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Introduction

While the origin of group theory is often attributed to the work of Galois, Jordan,
and Klein, all of their works were motivated by the connection that this discip-
line has either with number theory or geometry. The theory of abstract discrete
groups obtained independent interest, without a geometrical inspiration, mainly
at the beginning of the 20th century, and a milestone for this is due to the work of
William Burnside. In 1902 he asked whether a finitely generated torsion group is
necessarily finite [15], the so-called “Burnside Problem”. This question sparked in-
terest in even deeper problems, like the study of the finiteness of finitely generated
groups of finite exponent, also called “Bounded Burnside Problem”. Explicitly,
Grün [36] asked whether a finitely generated group G satisfying gn = 1 for all
g ∈ G is necessarily finite.

We could observe that this problem can be embedded in the greater framework of
one of the most natural questions that can be asked about an algebraic structure,
which is “What can we say about a group if this group follows a fixed rule?”

Of course the question is extremely heuristical, but we can view a lot of the
developments in earlier group theory through this approach, which can be encoded
as an example of a word problem in groups.

A group word w is a finite concatenation of variables and of their inverses, which
can be seen as an element of the free group generated by n variables x1, . . . , xn.
For any group G, the word w naturally gives a map from Gn to G, simply by
substituting the elements of the group in the variables in every possible way. The
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image of this map is the set of word values in G, usually denoted by w{G}, and
the subgroup w(G) they generate is called verbal subgroup. Of special interest is
the study of varieties of groups, that are the classes of groups in which a certain
word w is a law, in the sense that it takes only the trivial value.

The “rules” mentioned in Grün’s question are simply group laws, so in modern
terms he asked how to study the variety of groups generated by the law xn.
Other problems that can be seen in this optics can be the study of abelian, or
nilpotent and solvable groups of bounded class, which are the varieties generated
by the commutator word [x1, x2], by a lower central word or by a derived word
respectively.

Rather than studying only groups in which a word w is a law, we could also
wonder whether the fact that w takes finitely many values in a group G has any
implication on the structure of G. It is easy to realise that any group with finitely
many commutators is finite-by-abelian, or, in other words, if the set of γ2-values is
finite in a group G, then the corresponding verbal subgroup is finite. Philip Hall
realized that the same is true for all power words and lower central words, not
only for γ2. As a consequence, Hall conjectured that for any group word, if the
set w{G} of word values in a certain group G is finite, then the verbal subgroup
w(G) is finite too. If a word satisfies this property for every group G, it is called
concise and, if it does for all groups in a given class C, it is said to be concise in
C.

Many words have been proven to be concise, moreover it was proved by Merzl-
jakov that all words are concise in linear groups, but a counterexample for the
general case was constructed by Ivanov, using small cancellation theory. Later,
further counterexamples were obtained by Olshanskii and Storozhev with similar
methods. The study of concise words progressed anyway, both by seeking new
words that are concise in all groups, and by studying the same problem in other
classes of groups. As finitely generated linear groups are residually finite, the
natural candidate for the biggest class of groups in which all words are concise
is the class of residually finite groups. It is interesting to notice that a word is
concise in residually finite groups if and only if it is concise in profinite groups,
so another important development has been recently proposed. Every profinite
group of cardinality smaller than 2ℵ0 is finite, and it was suggested that a similar
phenomenon happens for word values too, leading to the conjecture that every
set of word values with less than 2ℵ0 values is finite. Joining this open problem
with the conjecture that all words are concise in residually finite groups, it makes
sense to define that a word is strongly concise in profinite groups if, whenever it
takes less than 2ℵ0 values, its (closed) verbal subgroup is finite.
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In the first part of this thesis we discuss several contributions by the author to
the theory of conciseness problems.

The first contribution concerns the most general version of the problem, which
is seeking new concise words in all groups. One of the first class of words that
have been proven to be concise by Philip Hall are non-commutator words, that
are words not lying in the derived subgroup of the free group generated by the
variables. More recently, Delizia, Shumyatsky, Tortora and Tota proved that
the same is true for the word γ2(u1, u2), where u1, u2 are disjoint non-commutator
words (i.e. in disjoint sets of variables). This result has been generalized in 2022 by
Azevedo and Shumyatsky, who proved that the word γ3(u1, u2, u3), for ui disjoint
non-commutator words, is concise.

In [34], Fernández-Alcober and the author proved that w(u1, . . . , uk), with ui

disjoint non-commutator words, is concise in the case w is a lower central word
(proving a conjecture of Azevedo and Shumyatsky), and in the case w is a derived
word. The arguments involved in the aforementioned article also work, with some
small modifications, when w is an outer commutator word, and we therefore fully
prove this case, which includes and generalizes the case of lower central and derived
words. We actually obtain a stronger property and show that all outer commutator
words are concise on normal subgroups, in the sense that whenever the set of values
that the word takes on a tuple N of normal subgroups is finite, then the subgroup
they generate is also finite.

These new concise words try to approach the limit between concise and non-
concise words. Indeed, there is no general condition for a word not to be concise.
The techniques that are used to build up the three counterexamples that are
known, by Ivanov, Olshanskii and Storozhev respectively, were developed through
Small Cancellation Theory. This area of geometric group theory is based on the
idea that, if the relations of a fixed presentation G = 〈S | R〉 of a group satisfy
some additional conditions, it is possible to deduce some geometric and algebraic
properties of the groups. This is done by looking at diagrams, built using the
relations of G, that encode trivial words in the group. The complete construction
of the three non-concise words, and of the groups in which these words are not
concise, is quite technical. Because of this, we just try to give a glimpse of the
general idea involved in Ivanov’s result, and then highlight some differences among
the three different non-concise words.

We then focus on Olshanskii’s counterexample. As Shumyatsky and the author
proved in [68], Olshanskii’s word, that is not concise in general, is actually concise
in residually finite groups. This is the first example of a word that is not concise
in all groups but is concise in residually finite groups. After this, we also show

3



that this same word is strongly concise in profinite groups, settling that these
problems differ substantially from the classical questions in abstract groups.

Then, the thesis pursues the study of problems in profinite groups, beginning
from some results related to strong conciseness. As we remarked, this problem
could be split into two different sub-problems: proving that if |w{G}| < 2ℵ0 for
a word w in a group G, then w{G} is finite, and then proving conciseness in
residually finite groups for w. For this reason, several results on strongly concise
words relied on the additional hypothesis that, if a verbal subgroup of a profinite
group is topologically finitely generated, then it can be generated by finitely many
word values. We provide an example, with lower central words, that shows that
this additional condition is not always satisfied.

We then study strong conciseness for higher order coprime commutators, that
are maps strongly resembling group words. They are a useful tool to generate some
important characteristic subgroups of profinite groups, like pronilpotent residuals,
with an accurately chosen generating set. Similarly to usual words, we can ask
whether they are (strongly) concise, in the sense that in any group with finitely
many (or less than 2ℵ0) coprime commutators, these elements generate a finite
subgroup. It was shown by Acciarri, Shumyatsky and Thillaisundaram that higher
order coprime commutators are concise in residually finite groups, while Detomi,
Morigi and Shumyatsky proved that the basic coprime commutator map γ∗

2 is
strongly concise. In a joint work with de las Heras and Shumyatsky, the author
proved in [39] that higher order coprime commutators γ∗

k and δ∗k are strongly
concise in profinite groups, and we provide a full detailed proof of these results.

In the second part of the thesis, we initiate the study of profinite right angled
Artin groups. Abstract right angled Artin groups (RAAGs) are finitely generated
groups whose only relations are commutators in the generators. These groups have
a finite graph associated to their presentation, and they include, among others,
free groups, free abelian groups and free or direct products of them.

The central idea in geometric group theory is to study groups via actions on
spaces. For example, free action of groups on a space should provide a connection
between the geometry of the space and the algebra of the group. This is the case
with actions on trees: a group acts freely if and only if the group is free. If we
do not require the action to be free, Bass-Serre theory gives a description of the
structure of groups acting on trees through HNN extensions and amalgamated
products.

If, rather than on a single tree, we require our group G to act on a direct product
of two trees, then the situation is different. Indeed Burger and Mozes constructed
infinite simple groups acting freely and cocompactly on them. However, Bridson,
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Howie, Miller and Short proved that if we require some additional residual proper-
ties, then such a group G is virtually a direct product of free groups. These results
were generalised by Haglund and Wise who proved that groups acting freely, and
with some additional conditions, on CAT(0) cube complexes are subgroups of
RAAGs.

As profinite groups satisfy good residual properties, one can asked if no further
conditions are required in this setting, namely a profinite group acts on a direct
product of two profinite trees (or, even more ambitiously, on a profinite cubing)
if and only if it is virtually a subgroup of a profinite RAAG. In order to approach
this line of research, we must first study systematically profinite RAAGs. For a
generic pseudovariety C of finite groups, pro-C RAAGs are the pro-C completion
of abstract RAAGs and have been studied by Wilkes, Kropholler, Snopce and
Zalesskii.

In accordance to the contents of the article [16], joint with Casals-Ruiz and
Zalesskii and currently in preparation, we study pro-C RAAGs using profinite
Bass-Serre theory as the main tool. This theory is an analogue of the abstract
one developed mainly by Mel’nikov, Ribes and Zalesskii. We use these methods to
obtain standard properties of pro-C RAAGs, like the structure of their centralizers,
studying a Tits alternative for their subgroups, and characterizing 2-generated
subgroups of pro-p RAAGs.

We then describe some properties of a pro-C RAAG that are immediately de-
tectable by studying their underlying graph. For example, Krophopller and Wilkes
already observed that a profinite RAAG splits as a free product if and only if the
underlying graph is disconnected. We prove that pro-C RAAGs are directly de-
composable if and only if their underlying graph is a join, and we then obtain a
characterization of their splittings, as pro-C amalgams or HNN extensions, over
abelian subgroups.

We then continue the investigation of their abelian splittings by defining JSJ
decompositions. These constructions are a description of all the ways a group G
can split over a certain class A of subgroups, and they can be either general (so
A-JSJ decompositions) or relative to another class H of subgroups (the so-called
(A,H)-JSJ decompositions), in the sense that we require all the subgroups of G
in the class H to be elliptic.

We give a constructive proof of the existence of the (A,H)-JSJ decomposition
of a pro-C RAAG G choosing A to be the class of abelian subgroups, and with
the assumption that canonical generators of G act elliptically. We then conclude
by obtaining the general A-JSJ decomposition of the pro-C RAAG G.
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Structure of the Thesis

In Chapter 1 we give an overview of the known theory of conciseness, giving a
considerable importance to the historical development of the theory.

In Chapter 2 we prove that outer commutator words are concise on normal
subgroups. This will be obtained first in the case of lower central words, and we
will then approach the general proof by giving an explicit description for w = δ2,
and then concluding with the proof of the general case.

Chapter 3 will be devoted to the description of the counterexamples on con-
ciseness, and then to the proof that Olshanskii’s word is boundedly concise in
residually finite groups and strongly concise in profinite groups. We conclude the
chapter giving an example of a profinite group with procyclic derived subgroup,
but whose subgroup cannot be generated by finitely many commutators.

In Chapter 4 we prove that higher order coprime commutators γ∗
k and δ∗k are

strongly concise in profinite groups.
In Chapter 5, after an overview of profinite Bass-Serre theory, we focus on

proving basic properties of profinite RAAGs, like the structure of their centralizers,
and on characterizing their abelian splittings.

We conclude the investigation of their abelian splittings in Chapter 6, where
we explicitly construct their general and relative abelian JSJ decompositions.
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Resumen de la tesis en castellano

Aunque el origen de la teoría de grupos suele atribuirse a los trabajos de Galois,
Jordan y Klein, todos estos trabajos estuvieron motivados por la conexión que esta
disciplina tiene con la teoría de números o con la geometría. La teoría de grupos
abstractos discretos obtuvo un interés independiente, sin inspiración geométrica,
principalmente a principios del siglo XX, y un hito para ello se debe a los traba-
jos de William Burnside. En 1902 él preguntó si un grupo de torsión finitamente
generado es necesariamente finito [15], actualmente nos referimos a esta cuestión
como el “Problema de Burnside”. Este trabajo despertó el interés por problemas
aún más profundos, como el estudio de la finitud de los grupos finitamente ge-
nerados de exponente finito, también llamado “Problema de Burnside acotado”.
Explícitamente, Grün [36] se preguntó si un grupo G finitamente generado que
satisface gn = 1 para todo g ∈ G es necesariamente finito.

Podríamos observar que este problema se puede encuadrar en el contexto más
amplio de una de las preguntas más naturales que se pueden hacer sobre una
estructura algebraica, que es “¿Qué podemos decir sobre un grupo si este grupo
sigue una regla fija?”

Por supuesto, la pregunta es extremadamente heurística, pero podemos ver
muchos de los primeros resultados en teoría de grupos a través de este enfoque,
que puede ser interpretado como un ejemplo de un problema de palabras en grupos.

Una palabra de grupo w es una concatenación finita de variables y de sus inver-
sas, que puede verse como un elemento del grupo libre generado por n variables
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x1, . . . , xn. Para cualquier grupo G, la palabra w define naturalmente una aplica-
ción de Gn a G, simplemente sustituyendo los elementos del grupo en las variables
de todas las formas posibles. La imagen de esta aplicación es el conjunto de valores
de la palabra en G, normalmente denotado por w{G}, y el subgrupo w(G) que
generan se llama subgrupo verbal. De especial interés es el estudio de las varieda-
des de grupos, que son las clases de grupos en las que una determinada palabra
w es una ley, en el sentido de que toma sólo el valor trivial.

Las “reglas”mencionadas en la pregunta de Grün son simplemente leyes en el
grupo, así que en términos modernos la cuestión es cómo estudiar la variedad
de grupos generada por la ley xn. Otros problemas que pueden verse desde esta
óptica son el estudio de los grupos abelianos, nilpotentes y resolubles de clase
acotada, que son las variedades generadas por la palabra conmutador [x1, x2], por
una palabra central inferior o por una palabra derivada respectivamente.

En lugar de estudiar sólo los grupos en los que una palabra w es una ley,
también podríamos preguntarnos si el hecho de que w tome un número finito de
valores en un grupo G tiene alguna implicación en la estructura de G. Es fácil
darse cuenta de que cualquier grupo con un número finito de conmutadores es
finito-por-abeliano, o, en otras palabras, si el conjunto de valores de γ2 es finito
en un grupo G, entonces el subgrupo verbal correspondiente es finito. Philip Hall
se dio cuenta de que lo mismo es cierto para todas las palabras potencia xn, y
las centrales inferiores γk, no sólo para γ2. Como consecuencia, Hall conjeturó que
para cualquier palabra de grupo, si el conjunto w{G} de valores en un cierto grupo
G es finito, entonces el subgrupo verbal w(G) también es finito. Si una palabra
satisface esta propiedad para cualquier grupo G, se llama concisa y, si lo hace para
todos los grupos de una clase dada C, se dice que es concisa en C.

Se ha demostrado que muchas palabras son concisas, además Merzljakov demos-
tró que todas las palabras son concisas en grupos lineales, pero Ivanov construyó
un contraejemplo para el caso general utilizando la Teoría de la cancelación pe-
queña. Más tarde, Olshanskii y Storozhev obtuvieron otros contraejemplos con
métodos similares. El estudio de las palabras concisas progresó de todos modos,
tanto buscando nuevas palabras que fueran concisas en todos los grupos, como
estudiando el mismo problema en otras clases de grupos. Como los grupos linea-
les finitamente generados son residualmente finitos, el candidato natural para la
mayor clase de grupos en los que todas las palabras son concisas es la clase de los
grupos residualmente finitos. Es interesante observar que una palabra es concisa
en grupos residualmente finitos si y sólo si es concisa en grupos profinitos, por lo
que recientemente se ha propuesto otro avance importante.

Cada grupo profinito de cardinalidad menor que 2ℵ0 es finito, y se sugirió que
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un fenómeno similar ocurre también para los valores de las palabras, llevando a la
conjetura de que cada conjunto de valores de palabras con menos de 2ℵ0 valores es
finito. Uniendo este problema abierto con la conjetura de que todas las palabras
son concisas en grupos residualmente finitos, tiene sentido definir que una palabra
es fuertemente concisa en grupos profinitos si, siempre que tome menos de 2ℵ0

valores, su subgrupo (cerrado) verbal es finito.
En la primera parte de esta tesis se discuten varias contribuciones que el autor

ha aportado a la teoría de los problemas de concisión.
La primera contribución se refiere a la versión más general del problema, que

consiste en buscar nuevas palabras concisas en todos los grupos. Una de las prime-
ras clases de palabras que Philip Hall demostró que son concisas son las palabras
no conmutadoras, es decir, las palabras que no se encuentran en el subgrupo
derivado del grupo libre generado por las variables. Más recientemente, Delizia,
Shumyatsky, Tortora y Tota demostraron que lo mismo es cierto para la pala-
bra γ2(u1, u2), donde u1, u2 son palabras no conmutadoras disjuntas (es decir, en
conjuntos disjuntos de variables). Este resultado fue generalizado en 2022 por
Azevedo y Shumyatsky, quienes demostraron que la palabra γ3(u1, u2, u3), para
ui palabras no conmutadoras disjuntas, es concisa.

En [34], Fernández-Alcober y el autor demostraron que w(u1, . . . , uk), con ui

palabras no conmutadoras disjuntas, es concisa en el caso de que w sea una pala-
bra central inferior (demostrando una conjetura de Azevedo y Shumyatsky), y en
el caso de que w sea una palabra derivada. Los argumentos del artículo mencio-
nado también funcionan, con algunas pequeñas modificaciones, cuando w es un
conmutador externo, por lo que probamos completamente este caso, que incluye
y generaliza el caso de las palabras centrales inferiores y derivadas. En realidad
obtenemos una propiedad más fuerte y demostramos que todos los conmutadores
externos son concisos en subgrupos normales, en el sentido de que siempre que el
conjunto de valores que toma la palabra en una tupla N de subgrupos normales
sea finito, entonces el subgrupo que generan también lo es.

Estas nuevas palabras concisas intentan acercarse al límite entre las palabras
concisas y las que no lo son. De hecho, actualmente se desconocen condiciones
generales para que una palabra no sea concisa. Las técnicas utilizadas para cons-
truir los tres contraejemplos conocidos, el de Ivanov, de Olshanskii y de Storozhev
respectivamente, han sido desarrolladas dentro de la Teoría de la cancelación pe-
queña. Esta área de la teoría geométrica de grupos se basa en la idea de que, si
las relaciones de una presentación fija G = 〈S | R〉 de un grupo satisfacen algu-
nas condiciones adicionales, es posible deducir algunas propiedades geométricas
y algebraicas de los grupos. Esto se consigue observando diagramas, construidos
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utilizando las relaciones de G, que representan elementos triviales en el grupo.
La construcción completa de las tres palabras no concisas, y de los grupos en los
que estas palabras no son concisas, es bastante técnica. Por ello, sólo trataremos
de dar una idea general del resultado de Ivanov y, a continuación, destacaremos
algunas diferencias entre las tres palabras no concisas.

A continuación, nos centramos en el contraejemplo de Olshanskii. Como demos-
traron Shumyatsky y el autor en [68], la palabra de Olshanskii, que no es concisa
en general, es en realidad concisa en grupos residualmente finitos. Este es el primer
ejemplo de una palabra que no es concisa en todos los grupos, pero es concisa en
grupos residualmente finitos. Luego mostramos también que esta misma palabra
es fuertemente concisa en grupos profinitos, estableciendo que estos problemas
difieren sustancialmente de las cuestiones clásicas en grupos abstractos.

La tesis prosigue con el estudio de problemas en grupos profinitos, partien-
do de algunos resultados relacionados con la concisión fuerte. Como comenta-
mos, este problema podría dividirse en dos subproblemas diferentes: probar que
si |w{G}| < 2ℵ0 para una palabra w en un grupo G, entonces w{G} es finito, y
luego probar la concisión en grupos residualmente finitos para w. Por esta razón,
varios resultados sobre palabras fuertemente concisas se basaban en la hipótesis
adicional de que, si un subgrupo verbal de un grupo profinito es topológicamente
finitamente generado, entonces puede ser generado por un número finito de valo-
res de la palabra. Aportamos un ejemplo, con palabras centrales inferiores, que
muestra que esta condición adicional no siempre se cumple.

A continuación, estudiamos la concisión fuerte para conmutadores coprimos de
orden superior, que son aplicaciones muy similares a las palabras de grupo. Son
una herramienta útil para generar algunos subgrupos característicos importan-
tes de los grupos profinitos, como los residuales pronilpotentes, con un conjunto
generador elegido con cuidado. De forma similar a las palabras usuales, pode-
mos preguntarnos si son (fuertemente) concisas, en el sentido de que en cualquier
grupo con un número finito (o menor que 2ℵ0) de conmutadores coprimos, estos
elementos generan un subgrupo finito. Acciarri, Shumyatsky y Thillaisundaram
demostraron que los conmutadores coprimos de orden superior son concisos en
grupos residualmente finitos, mientras que Detomi, Morigi y Shumyatsky demos-
traron que el conmutador coprimo básico γ∗

2 es fuertemente conciso. En un trabajo
conjunto con de las Heras y Shumyatsky, el autor demostró en [39] que los con-
mutadores coprimos de orden superior γ∗

k y δ∗k son fuertemente concisos en grupos
profinitos, y nosotros proporcionamos una demostración detallada completa de
estos resultados.

En la segunda parte de la tesis, iniciamos el estudio de los grupos de Artin de án-
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gulos rectos profinitos. Los grupos abstractos de Artin de ángulos rectos (RAAGs)
son grupos finitamente generados cuyas únicas relaciones son conmutadores en los
generadores. Estos grupos tienen un grafo finito asociado a su presentación, e in-
cluyen, entre otros, los grupos libres, los grupos abelianos libres y los productos
libres o directos de ellos.

