to zero in the trivial phase. The critical λ at the transition for the crystal is correctly
predicted by γTB

qB(k = 0). To explore how the structural spillage changes when we choose a
different reference system, in Fig. 9(e) we choose a reference crystal with λ = 0.1tσ, which lies
in the topological phase. Contrary to the trivial reference case of Fig. 9(d), now the spillage is
small in the topological phase and large in the trivial one, as expected. Importantly, the transition
is predicted at approximately the same SOC irrespective of the reference system, which shows the
robustness of the spillage.

Finally, in order to isolate the effect of the structural disorder on the topological band inversion
from the effect of SOC, we have also computed the structural quasi-Bloch spillage comparing each
amorphous system with amorphousness ρnon-hex and SOC λ to a reference crystal with the same
SOC λ, shown in Fig. 9(f). This choice highlights the regions where disorder induces a topological
band inversion. For example, if the reference crystal is topological for a given λ, this spillage will
have a large value if the disorder induces a trivial state. Therefore, interpreting Fig. 9(f) requires
knowledge of the topological phase of the crystal at each λ. For λ ≲ 1.3tσ, the reference crystal
is topological. At small structural disorder, the spillage is small until λ ≲ 1.3tσ, indicating that
the amorphous system is topological too. However, at strong disorder, the spillage becomes large
between λ ≃ 1.1tσ and λ ≃ 1.3tσ, which signals that the disorder induces a band inversion to
the trivial phase. Lastly, for λ ≳ 1.3tσ, the reference crystal is trivial, and the spillage is low,
indicating that the amorphous system is also trivial.

Besides the renormalization of the critical λ by disorder, the topological transition becomes
smoother with increasing disorder, as signaled by the conductance fluctuations close to the transition
and the more gradual jump of the spillage. This is probably caused by finite-size effects. However,
we mention that it could also be related to the appearance of a metallic region in the presence
of both disorder and non-spin-conserving Rashba spin-orbit coupling [560]. Nevertheless, while
this metallic region appears in topological transitions in the presence of non-structural Anderson
disorder [561], it has not been observed in structurally disordered models yet [465]. In order
to discern the origin of the broadened transition in our models, one should perform a finite-size
scaling analysis, but this lies beyond the scope of this Chapter.

In conclusion, all phase diagrams Fig. 9(d-f) agree qualitatively. The spillage is able to predict
the topological phase transition regardless of the reference system. We also notice that, in the
absence of Rashba SOC, the model would reduce to two time-reversed copies of Chern insulators.
Each copy would contribute equally to the structural spillage, demonstrating that the structural
spillage works also for other symmetry classes.
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(a) (b)

Figure 10: Structural quasi-Bloch spillage γTB
qB(k) in the Brillouin zone for the bismuthene

model. The reference system is a trivial crystal with λ/tσ = ∞ in both cases. The target system
is (a) crystalline topological bismuthene with ρnon-hex = 0 and λ = 0.22tσ, and (b) amorphous
topological bismuthene with ρnon-hex ≃ 0.53 and λ = 0.22tσ.

We point out that at small SOC, where the topological gap at K is small, strong disorder closes
the mobility gap, as indicated by the insulating conductance, rendering the system topologically
trivial. This transition is not captured by γTB

qB(k = 0). Since the band inversion occurs at K,
γTB

qB(k = K) should be studied instead.

Before concluding this section, we also show the spillage distribution as a function of the Bloch
momentum k in Fig. 10. In particular, Fig. 10(a) represents γTB

qB(k) for a target topological crystal
with fixed λ = 0.22tσ, comparing it to the trivial crystal with infinite onsite SOC (as in Fig. 9(d)).
The topological band inversion at Γ is reflected in γTB

qB(k) being peaked around k = 0 with a value
∼ 1.5. The same feature, but broadened and direction-averaged, survives with structural disorder
in Fig. 10(b), where the target system is a topological amorphous structure with the same SOC
λ = 0.22tσ and ρnon-hex = 0.53.

3.4 Amorphous bilayer Bismuth: spillage in DFT vs. tight binding

In this section, we introduce other amorphous tight-binding model inspired by the free-standing
Bismuth (111) bilayer, and we show that the structural spillage also acts as a topological indicator
in this case. Moreover, we will also present the ab initio calculations of this material performed by
our collaborators Paul Corbae et al. in Ref. [3]. Both methods predict amorphous bilayer Bismuth
to be topological. Comparing the tight-binding and DFT results, we conclude that, while both
qualitatively agree, the structural spillage method works even better in DFT.
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3.4.1 Bi bilayer tight-binding Hamiltonian

Crystalline Bismuth (111) bilayer consists of a buckled honeycomb lattice of Bismuth atoms,
where each sublattice has a different height [562]. The free-standing crystal is predicted to be a
strong topological insulator crystal with Z2 = 1 driven by the strong SOC [562–565]. An effective
tight-binding of crystalline Bi bilayer was introduced by Ref. [566], where the three p orbitals are
relevant due to the absence of the substrate in this case. Their model consists of spinful px, py

and pz orbitals in the buckled honeycomb lattice with up to third nearest-neighbour hoppings. For
simplicity, we will restrict ourselves to nearest-neighbour hoppings and onsite SOC. In real space
and in the basis

{
px↑, px↓, py↑, py↓, pz↑, pz↓

}
, the Hamiltonian reads:

H =∑
⟨ij⟩

p†
i ·
[
tπ1 − (tσ + tπ)

(
r̂ij ⊗ r̂ij

)
σ0
]
· pj+

+ ∑
i

p†
i ·
[

E0z
1
2

(
L2

x + L2
y − L2

z

)
σ0 + λL · σ

]
· pi,

(3.37)

where 1 is the 6 × 6 identity matrix, tσ and tπ are the nearest neighbour σ and π hoppings, E0z is
the difference between the onsite energy of the pz and px,y orbitals, λ is the onsite isotropic SOC,
and r̂ij is the unit vector along the bond from site i to site j, with its tensor product defined as

r̂ij ⊗ r̂ij =


(r̂x

ij)
2 r̂x

ijr̂
y
ij r̂x

ijr̂
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r̂z
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ijr̂
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ij (r̂z

ij)
2

 , (3.38)

where r̂a
ij are the components along the cartesian axes. We have also defined the angular momentum

matrices La, which act on the orbital subspace
{

px, py, pz
}

:

Lx =

0 0 0
0 0 −i
0 i 0

 ; Ly =

 0 0 i
0 0 0
−i 0 0

 ; Lz =

0 −i 0
i 0 0
0 0 0

 , (3.39)

and therefore

L2
x + L2

y − L2
z =

0 0 0
0 0 0
0 0 2

 (3.40)

In our calculations, we will take tσ as the unit of energy, and fix the value of tπ = 0.25tσ

and E0z = −0.4tσ. We vary the onsite SOC λ. From the DFT-derived tight-binding model of
Ref. [566], we can estimate that the actual SOC for the Bi bilayer is λ ∼ 0.7tσ. The height of the
bilayer enters via the vectors r̂ij. Different DFT calculations have predicted heights ranging from
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dz = 0.35a to dz = 0.40a [562, 565–567]. In this work, we will use dz = 0.9a/
√

6 ≃ 0.37a.

3.4.2 Construction of amorphous Bi bilayer structures

Our structures of amorphous Bi bilayers are constructed in a similar way to monolayer bis-
muthene. Indeed, the first step is generating an amorphous bismuthene network following the
Voronoi procedure outlined in Section 3.3.2. We then have to assign different heights to the
sites. In the crystalline limit, each sublattice has a different fixed height because of the buckling.
Sublattices are no longer well-defined in an amorphous network, but we can still define effective
sublattices. One differentiating property between the two sublattices in a crystalline honeycomb
lattice is the direction of their nearest-neighbour bonds: if the bonds from sublattice A point at
polar angles θA

1 = π/2, θA
2 = −11π/12 and θA

3 = −π/12, then the ones from sublattice B point
at θB

1 = −π/2, θB
2 = π/12 and θB

3 = 11π/12. Therefore, η(S) = sign
[(

∑l θS
l mod 2π

)
− π

]
is equal to +1 for sublattice S = A and −1 for S = B. Using η(S) = ±1 to define the effec-
tive sublattices in the amorphous structures, we then assign a height ±dz/2. Finally, we add a
random disorder to the height of each site sampled from a Gaussian distribution with standard
deviation rz · a. In particular, we choose the height disorder rz proportional to r, the parameter
that controls the in-plane amorphousness. In the calculations presented in this work, we take
rz = rdz/(4a) ≃ 0.09r. Fig. 11(a) shows the top and side views of a representative struc-
ture. Figs. 11(b,c) show how the 2D square-lattice leads are attached along the two perpendicular
directions.

3.4.3 Calculation details

As in the bismuthene model, we apply the KPM method [556] within the Kwant software
package [555]. The KPM energy resolution for the projector calculation (0.005tσ ≡ 887 moments),
the number of vectors in the KPM stochastic traces for the DOS calculation (100 random vectors),
and the system size (21a × 12

√
3a) are all twice as big as the values considered for the bismuthene

model. We choose them larger since the gap in Bi bilayer is smaller, and therefore finite-size effects
are larger. Additionally, our Bi bilayer model displays, at weak structural disorder, trivial edge
states close to the Fermi level over a wide range of values of SOC, which appear in both zigzag and
armchair edges. These alter the Fermi level of a finite system with open boundary conditions Eopen

F

with respect to the one computed with periodic boundary conditions Eperiodic
F . For the system sizes

we are able to treat numerically, the change in the Fermi level Eopen
F is enough for it to lie outside of

the bulk gap, since the thermodynamic gap in the crystal is rather small (∼ 0.1tσ). Therefore, the
conductance computed at Eopen

F in the crystal would show metallic regions even in the insulating
and topological insulating phases due to this artifact. In order to avoid this issue, in the Bi bilayer
systems we compute the conductance at Eperiodic

F determined with periodic boundary conditions.