La idea central de la teoría geométrica de grupos es estudiar los grupos mediante
acciones en espacios. Por ejemplo, la acción libre de grupos en un espacio debería
proporcionar una conexión entre la geometría del espacio y el álgebra del grupo.
Éste es el caso de las acciones en árboles: un grupo actúa libremente en un árbol
si y sólo si el grupo es libre. Si no exigimos que la acción sea libre, la teoría de
Bass-Serre proporciona una descripción de la estructura de los grupos que actúan
en árboles en términos de extensiones HNN y productos amalgamados.

En lugar de en un único árbol, si requerimos que nuestro grupo G actúe en
un producto directo de dos árboles, entonces la situación es diferente. En efecto,
Burger y Mozes construyeron grupos simples infinitos que actúan libre y cocom-
pactamente en ellos. Sin embargo, Bridson, Howie, Miller y Short demostraron
que si exigimos algunas propiedades residuales adicionales, entonces tal grupo G
es virtualmente un producto directo de grupos libres. Estos resultados fueron ge-
neralizados por Haglund y Wise, quienes demostraron que los grupos que actúan
libremente, y con algunas condiciones adicionales, en complejos cúbicos CAT(0)
son subgrupos de los RAAG.

Como los grupos profinitos satisfacen buenas propiedades residuales, cabe pre-
guntarse si no se requieren más condiciones en este contexto, a saber, que un grupo
profinito actúa en un producto directo de dos árboles profinitos (o, aún más am-
bicioso, en una cubicación profinita) si y sólo si es virtualmente un subgrupo de
un RAAG profinito. Para abordar esta línea de investigación, primero debemos
estudiar sistemáticamente los RAAG profinitos. Para una pseudovariedad gené-
rica C de grupos finitos, los RAAG pro-C son la compleción pro-C de los RAAG
abstractos y han sido estudiados por Wilkes, Kropholler, Snopce y Zalesskii.

De acuerdo con el contenido del artículo [16], conjunto con Casals-Ruiz y Zaless-
kii y actualmente en preparación, estudiamos RAAGs pro-C utilizando la teoría
profinita de Bass-Serre como herramienta principal. Esta teoría es un análogo de
la abstracta desarrollada principalmente por Mel’nikov, Ribes y Zalesskii. Utili-
zaremos estos métodos para obtener propiedades estándar de los RAAGs pro-C,
como la estructura de sus centralizadores, estudiando una alternativa de Tits para
sus subgrupos, y caracterizando subgrupos 2-generados de RAAGs pro-p.

A continuación, describiremos algunas propiedades de un RAAG pro-C que se
pueden detectar inmediatamente a partir de su grafo subyacente. Por ejemplo,
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Krophopller y Wilkes ya observaron que un RAAG profinito se descompone como
producto libre si y sólo si el grafo subyacente es disconexo. De manera dual,
demostraremos que un RAAG pro-C se descompone como producto directo si y
sólo si su grafo subyacente es una suma de grafos, y a continuación obtendremos
una caracterización de sus decomposiciones, como amalgamas pro-C o extensiones
HNN, sobre subgrupos abelianos.

Posteriormente, continuamos con la investigación de las decomposiciones abe-
lianas de un RAAG pro-C, esta vez en el contexto de las decomposiciones JSJ.
Estas construcciones son una descripción de todas las formas en que un grupo G
puede decomponerse sobre una cierta clase A de subgrupos, y pueden ser genera-
les (por tanto descomposiciones A-JSJ) o relativas a otra clase H de subgrupos
(las llamadas descomposiciones (A,H)-JSJ), en el sentido de que requerimos que
todos los subgrupos de G en la clase H sean elípticos.

Daremos una prueba constructiva de la existencia de la decomposición (A,H)-
JSJ de un RAAG G pro-C eligiendo A como la clase de subgrupos abelianos,
y con el supuesto de que los generadores canónicos de G actúen elípticamente.
Concluiremos obteniendo la descomposición general A-JSJ del pro-C RAAG G.
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1
Problems on group words

In this chapter we set the foundations of the theory of concise words.
Initially we give the basic definitions of word maps and verbal subgroups. We

then describe varieties of groups, that are one of the main motivations driving the
development of word problems in groups.

In Section 3, we give the formulation of three conjectures of Philip Hall. We
briefly analyse the partial answer to the first two of them, and then we discuss
the follow-up of the third problem in the fourth section. Indeed, the last question
of Hall consisted in proving that, if a word w takes finitely many values in a
group G, the associated verbal subgroup is finite. A word satisfying this is said
to be concise. We describe the partial positive answers and then mention the
counterexamples to Hall conjecture.

In Section 5, we describe the more recent driving areas in conciseness, namely
the study of words that are concise in residually finite groups. A further invest-
igation is due to the conjecture that every word w is strongly concise in profinite
groups, meaning that whenever the set of w-values has less than 2ℵ0 elements,
then the verbal subgroup is finite.

In Section 6 we glide over all the results of conciseness, addressing in which
threads of investigation the mathematical community was able to make improve-
ments, and then conclude with a summary of the best results obtained so far in
each direction.
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1.1 Words and verbal subgroups

Consider the free group F (X∞) of countable rank over the set X∞ = {xi | i ∈ N}.
We will say that any element of this set is a group word. Of course any such
element can be written using finitely many variables, so we will denote a generic
element by w(x1, . . . , xn) where n ∈ N is the number of indeterminates involved
in the word (as up to reordering we can always assume that, if w ∈ F (X∞), then
in w appear exactly the variables x1, . . . xn).

Fix now an arbitrary abstract group G. We can associate to w a valuation map
on G obtained by substituting a tuple g = (g1, . . . , gn) of elements of G for the
indeterminates x1, . . . , xn, explicitly

νw : Gn → G

g = (g1, . . . , gn) 7→ w(g)

Definition 1.1 (Word values and verbal subgroup). The set w{G} = {w(g) | g ∈
Gn} is the set of w-values.

The subgroup w(G) = 〈w{G}〉 is the verbal subgroup of w.

Obviously in general the set of word values is not a subgroup. As for each ho-
momorphism ϕ : G → H we have that ϕ(w(g1, . . . , gn)) = w(ϕ(g1), . . . ϕ(gn)), we
immediately get that w{G}N/N = w{G/N} and therefore w(G)N/N = w(G/N),
and also that verbal subgroups are fully invariant subgroups, and in particular
they are characteristic and normal.

Example 1.2. • For each integer n ∈ Z we can consider the power word
w(x1) = xn

1 . The set w{G} is the set of elements of G that are n-th powers,
and we will denote the corresponding verbal subgroup as Gn.

• The commutator word w(x1, x2) = [x1, x2] = x−1
1 x−1

2 x1x2. The verbal sub-
group w(G) is the derived subgroup G′.

• The lower central words (or simple commutators) γk in k variables, defined
inductively as γ1 = x1, γk = [γk−1, xk]. The corresponding verbal subgroups
are the subgroups of the lower central series of G.

• The derived words δk in 2k variables, defined as δ0 = x1 and

δk = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k)].

The corresponding verbal subgroups are the subgroups of the derived series.
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• The outer commutator words, defined recursively. Any single variable xi ∈
X∞ is an outer commutator, and any commutator [u, v] where u and v are
outer commutators in disjoint sets of variables, is an outer commutator.
This class includes γk, δk and several other words, like [[x1, [x2, x3]], [x4, x5]].

• The Engel words en, n ∈ N, defined recursively as e1 = [x1, x2] and en =
[en−1, x2].

Together with the verbal subgroup, there is another important subgroup con-
nected to it, the one consisting of the elements that can be freely removed from
the word.

Definition 1.3 (Marginal subgroup). The marginal subgroup of a word w in a
group G is defined as

w∗(G) =
{
a ∈ G |w(g1, . . . , gi, . . . , gn) = w(g1, . . . , agi, . . . , gn)

for all gi ∈ G, i = 1, . . . , n
}
.

Example 1.4. Let w = [x1, x2]. Any element in the center Z(G) is obviously
in the marginal subgroup, moreover if y ∈ w∗(G), for every g ∈ G we have
[y, g] = [1, g] = 1, so y ∈ Z(G).

1.2 Varieties and relatively free groups

If V is a set, possibly infinite, of group words, then we will denote by V(G) the
subgroup 〈v(G) | v ∈ V〉. We will say that a word v is a law in a group G if
v(G) = 1, and extend this definition naturally to sets of groups words.

Definition 1.5 (Closed sets of words). A set of words V ⊆ F (X∞) is closed if
and only if it is closed by inverses, products and if for every v ∈ V word in n
variables and any tuple u = (u1, . . . , un) ∈ Xn

∞ we have v(u) ∈ V .

For each set of words V , we can define its closure V as the smallest closed set
of words containing it. It is possible to see that V(G) = V(G) for any group G,
or in other words the verbal subgroup defined by V is the same as the one defined
by its closure.

Definition 1.6 (Varieties). The class of groups satisfying a certain set of laws V
is called the variety defined by V .
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By the previous discussions, each variety corresponds to a single closed set of
laws. Let Fn and F∞ be the free groups on n and countably many generators
respectively. In each variety there is an infinitely generated group that satisfies
exactly all the laws of the closed set V , which is precisely F∞/V(F∞), and all
groups of the variety defined by V are quotients of this group. In general, every
d-generated group in the variety generated by V is a quotient of Fd/V(Fd). We
will say that these groups are the relatively free groups in the variety generated
by V . They all have a generating set S such that every mapping of this set into
the group itself can be extended to a homomorphism.

Even if, for a generic group, not every fully invariant subgroup is verbal, this is
true for relatively free groups.

Theorem 1.7 (Theorem 13.31 [58]). Every fully invariant subgroup of a relatively
free group G is of the form W(G) for a (possibly infinite) set W of words.

An important theorem of Birkhoff characterizes precisely which classes of groups
are varieties.

Theorem 1.8 (Birkhoff). A class of groups is a variety if and only if it is closed
by subgroups, quotients and (unrestricted) cartesian products.

Example 1.9. • The variety generated by w(x1, x2) = [x1, x2] is the variety
of abelian groups. The relatively free d-generated group of this variety is
Fd/F

′
d
∼= Zd.

• The variety generated by w(x) = xn is the Burnside variety. The d-generated
relatively free group in this variety is denoted by B(d, n). The Bounded
Burnside problem asked for which integers n the free Burnside group B(d, n)
is finite. These groups are finite for n = 2, 3, 4, 6 (n = 2 is an easy exercise,
the other results are of Burnside, Sanov and M. Hall respectively). Novikov
and Adian proved in 1968 [61][62][63] that for big odd integers n and d ≥ 2
these groups are infinite. The best bound that guarantees the infiniteness
of free Burnside groups of odd exponents is n > 665 [6]. The infiniteness
of B(d, n) for even numbers n > 248 was proved by Ivanov [44], with an
improvement to n > 8000 obtained by Lysenok [55].

• With his solution of the Restricted Burnside Problem, Zelmanov proved
in [86][87] that the locally finite groups of finite exponent form a variety,
and in particular for each positive integer d, n each finite d-generated group
of exponent n is a quotient of of the finite relatively free group Z(d, n).
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Of course this variety satisfies the law w(x) = xn, but it is unclear which
additional laws have to be added in order to restrict the Burnside variety
to locally finite groups.

The version of small cancellation theory that was developed by Olshanskii was
constructed to obtain a more accessible proof of the aforementioned Novikov-
Adian theorem. This proof is much more accessible, but settles the problem only
for odd n > 1010.

1.3 On three questions of P.Hall

A classical result that Schur proved in 1904 is the following:

Theorem 1.10 (Schur). If [G : Z(G)] = m, then G′ is finite and of exponent
dividing m.

The converse of this theorem is not true, as we can consider a countable product
of the quaternion group Q8 and amalgamating all the centers. In this group the
commutator subgroup has order two, but the center has infinite index.

All the counterexamples to the converse of Schur’s Theorem require the group G
to be infinitely generated. Indeed, if G = 〈g1, . . . , gk〉 and the set of commutators
γ2{G} is finite, the index [G : CG(gi)] is finite (as the set of right cosets of
CG(gi) is in bijection with the set {[g, gi] | g ∈ G}). This implies that the center
Z(G) =

⋂k
i=1 CG(gi) has finite index in G too.

In the previous paragraph, in order to prove that [G : Z(G)] <∞, we have not
used the finiteness of the whole subgroup G′, but only the finiteness of the set of
commutators γ2{G}. If we then apply Schur’s Theorem we have actually proved
that the finiteness of γ2{G} implies the finiteness of γ2(G) = G′. Notice that we
could reach the same conclusion, under the hypothesis of |γ2{G}| <∞, even if G
is not finitely generated. Indeed we could find a finite set S of elements of G such
that γ2{G} = {[s1, s2] | s1, s2 ∈ S}, then apply the previous reasoning to 〈S〉 and
obtain that G′ = 〈S〉′ is finite.

In the 50’s Philip Hall asked whether all the interlacing among finiteness of
w{G}, w(G) and [G : w∗(G)] is valid for every group word w rather than only for
w = γ2.

(Q1) If [G : w∗(G)] is finite and a π-number, is |w(G)| finite and a π-number?

(Q2) If w(G) is finite and G satisfies the maximal condition on subgroups, is
[G : w∗(G)] finite?
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(Q3) If w{G} is finite, is w(G) finite too?

We recall that a group satisfies the maximal condition on subgroups if and only
if every ascending chain of subgroups stabilizes or, equivalently, every subgroup
is finitely generated.

The previous questions appeared for the first time in the article [80] of Turner-
Smith, but were all attributed to Philip Hall. As we have already discussed, if
w = γ2 all these questions have a positive answer.

The answer to Question 1 is positive for outer commutator words (Baer [10]).
Moreover Stroud [78] proved that the same is true if w is a word such that every
group in which w is a law is locally residually finite.

In [81], Turner-Smith proved that the answer to Question 2 is also positive
whenever w is an outer commutator word. He attributed this result to P. Hall
again, but also proved a slightly stronger version of this statement for outer com-
mutator words.

It is interesting to point out that the answer to Question 2 is negative if we
remove the requirement of G satisfying the maximal condition on subgroups. One
example are all infinite extraspecial groups, like the one obtained by amalgamating
the centers of an infinite product of copies of Q8.

If w is not an outer commutator word, the answer to both questions is negative.
Indeed Kleiman [49] constructed a word w and a group G with [G : w∗(G)] = p2

for a prime p 6= 2, but such that |w(G)| = 2. We could anyway still ask whether
the finiteness of [G : w∗(G)] implies the finiteness of w(G). Of course we have
that if w is a word in n variables and [G : w∗(G)] = m <∞, then |Gw| ≤ mn, but
the finiteness of the verbal subgroup has yet to be proved or disproved.

A counterexample to Question 2 was provided by Ashmanov and Olshanskii in
[7]. It is important to notice that both the counterexample of Kleiman and the
counterexample of Ashmanov and Olshanskii are obtained through the version of
Small Cancellation Theory developed by Olshanskii. We will talk in further detail
about this theory in Chapter 3.

The first two questions of Hall have not had a huge follow-up, but the third
question led to the development of a whole theory in order to tackle the problem.

1.4 Conciseness

The third problem of Philip Hall has been intensively studied, giving rise to several
methods in order to tackle problems of conciseness of words.
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Definition 1.11 (Concise words). A group word w is concise wordconcise if w(G)
is finite for every group G such that w{G} is finite.

We begin with some general reductions. The following result is classical, but
was first explicitly given in a quantitative way in Lemma 4 of [26]. We will anyway
provide a proof, due to the importance of this lemma.

Lemma 1.12. Let w be a group word and G be a group such that |w{G}| ≤ m.
Then |w(G)′| ≤ f(m) for a function f : N→ N.

Proof. The set w{G} is closed by conjugation, therefore for each g ∈ w{G} we
have |G : CG(g)| = |gG| ≤ m. This implies that |G : CG(w(G))| ≤ mm, so by
Schur’s Theorem w(G) is finite and of exponent dividing mm. Notice that w(G)
is generated by the finite normal set

{
[h1, h2] | h1, h2 ∈ w{G}

}
, so w(G)′ is a

subgroup generated by at most m2 elements and of exponent mm. By Dietzman’s
Lemma (Lemma 14.5.7 of [73], the proof gives a bound) there is a function f :
N→ N such that |w(G)′| ≤ f(m).

This basic result implies that, whenever we are trying to study if a group
word w is concise, we can always assume w(G) to be abelian, and therefore just
study whether w(G) is periodic. An immediate application of this is the following
Lemma, which Turner-Smith attributes to P. Hall in [80], of which we will give a
proof because some of the ideas involved in this short proof are commonly used
in more recent results. We will say that a word w ∈ F (X∞) is a non-commutator
word if w /∈ F (X∞)′.

Lemma 1.13. Every non-commutator word is concise.

Proof. Let w be a non-commutator word in n variables x1, . . . , xn. By applying
the classical commutator calculus formula ab = ba[a, b], we can rewrite w as

w(x1, . . . , xn) = xe1
1 · · · xen

n v(x1, . . . , xn)

with v(x1, . . . , xn) ∈ F (X∞)′. As w is a non-commutator word, there exists at
least an index i ∈ {1, . . . , n} such that ei 6= 0. By reordering the indices, we can
assume i = 1.

Let G be a group with |w{G}| ≤ ∞ and choose g ∈ G. By substituting g to x1

and the identity to each xi, i = 2, . . . , n, we have that w(g, 1 . . . , 1) = ge1 and in
particular the set {ge1 | g ∈ G} is finite. This implies that G is a group of finite
exponent, hence the abelian quotient w(G)/w(G)′ is finite, and by Lemma 1.12
this is sufficient to conclude.
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We can therefore restrict our search to commutator words. In [81], Turner-Smith
proved that lower central words γk are concise (this was already known to P. Hall),
moreover he extended the result to derived words δk, but the arguments in this
case are already more advanced. For several years the problem was untouched,
until Wilson proved in [82] that all outer commutator words are concise.

The dreams of obtaining an affirmative answer to conciseness problems were
shattered by a counterexample, obtained by Ivanov in 1989 [43]. We will give
some ideas of the construction of this counterexample in Section 3.2.

Still, many more words have been proved to be concise. Even further, many
words have been proved to be boundedly concise.

Definition 1.14 (Boundedly concise words). A word w is boundedly concise in a
class C of groups if there exists a function f : N→ N such that, if there is a group
G ∈ C with |w{G}| ≤ m, then |w(G)| ≤ f(m).

In 2009, Fernández-Alcober and Morigi obtained a different proof of conciseness
of outer commutator words in [31]. In the same article, there are two proofs of
the following result, one by the authors and one that was communicated to them
by Mann.

Theorem 1.15. Any word w that is concise is boundedly concise.

1.5 Conciseness in other classes of groups

The counterexample of Ivanov did not impede pursuing better and further results
on conciseness. In particular, a huge development of the theory shifted toward
proving in which classes of groups every word is concise.

Definition 1.16 (Verbal conciseness). We will say that a class of groups C is
verbally concise if, for every group G ∈ C and any group word w we have that, if
w{G} is finite, then w(G) is finite too.

Some classes of groups that are obviously verbally concise are abelian groups
(because, if G is abelian, w(G) = w{G}) or finite groups. Turner-Smith proved
that each word is concise in residually finite groups such that all of their quotients
are residually finite [81].

The most important open conjecture regarding conciseness is the following.
This conjecture was discussed by several authors, but it is usually attributed to
either Jaikin-Zapirain or Segal.

Conjecture 1.17. The class of residually finite groups is verbally concise.
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Studying conciseness in residually finite groups involves a different machinery
compared to the analogous problem in general abstract groups. These additional
tools made it possible to prove that some words, which are unknown to be concise
or not in general, are actually concise in residually finite groups. Consider, as
an example, Engel words, that are defined iteratively as e1(x, y) = [x, y] and
en = [en−1, y] = [x, y, n. . ., y]. It is known that these words are concise only in
the cases of n ≤ 4 (see [1] [32]), but it is unknown whether they are in general.
However, all these words are concise in residually finite groups ([26]).

Any residually finite group embeds in its profinite completion, so it is a natural
question whether the study of conciseness in profinite groups can yield an affirm-
ative answer to the previous conjecture. An important remark is that in profinite
groups we will denote by w(G) the closure of the abstract subgroup generated by
the set w{G}. In this setting, it is actually possible to prove that it is equivalent
to formulate Conjecture 1.17 for profinite groups.

Proposition 1.18. A word w is concise in all residually finite groups if and only
if it is concise in all profinite groups.

Proof. Let w be a word that is concise in residually finite groups and suppose that
w{G} is finite in a profinite group G. As G is residually finite, the abstract sub-
group generated by w{G} is finite too, but finite subsets are closed, and therefore
w(G) is finite too.

Suppose now that w is concise in profinite groups and assume that it takes
finitely many values in a residually finite group G. Each residually finite groups
embeds in its profinite completion Ĝ. The first step is to prove that w takes
finitely many values in Ĝ. Let g1, ..., gk ∈ Ĝ. For each j = 1, . . . , k we can find a
net of elements gj,i ∈ G, indexed by a set I, such that limi∈I gj,i = gj and therefore
w(g1, ..., gk) = limi∈I w(g1,i, ..., gk,i) ∈ w{G} = w{G}, where the last equality is
true because w{G} is finite hence closed. By hypothesis w(Ĝ) ≤ Ĝ is finite and
so w(G) is finite too.

Any profinite group is either finite or uncountable. Detomi, Morigi and Shumy-
atsky realized that a similar duality could be valid also for word maps. For this
reason they conjectured in [25] that any word taking countably many values in
a profinite group has a finite verbal subgroup, proving the conjecture for outer
commutators and other specific words. An improvement of this was obtained
in [24], where the authors managed to avoid the dependence on the continuum
hypothesis.

21



Definition 1.19 (Strongly concise words). A word w is said to be strongly concise
if, whenever |w{G}| < 2ℵ0 in a profinite group G, then w(G) is finite.

Detomi, Klopsch and Shumhyatsky proved that outer commutators and other
specific words are indeed strongly concise, leading to a strengthening of Conjecture
1.17.

Conjecture 1.20. Every word is strongly concise.