3.4. Amorphous bilayer Bismuth: spillage in DFT vs. tight binding 191

(c)(b)(a)

Figure 11: Side and top views of an example of amorphous Bi bilayer structure with ρnon-hex =
0.53 (r = 0.3) used in the tight-binding calculations. Sites are colored according to their out-
of-plane positions: red/blue indicates the effective sublattice, and the color intensity scales with
the actual out-of-plane position. The positions in the out-of-plane direction have been rescaled
by a factor 10 for visualization purposes. (a) Structure without leads. (b) Structure with leads
attached in the x axis, which would correspond to a zigzag ribbon in the crystalline case. (c)
Structure with leads attached in the y axis, which would correspond to an armchair ribbon in the
crystalline case.

We note that this problem does not appear in the bismuthene models. At large SOC and disorder,
these trivial edge states merge into bulk states and therefore Eperiodic

F ≃ Eopen
F .

3.4.4 Tight-binding results

In this section, we study the topological phase diagram of the amorphous Bi bilayer tight-
binding model (3.37), and show that, as for bismuthene, the structural spillage correctly predicts the
topological band inversion in this model. Unlike for its crystalline phase, no topological study has
been carried out for amorphous bilayer Bismuth. Our results indicate that, if amorphous structures
are stable and can be synthesized, they will also be topologically nontrivial.

Before analyzing the results, we briefly review the current status regarding the topological
characterization of crystalline Bi (111) bilayer. In the crystalline case with SOC, the Bi bilayer has
been predicted to be a strong topological insulator [562–565]. Our model can also describe other
materials with the same lattice, such as the antimony (111) bilayer. Due to the smaller SOC, the Sb
bilayer becomes a strong topological insulator only when strained [568]. Therefore, our model in
the crystalline case starts as a Z2 = 0 insulator for vanishing λ. A band inversion occurs at a finite
value of λ, driving the system to a Z2 = 1 topological insulating phase. For the parameters used
in this work (see Appendix 3.4.1), this band inversion in the crystal occurs at Γ for λ ≃ 0.27tσ.

The topological character of each phase is also confirmed by the longitudinal conductance
along two perpendicular directions, shown in Figs. 12(b,c). In the crystalline limit with ρnon-hex = 0,
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(a) (b) (c)

(d) (e) (f)

Figure 12: Bi bilayer model phase diagrams of different quantities as a function of SOC λ and
amorphousness, parametrized by the density of non-hexagonal plaquettes ρnon-hex. (a) Density
of states at the Fermi level of the system with periodic boundary conditions. (b, c) Two-terminal
longitudinal conductance in the “armchair” and “zigzag” ribbon configurations, respectively. (d-
f) Structural quasi-Bloch spillage γTB

qB(k = 0) comparing the amorphous system with SOC λ to
a different reference crystal. (d) The reference is a trivial Bi bilayer crystal with λ = 0. (e) The
reference is a topological Bi bilayer crystal with λ = tσ. (f) The reference is the Bi bilayer crystal
with the same SOC λ as the amorphous target at each point. The vertical dotted line indicated
the critical SOC in the crystalline limit, which is needed for the topological characterization of
the amorphous structures.

the conductance vanishes for small SOC, λ ≲ 0.2tσ, corresponding to the trivial phase. Above
λ ≳ 0.3tσ, the conductance becomes quantized to 2e2/h, indicating the topological phase. Around
the transition, for 0.2tσ ≲ λ ≲ 0.3tσ, even in this crystalline case, the conductance shows a
metallic region. This is an artifact of the finite precision in computing the Fermi level with the
kernel polynomial method, compounded with finite-size effects and the presence of trivial edge
states (see section 3.4.3). We have checked that this transition region is reduced upon increasing
the kernel polynomial method precision and the system size. Note that these issues only appear
as one approaches the transition, where the gap is increasingly small. The finite KPM precision
manifests itself in the fact that the trace of the crystalline projector tr[P], which should be equal
to Nocc, is slightly larger over a region close to the transition (see the discussion of Fig. 3.C.1 in
Appendix 3.C).
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(a) (b)

Figure 13: Structural quasi-Bloch spillage γTB
qB(k) in the Brillouin zone for the Bi bilayer

model. The reference system is a trivial crystal with λ = 0 in both cases. The target system
is (a) crystalline topological Bi bilayer with ρnon-hex = 0 and λ = 0.7tσ, and (b) amorphous
topological Bi bilayer with ρnon-hex ≃ 0.53 and λ = 0.7tσ.

The topologically trivial phase and the broadened transition to the topological phase also
appear for weak structural disorder, ρnon-hex ≲ 0.3. The critical SOC seems to slightly increase
with disorder, although a scaling analysis of the conductance would be required to discern the
precise dependence. While the trivial phase survives and remains gapped for stronger structural
disorder, the spectral gap closes in the range of SOC corresponding to the topological phase in
the crystal (see Fig. 12(a)). The conductance also suggests that the mobility gap closes there and
the system becomes metallic. Despite the absence of Rashba SOC in this model, the onsite λ is
already spin-non-conserving, and therefore a metallic phase can survive against weak localization
[560]. Nevertheless, we cannot discard the possibility that the metallic conductance is arising from
finite-size effects with an Anderson localized bulk but with a localization length longer than the
system sizes considered. A scaling study would be needed to discern the nature of this metallic
conductance, but this lies beyond the scope of this Chapter.

We now examine the predictions of the structural spillage. Figs. 13(a,b) show the distribution
of the structural spillage γTB

qB(k) as a function of the crystal momentum k in the Brillouin zone. The
reference system is a trivial Bi bilayer crystal with vanishing SOC in both cases. The target systems
have a SOC λ = 0.7tσ, corresponding to the topological region. Indeed, the spillage in Fig. 13(a),
whose target system is crystalline, is peaked around Γ, reflecting the band inversion there. Although
smoothed, the band inversion survives with moderate structural disorder, as shown in in Fig. 13(b)
for a target amorphous system with ρnon-hex ≃ 0.53, where γTB

qB(k) > 1
2 max[γTB

qB ]crystal = 0.75
fulfills our topological criterion explained in Section 3.2.3. Notice that the spillage for the Bi
bilayer model (Fig. 13) is sharper than for the bismuthene model (Fig. 10) for both crystalline and
amorphous target systems.

With this in mind, we study the phase diagram of the structural spillage γTB
qB(k) at k = 0 to



194 Chapter 3. Topological amorphous matter

indicate the topological transition. Fig. 12(d) shows such phase diagram for a reference crystal
with vanishing SOC, corresponding to the trivial phase. 12(e) displays the corresponding phase
diagram for a topologically nontrivial reference crystal with λ = tσ. For moderate structural
disorder, ρnon-hex ≲ 0.3, both correctly reproduce the topological transition. The same limited
precision and finite size effects that affected the conductance also broaden the otherwise sharp
transition in the structural spillage. At higher structural disorder, where the system becomes
metallic in the range of SOCs previously corresponding to the topological phase, the two structural
spillages of Figs. 12(d,e) quantitatively differ due to the band mixing in the gapless region. The
structural spillages are not specifically designed to capture metallic phases, but they still capture a
partial band inversion.

The same features are reflected in the structural spillage of Fig. 12(f), whose amorphous target
and crystalline reference have the same SOC λ in each point of the phase diagram. As in the
bismuthene case, this phase diagram has to be interpreted as the effect of disorder in the band
inversion. For a given λ, the topology of the amorphous target is the same as the one of the
corresponding crystal if γTB

qB(k = 0) is small.

In summary, both conductance and spillage phase diagrams agree qualitatively and predict the
topological phase transition as long as the mobility gap remains closed. Quantitative differences
only arise in the metallic regions, where the band inversion is just partial. We also note that the
realistic SOC λ = 0.7tσ lies in the topological region.

3.4.5 DFT results

In this section, we present the DFT calculations of the structural spillage in amorphous bilayer
Bismuth performed by our collaborators Paul Corbae et al. in Ref. [3]. By comparing them
to our tight-binding results, we point out that the structural spillage is more convenient for first-
principles calculations. This suggests that the structural spillage of Eq. (3.23) is well suited for
high-throughput screening of amorphous topological materials.

The structurally disordered systems studied in these DFT calculations consisted of 5 × 5 × 1
supercells comprising 50 Bi atoms. Starting from a crystalline supercell, the structures were
disordered by adding random displacements in the x, y, and z directions, sampled from a Gaussian
distribution. Two amorphous structures with different degree of structural disorder were studied.
Fig. 14 shows their structures and their corresponding radial distribution functions. We remark
that these structures are not relaxed and not necessarily realistic, since our aim in Ref. [3] was to
benchmark the structural spillage method in a structurally disordered system.