In view of Theorem 1.15, we could ask whether words that are concise in resid-
ually finite groups are also boundedly concise in residually finite groups. This is
currently unknown, because one essential tool in the proofs of Fernández-Alcober
and Morigi or Mann in [31] was constructing an ultraproduct of groups. We can-
not generalize their proof to residually finite groups because the ultraproduct of
residually finite groups is not necessarily residually finite. For this reason, this is
currently an open problem.

Conjecture 1.21. Every word that is concise in residually finite groups is also
boundedly concise in residually finite groups.

1.6 A comprehensive list of known concise words

We will give a comprehensive list of all results regarding conciseness of words.
As already mentioned, the first article that mentioned the problem is by Turner-

Smith [80] in 1964, in which he proved that non-commutator words, lower central
words and derived words are concise. Wilson proved that all outer commutator
words are concise in [82] in 1974, but the proof is already more convoluted. It is
important to mention that Fernández-Alcober and Morigi gave a different proof
of this last result in [31]. This last proof developed new methods in the study
of outer commutator words, by applying proofs by induction on the height and
defect of these words, by representing them as finite trees.

Apart from outer commutator words, the first type of words for which concise-
ness problems were extensively studied are Engel words. Indeed, in 2011 both Ab-
dollahi and Russo [1] and Fernández-Alcober, Morigi and Traustason [32] proved
that Engel words en = [x,n y] are concise for n ≤ 4. These results rely heav-
ily on the fact that any group in which e4 is a law is locally nilpotent, whereas
it is unknown if the same is true for the general n-Engel word en. The proof
of Fernández-Alcober, Morigi and Traustason obtains some structural results for
groups G such that en{G} is finite for a certain positive integer n. Indeed, they
proved that in this case [en(G), G] is a finite subgroup.
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Another class of words that was studied are words obtained by nesting non-
commutator words into outer commutator words. We will say that some words
u1, . . . , un are disjoint if the sets of variables appearing in each of them are
pairwise disjoint. In 2019 Delizia, Shumyatsky, Tortora and Tota proved in
[22] that the word [u1, u2] is concise for u1, u2 disjoint non-commutator words.
This result was generalized by Azevedo and Shumyatsky in [9] to commutat-
ors [u1, u2, u3] for u1, u2, u3 disjoint non-commutator words. In the same article,
Azevedo and Shumuyatsky proved that, if u1, . . . , uk are disjoint copies of the
same non-commutator word u and v is another non-commutator word disjoint
from u1, . . . , uk, then both [u1, . . . , us] and [v, u1, . . . , us] are concise. Lastly, they
proved that if u is an outer commutator word and v is a disjoint non-commutator
word, then [u, v] is concise.

In Chapter 2 we will give a full proof of a result that generalizes all of these. In
[34], Fernández-Alcober and the author proved a stronger version of a conjecture of
Azevedo and Shumyatsky, showing that, whenever u1, . . . , uk are non-commutator
words, then the words γk(u1, . . . , uk) and δk(u1, . . . , u2k) are concise.

Theorem 1.15 assures that any word that is concise is also boundedly concise.
However, some results proved that some sets of wordsW are uniformly boundedly
concise, which means that for every w ∈ W the same function f gives a bound
as in Definition 1.14. In [13] Brazil, Krasilnikov and Shumyatsky proved that
all lower central words and derived words are uniformly boundedly concise. This
result was generalized to all outer commutator words by Fernández-Alcober and
Morigi in [31].

Moving towards conciseness in some restricted classes of groups, we already
mentioned that Turner-Smith proved that every word is concise in residually finite
groups all whose quotients are residually finite. In 1967 an extremely important
result of Merzljakov in [57] extended verbal conciseness to the class of groups
such that, for each integer m ∈ N, there exists a finite index normal subgroup
N(m) such that N(m) is residually (finite of order coprime to m). This result was
used in Merzljakov’s article to prove that every finitely generated linear group is
verbally concise. In this direction, a recent result of Zozaya [89] proved that the
class of compact R-analytic groups is also verbally concise.

In a similar way, there are other classes of groups that are verbally concise simply
because no word can take finitely many values, like the class of groups that do
not satisfy any law. This class of groups contains for example free groups and, as
shown by Abért in [2], Thompson’s group F , weakly branch groups or profinite
groups with alternating composition factors of unbounded degree. Conciseness
for this class of groups follows from this easy lemma.
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Lemma 1.22. If a word w takes finitely many values in a group G, then G satisfies
a law.

Proof. Assume |w{G}| ≤ m and that w is a word in n variables. Consider n ×
(m + 1) variables, that we denote by xj

i , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m + 1} and
define wa = w(xa

1, . . . , x
a
n), wa,b = w−1

a wb. If γt is the simple commutator of length
t = m(m− 1)/2, the word

γt(w1,2, . . . , w1,m+1, w2,3 . . . , wm−1,m)

obtained by computing γt on all couples (a, b) ∈ {1, . . . ,m + 1}2 with a < b is a
law, because at least two of the wi, i ∈ {1 . . . ,m+ 1} must be equal.

We will now discuss conciseness in residually finite and profinite groups.
The first words that were proven to be concise in the class of residually finite

groups, but which are not known to be concise in all groups, are words of the
type wq for w an outer commutator word and q a prime power. This was proved
by Acciarri and Shumyatsky in [3], where they also showed that if w is a lower
central word, then wq is boundedly concise in residually finite groups.

In 2015 Guralnick and Shumyatsky proved that weakly rational words are concise
in residually finite groups [38]. A word w is weakly rational if, for all finite groups
G and every integer e coprime to |G| the set w{G} is closed by taking e-th powers.

Burns and Medvedev in [14] defined that a word w implies virtual nilpotency
if every finitely generated metabelian group in which w is a law has a nilpotent
subgroup of finite index. The authors proved that w implies virtual nilpotency if
and only if for all primes p, w is not a law in the wreath product Cp o C∞. Some
examples of words that imply virtual nilpotency are uv−1 for u, v semigroup words
in finitely many generators, Engel words and some generalizations of Engel words.

In a series of two articles [26] and [27], Detomi, Morigi and Shumyatsky proved
bounded conciseness in residually finite groups for words implying virtual nilpo-
tency and several words of Engel type [w,n y] for n positive integer and w an
outer commutator word. For w = γn

k for n positive integer they showed that
both [w,n y] and [y,n w] are boundedly concise. If w is a prime power of an outer
commutator word, they proved that [w,n y] is concise in residually finite groups,
but it is unknown whether it is boundedly concise too. The best result in this
direction was recently obtained by Acciarri and Shumyatsky in [4], showing that
w and [w,n y] are concise in residually finite groups for w an arbitrary power of
an outer commutator word and y a variable not appearing in w.
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A more recent result of Azevedo and Shumyatsky [9] states that whenever u, v
are two disjoint words, if u is concise in residually finite groups and v is a non-
commutator word, then [u, v] is concise in residually finite groups. Moreover, if u
is boundedly concise, then the same is true for [u, v].

In [25] Detomi, Morigi and Shumyatsky proved that if w{G} is countable in a
profinite group G for w = x2, w = [x2, y] or w an outer commutator word, then
w(G) is finite. All these results were generalized to the case |w{G}| < 2ℵ0 by
Detomi, Klopsch and Shumyatsky in [24], where they obtained the same result
also for the words w = x2, w = x3, w = x6, w = [x3, y], w = [x, y, y], w =
[x, y, y, z1, . . . , zr], w = [x2, z1, . . . , zr] and w = [x3, z1, . . . , zr] where x, y, zi are
different variables. In [48], Khukhro and Shumyatsky obtained strong conciseness
for all Engel words w = [x,n y] in finitely generated profinite groups. We can also
extend the notion of strong conciseness to some maps that are not word maps,
like coprime and anti-coprime commutators. We will discuss these maps in detail
in Chapter 4.

We also mention some results on strong conciseness under the additional hy-
pothesis that w(G) is generated by finitely many w-values. In [24] the authors
proved that in this case, weakly rational words and words implying virtual nilpo-
tency are strongly concise. Under the same hypothesis, Azevedo and Shumyatsky
proved in [8] that [y,n v

q] and [vq,n , y] are strongly concise for v = γk(x1, . . . , xk),
and extended this result to some additional specific words under more conditions.

Overall, Conjectures 1.17 and 1.20 are still widely open, but they have been
partially settled for some specific subclasses of profinite groups. Indeed in [23]
Detomi proved that every word is strongly concise in virtually nilpotent profinite
groups, whereas in [4] Acciarri and Shumuyatsky proved that Conjecture 1.17
reduces to proving conciseness in the class of virtually pro-p groups for an arbitrary
prime p.
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1.7 Tables of concise words

We conclude the chapter with some tables summarizing the results we described,
highlighting only the most general results.

Concise words

Words References Notes

Non-commutators [81] (P. Hall)

Outer commutators [82], [31] Uniformly concise
[31]

Engel words en, n ≤ 4 [1], [32] [en(G), G] is finite for
every n [32]

γk(u1, . . . , uk), δk(u1, . . . , u2k)
ui disjoint non-commutators [34]

Verbally concise classes of groups

Class of groups References

Res. finite with all
quotients res. finite [81]

Linear groups [57]

Compact R-analytic [89]

Groups without
any law Lemma 1.22

We also remark that every word is strongly concise in virtually nilpotent profinite
groups ([23]).
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Words concise in residually finite groups

Words References Notes

wq, [wq,n y]
w outer comm., q ∈ N [4]

Weakly rational [38]

Words implying
virtual nilpotency [26]

[wq,n y], [y,n wq]
w outer comm., q ∈ N [27] boundedly concise for

[γq
k,n y], [y,n γ

q
k]

[u, v], u, v disjoint,
u concise in res. finite
v non-commutator

[9] boundedly concise if
u boundedly concise

We will write (FG) for “w(G) is generated by finitely many w-values”.

Strongly concise words

Words References Notes

Outer commutator [24]

w = xq, q = 2, 3, 6
and some specific words [24]

Engel words en, n ∈ N [48] For finitely generated
profinite groups

Coprime commutators γ∗
k, δ∗k [39] Not group words

see Chapter 4

Strongly concise words under additional conditions

Weakly rational,
implying virtual nilpotency [24] Condition (FG)

[y,n γ
q
k], [γ

q
k,n y]

y, γk disjoint, q ∈ N
and some specific words

[8] Condition (FG)
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2
Conciseness on normal subgroups

In this chapter we describe some contributions to the list of known concise words.
Delizia, Shumyatsky, Tortora, and Tota proved in [22] that, if u1 and u2 are non-
commutator words in disjoint sets of variables, then [u1, u2] is concise too. This
result has been extended to the case when u1 is an outer commutator word and
u2 is a non-commutator and to commutators [u1, u2, u3] of non-commutators in
[9]. For longer commutators, the only partial result was obtained by Azevedo
and Shumyatsky in [9], who proved that if u1, . . . , uk are copies of the same non-
commutator word in different variables, then [u1, . . . , uk] is concise.

Azevedo and Shumyatsky conjectured that, if ui are non-commutator words in
disjoint sets of variables and w = γk, then w(u1, . . . , uk) is concise. The aim of
this chapter is to prove this conjecture, and moreover to extend it to the case
of a generic outer commutator word w. We will roughly follow the article [34] of
Fernández-Alcober and the author, where we proved these results for lower central
words and derived words.

In the first section we will develop some preliminary lemmas. These will be
sufficient to settle the conjecture of Azevedo and Shumyatsky, for w = γk, in the
second section. The main idea of the proof is to find a series of verbal subgroups
such that each section of this series has some linearity properties. This could be
obtained as a corollary of the case of generic outer commutator words, but the
proof in this case is more straightforward and easier, so it makes sense to have a
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section dedicated to it.
The proof for a generic outer commutator word w, however, involves some

further technicalities. The focal point of the arguments is producing a series of
subgroups similarly to the case w = γk, but this series is more complicated than
the lower central words case. In order to illustrate the main steps of the proofs,
we will first give an explicit construction of such a series in the case w = δ2 in
Section 3, and we will formally prove the conjecture for a generic w, in Section 4.

2.1 Preliminaries

The aim of this chapter is to prove the following

Theorem 2.1. Let w = w(x1, . . . , xr) be an outer commutator word. If u1, . . . , ur

are non-commutator words in disjoint sets of variables, then the word w(u1, . . . , ur)
is concise. In particular, the word w(xn1

1 , . . . , xnr
r ) is concise whenever n1, . . . , nr ∈

Z r {0}.

In order to obtain this result, we will need to work on studying the values of
an outer commutator words with some additional restrictions on the subgroups
where the variables take values from. Similarly to how we defined usual word
values in a group G, if S = (S1, . . . , Sr) is an r-tuple of subsets of G, we can
consider the set of values

w{S} = {w(g) | g ∈ S1 × · · · × Sr},

and the corresponding verbal subgroup on S, namely w(S) = 〈w{S}〉. Of special
interest is the case when S is a tuple N = (N1, . . . , Nr) of normal subgroups of
G. We then say that w(N) is the N-verbal subgroup of w and that it is a verbal
subgroup on normal subgroups. We can also say that w is concise on normal
subgroups if w(N) is finite whenever |w{N}| < ∞ for any tuple N of normal
subgroup.

The other main result of this chapter will be the following:

Theorem 2.2. Let w = w(x1, . . . , xr) be an outer commutator word in r variables.
Assume that N = (N1, . . . , Nr) is a tuple of normal subgroups of a group G such
that w{N} is finite. Then the subgroup w(N) is also finite.

We first need a few results regarding word values and verbal subgroups on
normal subgroups or on normal subsets, in the case of outer commutator words.
If w = w(x1, . . . , xr) is an outer commutator word that is not a variable, then
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we can write w = [α, β], where α and β are again outer commutator words.
Without loss of generality, after renaming variables if necessary, we may assume
that α = α(x1, . . . , xq) and β = β(xq+1, . . . , xr), with 1 ≤ q < r.

Lemma 2.3. Let w = w(x1, . . . , xr) be an outer commutator word, and let N =
(N1, . . . , Nr) be an r-tuple of normal subgroups of a group G.

1. Assume that w = [α, β], with α = α(x1, . . . , xq) and β = β(xq+1, . . . , xr).
If we set N1 = (N1, . . . , Nq) and N2 = (Nq+1, . . . , Nr), then w(N) =
[α(N1), β(N2)].

2. Assume that Ni = 〈Si〉 for every i = 1, . . . , r, where each Si is a normal
subset of G. If we set S = (S1, . . . , Sr), then the subgroup w(N) is generated
by w{S}.

Proof. Both (i) and (ii) follow immediately from the simple fact that if S and T
are two normal subsets of a group G then

[〈S〉, 〈T 〉] = 〈[s, t] | s ∈ S, t ∈ T 〉,

where for part (ii) we use (i) and induction on the number of variables.

We are interested in words of the form w(u1, . . . , ur), where u1, . . . , ur are non-
commutator words that involve different variables. Let us introduce the following
concept.

Definition 2.4 (Disjoint words). Let u1, . . . , ur be group words. We say that
these words are disjoint if the sets of variables that they involve are pairwise
disjoint.

If w is a word in r variables and u1, . . . , ur are disjoint words, then the set of
values of the word w∗ = w(u1, . . . , ur) in a group G can be written as w{S}, where

S = (u1{G}, . . . , ur{G}).

Since every ui{G} is a normal subset of G, we get the following consequence of
the previous lemma.

Corollary 2.5. Let w = w(x1, . . . , xr) be an outer commutator word and let
u1, . . . , ur be arbitrary disjoint words. If w∗ = w(u1, . . . , ur) then for every group
G we have

w∗(G) = w(u1(G), . . . , ur(G)).
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Now we want to make part (ii) of Lemma 2.3 quantitative. If we take a standard
generator w(n1, . . . , nr) of w(N), with ni ∈ Ni, how can we estimate the number
of factors from w{S}±1 that are needed to write it? We need to introduce the
following notation.
Definition 2.6 (Sets S∗n). Let G be a group and let S be a subset of G. For
every n ∈ N, we define S∗n to be the set of all products of elements of S ∪ S−1 of
length at most n.

In other references, S∗n is defined as the set of products of exactly n elements of
S. Since we can always replace S with S∪S−1∪{1}, both definitions are basically
equivalent. We prefer the definition above because it suits better the description
of the elements of the subgroup 〈S〉. Also, with this definition, we have S∗k ⊆ S∗n

whenever n ≥ k. Note that if |S| ≤ m then |S∗n| ≤ (2m + 1)n for every n ∈ N.
Let us connect this concept with values of outer commutator words.
Lemma 2.7. Let w = w(x1, . . . , xr) be an outer commutator word, and let S be
a normal subset of a group G. Suppose that t = (t1, . . . , tr) is a tuple of elements
of G, one of whose components belongs to S. Then w(t) ∈ S∗2r−1.
Proof. The result is obvious for r = 1, so we assume r > 1. Then we can write
w(t) = [α(t′), β(t′′)], where α and β are outer commutator words, and the tuples
t′ and t′′ form a partition of t. Assume without loss of generality that t′ contains
an entry from S. By induction on r, we have α(t′) ∈ S∗2r−2 . Consequently,

w(t) = α(t′)−1α(t′)β(t
′′) ∈ S∗2r−1

,

since S is a normal subset of G.

On the other hand, by Lemma 2.8 of [40], if w = w(x1, . . . , xr) is an outer
commutator and g1, . . . , gr, h are elements of a group G, then for every i = 1, . . . , r
we have

w(g1, . . . , gi−1, gih, gi+1, . . . , gr) = w(g∗1, . . . , g
∗
i−1, g

∗
i , g

∗
i+1, . . . , g

∗
r)

· w(g1, . . . , gi−1, h, gi+1, . . . , gr),

where g∗j is a conjugate of gj in G for every j = 1, . . . , r. The following lemma
follows easily from this result by induction on m1 · · ·mr.
Lemma 2.8. Let w = w(x1, . . . , xr) be an outer commutator word, and let S =
(S1, . . . , Sr) be a tuple of normal subsets of a group G. If t = (t1, . . . , tr) with
ti ∈ S∗mi

i for every i = 1, . . . , r, then

w(t) ∈ w{S}∗m1...mr .
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In an abelian group G, the word map (g1, . . . , gr) 7→ w(g1, . . . , gr) is a group
homomorphism for every word w, and consequently w(G) = w{G}. Of course,
this is far from being true in arbitrary groups. Outer commutator words, although
they are also called multilinear words because the same type of commutator ar-
rangements yields multinear words in Lie rings, are not multilinear in groups.
However, our approach to proving Theorems 2.1 and 2.2 relies on showing that,
in suitable sections that cover the section w(N)/w(N)′, outer commutator words
are linear in one specific variable (which depends on the section). To this purpose,
we give the following definition.

Definition 2.9 (Linearity). Let w = w(x1, . . . , xr) be a word and let N =
(N1, . . . , Nr) be an r-tuple of normal subgroups of a group G. We say that w
is linear in position i of the tuple N provided that, for all gj ∈ Nj for j = 1, . . . , r
and hi ∈ Ni, we have

w(g1, . . . , gi−1, gihi, gi+1, . . . , gr) = w(g1, . . . , gi−1, gi, gi+1, . . . , gr)

· w(g1, . . . , gi−1, hi, gi+1, . . . , gr). (2.1)

Typically, we will search for linearity in a normal section K/L of the ambient
group G that is generated by the image of w{N}, so that condition (2.1) above
is required to hold modulo L. Obviously, this type of linearity is inherited by
sections of the form KN/LN for a given N ⊴ G. Next we show that it is also
preserved under taking suitable commutators.

Lemma 2.10. Let w = [α, β] be an outer commutator word, with α = α(x1, . . . , xq)
and β = β(xq+1, . . . , xr). Assume that N = (N1, . . . , Nr) is a tuple of normal sub-
groups of a group G, and set N1 = (N1, . . . , Nq) and N2 = (Nq+1, . . . , Nr). Then
the following hold:

1. If K/L is a normal section of G generated by the image of α{N1} and
α is linear in component i of N1 modulo L, then the section U/V , where
U = [K, β(N2)] and V = [w(N), α(N1)][L, β(N2)], is generated by the image
of w{N} and w is linear in component i of N modulo V .

2. If K/L is a normal section of G generated by the image of β{N2} and
β is linear in component i of N2 modulo L, then the section U/V , with
U = [α(N1), K] and V = [w(N), β(N2)][α(N1), L], is generated by the image
of w{N} and w is linear in component q + i of N modulo V .

Proof. We only prove part (i). To start with, we have

[K, β(N2)] = [α(N1)L, β(N2)] = [α(N1), β(N2)] [L, β(N2)] = w(N) [L, β(N2)],
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where the last equality follows from (i) of Lemma 2.3. Thus the section U/V is
generated by the image of w{N}.

As for the assertion about linearity, let us consider the general congruence
stating that α is linear in component i of N1 modulo L. This can be written in
the form x ≡ yz (mod L), where x, y, and z are like the three elements appearing
in (2.1) (with α playing the role of w). In particular, x, y, z ∈ α{N1}. Standard
commutator identities then yield that, for every n ∈ β{N2}, we have

[x, n] ≡ [y, n][z, n] (mod [α(N1), β(N2), α(N1)] [L, β(N2)]).

This proves the result.

2.2 Lower central words

We can use the previous lemma to determine, for every lower central word γr and
every r-tuple N of normal subgroups, a series from [γr(N), γr(N)] to γr(N) that
is linear for γr at every section.

Theorem 2.11. Let r ∈ N. Assume that N = (N1, . . . , Nr) is a tuple of normal
subgroups of a group G, and define

Ni = (N1, . . . , Ni−1, γi(N1, . . . , Ni), Ni+1, . . . , Nr)

for every i = 1, . . . , r. Then there is a series

[γr(N), γr(N)] = P r
r+1 ≤ P r

r ≤ · · · ≤ P r
i ≤ · · · ≤ P r

1 = γr(N)

such that, for every i = 1, . . . , r, the section P r
i /P

r
i+1 is generated by the image of

γr{Ni} and the word γr is linear in component i of Ni modulo P r
i+1.