The electronic structure was calculated with plane-wave-based DFT for a single supercell
momentum, the center of the supercell Brillouin zone. While the weak-disorder structure remains
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(d)

= 0.53

qB

Figure 14: Structure and structural spillage of the disordered Bismuth bilayer systems studied
in DFT calculations performed by our collaborators Paul Corbae et al. Extracted from Ref. [3].
(a) and (b) show the in-plane and out-of-plane views of the supercell, respectively. The colors
indicate different degrees of disorder: crystal (blue), weak disorder (green) and strong disorder
(orange). The disorder is sampled from a Gaussian distribution with a standard deviation of
0.15 Å for the weak disorder and 0.30 Å for the strong disorder. (c) Radial distribution function
(RDF) showing the statistics of the bond lengths in the disordered Bismuth bilayer and their
deviations from the perfect crystal (vertical dashed lines). (d) Structural quasi-Bloch spillage
γqB(k) as a function of k in the Brillouin zone. First row: comparison between an amorphous
system with SOC (a-SOC) and a crystalline system without SOC (x-noSOC). Comparing an
amorphous system without SOC with a crystalline sample with SOC leads to similar results.
Second row: comparison between the amorphous and crystalline systems with SOC (a-SOC and
x-SOC, respectively). γqB(k) is high at k = 0 for the first row while small for the second row,
indicating that amorphous Bismuth bilayer is a topological insulator. The last column shows a
comparison with the tight-binding quasi-Bloch spillage γTB

qB(k) of Eq. (3.35) for the Bi bilayer
model studied in section 3.4.4 with ρnon-hex ≃ 0.53 and λ = 0.7tσ. Note that the top plot is the
same as in Fig. 13(b), but with a different scale and color map.

insulating, the strong-disorder one becomes metallic, as in our tight-binding model studied in the
previous section. The structural quasi-Bloch spillage of Eq. (3.23) was determined using the output
wavefunctions of the first-principles calculations. The amorphous target systems with SOC were
compared to crystalline reference systems without and with SOC, which are topologically trivial
and nontrivial, respectively. For a topologically trivial reference with vanishing SOC, the first row
of Fig. 14 shows that γqB(k) is peaked at k = 0, with γqB(k = 0) > 2. Increasing disorder
smoothens γqB(k), yet it remains peaked at Γ with a value greater than 2. In contrast, the second
row of Fig. 14 shows that the spillage is always small when the reference crystal is topological.
Both rows together show that amorphous Bismuth bilayer with SOC is in the same topological
state as the crystal with SOC, a strong topological insulator crystal with Z2 = 1.

Qualitatively, these results match our tight-binding predictions. For a better quantitative
comparison, in the last column of Fig. 14 we have included the structural spillage γTB

qB(k) of
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Eq. (3.35) computed in the tight-binding approximation for an amorphous Bi bilayer with an
structural disorder ρnon-hex ≃ 0.53. While the structural disorders in the tight-binding and DFT
structures are different, the width of the nearest-neighbour peak in the radial distribution function
of this tight-binding structure is similar to the one of the weak-disorder system studied in DFT.
Contrasting the first and last columns of Fig. 14, we conclude that for comparable disorder strengths
γTB

qB(k) is broader and its maximum value is smaller than γqB(k) in DFT. In conclusion, due to
the approximations in the tight-binding calculation of the spillage, which lacks information of the
real space extension of the orbitals, the spillage method is more suitable for DFT, an advantageous
feature compared to other topological indicators available for noncrystalline systems.

3.5 Discussion and conclusions

We have introduced the structural spillage as an efficient method to signal noncrystalline
topological phases, compatible with ab initio simulations. We have also adapted it to the tight-
binding approximation. We have applied the structural spillage to reproduce amorphous monolayer
bismuthene as topologically nontrivial and to predict amorphous bilayer Bismuth as a novel
topological insulator.

As with the spin-orbit spillage in crystals [117], we expect the structural spillage to signal
a large fraction of promising materials, but not to be infallible: if multiple band inversions are
introduced upon amorphization, the spillage might also be artificially large. While it can signal
these false positive cases, we expect the number of false negatives to be considerably small: if
no band inversion occurs, the topology is generally the same. Moreover, unlike for crystals, the
spillage is currently the only systematic, model-independent method that is compatible with ab
initio calculations of noncrystalline systems. Additionally, it can be applied to systems without
a spectral gap, where the effective Hamiltonian approach [493] can fail [120]. All these features
suggest the structural spillage as a candidate for a first screening in high-throughput searches to
identify potential candidates for topological insulators in noncrystalline materials.

An important requirement for the application of the structural spillage involves finding an
appropriate crystalline reference. The general recipe is finding the crystal whose local environ-
ments, defined by the coordination numbers, bond lengths and bond angles, are closer to a given
amorphous structure. In practice, several methods to generate amorphous materials start from a
crystalline system, and then distort it using a given procedure. In these cases, a generally good
crystalline reference would be this initial system. For example, this is clear in our tight-binding
models, where the starting point is a crystalline honeycomb lattice, which is then made amor-
phous by adding a controlled amount of structural disorder via the described Voronoi procedure.
The same idea applies to the bond-flipping amorphization method, which has been employed to
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generate realistic ab-initio amorphous materials [417, 418]. In the case of the widely extended
ab initio molecular dynamics methods [416, 569, 570], amorphous structures are generated by a
melt-and-quench procedure, whereby a seed crystal is heated above the melting temperature, with
certain annealing time, and then quenched to low temperatures again.

In a few cases, however, there might not be an appropriate crystalline reference, either because
no crystal of the desired composition exists, or because the local environments of the existing
crystals are significantly different from those of the noncrystalline system. In such cases, one may
define a plane-wave-resolved spillage by using Eq. (3.23a) without the sum over G (see Appendix
3.B.3 and the paragraph below Eq. (3.35)). In Appendix 3.B.3 we demonstrate that also this
plane-wave-resolved spillage works within our bismuthene and Bi bilayer tight-binding models.
Its usefulness in DFT calculations is worth studying in the future.

In summary, the structural spillage constitutes a promising step in the roadmap to systematically
construct a high-throughput catalogue of noncrystalline topological materials. In the current stage,
it could be readily applied to screen existing databases of amorphous solids, as well as known
quasicystalline and polycrystalline materials.

3.5.1 Outlook

An important open problem in the field is experimentally manufacturing an amorphous solid
state system that is unambiguously topological. Amorphous Bi2Se3 is an auspicious candidate
thanks to its spin-momentum locked surface states observed by ARPES [410, 545], but other
experiments are desirable for a definite proof. The establishment of a high-throughput catalogue
of noncrystalline topological materials with the structural spillage could aid this search by finding
a textbook amorphous topological material feasible to be synthesized. Nevertheless, interesting
subsets of materials where to look for include those with high spin-orbit coupling or those which
undergo topological transitions under pressure or strain, since the amorphization could mimic
the local environments of these situations. Material candidates include amorphous pnictogen
trichalcogenides, such as amorphous Sb2Se3 [571].

Besides a catalogue of noncrystalline topological materials, several other avenues are open
in the field of noncrystalline topological matter. First, a complete classification of the possible
topological phases in noncrystalline systems is lacking. A first step in this direction was taken by
Refs. [113, 452–457] with the introduction and characterization of gapped statistical topological
insulators. In particular, Ref. [456] classified 2D amorphous statistical topological insulators
protected by average reflection symmetry based on the effective Hamiltonian approach. A different
approach which might also be useful for this classification is that of real space invariants [385, 514,
572–574], which are quantities defined in real space based on the number of occupied Wannier
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states in the high-symmetry Wyckoff positions. For their application in noncrystalline system, the
calculation of the Wannier centers should be generalized to non-translationally invariant systems.
Ref. [475] carried out the first step in this direction. The authors considered an amorphous tight-
binding model, and differentiated whether the charge centers of the filled states were located in the
sites or in the bonds, allowing to identify amorphous obstructed insulators. Once this is generalized
to all noncrystalline materials, real space invariants would allow the topological classification of,
for instance, quasicrystals with a well-defined point group.

Several questions remain unsettled in the field of noncrystalline topological superconductors
at different levels of their description. For instance, while topological superconductivity has been
self-consistently determined in attractive Hubbard models in quasicrystals [575], it remains to be
demonstrated in amorphous systems, where topological superconductivity has only been studied
by imposing a finite pairing [469, 470]. Although Anderson’s theorem [423–425], which states that
the superconductivity is unaffected by dilute disorder, only applies to isotropic superconductivity
pairing time-reversal partners, it is not the end of the story. Indeed, theories treating the disorder
exactly predict that unconventional superconductivity can be robust and even enhanced by disorder
due to the multifractal properties of the spectrum and related enhancement of the local DOS in
certain regions [426–428]. This enables the possibility of self-consistently finding amorphous
topological superconductivity, especially in multiorbital models with a local superconducting
pairing. A related problem consists of studying the difference between the impact of structural
and Anderson disorders in superconductivity, which might display a markedly distinct spatial
distribution of the order parameter. In a further level of description, tools beyond mean-field theory
would be needed to discern what features are not artifacts of mean-field theory, which suffers from
rare region effects [427]. At the same time, another frontier in noncrystalline superconductivity
consists of developing more elaborate models with realistic interactions beyond attractive Hubbard
models. For instance, vibrational properties of amorphous solids are different than those of crystals,
showing an excess of low-frequency vibrational modes which can affect superconductivity [576–
578].

In summary, we believe that our theory provides a meaningful advance in the field of noncrys-
talline topological matter. We also hope that the near future will see significant contributions to
several of the far-reaching open questions in the field.
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Appendices

3.A Structural spillage in DFT calculations

Unlike in the tight-binding approximation, the structural spillage of Eq. (3.23) can be directly
implemented in DFT. Here, the overlap between two systems is well-defined irrespective of whether
they have atoms at different positions. However, strictly speaking, the continuous set of plane waves
is always overcomplete in any numerical scheme. Nevertheless, the structural spillage of Eq. (3.23)
is still well-defined in DFT implemented with both a plane-wave or a localized basis. On the one
hand, plane-wave-based DFT codes feature discretized momenta imposed by the periodic boundary
conditions of the supercell, as well as a high-momentum cutoff. These features do not constitute
any fundamental problem for comparing two systems with different atomic structures, as long as
one has access to, or can interpolate, the information at the same momenta in both target and
reference systems. On the other hand, implementations of DFT with a localized basis, such as
Gaussian or atomic orbitals, do not directly output the information in plane-wave momentum space.
However, knowing the shape of the orbitals, a Fourier transform gives access to it, and no problem
appears regardless of the atomic structure.