Proof. Set Qr
i = γr(Ni) for every i = 1, . . . , r, and Qr

r+1 = [γr(N), γr(N)]. Ob-
viously, the conditions that P r

r+1 = [γr(N), γr(N)] and that P r
i /P

r
i+1 is generated

by the image of Qr
i mean that we need to choose P r

i = Qr
iQ

r
i+1 . . . Q

r
r+1, for

i = 1, . . . , r + 1.
Let us then prove the linearity of γr in component i of γr(Ni) modulo P r

i+1. We
argue by induction on r − i. The basis of the induction, i = r, follows from the
congruence [g, xryr] ≡ [g, xr][g, yr] (mod Pr+1) for all g ∈ G and xr, yr ∈ γr(N),
which holds because P r

r+1 = [γr(N), γr(N)].
Let us now assume that 1 ≤ i < r and that the result is true for differences less

than r − i. For every i = 1, . . . , r, let Qr−1
i and P r−1

i be defined from the tuple
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N∗ = (N1, . . . , Nr−1) in the same way as we defined P r
i and Qr

i from N. Then
linearity holds in position i of

N∗
i = (N1, . . . , Ni−1, γi(N1, . . . , Ni), Ni+1, . . . , Nr−1)

modulo P r−1
i+1 . Now we apply Lemma 2.10 by taking K = P r−1

i , L = P r−1
i+1 ,

α = γr−1 and β = xr. Thus γr is linear in component i of Ni modulo the
subgroup

[γr(N), γr−1(N
∗)] [P r−1

i+1 , Nr]. (2.2)
Observe that

[γr(N), γr−1(N
∗)] = [N1, . . . , Nr−1, γr(N1, . . . , Nr)] = Qr

r ≤ P r
i+1,

since r − i ≥ 1. On the other hand,

[P r−1
i+1 , Nr] =

(
r−1∏

j=i+1

[Qr−1
j , Nr]

)
· [Qr−1

r , Nr] =

(
r−1∏

j=i+1

Qr
j

)
· [Qr−1

r , Nr],

and

[Qr−1
r , Nr] = [γr−1(N1, . . . , Nr−1), γr−1(N1, . . . , Nr−1), Nr]

≤ [N1, . . . , Nr−1, γr(N1, . . . , Nr)] = Qr
r,

where the inclusion follows from P. Hall’s Three Subgroup Lemma. Hence the
subgroup in (2.2) is contained in P r

i+1, and the result follows.

We are now in a position to prove the key theorem that will provide both
Theorems 2.1 and 2.2 for lower central words. We need the following version for
normal subgroups of a well-known lemma in the theory of concise words (see,
for example, [26, Lemma 4]). The proof is exactly the same, based on Schur’s
Theorem, and taking into account also part (ii) of Lemma 2.3 in this case, so we
omit it. In the remainder of the chapter, for a tuple S of parameters, we use the
expression S-bounded to mean “bounded by a function of S”.

Lemma 2.12. Let w = w(x1, . . . , xr) be an arbitrary word and consider an r-tuple
N = (N1, . . . , Nr) of normal subgroups of a group G. Suppose that Ni = 〈Si〉,
where Si is a normal subset of G for every i = 1, . . . , r, and set S = (S1, . . . , Sr).
If w{S} is finite of order m then w(N)′ is finite of m-bounded order.

Theorem 2.13. Let r ∈ N and let N = (N1, . . . , Nr) be a tuple of normal
subgroups of a group G. Assume that Ni = 〈Si〉 for every i = 1, . . . , r, where:
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1. Si is a normal subset of G.

2. There exists ni ∈ N such that all nith powers of elements of Ni are contained
in Si.

If for the tuple S = (S1, . . . , Sr) the set of values γr{S} is finite of order m, then
the subgroup γr(N) is also finite, of (m, r, n1, . . . , nr)-bounded order.

Proof. We follow the notation Ni and P r
i , introduced in the statement of The-

orem 2.11. We are going to prove that P r
i is finite of bounded order for i =

1, . . . , r + 1 by reverse induction on i. Since P r
1 = γr(N), this proves the result.

The basis of the induction follows from Lemma 2.12, since we have that P r
r+1 =

[γr(N), γr(N)]. Let us assume that P r
i+1 is finite of bounded order and prove that

the same holds for P r
i . Recall that the quotient P r

i /P
r
i+1 is the image of γr(Ni),

and then, by a suitable application of Lemma 2.3, it can be generated by the
images of the set T of commutators

[s1, . . . , si−1, xi, si+1, . . . , sr],

with sj ∈ Sj for 1 ≤ j ≤ r, j 6= i, and xi ∈ γi{Si}, where Si = (S1, . . . , Si). By
Lemma 2.7, we have γi{Si} ⊆ S∗2i−1

i , and then Lemma 2.8 implies that

[s1, . . . , si−1, xi, si+1, . . . , sr] ∈ γr{S}∗2
i−1 ⊆ γr{S}∗2

r−1

.

From the assumption that |γr{S}| = m, we get

|T| ≤ (2m+ 1)2
r−1

,

and consequently P r
i /P

r
i+1 can be generated by an (m, r)-bounded number of

elements. Since P r
i /P

r
i+1 is abelian, the proof will be complete once we show

that all elements in T have bounded finite order modulo P r
i+1.

By Theorem 2.11, the word γr is linear in position i of the tuple Ni modulo
P r
i+1. In particular,

[s1, . . . , si−1, xi, si+1, . . . , sr]
λni ≡ [s1, . . . , si−1, x

λni
i , si+1, . . . , sr] (mod P r

i+1),
(2.3)

for every λ ∈ Z. Since xi ∈ γi(N1, . . . , Ni) ≤ Ni, it follows from (ii) in the
statement of the theorem that xλni

i ∈ Si for all λ ∈ Z. Thus we get

[s1, . . . , si−1, x
λni
i , si+1, . . . , sr] ∈ γr{S}.
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Since γr{S} is finite of order m, it follows that there exist λ, µ ∈ {0, . . . ,m},
λ 6= µ, such that

[s1, . . . , si−1, xi, si+1, . . . , sr]
λni ≡ [s1, . . . , si−1, xi, si+1, . . . , sr]

µni (mod P r
i+1).

This implies that [s1, . . . , si−1, xi, si+1, . . . , sr] has (m,ni)-bounded finite order
modulo P r

i+1, as desired.

If we take Si = Ni, we get Theorem 2.2 for the lower central words.

Corollary 2.14. Let r ∈ N and let N = (N1, . . . , Nr) be a tuple of normal
subgroups of a group G. If γr{N} is finite of order m, then the subgroup γr(N) is
also finite, of (m, r)-bounded order.

Now we deduce Theorem 2.1 for lower central words.

Corollary 2.15. Let r ∈ N and let u1, . . . , ur be disjoint non-commutator words.
Then the word γr(u1, . . . , ur) is boundedly concise. In particular, γr(xn1

1 , . . . , xnr
r )

is boundedly concise for all ni ∈ Z r {0}.

Proof. Let us consider the word w = γr(u1, . . . , ur), and let G be a group in
which w takes finitely many values, say |w{G}| = m. By Corollary 2.5, we have
w(G) = γr(u1(G), . . . , ur(G)). Note that ui(G) = 〈Si〉, where Si = ui{G}, and
that w{G} = γr{S}, where S = (S1, . . . , Sr). Now observe that Si is a normal
subset of G and that, since ui is a non-commutator word, for some ni ∈ Z r {0}
we have {gni | g ∈ G} ⊆ ui{G}. Hence w(G) is finite of (m, r, n1, . . . , nr)-bounded
order by Theorem 2.13.

2.3 An example: the word δ2

We now want to prove Theorems the analogues of Theorems 2.1 and 2.2 for a gen-
eric outer commutator word w. The general strategy is still the same as for lower
central words: we are going to obtain a suitable series of normal subgroups of G,
going from [w(N), w(N)] to w(N), with the property that each of the factors of
the series can be generated by a verbal subgroup on a tuple of normal subgroups
that is closely related to w(N) and linear in one component. This is basically The-
orem 2.20 below. For simplicity, let us refer to such a series as a linear series. The
argument needed to obtain a linear series for derived words presents difficulties
and subtleties that did not arise with lower central words, and is also significantly
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more technical. For the convenience of the reader and in order to make the pro-
cedure for a general w more understandable, first of all we are going to provide a
sketch of it in the particular case of δ2.

Of course, δ1 = γ2 and, according to Theorem 2.11, we have the following linear
series for δ1(N1, N2):

[ N1 , N2]

[
N1, [N1, N2]

]
[
[N1, N2], [N1, N2]

]

Figure 2.1: Series of [N1, N2]

In this and in the next diagrams, a red box indicates the component in which we
have linearity.

Let us see how we can construct a linear series for δ2(N1, N2, N3, N4) from the
series above for δ1. To this purpose, we will use Lemma 2.10, which ensures that
linearity is preserved after taking suitable commutators, and also the remark made
before that lemma, saying that linearity is preserved after multiplying by a normal
subgroup. To start with, we take the commutator of the terms of the previous
series with [N3, N4], obtaining the series

[
[ N1 , N2], [N3, N4]

]
[[
N1, [N1, N2]

]
, [N3, N4]

]
[[
[N1, N2], [N1, N2]

]
, [N3, N4]

]
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Now we multiply this series by
[
[N1, N2], [[N1, N2], [N3, N4]]

]
, which contains the

subgroup
[
[N1, N2], [N1, N2], [N3, N4]

]
by P. Hall’s Three Subgroup Lemma, and

we get the following diagram: [
[ N1 , N2], [N3, N4]

]
[[
N1, [N1, N2]

]
, [N3, N4]

]
[
[N1, N2],

[
[N1, N2], [N3, N4]

]]

Figure 2.2: First diagram for
[
[N1, N2], [N3, N4]

]
Here, and in the remaining diagrams, instead of the subgroups of the series, we
are showing verbal subgroups on normal subgroups whose images coincide with
the corresponding factors of the series. After all, it is in these subgroups where
we are going to obtain the linearity conditions. Be aware then that vertical lines
in the diagrams do not denote inclusions from this point onwards.

By swapping the roles of (N1, N2) and (N3, N4), we can obtain this other dia-
gram: [

[N1, N2], [ N3 , N4]
]

[
[N1, N2],

[
N3, [N3, N4]

]]
[[
[N1, N2], [N3, N4]

]
, [N3, N4]

]

Figure 2.3: Second diagram for
[
[N1, N2], [N3, N4]

]
Now we take the commutator of [N1, N2] with the terms of this last diagram, and
we add the extra term δ2(N1, N2, N3, N4)

′ at the bottom:
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[
[N1, N2],

[
[N1, N2], [ N3 , N4]

]]
[
[N1, N2],

[
[N1, N2],

[
N3, [N3, N4]

]]]
[
[N1, N2],

[ [
[N1, N2], [N3, N4]

]
, [N3, N4]

]]
[[
[N1, N2], [N3, N4]

]
,
[
[N1, N2], [N3, N4]

]]

Figure 2.4: Series of
[
[N1, N2],

[
[N1, N2], [N3, N4]

]]
Finally, by gluing the diagrams in Figures 2 and 4 together, we obtain a linear
series for the subgroup δ2(N1, N2, N3, N4).

Of course, this is simply a sketch without proofs, but we are going to follow
the same procedure in the proof of Theorem 2.20, in order to get a linear series
for w = [α, β] from the series for the outer commutator words α and β. At this
point, it is worth noting an important difference with the situation for a lower
central word γr. In that case, every factor of the linear series is of the following
form (again we show the linear component in red):[

N1, . . . , Ni−1, [N1, . . . , Ni] , Ni+1, . . . , Nr

]
.

We observe that this subgroup is of the form γr(M), where the jth component Mj

of M is either Nj or a commutator of the terms of N that involves Nj, and the
linearity happens in Mi. However, if we look at the series for δ2 obtained above,
the first two subgroups in Figure 2.4 are

δ2(N1;N2; [N1, N2]; [ N3 , N4]) (2.4)

and
δ2(N1;N2; [N1, N2]; [N3, [N3, N4] ]), (2.5)

which are not of the form δ2(M) with every Mj a commutator from N involving
Nj, as we can see by looking at the third component of δ2. Also, the linearity does
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not happen in a component of δ2, but in a more interior position. Nevertheless,
we can write these subgroups as verbal subgroups on normal subgroups for outer
commutator words different from δ2. More specifically, if

v(x1, x2, x3, x4, y1, y2) =
[
[x1, x2], [[y1, y2], [x3, x4]]

]
then the subgroups in (2.4) and (2.5) are v(M1) and v(M2), where

M1 = (N1, N2, N3 , N4, N1, N2) and M2 = (N1, N2, N3, [N3, N4] , N1, N2), (2.6)

where again we have marked the linear components in red.

2.4 Outer commutator words

After having illustrated the procedure with the case of δ2, let us proceed to sys-
tematically develop the tools that are necessary for the proof of Theorem 2.20.

We start by introducing a special type of words that we can derive from a given
outer commutator word w, which we call extended words of w. Before giving the
definition, we show the idea behind extended words with an example. Consider
the word δ2 = [[x1, x2], [x3, x4]]. This is formed by taking the commutator of x1

and x2, taking the commutator of x3 and x4, and then taking the commutator of
these two commutators. Now suppose that on some occasions, before performing
one of these commutators, we introduce a change by taking first the commutator
of one (or both) of the components with an outer commutator word not involving
the variables x1, . . . , x4 appearing in δ2. For example, before producing [x1, x2], we
take the commutator [[y1, y2], x1] and now we follow as in δ2 taking the commutator
with x2, obtaining

[
[[y1, y2], x1], x2

]
. We could continue with the process of taking

commutators without making any other changes, so getting[[
[[y1, y2], x1], x2

]
, [x3, x4]

]
,

but we could also make some similar changes in the process, as in the words[[
[[y1, y2], x1], x2

]
,
[
x3, [y3, x4]

]]
and [ [

[[y1, y2], x1], x2

]
,
[ [

x3, [y3, x4]
]
, y4
] ]

.

Another possibility is to make a commutator at the very end, after having com-
pleted δ2, as in [

y1, [[x1, x2], [x3, x4]]
]
.
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Observe that all these extended words are again outer commutator words, because
we never repeat a variable when we make changes in the construction of δ2.

Let us now give the formal definition of extended words. Notice that this
definition differs from the one of extensions of outer commutator words given in
Definition 3.1 of [33].

Definition 2.16 (Extended words). Let w = w(x1, . . . , xr) be an outer commut-
ator, and let Y = {yn}n∈N be a set of variables that are disjoint from X. For
every k ∈ N ∪ {0}, we define recursively the set extk(w) of kth extended words of
w as follows:

1. ext0(w) = {w}.

2. For k ≥ 1, extk(w) consists of the set

{[p, q], [q, p] | p outer commutator in Y , q ∈ extk−1(w), p and q disjoint}
= {[p, q] | p outer commutator in Y , q ∈ extk−1(w), p and q disjoint}±1,

and, if w = [α, β], also of the set⋃
ℓ+m=k

{[p, q] | p ∈ extℓ(α), q ∈ extm(β), p and q disjoint}.

If v ∈ extk(w) then we say that w is an extended word of degree k of w by outer
commutators.

For brevity, in the remainder we will simply speak of extended words when we
mean extended words by outer commutators. Observe that an extended word
v of an outer commutator w = w(x1, . . . , xr) is again an outer commutator, in
the variables {x1, . . . , xr} ∪ Y . Whenever it is convenient we will assume, after
renaming the variables, that v = v(x1, . . . , xr, yr+1, . . . , ys).

Next we generalize Lemma 2.8 to extended words of an outer commutator word.

Lemma 2.17. Let v = v(x1, . . . , xr, yr+1, . . . , ys) be an extended word of degree k
of an outer commutator word w = w(x1, . . . , xr). Assume that S = (S1, . . . , Sr) is
a tuple of normal subsets of a group G. If t = (t1, . . . , ts) is a tuple of elements
of G such that ti ∈ S∗mi

i for every i = 1, . . . , r, then

v(t) ∈ w{S}∗m1...mr2k .
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Proof. We use induction on k+r. If k = 0 then v = w and the result is Lemma 2.8.
This gives in particular the basis of the induction. Suppose now that the result
holds for smaller values of k + r, and that k ≥ 1. According to Definition 2.16,
we may assume that v(t) = [p(t′), q(t′′)], where p and q are disjoint and

1. either p is an outer commutator word in Y and q ∈ extk−1(w),

2. or p ∈ extℓ(α), q ∈ extm(β), with w = [α, β] and ℓ+m = k.

In case (i), all elements t1, . . . , tr appear in the vector t′′, and by the induc-
tion hypothesis we have q(t′′) ∈ w{S}∗m1...mr2k−1 . Then the result follows by
applying Lemma 2.7 to the commutator word [x1, x2] and the normal subset
w{S}∗m1...mr2k−1 .

Suppose now that we are in case (ii), and assume without loss of generality
that α = α(x1, . . . , xq) and β = β(xq+1, . . . , xr). Set S′ = (S1, . . . , Sq) and S′′ =
(Sq+1, . . . , Sr). Since α and β involve less variables than w, the result is true for
p and q, and so

p(t′) ∈ α{S′}∗m1...mq2ℓ and q(t′′) ∈ β{S′′}∗mq+1...mr2m .

Now the result follows by applying Lemma 2.8 to the commutator word [x1, x2]
and the pair of normal subsets (α{S′}, β{S′′}).

We also need to define a type of extensions of tuples of normal subgroups and
of verbal subgroups on normal subgroups. The idea behind the definition is to be
able to deal with tuples like the ones appearing in (2.6) and with the corresponding
verbal subgroups on normal subgroups in that paragraph.

Definition 2.18 (Outer commutator extension). Let G be a group and consider
two tuples N = (N1, . . . , Nr) and M = (M1, . . . ,Ms) of normal subgroups of G.
We say that M is an outer commutator extension of N if the following conditions
hold:

1. s ≥ r.

2. For every i = 1, . . . , s, we have Mi = wi(Ni), where wi is an outer commut-
ator word and all components of Ni belong to N.

3. For every i = 1, . . . , r, the subgroup Ni is a component of Ni, and con-
sequently Mi ≤ Ni.
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Definition 2.19 (Extensions of w(N)). Let w = w(x1, . . . , xr) be a word and
let N be an r-tuple of normal subgroups of a group G. An extension of degree
k of w(N) by outer commutators is a subgroup of the form v(M), where v is an
extended word of degree k of w and M is an outer commutator extension of N.

For example, we can see the subgroup in (2.5) as an extension of δ2(N) =
δ2(N1, N2, N3, N4) by taking v =

[
[x1, x2], [[y1, y2], [x3, x4]]

]
and the tuple M =

(N1, N2, N3, [N3, N4], N1, N2). Note that v(M) is linear in the fourth component
modulo the subgroup that appears below it in Figure 4.

We now prove the existence of a linear series for outer commutator words.
We recall that the height of an outer commutator word w = [α, β] is defined
inductively, with a single variable having height 0, and with the height of w being
1 + max{height(α), height(β)}. Notice that the height of an outer commutator
word in s variables will always be at most s− 1.
Theorem 2.20. Let r ∈ N and let N = (N1, . . . , Nr) be a tuple of normal
subgroups of a group G. Consider an outer commutator word w = [α, β] in r
variables, say of height h. Then there exists a series

[w(N), w(N)] = V0 ≤ V1 ≤ · · · ≤ Vt = w(N)

of normal subgroups of G such that, for every i = 1, . . . , t, the following hold:
1. The section Vi/Vi−1 is the image of an extension vi(Mi) of w(N) of degree

at most h− 1.

2. In the section Vi/Vi−1, the word vi is linear in one component of the tuple
Mi.

Furthermore, the words vi and the words appearing in the outer commutator ex-
tensions Mi depend only on w and r, and not on the group G or on the tuple
N.
Proof. We prove the theorem by induction on the height of the outer commutator
word w, with the base case being a single variable, which is obvious. We can then
assume that there exist two series of subgroups satisfying the conditions of the
theorem for the outer commutator words of smaller height α and β. Assume that
x1, . . . , xq and xq+1, . . . , xq+m are the variables involved in α and β respectively,
and in particular r = q +m.

Set N1 = (N1, . . . , Nq) and N2 = (Nq+1, . . . , Nq+m). By the induction hypo-
thesis, there exist two series of length s and r respectively

A0 = [α(N1), α(N1)] ≤ · · · ≤ Ai ≤ · · · ≤ As = α(N1) (2.7)
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and
B0 = [β(N2), β(N2)] ≤ · · · ≤ Bi ≤ · · · ≤ Br = β(N2) (2.8)

such that, for every i = 1, . . . , s, the factors Ai/Ai−1 and Bi/Bi−1 are the images
of vαi (Mα

i ) and vβi (M
β
i ), respectively, where:

(a) vαi and vβi are extended words of α and β respectively, each of degree at
most h− 2.

(b) Mα
i is an outer commutator extension of N1.

(c) Mβ
i is an outer commutator extension of N2.

(d) In the sections Ai/Ai−1 and Bi/Bi−1, the words vαi and vβi are linear in one
component of the tuples Mα

i and Mβ
i , respectively.

Let us now see how to obtain the series for w and for the tuple N from the two
series (2.7) and (2.8). We will have that the length t of the series we are looking
for depends on the length of these two series, in the form that t = r + s+ 1. We
start by taking the commutator of all terms of the series (2.7) with β(N2). This
way we obtain the series

[A0, β(N2)] ≤ · · · ≤ [Ai, β(N2)] ≤ · · · ≤ [α(N1), β(N2)] = w(N). (2.9)

By P. Hall’s Three Subgroup Lemma, we have

[A0, β(N2)] = [α(N1), α(N1), β(N2)]

≤ [α(N1), β(N2), α(N1)] = [α(N1), w(N)].