3.B Structural spillage and average symmetry indicators in amor-
phous systems

Symmetry indicators are a powerful tool to identify topological phases in crystalline sys-
tems [102, 104–107]. Average-symmetry indicators have been extended to simple amorphous
tight-binding models [120]. In particular, Ref. [120] studied Weaire-Thorpe models [406, 412,
413] with a well-defined atomic limit with an exact local threefold symmetry C3 which acts on the
internal degrees of freedom. While for other parameters this local symmetry is only present on
average, the spectral density can still be projected to the eigenvectors of C3. If the spectral density
is also momentum-resolved by projecting to plane-wave states, the topological transitions of this
model are characterized by a band inversion of two bands with different average C3 symmetry at a
given momentum p, which in their models is p = 0.
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3.B.1 Amorphous average symmetry indicators in the bismuthene tight-binding
model

The same concept can be applied to our bismuthene model. The trivial atomic limit with
infinite onsite SOC λ or, analogously, vanishing hoppings, has a local rotational O(2) ≃ U(1)
symmetry in the space of internal orbital and spin degrees of freedom, which can therefore be
labelled by their angular momentum Jz. In our model with |Lz| = 1 px,y orbitals with spin
|Sz| = 1

2 , the local O(2) symmetry has eigenvalues, |Jz| = 1
2 , 3

2 . Due to time-reversal symmetry,
the Hamiltonian eigenvectors with equal |Jz| are degenerate, with eigenvalue +λ for the |Jz| = 1

2

states {p+↓, p−↑}, and eigenvalue−λ for the |Jz| = 3
2 states {p+↑, p−↓}. Therefore, at half-filling,

only |Jz| = 3
2 are occupied.

Away from this atomic limit, the local O(2) symmetry is broken, but a local C3 symmetry is
recovered on average. We note that the crystalline lattice has exact C3 symmetry. The local C3

symmetry can also be labelled by |Jz|. Therefore, it makes sense to resolve the spectral function
in |Jz|. Following Ref. [120], we project onto plane waves with momentum p, keeping only
the diagonal elements, i.e., we neglect momentum scattering. The resulting momentum and C3-
resolved spectral densities are ρ|Jz|(ω, p). The total spectral density is ρ(ω, p) = ρ1/2(ω, p) +
ρ3/2(ω, p).

Recall that, in the crystalline case, bismuthene starts in a topological phase for small SOC, and
increasing SOC drives a band inversion at Γ that renders the system trivial. This band inversion
occurs between states with different |Jz|. At high structural disorder, the inversion between states
survives at plane-wave momentum p = 0. As seen from the C3-resolved spectral densities are
ρ|Jz|(ω, p), the inversion is between states with a state with mainly |Jz| = 3

2 and another with
mainly |Jz| = 1

2 . In particular, two unoccupied |Jz| = 1
2 states at p = 0 in the trivial phase become

occupied in the topological state. This can be captured by the symmetry indicator that counts the
difference between the occupied states with distinct C3 projection:

ν(p) =
∫ EF

−∞
dω [ρ3/2(ω, p)− ρ1/2(ω, p)] , (3.41)

Indeed, ν(0) jumps from ≃ 2 at high SOC in the trivial phase, to ≃ 0 after the transition to the
topological state.

3.B.2 Relationship to the structural spillage

A change in the amorphous average symmetry indicators signals a band inversion, which
can also be detected with an spillage comparing two appropriate systems. We now discern the
particular relationship between them in our amorphous bismuthene model. Note that the trace of
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the plane-wave resolved projector onto occupied states equals the integral of the spectral function:

tr
[
Pp
]
=
∫ EF

−∞
dωρ(ω, p). (3.42)

Projecting onto the eigenstates of the average local C3 symmetry, we can also write

tr
[

P|Jz|,p
]
=
∫ EF

−∞
dωρ|Jz|(ω, p), (3.43)

with tr[Pp] = tr[P3/2,p] + tr[P1/2,p]. Therefore, we can rewrite the symmetry indicator as

ν(p) = tr
[
P3/2,p − P1/2,p

]
(3.44)

In our particular case, tr[P3/2,p=0] ≃ 2 for all SOCs, so we can simplify

ν(p = 0) ≃ 2 − tr
[
P1/2,p=0

]
. (3.45)

For the spillage, we consider a reference trivial crystal with infinite onsite SOC P̃, which has
tr[P̃3/2,p] = 2 and P̃1/2,p = 0. Consider the G = 0 term of the summation in the structural
quasi-Bloch spillage γTB

qB(k = 0) of (3.35). In section 3.2.3, we called this quantity plane-wave-
momentum resolved spillage γTB

pw(p):

γTB
pw(p = 0) =

1
2

tr
[(

Pp=0 − P̃p=0
)2
]
=

1
2

(
tr
[

P2
p=0

]
+ tr

[
P̃2

p=0

])
− tr

[
Pp=0P̃p=0

]
.

(3.46)
In Appendix 3.C, we will show that tr[P2

p] ≃ tr[Pp], so

γTB
pw(p = 0) ≃ 1

2
(
tr
[
Pp=0

]
+ tr

[
P̃p=0

])
− tr

[
Pp=0P̃p=0

]
. (3.47)

Now, resolving the projectors in |Jz|, and using that tr[P3/2,p=0] ≃ 2 = tr[P̃3/2,p], P̃1/2,p = 0,
tr[Pp=0P̃p=0] = tr[P3/2,p=0P̃3/2,p=0] = tr[P3/2,p=0], we can write

γTB
pw(p = 0) ≃ 1

2
(
tr
[
P3/2,p=0

]
+ tr

[
P1/2,p=0

]
+ tr

[
P̃3/2,p=0

])
− tr

[
P3/2,p=0

]
≃

≃ 1
2

tr
[
P1/2,p=0

]
≃ 1 − 1

2
ν(p = 0).

(3.48)

Therefore, the plane-wave spillage γTB
pw(p) comparing the target amorphous system to a trivial

crystalline atomic limit is just the symmetry indicator ν(p) rescaled. Indeed, γTB
pw(p = 0) jumps

from 0 in the trivial phase to 1 in the topological phase. This relationship further justifies the
validity of our structural spillage.
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3.B.3 Structural plane-wave spillage

Eq. (3.48) demonstrates the direct link between the plane-wave-momentum resolved spillage
γTB

pw(p) and the amorphous average symmetry indicators. The structural quasi-Bloch spillage
γTB

qB(k) is related to this structural plane-wave spillage γTB
pw(p) via the average over Brillouin zone

types (see Section 3.2.3):

γTB
pw(p) =

1
2

tr
[(

Pp − P̃p
)2
]

, (3.49)

γTB
qB(k) =

Ns/c

NBZs

BZs

∑
G

γTB
pw(k + G). (3.50)

The additional sums over the different types of Brillouin zones are kept in our formulation to recover,
in the crystalline limit, the results as similar as possible to Liu and Vanderbilt’s spillage7. However,
we remark that the structural plane-wave spillage γTB

pw(p) should also act as a topological indicator
in the tight-binding approximation. Besides its explicit connection to average symmetry indicators,
the structural plane-wave spillage γTB

pw(p) is also more directly related to the Fourier transform
of an appropriately chosen strange correlator [118, 119] (see Section 3.2.2). The topological
transition criterion in this case should be taken as γTB

pw(p)crit ∼ 1
Ns/c

.

This observation allows to expand the applicability of the structural spillage. One of the key
points for the structural quasi-Bloch spillage of Eqs. (3.23), (3.35) to work as a topological indicator
is that there exists a crystalline structure with similar local environments to the noncrystalline one.
While this is a quite generic feature [401], there are also a few amorphous and quasicrystalline
structures whose local environment is different to any crystalline phase of the same material. In
this case, while the structural quasi-Bloch spillage could still be calculated, it would probably not
be very indicative of the topology, since many trivial band inversions could occur. It is for such
cases without a crystalline counterpart, where we propose the plane-wave spillage γTB

pw(p), but
now comparing the noncrystalline target to a reference system with the same structure but another
differing parameter, such as SOC. While this poses the challenge of identifying the topology of
the reference in the first place, it can indicate the topological band inversions between them. In
particular, strong topological phases could be indicated by such a SOC plane-wave spillage, since
the reference with vanishing SOC would not be strong topological. Indeed, Fig. 3.B.1 shows
γTB

pw(p = 0) for the bismuthene and Bi bilayer amorphous tight-binding models using a trivial
amorphous reference system. As the full quasi-Bloch structural spillage, the plane-wave spillage
comparing two amorphous structures does also predict the topological phase transition in both
models. We highlight that this SOC plane-wave spillage is different from Liu and Vanderbilt’s

7They are also kept so that the structural spillage works in DFT, where plane wave states do not have the orbital
degree of freedom.
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TB TB

Figure 3.B.1: Phase diagram of the plane-wave spillage γTB
pw(p) at p = 0. (a) Amorphous

bismuthene, where the reference system is the trivial amorphous phase with tσ = 0. (b)
Amorphous Bi bilayer, where the reference system is the trivial amorphous phase with λ = 0.

SOC Bloch spillage, which is resolved in the Bloch momentum of the supercell, and is always
larger for a large supercell regardless of the topology.

This plane-wave spillage can be generalized to DFT calculations by reincorporating the mo-
mentum scattering in the tight-binding plane-wave spillage of Eq. (3.49), or equivalently by
neglecting the sum over crystalline reciprocal lattice vectors G in the quasi-Bloch spillage of
Eq. (3.23):

γpw(p) =
1
2 ∑

p′
∑
αβ

[
Pαβ

p,p′P
βα
p′,p − Pαβ

p,p′ P̃
βα
p′,p

]
+
[
P ↔ P̃

]
(3.51)

where p and p′ are plane-wave momenta. For a supercell Gamma calculation in DFT, p and p′

would be the supercell reciprocal lattice vectors. While this is a promising avenue, we acknowledge
that further studies should be carried out to apply the plane-wave spillage within DFT, since it
is not clear the topological transition criterion yet. The crucial difference with the tight-binding,
where this criterion is easily extracted, is that plane waves projected to the tight binding are not
pure plane waves, but are are also orbital resolved. That γTB

pw(p) = 1 means therefore that one
orbital per atom has been inverted in the band inversion at momentum p.

Finally, we mention that, since both systems that are being compared have the same structure,
momentum scattering could also be included within a tight-binding approximation:

γnon-orth
pw (p) =

1
2 ∑

p1,p2,p3

∑
αβ

[
Pαβ

p,p1

(
S−1

)
p1,p2

Pβα
p2,p3

(
S−1

)
p3,p

−

−Pαβ
p,p1

(
S−1

)
p1,p2

P̃βα
p2,p3

(
S−1

)
p3,p

]
+
[
P ↔ P̃

]
.

(3.52)
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where the overlap matrix is defined as Sp,p′ = ⟨pα
∣∣p′α⟩, which depends only on the difference

p′ − p. However, the no-scattering approximation of the plane-wave spillage γTB
pw(p) of Eq. (3.49)

is much more efficient to compute, and it already indicates topology. (3.23)

3.C Structural spillage in the tight-binding approximation

In this Appendix, we give a pedagogical justification of Eq. (3.35) for computing the structural
quasi-Bloch spillage in the tight-binding approximation, where only the Wannier charge centers
are known. We recall that plane wave states projected to the tight-binding Hilbert space are
non-orthogonal and overcomplete. When trying to compare a target and a reference system with
different atomic structure, their overlap is ill-defined since their Hilbert spaces are different. As
explained in Section 3.2.3, this issue can be circumvented by neglecting the matrix elements of
the projectors that are off-diagonal in momentum, which we call the no-scattering approximation.
However, this approximation, together with the non-orthogonal and overcomplete character of the
plane waves, causes new issues. Here we thoroughly explain these and our approach to bypass
them, which aims to obtain the results as close as possible to the exact ones in the crystalline limit.

In order to separately understand the different issues that appear in the tight binding, we first
consider the simple case of a system whose corresponding crystalline limit has a single site per
unit cell, where only a part of the problems appear. Then, we will analyze the general multi-site
case.

3.C.1 Reference crystal with a single site per unit cell

Setting the stage: crystalline system

Consider a crystalline tight-binding system with Ncell unit cells and one site per unit cell, i.e.,
only one Wyckoff position with multiplicity one is occupied by an atom, Ns/c = 1. Therefore,
the number of sites is the same as the number of cells, Nsites = Ncell. The number of internal
degrees of freedom (orbitals and spins) at each site does not influence the discussion below, so we
omit this internal index for simplicity in the notation. In the tight-binding approximation, Wannier
functions |ϕR⟩ at different lattice sites R are orthogonal

⟨ϕR′ |ϕR⟩ = δR,R′ . (3.53)

Since their real-space wavefunction is unknown, gauge invariance requires the position operator to
be diagonal in the Wannier function basis

⟨ϕR′ |R|ϕR⟩ = δR,R′ , (3.54)
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Therefore, Wannier functions are considered to be Dirac delta distributions:

ϕR(r) = ⟨r|ϕR⟩ = δ(r − R). (3.55)

The plane wave with momentum p projected to the tight-binding Hilbert space is a state with
a phase p · R at the site R, and normalized in the total volume of the system (see Eq. (3.26)). Then,
the overlap between Wannier functions and plane wave reads:

ϕR(p) = ⟨p|ϕR⟩ =
1√

Nsites
e−ip·R. (3.56)

Moreover, the Bloch states defined at crystal momentum k in the first BZ are:

|ϕk⟩ =
1√
Ncell

∑
R

eik·R|ϕR⟩, (3.57)

Since Nsites = Ncell, the overlap between the Bloch states and the plane waves is thus:

⟨p|ϕk⟩ =
1

Nsites
∑
R

ei(k−p)·R = ∑
G

δp,k+G, (3.58)

where G are the reciprocal lattice vectors, i.e., G · R/2π ∈ Z. Therefore, all the BZs are exactly
equivalent in a crystalline one-atom tight-binding, since

⟨k + G|ϕk⟩ = 1 (3.59)

does not depend on G. In other words, ⟨p|p + G⟩ = 1 for the crystal, i.e., both plane waves are
projected to the same state, which is exactly the Bloch state at k too.

Finally, as a side remark, it is worth mentioning that even if there is a single site per unit
cell, the BZs of a crystal are no longer equivalent if the orbitals have a finite spread in real space.
Indeed, in this case, the overlap between the Bloch state and the plane waves is:

⟨k + G|ϕk⟩ =
1

Ncell
∑
R

eik·R⟨k + G|ϕR⟩ =
1

Ncell
∑
R

e−iG·R⟨k + G|ϕ0⟩ = ϕ0(k + G), (3.60)

where ϕ0(k + G) is the Fourier transform of the orbital located at the origin, which is generically
not constant.
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Spillage comparing two crystals

Remember that plane waves are an overcomplete set in the tight-binding Hilbert space. In this
single-site case, the Hilbert space dimension is Nsites, which is the number of linearly independent
plane waves needed for a basis. One possible choice is selecting all the Ncell = Nsites momenta
in one BZ {|k + G⟩}fixed G, e.g. the first BZ, with G = 0. These are linearly independent and
orthogonal in the crystalline case, ⟨k′ + G|k + G⟩ = δkk′ . Therefore, this choice constitutes an
orthonormal basis. Therefore, in this basis we can compute the spillage comparing a target and
a reference with the same crystalline lattice by directly applying Eq. (3.23), with the particularity
that the sums over reciprocal lattice vectors G disappear since there is only one in the basis.

The key difference from the general multi-site case is that observables are the same irrespective
of the BZ where the momenta for the basis are chosen, i.e., irrespective of the G chosen in the
basis. Moreover, thanks to the equivalence between plane waves |k + G⟩ and Bloch states |ϕk⟩ in
this single-site case, observables projected to a plane wave p are equal to the crystalline quantities
computed at Bloch momentum k = p mod G. In particular, the quasi-Bloch spillage (3.23),
which is equal to the Bloch spillage because we are comparing two crystals, is also equal to the
quasi-Bloch spillage without scattering (3.35) in this crystalline one-site case.

Structural spillage comparing an amorphous system to a reference crystal

The previous basis choice {|k+G⟩}fixed G is also orthonormal for an amorphous system in the
infinite-size limit, ⟨k′ + G|k + G⟩ ≃ δkk′ (see Eq. (3.28)). Consequently, unlike in the multi-site
case that will be analyzed in the next section, the issue of the overlap between plane waves being
different for the amorphous and crystalline systems does not appear. This makes the single-site case
anomalous in the following sense. Strictly, the Hilbert spaces of amorphous target and crystalline
reference are different and therefore their overlap not well-defined. Nevertheless, the exact structural
spillage including scattering of Eq. (3.31) can be applied if we impose that the ill-defined overlap
between plane waves projected to the tight binding crystal⟨k̃′ + G|k + G⟩noncryst coincides with the
true overlap for plane waves defined in the whole real space ⟨k̃′ + G|k + G⟩ = δkk̃′ . With this
assumption, the exact structural spillage including scattering can also be applied for comparing
the amorphous structure with a crystalline reference in this single-site tight-binding case, and it
reduces to Eq. (3.23) with only the G chosen in the basis.

It is worth pointing out the following difference between comparing two crystals and comparing
an amorphous system to a crystal, within this single-site case. As mentioned in the previous section,
when comparing two crystals with a single site per unit cell, the quasi-Bloch spillage including
scattering of Eq. (3.23) coincides with the one without scattering of Eq. (3.35). This is no longer
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true when comparing an amorphous structure to a crystal, since the scattering resummation over
k′ in the amorphous projector, which is carried out in Eq. (3.23), is neglected in Eq. (3.35).

Now, although the structural quasi-Bloch spillage including scattering of Eq. (3.23) could in
principle be applied, this would entail a high computational cost. Indeed, other methods to indicate
the topology in the tight-binding would be equally (in)efficient (such as the local topological
markers [502, 504, 532, 543] or single-point topological invariants [500, 501]), questioning the
usefulness of the structural spillage applied to a tight-binding model. Therefore, to implement
efficiently the structural spillage, we assume the no-scattering approximation of Eq. (3.35). Because
we neglect the scattering resummation over k′, the structural spillage of Eq. (3.35) becomes much
more computationally efficient.

However, an important inconvenience arising from neglecting the scattering is that the spillage
depends on the BZ where the momenta for the plane wave basis are chosen. This is because
momenta from different crystalline BZs will no longer lead to equivalent results in the amorphous
system, unlike in the single-site crystal. In fact, |p+ G⟩ and |p⟩ no longer project to the same state
(⟨p|p + G⟩ = 0 for the amorphous case in the infinite size limit), and the quantities projected in
|p + G⟩ differ from those projected onto |p⟩.