Now we multiply all terms of the series (2.9) by [α(N1), w(N)], and this is the
rightmost part of the series we are seeking (where t = r + s+ 1, as above):

Vt−s = [α(N1), w(N)] ≤ · · · ≤ Vt−s+i = [Ai, β(N2)] [α(N1), w(N)]

≤ · · · ≤ Vt = w(N). (2.10)

Note that t− s = r+1. The factors in this series are the images of the subgroups

[vαi (M
α
i ), β(N2)],

which can be represented in the form vi(Mi) by taking

vi = [vαi , β(xq+1, . . . , xq+m)]
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and defining Mi to be the concatenation of Mα
i and N2, where the elements of

N2 occupy the positions q + 1, . . . , q +m (which are the positions corresponding
to the variables xq+1, . . . , xq+m). Note that Mi is an outer commutator extension
of N.

In a symmetric way, by first taking the commutator of α(N1) with all terms of
the series (2.8) and then multiplying by [w(N), β(N2)], we get the series

Ut−r = [w(N), β(N2)] ≤ · · · ≤ Ut−r+i = [α(N1), Bi] [w(N), β(N2)]

≤ · · · ≤ Ut = w(N). (2.11)

In this series, the factors are given by the images of the subgroups ui(Li), where

ui = [α(y2h+1, . . . , y2h+q), v
β
i,2],

vβi,2 being the same word as vβi , with x1, . . . , xm replaced with xq+1, . . . , xq+m, and
Li being the concatenation of Mβ

i and N1, where we put the components of the
second tuple after the components of the first. Note that ui is an extended word
of β(xq+1, . . . , xq+m) of degree at most h− 1 that only depends on β.

Now we take the commutator of α(N1) with the terms of the last series, and
subtract s to all indices, getting

Z1 =
[
α(N1), [w(N), β(N2)]

]
≤ · · · ≤ Zt−r−s+i = [α(N1), Ut−r+i]

≤ · · · ≤ Zt−s = [α(N1), w(N)], (2.12)

since t − r − s = 1. Finally, we define V0 = [w(N), w(N)] and multiply all
terms of (2.12) by this subgroup, setting Vi = ZiV0 for i = 1, . . . , t − s. Since
V0 ≤ [α(N1), w(N)], we get the series

V0 = [w(N), w(N)] ≤ · · · ≤ Vt−r−s+i = Zt−r−s+i[w(N), w(N)]

≤ · · · ≤ Vt−s = [α(N1), w(N)]. (2.13)

In this series, the factors Vi/Vi−1 for i = 2, . . . , t − s are given by the images of
the subgroups vi(Mi), where

vi = [α(x1, . . . , xq), ui+s]

is an extended word of w of degree at most h − 1, and Mi is the concatenation
of N1 and Li+s, with the components of the second tuple after the components of
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the first. On the other hand, the quotient V1/V0 is given by the image of v1(M1),
where

v1 = [α(x1, . . . , xq), [y, β(xq+1, . . . , xq+m)]]

and M1 = (N, w(N)).
Now the concatenation of (2.10) and (2.13) is the desired series for w and

N. The discussion of the previous paragraphs shows that vi(Mi) is an extension
of w(N) for every i = 1, . . . , t. Thus we only need to check linearity of every
word vi in one component of the vector Mi. For i = t − s + 1, . . . , t, if vαi is
linear in component j of Mα

i of the initial series (2.7), then combining this fact
with Lemma 2.10, it follows that vi is linear in the same component of Mi. For
i = 1, . . . , t − s, we can use similarly the linearity of the series (2.8). Finally for
i = 1, since V0 = [w(N), w(N)] we have linearity in the component corresponding
to y, that takes values in w(N).

Remark 2.21. Suppose w = [α, β] is an outer commutator word of height h ∈ N.
Notice that the number t of terms of the series associated to w in 2.20 is 1+ r+ s,
where r, s are the lengths of the series of α and β respectively, with the case
of a single variable having length one. In particular, it is immediate to prove
by induction that the length t is always at most the length of the series for the
derived word δh. This length can be explicitly computed, being equal to one if
h = 0, equal to two if h = 1 (this can be obtained from δ1 = γ2) and, using the
recursion formula, the length of the series for δh is equal to 2h + 2h−1 − 1.

We can now prove the corresponding version of Theorem 2.13 for the a generic
outer commutator word w.

Theorem 2.22. Let w be an outer commutator word of height h in r variables
and let N = (N1, . . . , Nr) be a tuple of normal subgroups of a group G. Assume
that Ni = 〈Si〉 for every i = 1, . . . , r, where:

1. Si is a normal subset of G.

2. There exists ni ∈ N such that all nith powers of elements of Ni are contained
in Si.

If for the tuple S = (S1, . . . , Sr) the set of values w{S} is finite of order m, then
the subgroup w(N) is also finite and of (m, r, n1, . . . , nr)-bounded order.

Proof. Let us consider the series

[w(N), w(N)] = V0 ≤ V1 ≤ · · · ≤ Vt = w(N)
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of Theorem 2.20. By Remark 2.21, t ≤ 2h +2h−1− 1, where h is the height of the
outer commutator word w. We prove that every Vi is finite of bounded order by
induction on i. The result for i = 0 follows from Lemma 2.12. Assume now that
i ≥ 1 and that the result is true for Vi−1. By Theorem 2.20, the section Vi/Vi−1

coincides with the image of a subgroup vi(Mi) that is an extension of w(N) of
degree at most h− 1.

Let Mi = (M1, . . . ,Ms), which is an outer commutator extension of N. Hence
s ≥ r and for every j = 1, . . . , s we have Mj = wj(Nj), where wj is an outer
commutator word, all components in Nj belong to N, and one of these components
must be Nj for j = 1, . . . , r.

Let Tj = wj{Sj}, where Sj is obtained from Nj by replacing each subgroup
Nℓ with its given generating set Sℓ. Hence Tj ⊆ Mj. Recall from Theorem 2.20
that the word vi (and hence also the number s of variables of vi) and the words
w1, . . . , ws only depend on w, and not on G or on N. From this fact, and since Sj

consists of normal subsets of G, it follows from Lemma 2.7 that there is a function
f : N→ N such that Tj ⊆ S

∗f(r)
j for every j = 1, . . . , r. If we set T = (T1, . . . , Ts)

then, by Lemma 2.17, we get v{T} ⊆ w{S}∗n, where

n = f(r)r2h−1 ≤ f(r)r2r−1.

Consequently
|vi{T}| ≤ (2m+ 1)n, (2.14)

and vi{T} is finite of (m, r)-bounded cardinality. On the other hand, it follows
from Lemma 2.3 that vi(Mi) can be generated by the set of values vi{T}.

From Theorem 2.20, we know that the word vi is linear in some position j ∈
{1, . . . , s} of the tuple Mi modulo Vi−1. Since Mj = wj(Nj) is as above, we have
Mj ≤ Nℓ for some ℓ ∈ {1, . . . , r}, and actually ℓ = j if j ∈ {1, . . . , r}. Now, from
linearity, for every tuple t = (t1, . . . , ts) ∈ T and every λ ∈ Z, we have

vi(t)
λnℓ = vi(t1, . . . , tj, . . . , ts)

λnℓ ≡ vi(t1, . . . , t
λnℓ
j , . . . , ts) (mod Vi−1). (2.15)

We have tλj ∈Mj ≤ Nℓ and then, by (ii) in the statement of the theorem, tλnℓ
j ∈ Sℓ.

So we get
vi(t1, . . . , t

λnℓ
j , . . . , ts) ∈ vi{Tj},

where Tj is the tuple obtained from T after replacing Tj with Sℓ. Similarly to
(2.14) and taking into account that ℓ = j if j ∈ {1, . . . , r}, it follows that the set
vi{Tj} is finite of (m, r)-bounded cardinality. Hence there exist (m, r)-bounded
integers λ and µ, with λ 6= µ, such that

vi(t)
λnℓ ≡ vi(t)

µnℓ (mod Vi−1).
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This implies that vi(t) has finite order modulo Vi−1, bounded in terms of m, r
and nℓ.

Summarizing, the abelian quotient Vi/Vi−1 is the image of the verbal subgroup
vi(Mi), which is generated by the set vi{T} of (m, r)-bounded cardinality, and
each element of vi{T} has (m, r, nℓ)-bounded order. We conclude that the order
of Vi/Vi−1 is (m, r, nℓ)-bounded, which completes the proof.

Exactly as in the case of lower central words, we obtain Theorems 2.1 and 2.2
as special cases of this last result.

Corollary 2.23. Let w be an outer commutator word in r variables and let
u1, . . . , ur be non-commutator words. Then the word w(u1, . . . , ur) is boundedly
concise. In particular, w(xn1

1 , . . . , xnr
r ) is boundedly concise for all ni ∈ Z r {0}.

Corollary 2.24. Let w be an outer commutator word in r variables and let
N = (N1, . . . , Nr) be a tuple of normal subgroups of a group G. If w{N} is finite
of order m, then the subgroup w(N) is also finite, of (m, r)-bounded order.
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3
Counterexamples to Hall’s conjecture

In this chapter we present some counterexamples to Hall’s conjecture on the con-
ciseness of words in groups.

In the first section, we describe the main ideas of small cancellation theory,
which is the key technical tool to build counterexamples to Hall’s conjecture.
This theory utilises geometric diagrams on surfaces in order to obtain information
on the structure of the groups.

In the second and third sections, we give a sketch of Ivanov’s, Olshanskii’s and
Storozhev’s counterexamples to Hall’s conjecture that all words are concise in
every group. All of these examples exhibit a specific word and a specific group
where the word takes a single non-trivial value, but the associated verbal subgroup
is infinite cyclic.

In the fourth section we obtain some original results regarding Olshanskii’s
word, following the preprint [68] of Shumyatsky and the author. We prove that
this word is actually boundedly concise in residually finite groups. This is the first
example of a word that is not concise in general, but is concise in residually finite
groups. We then show that this word is also strongly concise in profinite groups.

In Section 5, we provide an answer to a question of [24] on generation of verbal
subgroups in profinite groups. We construct a group with derived subgroup that
is topologically finitely generated, but that cannot be generated by a finite set of
commutators.

51



3.1 Elements of small cancellation theory

In this section we introduce some basics in small cancellation theory, which are
crucial for the construction of the counterexamples to Hall’s conjecture. We start
with some notation.

Given a surface or a polygon X, we denote by ∂(X) the boundary of X and
by ι(X) = X r ∂(X) the interior of X. If we view an edge X of a polygon as a
polygon itself, then ∂(X) consists of the two endpoints.

When defining diagrams over groups, if a group G has a set S of generators, it
will be useful to consider the set S∗ of abstract words in the alphabet S ∪ S−1.
In accordance to the notation introduced by Olshanskii, in this chapter we will
denote words in S∗ by capital letters C,L,M,X, Y, Z. We will write |X| to denote
the length of the word X ∈ S∗ and, if X,Y ∈ S∗, we will write X ≡ Y (and say
that X and Y are visually equal) if |X| = |Y | and we have a letter-by-letter
equality.

Definition 3.1 (Cells). Consider a n-gon P in a plane with edges e1, . . . , en.
Consider a map f : P → X, where X is any surface, such that:

• f |ι(P ) is an embedding;

• f |ι(ei) is an embedding for each i ∈ {1, . . . , n};

• if a, b ∈ P are distinct points with f(a) = f(b), then a, b ∈ ∂(P ). If a is a
vertex, so is b, otherwise if a ∈ ei, b ∈ ej, then f(ei) = f(ej).

The image f(P ) of such a map is called a cell on X.

Informally, a cell is an identification of the n-agon P in X, but we allow vertices
and edges to be pasted together by f , still preserving the structure of open disc
of ι(P ).

Definition 3.2 (Cell decomposition). A cell decomposition of a surface X is a
finite set {(Pi, fi) | i = 1, . . . ,m} of cells such that X =

⋃m
i=1 fi(Pi) and such that

fi(Pi) ∩ fj(Pj), i 6= j is either empty or it is a set of vertices and/or edges.

A cell decomposition can be thought as a partition of X into a finite set of
cells, but allowing these cells to intersect in edges and/or vertices. The images
of vertices or edges of any of the Pi will be called vertices and edges of the cell
decomposition. Normally, we will denote a cell fi(Pi) with a single letter C.

Even if the theory can be developed for arbitrary surfaces, we will only work
with orientable surfaces. It will be useful to give an orientation to edges of a
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cell decomposition, by assuming that any edge e admits an inverse e−1, which
geometrically corresponds to the same element, but with inverse orientation.

Fix now an alphabet S and assign to each oriented edge e of the cell decompos-
ition a label ϕ(e) ∈ S ∪ S−1. If these labels are chosen such that ϕ(e−1) = ϕ(e)−1

for each edge e of the cell decomposition, we will moreover say that the decom-
position is a diagram. If p is a path, obtained by concatenating some oriented
edges p = e1 · · · ek the label of p is the word ϕ(p) = ϕ(e1) · · ·ϕ(ek) ∈ S∗, where
the endpoint of ei coincides with the beginning of ei+1.

Whenever the surface X underlying a diagram is a disc, it will be called a
circular diagram. Notice that if X has a boundary, then it must consist of edges
and vertices of the diagram, and therefore each of its connected components will
have a label as a path. We will say that any connected component of the boundary
∂X of X is a contour of X. Moreover any cell C of a diagram can be seen as a
disc (possibly with some parts of the boundary pasted together), and in this case
the contour is equal to the boundary, and thus we will use the same notation ∂C.
We will use the convention that the label of the contour of every cell of a diagram
over an orientable surface will be read clockwise, and similarly for the label of the
contour of a circular diagram.

If we have a cell C in a diagram, the boundary ∂C is a path (induced by the
orientation of the polygons), so we can always consider the label ϕ(∂C) of the
contour. The length of the contour of a cell or of a surface X is the number of
edges of ∂X as a finite path and will be denoted by |∂X|.

Normally, we simply study groups given by a presentation G = 〈S | R〉. In our
case, we will need to consider groups with graded relations, in the sense that we
partition the set R of relations as R =

⋃∞
i=1Ri in such a way that no relator in

Ri can coincide with a cyclic conjugate of a word in Rj or its inverse if j 6= i. In
this setting, we will consider the graded presentation

G =
〈
S | R =

∞⋃
i=1

Ri

〉
. (3.1)

A cell in a diagram ∆ is an R-cell if its label is visually equal (up to cyclic
conjugation) to a relator or an inverse of a relator in R. If such relator is in the
set Ri, we will say that the cell is an i-cell, or a cell of rank i. Moreover we will
say that it is a 0-cell (or a cell of rank 0) if its label is visually equal to a word
ss−1 or s−1s for s ∈ S.

Definition 3.3 (Diagram over a group). If G is a group given by the presentation
(3.1), a diagram over G is a diagram ∆ over the alphabet S such that all cells
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are either R-cells or 0-cells. The rank of the diagram is the maximum among the
ranks of its cells.

Notice that this definition depends on the presentation (3.1) chosen for G, not
only on the group G itself. When studying diagrams over a group G, we want to
study the simplest possible version of them. In our case, we will say that a circular
subdiagram of rank j can be simplified if we can substitute it with a subdiagram
of smaller rank with the same countour label. As it is shown in Section 13.2 of
[66], a sequence of these operations can always lead to a reduced diagram, that is
a diagram without subgraphs that can be simplified.

In 1933 van Kampen proved that some fundamental problems in group theory,
like understanding if a word in the generators is the trivial element in the group,
can be solved through the use of diagrams of groups. We will give a version of his
result for reduced diagrams over graded groups, and refer to Theorem 13.1 of [66]
for the proof.

Theorem 3.4 (van Kampen). Let W be a non-empty word in the alphabet S∪S−1.
Then W = 1 in a group G with graded presentation (3.1) if and only if there exists
a reduced circular diagram over G such that the label of its contour is visually equal
to W .

w

r1

r2

Figure 3.1: Van Kampen’s Lemma

The name “small cancellation theory” is due to the fact that we often require
that different relators have a small overlapping. This can be made more precise
with the following definition.

Definition 3.5 (Pieces and Condition C ′(λ)). Let G be a group with graded
presentation (3.1), and let R1, R2, R1 6= R2, be two cyclic conjugates of two
relators or inverses of relators in R. A word X in the alphabet S ∪ S−1 is a piece
if R1 and R2 are visually equal to words of the form XY1 and XY2 respectively.
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The presentation (3.1) satisfies small cancellation condition C ′(λ) for a number
0 < λ ≤ 1 if, whenever R is a cyclic conjugate of a relator, or of an inverse of a
relator, such that it is visually equal to XY for a piece X, then |X| < λ|R|.

Example 3.6. The group 〈a, b | aba−1b−1〉 satisfies C ′(λ) for all λ > 1/4. Pieces
consist of single letters or their inverses.

The surface group 〈a, b, c, d | [a, b][c, d]]〉 satisfies C ′(λ) for all λ > 1/8, and as
before pieces consist of single letters or their inverses.

It is possible to see that any group can have a presentation satisfying condition
C ′(λ) for λ > 1

5
(Gol’berg, see Section 12.4 of [66]), but if we ask λ to be smaller,

it allows us to obtain interesting conditions on the groups.

Theorem 3.7 (Greendlinger’s, Theorem 12.1 [66]). Let ∆ be a reduced circular
diagram over a presentation of a group G that satisfies C ′(λ) for λ ≤ 1

6
with at

least one R-cell. Suppose that the label ϕ(∂∆) is cyclically reduced and has no
proper subword equal to the identity. Then there exists an exterior arc p (i.e. a
path p ∈ ∂C ∩ ∂∆) of some R-cell C satisfying |p| > 1

2
|∂C|.

This theorem has crucial implications in combinatorial group theory because,
if there exists a presentation (3.1) of a group G satisfying C ′(λ) for λ ≤ 1

6
, it is

possible to define an algorithm (called Dehn’s algorithm) that in a finite number
of steps can recognize if a word W ∈ S∗ is equal to the identity in G. Moreover
this combinatorial condition has strong geometric implications, namely the group
G is an hyperbolic group.

Even if the presentations we will use will not satisfy any C ′(λ) condition, we
will find an an analogue of Greendlinger’s Theorem in groups satisfying weaker
small cancellation conditions.

3.2 Ivanov’s counterexample

In 1989 Ivanov obtained the first counterexample to P.Hall’s conjecture stating
that all words are concise in the class of all groups. More precisely, he provided a
word wI and a group I in which wI is not concise.

Theorem 3.8 ([43]). The word

wI(x, y) = [[xpn, ypn]n, ypn]n

for n > 1010 odd and p > 5000 prime, takes only two values {1, z} in a torsionfree
2-generated group I but the verbal subgroup wI(I) = 〈z〉, that corresponds to the
center of the group I, is infinite cyclic.
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This group is a central extension of an infinite two generated group GI(∞) of
bounded exponent, which is constructed using small cancellation theory.

We first need a crucial result in central extensions. We recall that a set R of
relations for a group G = 〈S | R〉 is independent if no proper set R′ ⊆ R of
relations gives the same group G (with the identity map on S).

Theorem 3.9. Suppose that the group G = 〈S | R〉 can be considered as G ∼=
F/N , with F being the free group with basis S and N = 〈R〉. Then

• G = F/[F,N ] is a central extension of G = F/N , i.e. N = N [F,N ] is
contained in the center of G. Moreover, if G is centerless, then N = Z(G);

• G = 〈S | [r, s] for r ∈ R, s ∈ S〉;
• if R is an independent set of relations for G, then N is a free abelian group

with basis R = R[F,N ].

For the proof, we refer to Chapter 31 of [66], in particular to Theorem 31.1 and
the discussion above.

In the following we construct the group I, giving an idea of the arguments in-
volved in the proof that wI takes a single non-trivial value in I. In order to do
so, we first construct the group GI(∞), which is a variation of the free Burnside
group constructed by Olshanskii in [64] by inductively imposing (possibly differ-
ent) torsion to elements of a free group, and by obtaining a torsion group as the
limit of all of these quotients.

Let F2 = F (a, b) the free group in two letters and let V,W ∈ F2 be elements of
the free group. Denote by |V | the minimal length of V as a word in the alphabet
{a, b, a−1, b−1}. Fix an ordering in F2 such that if |V | < |W |, then V < W (but we
do not necessarily have to choose lexicographic order for words of the same length).
For each i ≥ 1 we inductively construct the groups GI(i). Define GI(0) = F2,
then assume we already constructed GI(i− 1). Let Ci ∈ F2 be the smallest word
(with respect to the fixed ordering of F2) corresponding to an element of infinite
order in GI(i− 1), such a word will be called period of rank i. Define

GI(i) = GI(i− 1)/〈Cni
i 〉GI(i−1),

where 〈Cni
i 〉GI(i−1) is the normal closure of Cni

i and ni is a odd number greater
than n = 1010. The limit of these quotients is the group

GI(∞) = F2/〈Cni
i | i ∈ N〉F2 . (3.2)

When ni = n for every i we obtain the free Burnside group B(2, n). In this
construction, by using diagrams on groups, Olshanskii proved that the set {Cni

i |i ∈
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N} is an independent set of relations (i.e. no proper subsets of relations defines
the same group GI(∞)), that every word of finite order in GI(i) is conjugate to
a power of a period Cj for j ≤ i (so in the torsion group GI(∞) all words are
conjugate to a power of a period), and most importantly that the group obtained
in this way is infinite and with trivial center.

Ivanov’s group I will be obtained as a central extension of GI(∞) for some
specific choices of the exponents ni. In this case, we must choose some relators in
a different way and we will impose some specific periods to have different orders.
In detail, for n > 1010 odd and p > 5000 prime we require that the words Ci

satisfy that:

• the smallest word of length 1 is C1 = B1 = a and we impose it to have order
p2n;

• the smallest word Ci of length 4(pn+1) is B2 = [bapnb−1, apn] and we impose
it to have order pn;

• the 8 smallest words Ci of length 8n(pn+ 1) will be B3, . . . , B10

[[bε1aε2pnb−ε1 , aε3pn]n, aε3pn]

for ε1, ε2, ε3 ∈ {±1}. We impose these 8 words to have order n;
• all the other words Ci will have order n.