This problem raises the question of how to compute correctly the structural spillage in the
no-scattering approximation between an amorphous material and a crystal, even in this single-site
case. Although there is no unique answer, we now provide a justification for using momenta just in
the first BZ, i.e., choosing G = 0. The tight binding has no information about the spatial extent of
the orbitals, although we know that they are exponentially localized around the atom. Therefore,
the tight-binding approximation captures well long-distance physics, but there is a short-distance-
cutoff below which the tight-binding results are no longer reliable. It is reasonable to assume that
this cutoff is of the order of the nearest-neighbour distance rnn, which coincides with the lattice
constant a in the crystalline single-site tight-binding. Therefore, only plane-wave momenta below
∼ 2π/a are reliable. Consequently, the quasi-Bloch spillage computed just with plane-wave
momenta in the first BZ is a sensible option (optionally, one could average over the first BZ and
second BZs). Considering just the first BZ, the structural quasi-Bloch spillage without scattering
reads

γsingle-site-TB
qB (k) =

1
2

tr
[(

Pk − P̃k
)2
]

, (3.61)

which is just Eq. (3.35) in the single-site case because, as mentioned before, all BZs are equivalent
in the crystal, and therefore there is a single type of BZ, NBZs = 1.
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3.C.2 Reference crystal with several sites per unit cell

In this section, we will first show that for crystals with more than one site in the unit cell,
a phase factor depending on the relative positions of the sites appears in the observables, which
allows classifying different types of BZs. We recapitulate how the formalism for non-orthogonal
bases has to be applied in the spillage comparing two crystals. Afterwards, we explain why the
no-scattering approximation is required to compare an amorphous target to a crystalline reference.
We finally give a recipe to deal with the presence of different types of BZs in the no-scattering
approximation, which recovers the results as close as possible to the exact ones in the crystalline
limit.

Crystal: definitions and types of Brillouin zones

Consider a crystal with Ncell unit cells at positions R and Ns/c sites per unit cell at positions
tA with respect to the center of the cell R, so that the total number of sites is Nsites = Ncell · Ns/c.
We will show that i) not all inequivalent plane wave states are orthogonal, and ii) plane wave states
are no longer equivalent to Bloch states. We will also illustrate that the inequivalent recriprocal
lattice vectors G define different types of Brillouin zones.

We start with the overlap between the Wannier functions and the plane waves, which now
reads:

ϕA
R(p) = ⟨p|ϕA

R⟩ =
1√

Nsites
e−ip·(R+tA). (3.62)

This leads to the overlap between plane waves projected to the tight binding given by Eq. (3.29) in
the infinite-size limit:

⟨p|p⟩ ≃ δp′,p+G
1

Ns/c
∑
A

e−iG·tA . (3.63)

This shows that certain
∣∣p + G⟩ are different states from

∣∣p⟩, yet their overlap is non-zero,
⟨p
∣∣p + G⟩ ̸= 0.

We now show that, contrary to the single-site case, plane wave states are different from Bloch
states. The Bloch states with a definite sublattice are, therefore:

|ϕA
k ⟩ =

1√
Ncell

∑
R

eik·(R+tA)|ϕA
R⟩. (3.64)

The overlap between the Bloch states and the plane waves is:

⟨k + G|ϕA
k ⟩ =

1√
Ns/c

e−iG·tA . (3.65)
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However, the band eigenvectors are combinations of these Bloch states in different sublattices:

|ψn
k⟩ = ∑

A
cnA

k |ϕA
k ⟩, (3.66)

and, therefore, their overlap with the plane waves reads:

⟨k + G|ψn
k⟩ =

1√
Ns/c

∑
A

cnA
k e−iG·tA , (3.67)

which demonstrates that, in the multi-site case, plane wave states are no longer equivalent to Bloch
states.

We now show that observables projected to a plane wave with momentum p = k + G depend
on the phase factors e−iG·tAB , where tAB = tA − tB are the relative positions of the different
sublattices. For concreteness, we start considering the simplest observable, that will be a building
block for e.g. the spillage: the projector onto band n at crystal momentum k, Pn(k) =

∣∣ψn
k⟩⟨ψn

k

∣∣.
Its projection to a plane wave reads:

⟨k + G
∣∣Pn(k)

∣∣k + G⟩ =
∣∣⟨k + G

∣∣ψn
k⟩
∣∣2 =

1
Ns/c

∑
A,B

cnA
k

(
cnB

tk

)∗
e−iG·tAB =

=
1

Ns/c

[
1 + ∑

A ̸=B
cnA

k

(
cnB

k

)∗
e−iG·tAB

]
,

(3.68)

which is different from tr [Pn(k)] = 1 in general. These phase factors, which depend on G, lead
to certain BZs being inequivalent even if the orbitals are still Dirac deltas. Therefore, the types of
BZs in the multi-site crystal can be classified by the set of phase factors

{
e−iG·tAB

}
. In general,

certain BZs become inequivalent whenever there is structure inside the unit cell, irrespective of
whether it comes from spatially-extended orbitals or from several sites.

As an example, consider the honeycomb lattice, where there are Ns/c = 2 sublattices A and B
such that tAB = −a

[
0, 1/

√
3
]
. The reciprocal lattice basis vectors are G1 = 4π/

√
3a
[√

3
2 , 1

2

]
,

and G2 = 4π/
√

3a [0, 1]. A general reciprocal lattice vector G = n1G1 + n2G2, with n1, n2 ∈ Z,
satisfies G · tAB = −2π/3(n1 + 2n2). Therefore, e−iG·tAB = eia2π/3, with a ∈ Z3, so there are
NBZs = 3 different types of BZs depending on the value of this phase factor. If we consider all
possible momenta, from zero to infinity, then the multiplicity in momentum space of each type of
BZ is the same. On the other hand, if we only consider momenta up to a cutoff pmax, then the
multiplicity in momentum space of each type of BZ can be different. Fig. 5 shows the type of the
first BZ and the six nearest-neighbour second BZs. Note that the first BZ has G = 0, and therefore
it is always characterized by a = 0, i.e., by a phase e−iG·tAB = eia2π/3 = 1.
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Exact spillage comparing two crystals: non-orthogonal basis

In section 3.2.3 we described how to compute exactly the spillage comparing a target and
reference with the same crystalline lattice, using a non-orthogonal basis of plane waves {|k +

G⟩}G∈Ns/c BZs consisting of Ncell plane waves in Ns/c inequivalent BZs. The closure relation and
the quasi-Bloch spillage in this formalism are given in Eqs. (3.30) and (3.31), respectively. For
completeness, here we write down the trace of the projector onto band n at crystal momentum k,
tr [Pn(k)]:

tr [Pn(k)]non-orth =
basis

∑
GG′

⟨k + G
∣∣Pn(k)

∣∣k + G′⟩
(

S−1
)

G′,G
, (3.69)

Importantly, Eq. (3.69) recovers the expected crystalline value tr [Pn(k)] = 1, irrespective of the
chosen plane-wave basis.

Structural spillage comparing an amorphous system to a crystal: no-scattering approxima-
tion

Now, we focus on computing the structural spillage between a crystalline and an amorphous
structure. Aside from the issues already discussed for the single-site case, here is where comparing
two tight bindings with sites at different positions becomes problematic. The reason is that overlap
between the plane waves is different in the crystal (Eq. (3.29)) and in the amorphous (Eq. (3.28))
cases. In the structural spillage of Eq. (3.31), the crystalline and the amorphous projector appear
sandwiched between the overlap matrices, but this overlap depends on the system. Therefore, we
cannot apply the previous non-orthogonal formalism.

As explained in the main text, this issue can be avoided by neglecting the momentum scat-
tering, i.e., by setting k′ = k and G′ = G in Eq. (3.23). Such approximation has been used
previously to determine the topology of an amorphous system using other methods such as the
effective Hamiltonian approach [120, 493]. It is also inspired by the fact that continuous trans-
lational symmetry is recovered after averaging over different disorder realizations. The resulting
expressions for the trace of a band projector and the spillage are

tr [Pn(k)]no-scatt =
basis

∑
G
⟨k + G

∣∣Pn(k)
∣∣k + G⟩, (3.70)

γno-scatt
qB (k) =

1
2

basis

∑
G

tr
[(

Pk+G − P̃k+G
)2
]

, (3.71)

where the sums over the reciprocal lattice vectors G again run over the Ns/c BZs chosen in the
plane wave basis. The trace acts over the internal degrees of freedom α (which are otherwise not
explicitly written in this Appendix), and, as in the main text, Pαβ

p = ⟨p|P|p⟩. Eq. (3.71) is not yet
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the definite expression of Eq. (3.35) for the structural spillage in the tight-binding approximation,
since it still has the problem of depending on the G chosen in the basis. Below we detail how to
solve this issue.

Taking into account different types of Brillouin zones

In contrast to the single-site case, the values of the observables computed within this no-
scattering approximation depend on the types of BZs chosen in the basis even in the crystal. In this
section, we provide a method to circumvent this issue based on the condition that, when applied to
crystals, it leads to values as close as possible to the exact ones, where rigorous proofs exist [117].

Our solution consists of computing a observable without scattering, performing an average
over the NBZs different types of BZs, and then multiplying by the number of sites per unit cell
Ns/c in the crystal. First, we show that our proposal recovers the correct crystalline result for the
observables that depend only on one projector. Indeed, the BZ-averaged Eq. (3.70) representing
the trace of the projector into the band n at crystal momentum k becomes:

tr [Pn(k)]
BZ-av
no-scatt =

Ns/c

NBZs

BZs

∑
G
⟨k + G

∣∣Pn(k)
∣∣k + G⟩ =

=1 + ∑
A ̸=B

cnA
k

(
cnB

k

)∗ [ 1
NBZs

BZs

∑
G

e−iG·tAB

]
= 1,

(3.72)

where the sum over G runs over a representative BZ of each type, and we have used Eq. (3.68)
and the fact that the term inside the square brackets vanishes identically for A ̸= B. If there is
a finite number NBZs of BZ types, this term vanishes because the NBZs phases e−iGa·tAB are the
1/NBZs roots of unity. If there are infinite BZ types, which might occur, e.g., if the sites are
located at a generic nonsymmetric Wyckoff position incommensurate with the reciprocal lattice
vectors, then this term vanishes due to the infinite sum of a continuum of phases. In the example
of the honeycomb lattice, where NBZs = 3 and e−iGa·tAB = eia2π/3 with a ∈ Z3 if A ̸= B, and
e−iGa·tAB = 1 if A = B, we obtain, as expected:

1
3 ∑

a=0,1,2
e−iGa·tAB = δAB. (3.73)

We have also numerically verified that the correct crystalline results are obtained in our
bismuthene and Bi bilayer tight-binding models. Indeed, the blue lines in Figs. 3.C.1(a,b) show
the number of occupied states per unit cell ∑n∈occ tr [Pn(k)]

BZ-av
no-scatt at k = 0 as a function of the

onsite SOC for crystalline bismuthene and Bi bilayer, respectively. In both models, this number of
occupied states (or filling) is constant and equal to 4 and 6, as expected, since they correspond to
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(a) (b)

Figure 3.C.1: Sum over occupied bands of the trace of one and two projectors,

∑n∈occ tr [Pn(k)]
BZ-av
no-scatt and ∑n∈occ tr

[
(Pn(k))

2
]BZ-av

no-scatt
, as a function of onsite SOC, com-

puted using the formalism of Eqs. (3.72) and (3.75) at k = 0. (a) Bismuthene crystal. (b) Bi
bilayer crystal. On the one hand, the filling ∑n∈occ tr [Pn(k)]

BZ-av
no-scatt recovers the exact crystalline

result, except close to the transition due to finite precision effects. On the other hand, the trace

of the projector square ∑n∈occ tr
[
(Pn(k))

2
]BZ-av

no-scatt
, which should be equal to the filling, is just

slightly (∼ 8 − 25%) smaller due to neglecting the momentum scattering.

half-filling in bismuthene and Bi bilayer, respectively. Note that the filling artificially deviates from
these values close to the topological transition (around λ ≃ 1.2tσ for bismuthene and λ ≃ 0.3tσ

for bilayer Bi). However, this is an artifact stemming from the finite KPM resolution. Indeed, this
artifact only appears close to the transition, which is where the bulk gap is smaller, and therefore
is where the required precision to obtain the correct results is higher. We have checked that the
deviations from the exact filling shrink when increasing the KPM precision and the system size.

In summary, we have shown that, by averaging over the BZ types and multiplying by Ns/c,
we recover the correct values in the crystal for the quantities that involve the trace of one projector.
This exact result is recovered despite neglecting both the scattering by different reciprocal lattice
vectors and the non-orthogonality of the plane waves. This means that the scattering does not play
a crucial role in the quantities that involve the trace of only one projector.

Structural spillage without scattering in the tight-binding approximation

Now, we consider quantities that involve the trace of two projectors, such as the spillage. Unlike
in the quantities involving just one projector, here scattering plays an important role. Indeed, we
will show that scattering should be included to obtain the exact result in the crystalline limit (see,
e.g., Eq. (3.23b), where the sum over G′ represents the scattering). However, as explained in
Appendix 3.C.2, the scattering has to be neglected in order to be able to use the structural spillage
to compare amorphous and crystalline systems. Nevertheless, we will also show that, even if the
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crystalline results are not exactly recovered, our method gives reasonably good results, which allows
the structural spillage to work as a topological indicator also in the tight-binding approximation.

Consider the trace of [Pn(k)]2, which should be equal to one if Pn(k) is a projector. If we
include scattering and average over Brillouin zones this exact condition is fulfilled for the crystal,
as can be checked explicitly:

tr
[
(Pn(k))

2
]BZ-av

scatt
=

=
Ns/c

NBZs

BZs

∑
G

Ns/c

NBZs

BZs

∑
G′

[
⟨k + G

∣∣Pn(k)
∣∣k + G + G′⟩⟨k + G + G′∣∣Pn(k)

∣∣k + G⟩
]
=

= ∑
A,B,C,D

cnA
k

(
cnB

k

)∗
cnC

k

(
cnD

k

)∗ 1
NBZs

BZs

∑
G

e−iG·(tAB+tCD)
1

NBZs

BZs

∑
G′

e−iG′·tCB =

= ∑
A,B,D

cnA
k

∣∣cnB
k

∣∣2 (cnD
k

)∗ 1
NBZs

BZs

∑
G

e−iG·tAD = ∑
A,B

∣∣cnA
k

∣∣2∣∣cnB
k

∣∣2 = 1.

(3.74)

However, including scattering is not possible in general, unlike BZ averaging. As explained above,
the scattering cannot be taken into account when the two projectors belong to systems with a
different lattice structure. Therefore, when computing two-projector quantities we still perform the
BZ average on the external sum over Ga, but are forced to neglect the scattering resummation over
G′:

tr
[
(Pn(k))

2
]BZ-av

no-scatt
=

Ns/c

NBZs

BZs

∑
G

[
⟨k + G

∣∣Pn(k)
∣∣k + G⟩⟨k + G

∣∣Pn(k)
∣∣k + G⟩

]
=

=
1

Ns/c
∑

A,B,C,D
cnA

k

(
cnB

k

)∗
cnC

k

(
cnD

k

)∗ 1
NBZs

BZs

∑
G

e−iG·(tAB+tCD) =

=
1

Ns/c
∑

A,B,C,D
cnA

k

(
cnB

k

)∗
cnC

k

(
cnD

k

)∗
δtAB+tCD ,0.

(3.75)

Although this equation does not exactly recover the crystalline value, we have numerically verified
that the sum over occupied bands of this Eq. (3.75), ∑n∈occ tr[(Pn(k))2]BZ-av

no-scatt, gives values just
∼ 8 − 25% smaller than ∑n∈occ tr[Pn(k)]BZ-av

no-scatt in the crystal, as shown by the orange lines in
Fig. 3.C.1. Therefore, we take this as a reasonable approximation, especially taking into account
that this quantity can also be computed when one of the projectors corresponds to an amorphous
structure. Applying this method to the structural quasi-Bloch spillage, we arrive at Eq. (3.35).

In order to implement the tight-binding spillage of Eq. (3.35) we need to account for a final
detail: the choice of a representative BZ of each type. This is a requirement because we introduced
the average over BZ types in Eqs. (3.72)-(3.75). To perform this average, one has to select one
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representative for each type of BZ. To this end, we consider the example of the honeycomb lattice
relevant to our Bi models, which has NBZs = 3 types of BZ, as sketched in Fig. 5. Due to the
argument which lead us to Eq. (3.61) in Appendix 3.C.1, the optimal criterion for choosing the
BZ representatives is to consider the ones whose reciprocal lattice vector is smaller in modulus.
For example, the first BZ will always be chosen as the representative of the BZs characterized
by a phase eiG·tAB = 1. There can still be several options, such as the three possibilities for the
BZs with phases eiG·tAB = e±i2π/3 (see Fig. 5). In this case, one can choose any of them. A
better choice however is to perform an angular average over them. Indeed, while the crystal is
anisotropic, the amorphous structure is effectively isotropic. In particular, although the total traces
in the crystal are exactly the same in all equivalent BZs, certain orbital-resolved quantities might
vary. For instance, in the honeycomb lattice, if the occupied eigenstate at G = 4π√

3
(0, 1) is of py

character, the eigenstate at the threefold rotated Ĉ3G = 4π√
3
(−

√
3

2 ,− 1
2 ) is of the threefold rotated

−
√

3
2 px − 1

2 py character. On the other hand, for sufficiently large samples, amorphous structures
are expected to be isotropic in momentum space. Therefore, one would ideally perform an angular
average over the G corresponding to equivalent BZs with the same modulus, but pointing in a
different direction. In the honeycomb lattice, the quantity corresponding to the BZs with phase
eiG·tAB = e+i2π/3 would be an average over the three BZs shown in blue in Fig. 5. Consequently,
when the corresponding crystal displays a honeycomb lattice, the angle-averaged Eq. (3.35) for the
structural quasi-Bloch spillage in the tight-binding approximation reads:

γTB
qB(k) =

2
3

{
1
2

tr
[(

Pk+G0 − P̃k+G0

)2
]
+

+
1
3 ∑

Gm
1

1
2

tr
[(

Pk+Gm
1
− P̃k+Gm

1

)2
]
+

+
1
3 ∑

Gm
2

1
2

tr
[(

Pk+Gm
2
− P̃k+Gm

2

)2
]}

,

(3.76)

where:

G0 = 0 ⇒ e−iG0·tAB = 1, (3.77)
G0

1 = 4π√
3
(0, 1)

G1
1 = Ĉ3G0

1 = 4π√
3
(−

√
3

2 ,− 1
2 )

G2
1 = (Ĉ3)2G0

1 = 4π√
3
(
√

3
2 ,− 1

2 )

⇒ e−iGm
1 ·tAB = ei2π/3, (3.78)


G0

2 = 4π√
3
(0,−1)

G1
2 = Ĉ3G0

2 = 4π√
3
(
√

3
2 , 1

2 )

G2
2 = (Ĉ3)2G0

2 = 4π√
3
(−

√
3

2 , 1
2 )

⇒ e−iGm
2 ·tAB = e−i2π/3. (3.79)
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Eq. (3.76) is a specific instance of the general Eq. (3.35) that we used for computing the spillage in
our bismuthene and Bi bilayer tight-binding models. However, we have also checked that in these
models, for the system sizes considered, performing the angular average or not does not noticeably
change the results.