In Lemma 2 of [43] it is proved that the word Ci has infinite order in GI(i− 1)
(and hence it can be chosen to be a period of appropriate rank) and that the
group GI(∞) with presentation (3.2) obtained by imposing these restrictions is
infinite.

The group I is obtained as the quotient

I = F2/〈[Cni
i , T ], Cni

i = C
nj

j | i, j ∈ N, T ∈ F2〉F2 .

In accordance to Theorem 3.9, if we considered only the first set of relators
{[Cni

i , T ]} we would obtain a central extension of GI(∞). The center of such
a group would be a free abelian group with infinite basis {Cni

i | n ∈ N}, but by
adding the relators Cni

i = C
nj

j for all i, j ∈ N, we obtain a cyclic center, generated
by a single element z = Cni

i for every i ∈ N. Now we want to show that the only
non-trivial value taken by the word wI in the group I is exactly z.

Following the steps of a proof in [64], Ivanov proved the following result (Lemma
1 of [43]), which has a clear analogy to Theorem 3.7.
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Lemma 3.10. Let ∆ be a reduced annular diagram or diagram on a disc with two
holes over GI(∞) (with presentation 3.2, Ci as in the previous paragraph) such
that the labels of the contour segments are cyclically unshortenable. If ∆ contains
at least an R-cell, then there exists a cell C with ∂C ∩ ∂∆ = p for a path p such
that |p| ≥ 10−4|∂C|.

To show that z is indeed the only value assumed by the word, we need to
“funnel” the values of some subwords of the word wI . We will explicitly explain
the first steps to show the use of diagrams over groups and to understand why we
need the diversification of the exponents.

Suppose first that X and Y are two words in the alphabet S = {a, b}. We
first assume that [Xpn, Y pn]n = 1 in GI(∞), in which case [Xpn, Y pn]n is in the
center of I so v(X,Y ) = 1. As all words are conjugate to a power of a period in
GI(∞), if X or Y are conjugate to a period different than C1 = a, then either
Xpn or Y pn are equal to the identity in GI(∞) (as all the periods different from
C1 = a have order dividing pn) and we are in the case [Xpn, Y pn]n = 1 in GI(∞),
that we already considered. We can therefore assume that X = L−1at1L and
Y = M−1at2M for some words L,M ∈ S∗, t1, t2 ∈ Z, and that [Xpn, Y pn]n 6= 1 in
GI(∞).

In this case, the word [Xpn, Y pn] must be conjugate in GI(∞) to a power of
B1 = a or B2, being the only periods with order not dividing n in GI(∞). We want
to prove that it cannot be conjugate to a power of a. Suppose by contradiction it
is possible. Then, for a certain N ∈ S∗, we would have

[L−1at1pnL,M−1at2pnM ] = N−1at3N.

By Theorem 3.4, and then pasting the paths of the contour with label N and
N−1, we can construct a diagram ∆ over GI(∞) on a disc with an hole such that
the exterior contour has label at3 and the interior contour, read clockwise, has
label [L−1at1pnL,M−1at2pnM ] (see Figure 3.2). We can now paste together the
two segments of the internal contour with label LM−1at2pnML−1 and its inverse
respectively, so we get a diagram on a disc with two holes and the contours are
at3 , at1pn and a−t1pn (Figure 3.3). By refining it if necessary, we can assume the
diagram to be reduced.
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at3

[L−1at1pnL,M−1at2pnM ]

N

Figure 3.2: Pasting contours with label N

at3

a−t1pn

LM−1at2pnML−1

at1pn

Figure 3.3: Pasting contours with label LM−1at2pnML−1

Now use small cancellation theory: by Lemma 3.10, if ∆ contains at least an
R-cell, there exists a cell C with contour label Cnj

j for a certain j ∈ N such that it
has a boundary arc p of length at least 10−4|Cnj

j |. As 10−4ni ≥ 2 for every i ∈ N,
C2

j must be a subword of ak for k = ± t1pn or k = ± t3, so Cj = C1 = a. We can
now excise the cell C, in the sense that we remove C and, if ∂C = pq with p being
the boundary arc C ∩ δ∆, the new contour of ∆ will follow the path q in place of
the previous boundary arc p (Figure 3.4).
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ak1 ak2 ak2ak4

ak3 ak3

ap
2n Excision

Figure 3.4: Excision of a cell

By excising all the cells of this type, with labels a±p2n, we change the exponents
of some labels of the contour, but not their residual class modulo p2n. After
having excised all these cells, we have a diagram on a disc with two holes and
by Lemma 3.10 it cannot contain any R-cell (and in particular the disc with two
holes is degenerate, with no interior, Figure 3.5). Looking at the final diagram,
we can notice that the label of the exterior boundary is equal to the label of the
path obtained by concatenating the two interior boundaries. This implies that
t3 ≡ pn(t1 − t1) ≡ 0 (mod p2n) so [L−1at1pnL,M−1at2pnM ] = N−1at3N = 1 in
GI(∞), and this contradicts our assumptions.

ak1 ak2

ak3

Figure 3.5: Final diagram, after exicisions

With similar arguments, by means of congruences preserved by cell excision in
diagrams, Ivanov proved that if [Xpn, Y pn]n 6= 1, then this word is conjugate to
either B2 or B−1

2 , not to a proper power of them. Still applying the same ideas, but
with more complicate congruences, he also proved that [[Xpn, Y pn]n, Y pn] must be
a conjugate of exactly one of the words B3, . . . , B10. We refer to the last part of
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Lemma 3 in [43] for the explicit computations. This is sufficient to conclude that
the only non-identical value of the word must be z.

A further interesting remark is that, as it is written in the acknowledgements
of [43], the anonymous referee claimed that, using Adian’s arguments of [6], the
word wA = [xr, yr]n takes exactly two values in a central extension (with cyclic
center) of the free Burnside group B(2, n) for odd n = 3r ≥ 1005. This claim
has not been proved, but it would provide the first example of a word that is
concise (in this case [xr, yr], see [22], or Theorem 2.13) but such that its power
is not concise. Notice that if such a claim was true, using that each inverse of a
wA-value is still a wA-value, the word wA would have to take at least three values
(the identity, a non-trivial element of infinite order and its inverse). Even with
this correction, this remains only a claim and the proof is not a straightforward
adaptation of Ivanov’s methods.

In view of Conjectures 1.17 and 1.20, it is natural to ask whether the counter-
example obtained by Ivanov provides a negative answer to these questions too.
However, it is well known that the group I is not residually finite, thus cannot be
used to obtain a counterexample to the aforementioned conjectures in a straight-
forward way. We now provide a proof of this fact.

Lemma 3.11. Let G be a residually finite group and let N be the marginal subgroup
of a word w(x1, . . . , xn). Then G/N is residually finite.

Proof. Let g ∈ G such that g /∈ N , in particular there exists an index i ∈
{1, . . . , n} and some elements h1, . . . , hn ∈ G such that

t = w(h1, . . . , hig, . . . , hn)w(h1, . . . , hi, . . . , hn)
−1 6= 1

By residually finiteness there exists a normal subgroup M of finite index in G
such that t /∈ M . We claim that g /∈ MN . If it was, let m ∈ M,n ∈ N such that
g = mn. As N is marginal for w, we would have that

t =w(h1, . . . , himn, . . . , hn)w(h1, . . . , hi, . . . , hn)
−1 =

w(h1, . . . , him, . . . , hn)w(h1, . . . , hi, . . . , hn)
−1

but this would imply that t ≡ 1 (mod M), contradicting our choice of M . This
proves that for every g /∈ N there exists a finite index subgroup MN such that
g /∈MN , as desired.

Corollary 3.12. Any finitely generated group which is central-by-(infinite group
of finite exponent) cannot be residually finite. In particular, Ivanov’s group I is
not residually finite.
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Proof. By Lemma 3.11 if I was residually finite, using that the center is the
marginal subgroup for the commutator word, then also the quotient I/Z(I) would
be residually finite. By Zelmanov’s solution of the Restricted Burnside problem
(see [86], [87]), finitely generated residually finite groups of finite exponent are
finite, obtaining a contradiction with the fact that I/Z(I) is infinite.

3.3 Olshanskii’s counterexample

In his article [65], and subsequently in his book [66], Olshanskii studied the words

vO(x, y) = [[xd, yd]d, [yd, x−d]d]

and

wO(x, y) = [x, y]vO(x, y)
n[x, y]ε1vO(x, y)

n+1 · · · [x, y]εh−1vO(x, y)
n+h−1 (3.3)

where
ε10k+1 = ε10k+2 = ε10k+3 = ε10k+5 = ε10k+6 = 1

ε10k+4 = ε10k+7 = ε10k+8 = ε10k+9 = ε10k+10 = −1

for k = 0, 1, . . . , (h− 1)/10; n > 1010 odd and h ≡ 1 mod 10, h > 50000, d and n
are integers “big enough”. The minimal bounds for d and n are not immediate to
get but can be recovered from the article [65] or from Chapters 29 and 30 of [66].

The choice of the εi is due to the need of a tuple of numbers that is not equal to
its opposite, mirror image or cyclic shift. In the construction of wO(x, y), the word
vO(x, y) takes the role of a “disturbing noise”, in the sense that wO is substan-
tially different from a commutator word, but when we remove the disturbance,
wO(x, y) = [x, y]. This immediate fact that can be directly observed from the
definition of wO.

Lemma 3.13. In every group where vO(x, y) is a law, and in particular in meta-
belian groups, the values of the word wO(x, y) coincide exactly with the values of
the commutator word [x, y].

By using that every finite non-abelian group contains a non-abelian metabelian
group (Corollary 6.1 of [66]), we can recover this straightforward result.

Theorem 3.14 (Lemma 29.1 of [66]). Every finite group where wO is a law is
abelian.
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Proof. Consider a non-abelian metabelian subgroup H of a group G with wO(G) =
1. As H is metabelian, vO(H) = 1, and in that case, by Lemma 3.13, 1 = wO(H) =
H ′, contradicting that H is not abelian.

In Theorem 30.1 of the same book, Olshanskii proved that there are non-abelian
infinite groups in the variety generated by wO, like the relatively free group in two
generators GO(∞). This was used to prove that the variety generated by wO

cannot be generated by finite groups, as otherwise it would be a sub-variety of
the abelian one. This provides a negative answer to a classical question of H.
Neumann in [58], who asked whether any variety can be generated by its finite
elements. However, our main interest lies in a different result appearing in the
same book, precisely Theorem 39.7 of [66].

Theorem 3.15 (Theorem 39.7 of [66]). There is a group O where wO takes a
single value, but wO(G) is infinite.

The main idea of the proof of Olshanskii is similar to the proof of Ivanov,
but he makes use of some results that he proved in the construction of the infinite
non-abelian group in the variety generated by wO, which is actually the aforemen-
tioned relatively free group GO(∞) on a set of two generators S = {a, b}. The
main difference between Ivanov’s and Olshanskii’s proofs is that in the former the
quotient I/Z(I) is torsion, and the torsion is used in the “funneling” of the values,
whereas in the latter the quotient O/Z(O) ∼= GO(∞) is torsionfree.

The group GO(∞) will be obtained with a graded presentation like (3.1), but
relators will be values of the word wO rather than power words. This is another
difference compared to Ivanov’s constructions of GI(∞), as in that case the re-
lators Ri were powers words Cni

i , that are not values of vI . In order to obtain
this, he partitioned the set of pairs (X,Y ) ∈ S∗ × S∗, with each equivalence class
represented by a pair (X, Y ). We will call these representatives O-pairs. For each
of these pairs, he added a single appropriately chosen relation R(X, Y ), which is
a value of the word wO (in the book, the role of O-pairs is taken by the so-called
“generalized (A, j)-triples”). It must be noted that he used again an inductive
construction, in the sense that the final presentation of GO(∞) will be graded like
in (3.1), and the equivalence class of a certain O-pair (X i, Y i) is chosen depending
on periods in GO(i − 1) = 〈S |

⋃i−1
j=1Rj〉. The set Ri will consist of the relation

R(X, Y ) associated to this O-pair.
If GO(∞) = 〈S | R〉, we can define again the maximal central extension O as

O = F2/〈[R, T ] | R ∈ R, T ∈ F2〉F2 ,
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where F2 = F (a, b) is the free group generated by S. As usual, we use capital
letters X,Y to denote elements of S∗, that can be therefore considered as elements
both of F2 or of some appropriate quotients.

As wO is a law in GO(∞), the values of wO in O are contained in the center and
by construction O/Z(O) ∼= GO(∞). In Lemma 39.11 of [66], the author proved
that if [X1, Y1] = [X2, Y2] in GO(∞), then [X1, Y1] = [X2, Y2] in O. Subsequently,
he proved that every couple (X,Y ) is conjugate in GO(∞) to an O-pair, and
hence it suffices to study wO(X,Y ) when (X,Y ) runs over the set of O-pairs used
in the construction of GO(∞). By Theorem 3.9, this set of wO-values generates
wO(O) = Z(O), and each O-pair gives rise to a different wO-value because the
sets Ri of relators were independent. Thus Z(O) ∼= ZN. The group O = O/N is
obtained by quotienting out O by the normal subgroup N generated by all but
one of the generators of Z(O) ∼= ZN.

Both in Ivanov’s and Olshanskii’s examples, the way to pass from I to I and
from O to O was by quotienting out a subgroup of the center, but there are
several ways to choose such subgroup. In [43], the author wondered whether it
was possible to construct an analogous counterexample, but in a relatively free
group in a variety. This question has been answered by Storozhev, providing a
third counterexample to Hall’s conjecture. He proved in [77] that taking

vS(x, y) = [(xdyd)dxd, xd]

and wS defined as 3.3 with vS in place of vO, there exists a relatively free group
S where wS takes only one non-trivial value. In Olshanskii’s example, we could
determine the value of wO(X,Y ) from the behaviour of [X,Y ] in the quotient
GO(∞). In this case, we can obtain some information on wS(X,Y ) by looking at
the words X,Y in the quotient F2/F

′
2 instead.

We can define a central extension S of a torsion group exactly as we did for O,
but with wS taking the role of wO. Storozhev then defined the subgroup V ≤ F2

generated by w(X,Y ) for all couples (X,Y ) such that X,Y do not form a basis of
F2/F

′
2 and by all w(X1, Y1)w(X2, Y2)

−1 for all couples (X1, Y1), (X2, Y2) that are
both a basis of F2/F

′
2. He then proved that if two different wS-values wS(X1, Y1)

and wS(X2, Y2) are equal in S, then X1 ≡ X2 (mod F ′
2) and Y1 ≡ Y2 (mod F ′

2).
This implies that the subgroup V is fully invariant and hence, by Theorem 1.7, it is
a verbal subgroup of F2. If S = F2/N (noticing that it is the 2-generated relatively
free group in the variety corresponding to the word [wS, z]), the group S = F2/NV
is relatively free and by definition of V , wS{S} = {1, z} with z = wS(X,Y ) for a
pair (X,Y ) ∈ S∗ that is a basis of the abelian quotient F2/F

′
2.
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As the quotients O/Z(O) and S/Z(S) are torsionfree, we cannot conclude that
O and S are not residually finite as we did with Ivanov’s group I. We will
obtain the non-residually finiteness of O as a consequence of wO being concise in
residually finite groups in the next section, but it is currently unknown whether
S is residually finite.

We finish this section by summarizing the main differences of the three counter-
examples we discussed.

Ivanov Olshanskii Storozhev

Is G/Z(G)
torsion? Yes No No

How to funnel
the values?

Using different
orders in I/Z(I)

Using O-pairs,
through O/Z(O)

Using bases (X,Y )
of F2/F

′
2

Is the group
residually finite? No (3.12) No (3.16) Unknown

3.4 Olshanskii’s word in profinite groups

First of all, we prove that the word wO defined by Olshanskii is boundedly concise
in residually finite groups. We recall that Theorem 1.15 cannot be used in this
setting, as it is currently unknown whether words that are concise in the class of
residually finite groups are also boundedly concise within that class.

Theorem 3.16. The word wO is boundedly concise in residually finite groups.

Proof. Let m be a positive integer and G a residually finite group in which wO

takes m values. In view of Lemma 1.12 there is a number f1(m) depending only
on m such that |wO(G)′| ≤ f1(m). If Q is a finite homomorphic image of G,
observe that the quotient Q/wO(Q) is abelian by Theorem 3.14. Hence Q/wO(Q)′

is metabelian, so Lemma 3.13 implies that Q/wO(Q)′ has at most m commutators.
Note that the commutator word is boundedly concise (see for example [74] for an
explicit bound), so |wO(Q/wO(Q)′)| ≤ f2(m), for an integer f2(m) depending only
on m. Hence |wO(Q)| ≤ f1(m)f2(m). This holds for every finite homomorphic
image Q of G so we deduce that |wO(G)| ≤ f1(m)f2(m) too.

It is immediate that the group O in Theorem 3.15 is not residually finite.
We will now prove that the word wO is strongly concise in profinite groups, but

we will first need a classical result on conjugacy classes.
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Lemma 3.17 ([24] Lemma 2.2). Let G be a profinite group and g ∈ G be an
element whose conjugacy class gG contains less than 2ℵ0 elements. Then gG is
finite.

In order to prove the general result, we first have to consider two cases: first
we will assume that G is a cartesian product of finite simple groups and then we
will study the problem when G is prosolvable.

Lemma 3.18. Let G be a profinite group topologically isomorphic to a Cartesian
product of finite non-abelian simple groups. If the word wO takes less than 2ℵ0

values in G, then G is finite.

Proof. Write G =
∏

i∈I Si, where the factors Si are finite non-abelian simple
groups. By Theorem 3.14, w(Si) is nontrivial for every i ∈ I. Now we only need
to show that the index set I is finite.

Assume by contradiction that I is infinite and choose a nontrivial wO-value
ci ∈ Si for each i ∈ I. Observe that for each subset J ⊆ I the product cJ =

∏
i∈J ci

is a wO-value. If J1 6= J2, then cJ1 6= cJ2 and therefore G contains at least 2ℵ0

distinct wO-values, a contradiction.

Lemma 3.19. Let G be a prosolvable group. If the word wO takes less than 2ℵ0

values in G, then the commutator subgroup G′ is finite.

Proof. By Lemma 3.13, wO(G/G′′) = G′/G′′. Moreover, as the commutator word
is strongly concise in profinite groups (see Theorem 1.1 in [24]), G′/G′′ is finite
and therefore there exists a finite set T of wO-values such that G′ = 〈T 〉G′′. Note
that by Lemma 3.17 each element of T has finitely many conjugates in G. So we
can choose T in such a way that the subgroup 〈T 〉 is normal in G. Set G = G/〈T 〉.
Observe that G is a prosolvable group with the property that G′

= G
′′. It follows

that G is abelian and so G′ = 〈T 〉.
Now by Lemma 3.17, for each t ∈ T we have that [〈T 〉 : CG(t)] < ∞, whence

[〈T 〉 : Z(〈T 〉)] <∞. By Schur’s Theorem, the commutator subgroup 〈T 〉′ is finite.
This implies that G is finite-by-metabelian. Factoring out G′′ we can assume that
G is metabelian and apply again Lemma 3.13. Since the commutator word is
strongly concise, we conclude that G′ is finite and generated by finitely many
wO-values, as required.

By Hall-Higman theory, if K is a finite group, then there exists a series

1 = K0 ≤ K1 ≤ · · · ≤ K2h+1 = K (3.4)
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of normal subgroups of K such that Ki+1/Ki is either solvable (possibly trivial)
if i is odd, or a cartesian product of non-abelian simple groups if i is even. The
number of non-solvable factors in this series is called the insoluble length λ(K) of
K. Theorem 1.4 of [46] implies that if the Sylow 2-subgroup of K is solvable with
derived length l, then λ(K) is bounded in terms of l only. We are now ready to
complete the proof that the word wO is strongly concise in profinite groups.

Theorem 3.20. Let G be a profinite group in which the word wO takes less than
2ℵ0 values. Then the verbal subgroup wO(G) is finite.

Proof. Choose a 2-Sylow subgroup P of G. In view of Lemma 3.19 observe that P
is solvable, say of derived length l. It follows that if Q is any finite homomorphic
image of G, the insoluble length λ(Q) is bounded in terms of l only. Let C be
the class of finite groups with a series as in (3.4) of fixed length. Lemma 2 of [83]
states that any pro-C group has a series of normal subgroups

1 = G0 ≤ G1 ≤ · · · ≤ G2h+1 = G (3.5)

of the same length such that Gi+1/Gi is prosolvable (possibly trivial) if i odd,
or an inverse limit of (finite direct products of non-abelian simple groups) if i is
even. Lemma 3 of [83] assures that, in the second case, such a profinite group is
a cartesian product of finite non-abelian simple groups.

As λ(Q) is l-bounded for each finite quotient Q of G, we obtain that G has a
normal series like (3.5) of l-bounded length.

Lemma 3.18 shows that the non-prosolvable factors of this series are finite.
Moreover, as in each simple group wO is non-trivial, we have that wO(Gi+1/Gi) =
Gi+1 whenever i is even. In this case, we can obtain a finite normal set Ti ⊆ wO{G}
such that 〈Ti〉Gi = Gi+1. On the other hand, if i is odd, by Lemma 3.19 there
exists a finite normal set Ti ⊆ wO{G} such that Gi+1/〈Ti〉Gi is abelian. Let
T =

⋃2h+1
i=1 Ti. Overall, G/〈T 〉 is a prosolvable group, and applying again Lemma

3.19, we conclude that it is finite-by-abelian, with derived subgroup generated by
a finite normal set T̃ of wO-values.

Let T = T ∪ T̃ . As we did in Lemma 3.19, we can obtain that the center of
〈T 〉 has finite index and by Schur’s Theorem T is finite-by-abelian. In particular
G is finite-by-metabelian and applying again Lemma 3.19, we conclude that G is
finite-by-abelian. As wO(G) ≤ G′, w is strongly concise in profinite groups.