In summary, our proposed method for computing two-projector quantities, such as the struc-
tural spillage, consists of neglecting the momentum scattering, performing an average over the
different types of BZs, and multiplying by the number of sites per unit cell in the corresponding
crystal. Applying this method to the structural quasi-Bloch spillage, we arrive at the final expres-
sion for the structural spillage in the tight-binding approximation, Eq. (3.35) of the main text. To
conclude, we highlight that, in the specific case when the number of types of BZs is infinite or
very large, Eq. (3.35) would involve reciprocal lattice vectors |G| ≫ 2π/a, with a the crystalline
lattice constant. In this case, as in the single-site case, we may introduce a momentum cutoff and
consider only the reciprocal lattice vectors G smaller than this cutoff.
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Conclusions and perspectives

In this thesis, we have studied three problems that highlight the role of symmetry and topology
in classifying and understanding quantum matter, from correlated systems to amorphous materials.
We have studied charge density wave (CDW) and superconducting phases in transition metal
dichalcogenides, and we have proposed a topological indicator for amorphous and noncrystalline
materials.

In Chapter 1, we have analyzed the transition metal dichalcogenide 1T-TiSe2, which undergoes
a 2 × 2 CDW instability in the monolayer. We have first performed the symmetry analysis of the
CDW, and constructed a low-energy k · p model for the monolayer. Using general arguments based
on this k · p model, we have predicted two transitions to broken threefold rotational symmetry
phases within the CDW upon electron doping the system [1]. At low doping, the system starts in
a threefold symmetric CDW, represented by a three-component order parameter ∆⃗ = (∆, ∆, ∆),
where each component indicates the charge modulation in one of the three ΓM directions. This is
the state obtained by most ab initio calculations at stoichiometry [141, 177]. When the chemical
potential crosses a peak in the DOS originated from an incipient van Hove singularity, the system
is driven to a nematic CDW, with a preferred direction ∆⃗ = (∆1, ∆2, ∆2). Further increasing
the doping, the total electronic energy induces a different broken-rotational-symmetry phase, a
stripe CDW, where the charge is only modulated in one direction, ∆⃗ = (∆, 0, 0). We have
confirmed these general predictions on an interacting tight-binding model, solving it within the
self-consistent mean-field approximation. Our predictions are robust against different interactions
and the presence of additional order parameters. We have also discussed our results in the context
of STM experiments, where observations of both a symmetric CDW [114] and a nematic CDW
[52–54] have been reported. Our theory might rationalize these findings based on the usual electron
doping induced in the synthesis process. On the other hand, the signatures of a stripe CDW only in
short-range domains in doped samples [56] might be related to the phase separation in a first order
transition, and to additional contributions to the total energy by the lattice, which might suppress
this stripe order.

Further work is required to prove our predictions. A monolayer sample with gating electrodes
would be an ideal platform to probe doping effects. Nonlinear transport and elastoresistance
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measurements could provide hints about the symmetry and nematic susceptibility of the system,
respectively. Optical probes, such as Raman spectroscopy, circular photogalvanic effect, and
second harmonic generation, can also indicate the broken symmetries in the CDW. The situation is
further complicated since doping also drives a crossover to an incommensurate CDW. Theoretically
studying how the threefold symmetry breaking CDWs are affected by the discommensurations and
disorder is an interesting open problem. A different challenge posed by TiSe2 is the understanding
of the light-induced chiral phase [186, 187], which might require invoking metastable chiral CDW
states. A detailed understanding of the CDW phase of TiSe2 might also shed light onto the
coexisting superconducting phase that appears under doping or pressure. Thanks to the analogies
with kagome AV3Sb5 metals [48–51], the study of TiSe2 might also be helpful for understanding
these correlated systems.

In Chapter 2, we have studied the superconductivity of monolayer 1H-NbSe2. Motivated by
the STM evidence for a bosonic mode linked to the superconducting state [2], we have analyzed
the superconducting collective modes in this material. We have considered a k · p model for
the main bands involved in the superconductivity, whose essential ingredient is the Ising spin-
orbit coupling, which splits the spin degeneracy of the bands thanks to the absence of inversion
symmetry. We have added the static local interactions allowed by symmetry [306], which decouple
into two superconducting pairings, namely an s-wave spin-singlet and an f -wave spin-triplet.
While the ground state is the conventional s-wave pairing [30–33], the twofold-anisotropic in-
plane critical magnetic field [115, 116] and the enhanced spin fluctuations in the monolayer [298–
301] suggest that the f -wave channel is subleading. As long as the interaction in the f -wave
channel remains attractive, we have found that a Leggett mode is well-defined, with energy smaller
than the superconducting gap, ΩL < 2∆. This Leggett mode consists of the fluctuation of the
relative phase of the superconducting pairings in the spin-split bands of NbSe2, and it is related
to the fluctuation towards the subleading f -wave channel. Considering elastic scattering via a
low-energy effective action coupling the Leggett mode to the electrons in the superconductor, we
have shown that the Leggett mode renormalizes the electron spectral function, producing peaks at
the energies ∆ + ΩL. The Leggett mode should therefore be observable in tunneling experiments,
as well as ARPES. Together with the suppression of the STM bosonic resonances with temperature
and magnetic field within the superconducting state, and the anticorrelation between the resonance
energy and the superconducting gap, this puts forward the Leggett mode as a possible interpretation
of the STM experiment [2].

While further work is needed to confirm whether the resonances are actually caused by the
Leggett mode, one of our main messages is that collective modes in the particle-particle channel
should also be taken into account when interpreting tunneling experiments. It would be desirable to
further characterize the bosonic modes with techniques sensitive to their symmetry, such as Raman
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spectroscopy and nonlinear optics, which have already been applied to detect Leggett modes in
MgB2 [258, 259, 261, 262, 267]. On the theory side, it is interesting to determine the actual
microscopic interactions to analyze whether there is indeed a subleading pairing that could give
rise to a superconducting collective mode. Along these lines, the Migdal-Eliashberg calculations of
Ref. [33] including ab initio electron-phonon coupling and effective spin fluctuations also predict
a Leggett mode, but related to the relative phase fluctuation between different bands than in our
case. The effect of the CDW on the superconductivity and its collective modes remains an open
problem, although it has been suggested to suppress both electron-phonon coupling [31] and spin-
fluctuations [297]. Furthermore, an appropriate treatment of the CDW is also needed to properly
discard other candidate bosonic modes from the interpretation of the STM resonances [2]. These
alternative candidates might be spin fluctuations, and phonons, whose energies can be significantly
modified when accounting for the incommensurate nature of the CDW. The insights acquired in
1H-NbSe2 might be translated to the isostructural compounds 1H-TaS2 and 1H-NbS2, where STM
dip-hump features have also been observed [339, 340], although outside of the superconducting
phase. Moreover, the understanding of the superconducting phase of the 1H compounds is essential
to rationalize the unconventional observations in the 4Hb polytype of TaS2 [341–350].

Finally, in Chapter 3, we have dealt with topological insulators in noncrystalline systems,
ranging from amorphous and disordered materials to quasicrystals and nanocrystals. Noncrystalline
materials can accommodate the known topological phases studied in crystals, as well as novel
phases [4]. However, the tools to diagnose topology are not as well developed in the absence of
exact translational and point group symmetries, since traditional symmetry indicators [102–107]
cannot be applied. The available methods, such as the local topological markers, are usually either
not generic, computationally expensive, or difficult to directly implement in DFT calculations.
Here, inspired by the spin-orbit spillage [117] and the strange correlators [118, 119], we have
introduced the structural spillage, which can act as a generic and efficient topological indicator,
and is directly applicable within first-principles calculations [3]. The structural spillage determines
the overlap between the projectors onto occupied states of the noncrystalline target and its reference
crystalline counterpart, thus indicating the band inversions between them. Since the link between
band inversions and the Wannier obstruction permeates to the noncrystalline case, the structural
spillage can predict whether the topological phase of the noncrystalline target is the same or not
as that of the crystalline reference. After adapting its formulation to tight-binding calculations, we
have confirmed its predictive power in amorphous tight-binding models of bismuthene and bilayer
Bismuth, where the structural spillage correctly reproduces the topological transition indicated
by the longitudinal conductance. Finally, we have discussed the results of the structural spillage
within the DFT calculations of amorphous bilayer Bismuth performed by our collaborators [3].
Based on both the tight-binding and the DFT results, we have predicted the amorphous Bismuth
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bilayer to be a topological insulator.

Thanks to its efficiency and its DFT implementation, the structural spillage constitutes a first
step towards a high-throughput catalogue of topological noncrystalline materials. In this regard,
the structural spillage can be applied as a first screening method to discard all the materials with a
low spillage. A more detailed topological characterization of the reduced number of cases with a
high spillage should then be carried out with other methods. For this high-throughput screening,
an appropriate choice of the reference system is advantageous. In the few cases where there is no
crystalline system with the same local structure as the noncrystalline target, it would be interesting
to further analyze the proposed plane-wave structural spillage as a potential topological indicator
in these cases.

The combination of all three topics considered in this Thesis motivates exciting future research
directions. Electron-phonon interactions are crucial in the CDW of both TiSe2 and NbSe2, as well
as in the superconductivity of the latter. Electron-phonon interactions are also central for the
superconductivity in amorphous systems [576]. Considering their frequency-dependence in a
Migdal-Eliashberg theory is even more important than in NbSe2. Indeed, depending on their
energy, vibrational modes in amorphous systems might become overdamped [577], similar to
phase modes in incommensurate CDWs and moiré systems [578–580]. Therefore, the knowledge
of superconductivity in amorphous systems [576] might be useful for understanding, for instance,
the superconducting dome in TiSe2 at high doping or pressure and its interplay with the CDW
discommensurations [26], and vice versa [578]. These links open up an interesting research avenue
for the future.
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