67



3.5 On generation of verbal subgroups

In [24], the authors proved strong conciseness of several classes of group words, like
words implying virtual nilpotency or weakly rational words, under the additional
assumption that, if the verbal subgroup w(G) is finitely generated, then it can be
generated by finitely many w-values. If w(G) is a pro-p group, then by looking at
the quotient w(G)/Φ(w(G)) and using Burnside basis theorem, it is immediate to
see that w(G) is finitely generated if and only if it is generated by finitely many
w-values. The authors asked whether this is always true.

Conjecture 3.21. Let G be a profinite group and w be a word. If w(G) is
topologically finitely generated, it can be generated by finitely many word values.

We will now show that this question has a negative answer for lower central
words w = γk.

Theorem 3.22. There is a profinite group G such that the subgroup γk(G) is
procyclic for every k, but it cannot be generated by finitely many γk-values.

Clearly the group G in our construction cannot be finitely generated otherwise,
as Nikolov and Segal proved in [59][60], all the abstract subgroups of the lower
central series would be closed. In that case, whenever a verbal subgroup w(G) is
finitely generated, it is also generated by finitely many w-values: since it coincides
with an abstract subgroup that is finitely generated, each generator is a finite word
in the alphabet w{G}, so the subgroup itself is also generated by finitely many
w-values.

A special case of the question we are interested in is when the derived subgroup
is procyclic. Under this more restrictive hypothesis, is it true that it is generated
by a single commutator? This question was studied, in the setting of abstract
groups and cyclic subgroups, by Macdonald in [56]. He proved the following
result.

Theorem 3.23 (Macdonald). Let G be an abstract group and assume G′ is cyc-
lic. If either G is nilpotent or G′ is infinite, then G′ is generated by a suitable
commutator. In general, for any given positive integer k, there is a finite group
Mk such that M ′

k is cyclic but it cannot be generated by less than k commutators.

The main tool in our proof is the group Mk in the second part of the proposition,
so we will give an idea of its structure. Fixed k, set m = 22k − 1 and pick a set
of different odd primes p1, . . . , pm, chosen arbitrarily. The group Mk will be a
semidirect product C o C2k

2 , where C2k
2 = 〈a1, . . . , a2k〉 is the direct product of
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2k copies of the cyclic group of order 2 and C = 〈c〉 is a cyclic group of order
p1p2 · · · pm.

Assume [c, ai] = cαi for some integer αi. Macdonald proved, with the use of
some accurately chosen congruences, that it is possible to select the integers αi in
the construction of Mk in such a way that the derived subgroup is the whole C and
that for any set of k−1 commutators g1, . . . , gk−1 there is a prime pj ∈ {p1, . . . , pm}
such that

〈g1, . . . , gk−1〉 = 〈cpj〉.
In [45], Kappe observed that γ2{Mk} = γj{Mk} for all j ≥ 2, hence the following

result is a direct consequence of Macdonald’s theorem.

Corollary 3.24 (Kappe). For any given positive integer k and any j ≥ 2, there
is a finite group Mk such that γj(Mk) is cyclic but it cannot be generated by less
than k commutators.

Proof of Theorem 3.22. We will prove the result for the commutator subgroup.
The same construction works for all lower central words by Corollary 3.24.

For every k, let Mk be the group constructed by Macdonald in Theorem 3.23.
In the choices of the group Mk, we had to choose some odd primes pk1, . . . , p

k
22k−1

,
we can require all of them to be different both pairwise and from all primes pjl for
1 < j < k and 1 < l < 22j − 1.

Define Bi =
∏i

k=1 Mk. By construction, B′
i is a direct product of cyclic sub-

groups of coprime order, so it is cyclic too. As M ′
i cannot be generated by less

than i commutators, the same is true for B′
i. Moreover, by construction the groups

Bi, for i ∈ N, form an inverse system of finite groups, so we can define the profinite
group G = lim←−Bi.

Clearly G′ is procyclic as it is the inverse limit of B′
i. It cannot be generated by

a finite set X of commutators, say of cardinality n, because otherwise the images
of X in the quotient Bn+1 would generate B′

n+1 too, contradicting the previous
paragraph.

In the way the authors use this property in [24], it is still relevant to ask whether
the same phenomena can happen under the assumption that |w{G}| < 2ℵ0 . Of
course, in view of Conjecture 1.20, it is possible that no word can take countably
many values in a group unless it takes finitely many, so this could be considered
as an intermediate step towards the proof of the strong conciseness conjecture.

Conjecture 3.25. Let G be a profinite group and w be a word. If w(G) is
topologically finitely generated and |w{G}| < 2ℵ0 , then w(G) can be generated
by finitely many word values.
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Clearly the example in Theorem 3.22 cannot be used in order to contradict this
conjecture because lower central words are strongly concise (see [24]).
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4
Coprime commutators

In this chapter we prove strong conciseness of coprime commutators γ∗
k and δ∗k,

following the article [39] by de las Heras, Shumyatsky and the author.

We will first define coprime commutators and give an overview of their history.
Coprime commutators are not word maps, but behave in a similar way, and they
constitute a good generating set of the pronilpotent residual (for γ∗

k, k ≥ 2) or of
the k-th pronilpotent residual (for δ∗k, k ≥ 1).

In the second section we will discuss some basic lemmas that are necessary
to develop our results. Some of them were already present in the literature and
others are original.

In the third section we will outline the structure of the proofs, with a descrip-
tion of an interesting set of pronilpotent subgroups that is present in prosolvable
groups.

We will then prove the main theorems, of strong conciseness of coprime com-
mutators, both in the meta-pronilpotent case for γ∗

k in Section 4, and in the (pro-
solvable of Fitting heigth k + 1) case for δ∗k in Section 5. The general statements
will be then proved jointly in Section 6.
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4.1 History of coprime commutators

Higher order coprime commutators were introduced by Pavel Shumyatsky in [75]
as a way to obtain a smaller natural set of generators for some classical subgroups.

Given a profinite group G and an element x ∈ G, we denote by |G| (respectively
|x|) the order of G (respectively x) as a supernatural number and π(G) (respect-
ively π(x)) will stand for the set of prime numbers dividing |G| (respectively |x|).
We will say that an element g ∈ G is a simple coprime commutator if and only if
it can be written as g = [g1, g2] for g1, g2 ∈ G with (|g1|, |g2|) = 1.

It was already well-known that the set of simple coprime commutators in a
finite group G generates the nilpotent residual γ∞(G), that is, the smallest normal
subgroup N such that G/N is nilpotent (see Theorem 2.1 of [75]). Of course, in
profinite groups the pronilpotent residual γ∞(G) =

⋂
i γi(G) is the intersection of

the terms of the lower central series of G.
Coprime commutators of higher order were defined in [75] for finite groups, but

the definition naturally extends to the profinite case.

Definition 4.1 (Higher order coprime commutators). Let

γ∗
1{G} = δ∗0{G} = G

and, for every positive integer i define inductively the sets

γ∗
i {G} =

{
[xλ, g] | x ∈ γ∗

i−1{G}, λ ∈ Ẑ, g ∈ G, (|xλ|, |g|) = 1
}

δ∗i {G} =
{
[xλ1 , yλ2 ] | x, y ∈ δ∗i−1{G}, λ1, λ2 ∈ Ẑ, (|xλ1 |, |yλ2 |) = 1

}
.

Moreover, for the generated subgroups we will write γ∗
i (G) = 〈γ∗

i {G}〉 and
δ∗i (G) = 〈δ∗i {G}〉.

Even if coprime commutators are not word maps, the analogy with classical
word maps is clear. Indeed, γ∗

i (G) and δ∗i (G) are fully invariant subgroups because
the order of f(x) always divides the order of x for every homomorphism f and
every x ∈ G. For this reason, it is interesting to describe the subgroups generated
by coprime commutators, and the main results of the article [75] completely solve
this natural question.

Theorem 4.2 ([75] Theorems 2.1, 2.7). Let G be a profinite group.
If k ≥ 2, the subgroup γ∗

k(G) is trivial if and only if G is pronilpotent.
The subgroup δ∗k(G) is trivial if and only if G is prosolvable of Fitting height at

most k.
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It is interesting to point out that a consequence of Theorem 4.2 is that there
exists no word w ∈ F (X∞) such that w(G) = γ∗

i (G) (i = 2, 3, . . .) or w(G) =
δ∗i (G) (i positive integer) for every profinite group G because nilpotent groups of
unbounded class do not form a variety of groups.

Several problems, that were classical for usual commutators, were then adapted
to coprime commutators. An example is Ore’s Conjecture, which stated that every
element of a finite simple group is a commutator, and was solved in [53]. In [75],
the author conjectured that every element of a finite simple group can be realized
as a coprime commutator and proved the conjecture for the class of alternating
groups. The same conjecture was later settled for PSL2(q) for every prime power
q in [67] and for Suzuki groups 2B2(q) for every odd q in [88].

Another natural consequence of the analogy between coprime commutators and
usual commutators was the study of conciseness problems for them. Of course we
will say that γ∗

i (resp δ∗i ) is concise if γ∗
i (G) (resp. δ∗i (G)) is finite whenever γ∗

i {G}
(resp. δ∗i {G}) is finite.

In [5] the authors proved that, if there exists a positive integer m such that
the word γ∗

i or δ∗i takes at most m values in a finite group G, then the generated
subgroup has m-bounded order. The bound does not depend on i, so that coprime
commutators are uniformly concise in the class of finite groups. A straightforward
consequence is that coprime commutators of higher order are concise in residually
finite groups.

In the article [24], that began the investigation in strong conciseness, the authors
noticed that the concept of strong conciseness can be applied in a wider context.
Suppose C is a class of profinite groups and ϕ{G} is a subset of G for every G ∈ C.
Is the subgroup generated by ϕ{G} finite whenever |ϕ{G}| < 2ℵ0? Such map ϕ is
said to be strongly concise in the class C if the answer is positive. This question
is interesting whenever ϕ{G} is defined in some natural way and/or properties of
the subgroup 〈ϕ{G}〉 have strong impact on the structure of G. For this reason,
in [28] the authors examined strong conciseness for coprime commutators and
managed to set that the map γ∗

2 is strongly concise in profinite groups. In this
chapter, which roughly follows the article [39], we will prove strong conciseness of
γ∗
i and δ∗i for every positive integer i.

Theorem 4.3. A profinite group G is finite-by-pronilpotent if and only if there is
k such that the set of γ∗

k-values in G has cardinality smaller than 2ℵ0.

Theorem 4.4. A profinite group G is finite-by-(prosolvable of Fitting height at
most k) if and only if the set of δ∗k-values in G has cardinality smaller than 2ℵ0.
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Of course there are results of strong conciseness because by Theorem 4.2 the
values of the words γ∗

k and δ∗k generate the finite subgroups of Theorems 4.3 and
4.4.

4.2 Preliminaries

We will first list some results that were present in the literature, or some small
variations of them, that will be useful in the proofs of Theorems 4.3 and 4.4.

The first one is a fundamental result in the study of strong conciseness. A direct
application of this result is that conjugacy classes in profinite groups are either
finite or of cardinality at least 2ℵ0 (see Lemma 3.17).

Proposition 4.5 ([24] Lemma 2.1). Let φ : X → Y be a continuous map between
two non-empty profinite spaces that is nowhere locally constant (i.e. there is no
non-empty open subset U ⊆o X where φ|U is constant). Then |φ(X)| ≥ 2ℵ0.

A classical result in the theory of coprime automorphisms is the following.

Lemma 4.6 ([42], Lemma 4.29). Let A be a group of automorphisms of a finite
group G with (|A|, |G|) = 1. Then, [G,A] = [G,A,A].

The following lemma is a stronger version of this result for the case where G is
a pronilpotent group.

Lemma 4.7 ([47] Lemma 4.6). Let φ be an automorphism of a pronilpotent group
G with (|φ|, |G|) = 1. Define the set the set S = {[g, φ] | g ∈ G}. Then the map
θ : S → S defined as

θ : x→ [x, φ]

is bijective.

The following is a profinite version of Lemma 2.4 in [75].

Lemma 4.8. Let G be a profinite group and let g1, . . . , gk be δ∗k−1-values in G.
Suppose that g1, . . . , gk ∈ NG(H) for a subgroup H ≤ G with (|H|, |gi|) = 1 for
every i ∈ {1, . . . , k}. Then, for every h ∈ H, the element [h, g1, . . . , gk] is a
δ∗k-value.

Using the previous two lemmas together, we will be able to guarantee that some
special types of long commutators are also values of δ∗k.
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Lemma 4.9. Let G1, . . . , Gk be pronilpotent subgroups of a profinite group G
such that Gj ≤ NG(Gi) for all j ≤ i. Let xi ∈ Gi for every i and assume that
(|xi|, |xi+1|) = 1 for all i = 1, . . . , k. Then the element g = [x1, . . . , xk] is in
δ∗k−1{G} and π(g) ⊆ π(xk).

Proof. We will prove by induction on i that gi := [x1, . . . , xi] ∈ δ∗i−1{G} for every
i ∈ {1, . . . , k} and that π(gi) ⊆ π(xi). The statement of the lemma corresponds
to the case i = k. If i = 1 the result is obvious, so assume i > 1 and that gi−1 is
a δ∗i−2-value with π(gi−1) ⊆ π(xi−1), so in particular (|gi−1|, |xi|) = 1. If H is the
minimal Hall subgroup of the pronilpotent group Gi containing xi, then gi−1 acts
as a coprime automorphism of H. By Lemma 4.7, there exists yi ∈ H such that

[xi, gi−1] = [yi, gi−1, i−1. . ., gi−1],

and Lemma 4.8 shows that gi = [xi, gi−1] is a δ∗i−1-value, as desired. As gi ∈ H,
we immediately have that π(gi) ⊆ π(xi).

The next result is a profinite version of Lemma 2.4 in [5]. We recall that by
“meta-pronilpotent” group we mean a profinite group G having a normal pronil-
potent subgroup N such that G/N is pronilpotent.

Lemma 4.10. Let G be a meta-pronilpotent group. Then γ∞(G) =
∏

p[Kp, Hp′ ],
where Kp is a Sylow p-subgroup of γ∞(G) and Hp′ is a Hall p′-subgroup of G.

For a general group word w, the set w{G} of w-values of a profinite group G
is always closed in G. We will show that the same is true for the sets of γ∗

k and
δ∗k-values.

Proposition 4.11. Let S1, . . . , Sk be closed subsets of a profinite group G. Then
the set

C = {(g1, . . . , gk) ∈ S1 × · · · × Sk | (|gi|, |gi+1|) = 1 for all i = 1, . . . , k − 1}

is closed in S1 × · · · × Sk. Furthermore, the sets γ∗
k{G} and δ∗k{G} are closed in

G.

Proof. Let P be the set of all primes and p ∈ P . First notice that for every closed
subset S of G the set

Sp′ = {g ∈ S | p /∈ π(g)}

is closed. Indeed Sp′ =
⋂

N⊴oG
Sp′N because p ∈ π(g) if and only if there is a

normal subgroup N such that gN has order divided by p in G/N . Also, the set
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SẐ = {gλ | g ∈ S, λ ∈ Ẑ} is the image under the continuous map f(g, λ) = gλ of
the compact set S × Ẑ, so it is closed too.

Let now A,B be subsets of G. We claim that the set

RA,B =
⋂
p∈P

(
(A× Bp′) ∪ (Ap′ × B)

)
(4.1)

is exactly the set of elements (a, b) ∈ A × B with |a| and |b| coprime. On the
one hand, if |a| and |b| are coprime then (a, b) ∈ (A× Bp′) ∪ (Ap′ × B) for every
p ∈ P , because, if b ∈ B r Bp′ , then a ∈ Ap′ necessarily. On the other hand, if
(a, b) ∈ RA,B and a prime p divides |a|, then (a, b) ∈ A×Bp′ so p does not divide
|b|, and the claim follows. Notice now that if A and B are closed, the set RA,B is
an intersection of closed subsets of G×G so it is closed too.

It is now easy to prove by induction on k that the sets γ∗
k{G}, δ∗k{G} are closed:

just note that γ∗
k{G} is exactly the set RA,B in (4.1) with A = (γ∗

k−1{G})Ẑ, B = G,
whereas δ∗k{G} is the set RA,B in (4.1) with A = B = (δ∗k−1{G})Ẑ.

To prove that the set C is closed in S1 × · · · × Sk, it suffices to notice that by
the above arguments the set

Ci = S1 × · · · × Si−1 ×RSi,Si+1
× Si+2 × · · · × Sk

is closed for every i ∈ {1, . . . , k − 1} and C =
⋂k−1

i=1 Ci.

As we showed in Lemma 1.12, whenever a group word w takes finitely many
values in a group G, the subgroup w(G) is finite if and only if w(G)/w(G)′ is
finite. If w takes less than 2ℵ0 values in G we cannot obtain the same conclusion
in general, but with some slightly stronger hypothesis we can anyway obtain a
similar result.

Lemma 4.12. Let ϕ be a map that associates to every group G a normal subset
ϕ{G} ⊆ G. Let G be a profinite group with |ϕ{G}| < 2ℵ0 and let K be a
pronilpotent subgroup of 〈ϕ{G}〉 generated by a subset of ϕ(G). If K/K ′ is finite,
then K is finite.

Proof. Since K is pronilpotent, we have K ′ ≤ Φ(K), where Φ(K) stands for the
Frattini subgroup of K. Thus K/Φ(K) is finite, and hence we can find a finite
subset S of ϕ{G} generating K. Since ϕ(G) is a normal subset of G, by Lemma
3.17 each of these generators has finitely many conjugates in G, so in particular
|G : CG(s)| < ∞ for every s ∈ S. Since CG(K) =

⋂
s∈S CG(s), this implies that

Z(K) = K∩CG(K) has finite index in K, and by Schur’s theorem K ′ is finite.
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We will use Lemma 4.12 for ϕ = γ∗
k or ϕ = δ∗k, but it could be applied to other

cases, such as any group word map or uniform (anti-coprime) commutators (see
[28] or [29]).

4.3 Introduction to the proofs

In order to fully understand the proofs of Theorems 4.3 and 4.4, we have to
begin from the proof of Detomi, Morigi and Shumyatsky in [28] that settled the
analogous result for γ∗

2 .
In the aforementioned article, the authors first proved that γ∗

2 is strongly concise
in meta-pronilpotent groups and then used this partial result to settle the general
case. We will similarly split our proof: first we will prove strong conciseness of γ∗

k

in meta-pronilpotent groups (Proposition 4.20 in Section 4.4), then we will settle
the problem for δ∗k in prosolvable groups of Fitting height k+1 (Proposition 4.33
in Section 4.5) and we will use these partial results in the proof of Theorems 4.3
and 4.4, that will be proved jointly in Section 4.6.

The proof of Proposition 4.20 consists of extending the reasoning that was used
in [28] for γ∗

2 , with a focal use of Lemma 4.7. The proof of the general case also
partially follows [28], with some complications in the arguments.

The case of δ∗k in prosolvable groups of Fitting height k + 1, however, involved
a lot of technical problems and is surely the more complex part of this chapter.
For this reason, in this case we give a deeper analysis and motivation of the ideas
involved.

An essential tool of the proof is the following collection of subgroups.

Definition 4.13 (Sylow basis). A Sylow basis of a profinite group G is a family
{Pi} of Sylow subgroups of G, one for each prime in π(G), such that PiPj = PjPi

for every i, j. The normalizer of a Sylow basis is T =
⋂

i NG(Pi).

Basic properties of Sylow bases for finite groups can be found in Section 9.2 of
[73] and they extend naturally to profinite groups.

Lemma 4.14. Any prosolvable group admits a Sulow basis and any two Sylow
bases are conjugate. In this case, the Sylow basis normalizer T is pronilpotent and
G = Tγ∞(G). Moreover, if G is meta-pronilpotent, γ∞(G) = [T, γ∞(G)].

Proof. The first statement is a classical result, see for example Proposition 2.3.9
of [72], whereas the fact that G = Tγ∞(G) is Lemma 5.6 of [69]. If G is meta-
pronilpotent, we have that

γ∞(G) = [G, γ∞(G)] = [Tγ∞(G), γ∞(G)] = [T, γ∞(G)]

77



where the last equality follows from γ∞(G)′ ≤ Φ(γ∞(G)).

As a consequence of Theorem 4.2, in every profinite group G the subgroup δ∗k(G)

coincides with the k-th nilpotent residual γ∞
k· · ·γ∞(G) (i.e. with γ∞ repeated k

times) and therefore δ∗k(G) = γ∞(δ∗k−1(G)). Let {Pi} be a Sylow basis of G and
observe that {Pi ∩ δ∗j (G)} is a Sylow basis of δ∗j (G) for every j ≥ 1. Let Tj be the
normalizer in δ∗j (G) of the Sylow basis {Pi∩δ∗j (G)}, so that G = T0T1 · · ·Tkδk+1(G)
for every k ≥ 0. We then have Tj ≤ NG(Ti) for every j ≤ i because, for every
P ∈ {Pi}, every t ∈ Tj normalizes both P ∩ δ∗j (G) and δ∗j (G), so nt normalizes
P ∩δ∗i (G) for all n ∈ Ti. In particular, if G is a prosolvable group of Fitting height
k+1, then δ∗k+1(G) = 1, and therefore G = T0 · · ·Tk. We want to refine this series
to a similar one with some additional properties.

Proposition 4.15. Let G be a prosolvable group of Fitting height k + 1. There
exist pronilpotent subgroups U0, . . . , Uk satisfying the following properties, where
we denote by Pi(p) and Hi(p

′) the Sylow p-subgroup and Hall p′-subgroup of Ui

respectively.

• Uj ≤ NG(Ui) for every j ≤ i;
• G = U0 · · ·Ujδ

∗
j+1(G) for every j ∈ {0, . . . , k};

• Uk = δ∗k(G);
• Pj(p) = [Pj(p), Hj−1(p

′)] for every j ∈ {0, . . . , k}, p ∈ π(G).

Proof. Let U0 = T0; for j ≥ 1 we construct inductively the subgroups Uj ≤ Tj in
the following way. Let Hj−1(p

′) and Qj(p) be, respectively, the Hall p′-subgroup
of Uj−1 and the Sylow p-subgroup of Tj, and define

Uj =
∏

p∈π(G)

[Hj−1(p
′), Qj(p)].

Notice that we can write the direct product because by induction Uj−1 ≤
Tj−1 ≤ NG(Tj) and by pronilpotency Uj−1 ≤ NG(Qj(p)) too. This is suffi-
cient to notice that [Hj−1(p

′), Qj(p)] ≤ Qj(p). As Tj ≤ NG(Ti) for every j ≤ i,
we also have by pronilpotency that Uj ≤ NG(Ui) for every j ≤ i. Denote by
Pj(p) = [Hj−1(p

′), Qj(p)] the Sylow p-subgroup of Uj.
We claim that Qj(p) ≡ Pj(p) (mod δ∗j+1(G)) for every p ∈ π(G) and every

j ∈ {0, . . . , k}, and therefore Tj ≡ Uj (mod δ∗j+1(G)). Notice that this shows that
Uk = Tk = δ∗k(G) and that G = U0 · · ·Ujδ

∗
j+1(G) for every j ∈ {0, . . . , k}.
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The case j = 0 follows trivially, so let j ≥ 1 and assume by induction that
the congruences hold for j − 1. Denote by H̃j(p′) the Hall p′-subgroup of Tj and
consider Kj−1(p

′) = H̃j−1(p′)H̃j(p′), which is a Hall p′-subgroup of Tj−1Tj. Since
γ∞(Tj−1Tj) = Tj (mod δ∗j+1(G)), Lemma 4.10 yields

Qj(p) ≡ [Kj−1(p
′), Qj(p)] ≡ [Hj−1(p

′), Qj(p)] = Pj(p) (mod δ∗j+1(G)),

The second congruence holds because Tj−1Tj ≡ Uj−1Tj (mod δ∗j+1(G)) by induc-
tion, and hence Kj−1(p

′) ≡ Hj−1(p
′)H̃j(p′) (mod δ∗j+1(G)). Of course we have

[H̃j(p′), Qj(p)] = 1 because Uj is pronilpotent.
Furthermore, as (|Qj(p)|, |Hj−1(p

′)|) = 1, by Lemma 4.6 we have

Pj(p) = [Qj(p), Hj−1(p
′)] = [Qj(p), Hj−1(p

′), Hj−1(p
′)] = [Pj(p), Hj−1(p

′)]. (4.2)

In view of the series of subgroups of Proposition 4.15, we will often work with
subgroups G1, . . . , Gt, for a positive integer t, of a profinite group G such that
Gj ≤ NG(Gi) for every j ≤ i. We will obtain some results on coprime commutators
of length t for an arbitrary positive integer t, and in the end of Section 4.5 we will
apply these lemmas to the case t = k + 1, with the series U0, . . . , Uk mentioned
above. In this setting, we will write

φ : G1 × · · · ×Gt −→ Gt

(g1, . . . , gt) 7−→ [g1, . . . , gt]

where φ(G1, . . . , Gk) ⊆ Gk because Gj ≤ NG(Gi) for every j ≤ i. Consider the
sequences of coprime elements

C = {(g1, ..., gt) ∈ G1 × · · · ×Gt | (|gi|, |gi+1|) = 1}; (4.3)

for Si ⊆ Gi, i ∈ {1, . . . , t}, we define the set

φ∗(S1, . . . , St) = φ((S1 × · · · × St) ∩ C).

It is important to point out that in general φ∗(S1, . . . , Sk) is different from the set
γ∗
k{S1, . . . , Sk} of coprime commutators with variables restricted in (S1, . . . , Sk).

Indeed, the former requires that two subsequent entries have coprime orders,
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whereas the latter requires the i-th entry to be coprime with a power of a value
of γ∗

i−1{S1, . . . , Si−1}.
We will also often need to consider the maps φ or φ∗, but with entries chosen in

two different tuples of sets. For this reason we introduce this compact notation,
which is consistent with the one already present in the literature for usual outer
commutator maps (see for example [24]).

For i ∈ {1, . . . , t}, let Xi, Yi ⊆ Gi. For J ⊆ {1, . . . , t} we can define the set

φJ(Xi;Yi) = φ(Z1, . . . , Zt) with Zi =


Xi if i ∈ J,

Yi if i 6∈ J.

Notice that in order for φJ to be well-defined, we just need the subsets Xi where
i ∈ J and the subsets Yi where i 6∈ J , so we will often use the same notation when
Xi are defined only for i ∈ J and Yi only for i /∈ J . In a similar way, define the
set

φ∗
J(Xi;Yi) = φ((Z1 × · · · × Zt) ∩ C).

If J = {1, . . . , t}, in accordance to the initial definitions of φ and φ∗, we will just
write φJ(Xi;Yi) = φ(Xi) and φ∗

J(Xi;Yi) = φ∗(Xi).

Remark 4.16. Notice that whenever we have subgroups G1, . . . , Gℓ of a profinite
group G with Gj ≤ NG(Gi) for every j ≤ i, and we take an open subgroup
U ⊴o Gℓ, there exists an open normal subgroup V ⊴o G such that V ∩ Gℓ ≤ U .
This implies that V ∩Gℓ ⊴ G1 · · ·Gℓ and V ∩Gℓ ⊴o Gℓ.

We are now ready to explain the main ideas of the proof of Proposition 4.33.
Let G be a prosolvable group of Fitting height k and consider a tuple (U0, . . . , Uk)
of subgroups as in Proposition 4.15. We will prove Proposition 4.33 by funnelling
all values of φ∗(U0, . . . , Uk) into a finite normal subgroup. Using Lemma 4.10 it
will be possible to prove that these values generate δ∗k(G).

Denote by Pi(p) the p-Sylow of Ui for any prime p. A further simplification,
through Lemma 4.22, will allow us to prove that we can recover the whole φ∗(Ui)
just from studying the sets {φ∗(Pi(pi)) | pi ∈ P}. We want to reduce our study
to values of this type because they are either trivial (if pj = pj+1 for a certain
j) or they coincide with the usual commutators γk{Pi(pi)}, for which classical
properties of standard commutators apply.

If |π(Uj)| <∞ for every j = 1, . . . , k, we can simply study finitely many sets of
the form φ{Pi(pi)}, but if there exists at least an index j such that |π(Uj)| =∞,
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we would have to study infinitely many of these sets. For this reason the proof of
Proposition 4.33 will be by induction on the number of factors Uj with |π(Uj)| =
∞. This reduction will be done in Lemma 4.30 using some subgroups Nσ defined
in 4.27, and all the first part of Section 4.5 will be devoted to obtaining results
that will be mainly used in the proof of this lemma.

Some themes used in the proof of Lemma 4.30 can be retraced to the article
of Detomi, Klopsch and Shumyatsky that outer commutator words are strongly
concise. However, our case has some complications. First of all, in [24] the authors
consider commutator words where each entry could be chosen in the whole group
G, whereas we allow the i-th entry of γt to be only in Ui−1. Moreover, when
we work with the map φ∗, we must be careful to preserve coprimality in the
factors. As an example, one tool that was often used in [24] was reducing, under
suitable hypothesis, a coset identity of the type φ(xiUi) = 1 to a coset/subgroup
identity φJ(Ui, xiUi) = 1 for J ( {1 . . . , k}. If we are considering coprime maps
φ∗, we must be extremely cautious when we remove a coset representative from
a coset identity. For example, if t = 2 and we pick two coset representatives
x1, x2 of U ≤ G that are not coprime it could happen that φ∗(x1U, x2U) = ∅,
but φ∗(x1U,U) is non-empty, as it would contain at least the trivial element. The
statements of the first lemmas in Section 4.5 require several specific hypotheses
in order to account for similar issues in preserving coprimality.

4.4 The meta-pronilpotent case for γ∗
k

In this section we will prove Theorem 4.3 in the case when the profinite group G
is meta-pronilpotent.

We first require some results that are present in [28].

Lemma 4.17 ([28] Lemma 2.4). Let H,Q be subgroups of a group G with Q
normal in QH and such that Q = [Q,H]. Any normal subgroup N ⊴ Q such that
[N,H] = 1 is contained in the center Z(QH).

Lemma 4.18 ([28] Lemma 2.6). Let G be a finite group, where H,Q ≤ G.
Suppose that Q is a normal nilpotent subgroup of QH such that (|Q|, |H|) = 1 and
|Q : CQ(h)| ≤ m for all h ∈ H. Then the order of [Q,H] is m-bounded.

The next lemma is a modification of Lemma 3.1 of [28].

Lemma 4.19. Let G be a profinite group that is the product of a subgroup H and
a normal pronilpotent subgroup Q with (|H|, |Q|) = 1. Suppose that

|{[h, q] | h ∈ H, q ∈ Q}| < 2ℵ0 .
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Then [H,Q] is finite.

Proof. Lemma 4.6 implies that [Q,H,H] = [Q,H], so replacing Q with [Q,H] we
can assume that Q = [Q,H] and we can write G as a product G = [Q,H]H. For
every h ∈ H the set of cosets of CQ(h) in Q is a profinite space in bijection with
hQ, so in bijection with {[h, q] | q ∈ Q} too. By hypothesis this space has less than
2ℵ0 elements, hence it must be finite (we can follow the proof of Proposition 2.3.1
of [72] for a profinite set of cosets rather than a profinite group). This implies
that |hQ| is finite for every h ∈ H. For each integer j ∈ N we can consider the
sets

Cj = {h ∈ H | |hQ| ≤ j},
that are closed by Lemma 5 of [52]. As their union is H, we can apply Baire
category theorem and hence there exists an integer ℓ such that Cℓ has non-empty
interior (in the subspace topology of H). In particular there exist h ∈ H,U ⊴o H
with |(hu)Q| ≤ ℓ for every u ∈ U .

For every u ∈ U, q ∈ Q we can write uq = (h−1)q(hu)q, but we chose h and U
so that |(h−1)Q|, |(hu)Q| ≤ ℓ. This proves that |uQ| ≤ ℓ2, so by Lemma 4.18 the
subgroup [Q,U ] is finite.

We can then factor out [Q,U ] and replace Q with Q/[Q,U ]. Now U ≤ CG(Q),
so we can factor out U too and assume that H = H/U is finite. As CQ(H) =⋂

h∈H CQ(h) and H is finite, |Q : CQ(H)| is finite too. Consider now the normal
core N of CQ(H) in G, which has still finite index, both in Q and in G. By Lemma
4.17 N is an open subgroup contained in the center of G, so by Schur’s Theorem
G′ is finite.

We are now ready to prove the strong conciseness of γ∗
k in meta-pronilpotent

groups.

Proposition 4.20. Let G be a meta-pronilpotent group with |γ∗
k{G}| < 2ℵ0. Then

γ∞(G) is finite.

Proof. Let g ∈ G and h ∈ γ∞(G) such that (|g|, |h|) = 1, and let H be the
minimal Hall subgroup of γ∞(G) containing h. Since H is pronilpotent, Lemma
4.7 shows that there exists h′ ∈ H such that [h, g] = [h′, g, k−1. . ., g], and therefore
[h, g] ∈ γ∗

k(G){G}. Hence, we have

|{[g, h] | g ∈ G, h ∈ γ∞(G), (|g|, |h|) = 1}| < 2ℵ0 .

We first prove that for every p ∈ π(γ∞(G)), the p-Sylow P of γ∞(G) is finite.
Denote by H(p′) a p′-Hall subgroup of G; by Lemma 4.10, P = [P,H(p′)] and by
Lemma 4.19 it is finite.
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In order to conclude, we now have to prove that π(γ∞(G)) is finite. By con-
tradiction, let π(γ∞(G)) = {pi | i ∈ I} be an infinite set and denote by Pi the
pi-Sylow of γ∞(G) for every i ∈ I. Let T be the normalizer of a Sylow basis of
G, so that G = Tγ∞(G) with both T and γ∞(G) pronilpotent. By Lemma 4.10
Pi = [Pi, Ai] for Ai the group of automorphisms induced by the p′i-Hall subgroup
of T on Pi; let σi = π(Ai). As we have proved that all Pi are finite, σi is finite
too.

Let Q be a q-Sylow of T for q ∈ π(T ); applying Lemma 4.19 we have that
[Q,Oq′(γ∞(G))] is finite. In particular, q acts non-trivially on finitely many Pi,
so it is in finitely many of the sets σi. Define τi = σi ∪ {pi}, by the previous
discussion, for every fixed index i ∈ I there are only finitely many indices j ∈ I
such that τi∪τj 6= ∅. We can iteratively construct a set J ⊆ I such that τi∪τj = ∅
for every i, j ∈ J , i 6= j. Let Qi a qi-Sylow subgroup of T for any qi ∈ σi. By
construction [Pi, Qi] 6= 1 and [Pi, Qj] = 1 whenever i 6= j, so for every i ∈ J there
exist two elements gi ∈ Pi and hi ∈ Qi such that [hi, qi] 6= 1, and in particular it
is a coprime commutator. By Lemma 4.7 the element ci = [hi, qi, k−1. . ., qi] is also a
non-trivial γ∗

k-value. As all the sets τi are disjoint and every Qj acts trivially on
Pi whenever j 6= i, the element

cJ ′ =
∏
i∈J ′

ci =
[∏
i∈J ′

hi,
∏
i∈J ′

qi, k−1. . .,
∏
i∈J ′

qi

]
is a nontrivial γ∗

k-value for every J ′ ⊆ J . As all these elements are different for
every subset J ′ ⊆ J , we would have at least 2ℵ0 different γ∗

k-values, contradicting
the hypothesis. This proves that π(γ∞(G)) is finite and the proposition follows.

4.5 The poly-pronilpotent case for δ∗k

The next two lemmas are useful applications of basic commutator calculus. The
first one follows the ideas of Lemma 2.8 of [40] while Lemma 4.22 is an application
of Lemma 4.21 to coprime commutators.
Lemma 4.21. Let G1, . . . , Gt be subgroups of a group G such that Gj ≤ NG(Gi)
for every j ≤ i. For every i ∈ {1, . . . , t} let gi ∈ Gi, and for a fixed ℓ ∈ {1, . . . , t},
let g′ℓ ∈ Gℓ. Then

φ{ℓ}(g
′
ℓgℓ; gi) = [g1, . . . , gℓ−1, g

′
ℓ, g

hℓ
ℓ+1, . . . , g

ht−1

t ]htφ(gi),

where hi ∈ Gℓ · · ·Gi for i ∈ {ℓ, . . . , t}. In particular ghi
i+1 ∈ Gi+1 for all i ∈

{ℓ, . . . , t− 1}
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Proof. Assume first that ℓ 6= 1, and proceed by induction on t − ℓ. If t − ℓ = 0,
then

[g1, . . . , gt−1, g
′
tgt] = [g1, . . . , g

′
t]
gt[g1,...,gt]−1

[g1, . . . , gt],

and the result follows. Assume t − ℓ > 0, and we write, for the sake of brevity,
y = [g1, . . . , gℓ−1]. By induction, we have

[y, g′ℓgℓ, gℓ+1, . . . , gt] = [[y, g′ℓ, g
hℓ
ℓ+1, . . . , g

ht−2

t−1 ]ht−1 [g1, . . . , gt−1], gt]

with hi ∈ Gℓ · · ·Gi for i ∈ {ℓ, . . . , t− 1}. Now,

[[y, g′ℓ, g
hℓ
ℓ+1, . . . , g

ht−2

t−1 ]ht−1 [g1, . . . , gt−1], gt]

= [[y, g′ℓ, g
hℓ
ℓ+1, . . . , g

ht−2

t−1 ]ht−1 , gt]
[g1,...,gt−1][g1, . . . , gt]

= [y, g′ℓ, g
hℓ
ℓ+1, . . . , g

ht−2

t−1 , g
(ht−1)−1

t ]ht−1[g1,...,gt−1][g1, . . . , gt],

and the lemma follows. If ℓ = 1, a similar argument applies.

Lemma 4.22. Let G1, . . . , Gt be subgroups of a profinite group G such that
Gj ≤ NG(Gi) for every j ≤ i. Let ℓ ∈ {1, . . . , t} and Y1, Y2 ⊆ Gℓ be such
that π(y1), π(y2) ⊆ π(y1y2) for every y1 ∈ Y1, y2 ∈ Y2. Let Xi ⊆ Gi for
i ∈ {1, . . . , ℓ− 1}, and for i ∈ {ℓ+ 1, . . . , t} denote Xi = Gi. Then:

1. If φ∗
{ℓ}(Y1;Xi) = φ∗

{ℓ}(Y2;Xi) = 1, then φ∗
{ℓ}(Y1Y2;Xi) = 1.

2. If φ∗
{ℓ}(Yj;Xi) = ∅ for some j ∈ {1, 2}, then φ∗

{ℓ}(Y1Y2;Xi) = ∅.

Proof. Since π(y1), π(y2) ⊆ π(y1y2) for every y1 ∈ Y1, y2 ∈ Y2, the second state-
ment is straightforward. Moreover, if φ{ℓ}(y1y2; gi) ∈ φ∗

{ℓ}(Y1Y2;Xi), then for
j ∈ {1, 2} we have φ{ℓ}(yj; gi) ∈ φ∗

{ℓ}(Yj;Xi). The result follows now directly from
Lemma 4.21.

In view of the preceding lemma, we now introduce a convenient way to choose
coset representatives of normal subgroups. These will play an important role
throughout the chapter.

Definition 4.23 (Good representatives). Let G be a profinite group and U ⊴ G.
An element g ∈ G is a good representative of the coset gU if π(g), π(u) ⊆ π(gu)
for every u ∈ U .

Lemma 4.24. Let U be an open normal subgroup of a pronilpotent group G. Let
g be a representative of the coset gU and write g =

∏
p∈π(G) gp with gp a p-element

of G. Then the following are equivalent:
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(i) g is a good representative of the coset gU ;
(ii) gp = 1 whenever gp ∈ U for p ∈ π(G);

(iii) π(g) is minimal among all representatives of the coset gU .

In this case, if σ = π(G/U), then π(g) ⊆ σ.

Proof. We first prove (i)⇒ (ii). Assume g is a good representative and suppose
that gp ∈ U . If gp 6= 1, then π(g · g−1

p ) does not contain p, contradicting that
π(g) ⊆ π(gu) for all u ∈ U .

(ii)⇒ (i). Write u =
∏

p∈π(G) up for a certain u ∈ U and suppose gp = 1
whenever gp ∈ U . Then, if either gp 6= 1 or up 6= 1, then gpup 6= 1, that is exactly
the condition of being a good representative.

(ii)⇔(iii) is immediate, and the last remark follows from (ii).

The following lemma is an application of Proposition 4.5 to a special type of
coprime commutators.

Lemma 4.25. Let G1, . . . , Gt be pronilpotent subgroups of a profinite group G such
that Gj ≤ NG(Gi) for all j ≤ i, and |δ∗t−1{G}| < 2ℵ0. For every i ∈ {1, . . . , t}, let
Si be a closed subset of Gi. If φ∗(Si) 6= ∅, then, there exist elements xi ∈ Gi and
open subgroups Ui ⊴o Gi such that |φ∗(xiUi ∩ Si)| = 1.

Proof. Let

C =
{
(x1, . . . , xt) ∈ S1 × · · · × St

∣∣∣ (|xi|, |xi+1|) = 1 for all i = 1, . . . , t
}
.

As φ(C) = φ∗(Si), we have C 6= ∅. Note that C is closed in G1 × · · · × Gt by
Lemma 4.11.

Fix (x1, . . . , xt) ∈ C. By Lemma 4.9 the element gk := [x1, . . . , xt] is in δ∗t−1{G}.
Hence, |Imm(φ)| < 2ℵ0 , and by Proposition 4.5, it follows that there exist elements
xi ∈ Gi and open normal subgroups Ui ⊴ Gi such that

C ∩ (x1U1 × · · · × xtUt) 6= ∅

and |φ∗(xiUi ∩ Si)| = 1.

Lemma 4.25 will often provide some cosets of open subgroups of G in which
coprime commutators are trivial. Lemmas 4.26 and 4.29 below will allow us to
relate coprime commutators of these cosets with coprime commutators of the open
subgroups themselves.
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Lemma 4.26. Let G1, . . . , Gt be subgroups of a profinite group G such that Gj ≤
NG(Gi) for every j ≤ i, and for every i ∈ {1, . . . , t}, let xi ∈ Gi and Ui ⊴ Gi.
Assume also that Gj ≤ NG(Ui) for every j ≤ i. Fix j ∈ {1, . . . , t} and write
J = {1, . . . , j − 1}, then:

(i) If φ(xiUi) = 1 then φJ(xiUi;Ui) = 1.

(ii) If φJ(xiUi;Ui) = 1 then

φJ∪{j}(xiUi;Ui) = φ(x1U1, . . . , xj−1Uj−1, xj, Uj+1, . . . , Ut).

Proof. (i) We will proceed by reverse induction on j ∈ {1, . . . , t + 1}, where the
base case j = t + 1 translates to φ(xiUi) = 1, which is true by hypothesis. Let
thus j < t+ 1 and assume that φJ∪{j}(xiUi;Ui) = 1.

Let Ct = 1 and for every i ∈ {j+1, . . . , t−1} define Ci = CUi
(Ui+1/Ci+1). Note

that Ci is well-defined, since using that for every ℓ the subgroup Uℓ is normal in
G1 · · ·Gℓ, one can easily show by induction that Cℓ ⊴ G1 · · ·Gℓ.

If j ≥ 2, let

Y = {[x1u1, . . . , xj−1uj−1] | ui ∈ Ui, i = 1, . . . , j − 1}.

Then, we can rewrite φJ∪{j}(xiUi;Ui) = 1 as

[Y, xjUj] ⊆ CGj
(Uj+1/Cj+1).

For every i ∈ {1, . . . , j}, fix ui ∈ Ui and shorten y = [x1u1, . . . , xj−1uj−1]. Then
we have [y, xjuj] = [y, uj][y, xj]

uj , and since CGj
(Uj+1/Cj+1) is a normal subgroup

of Gj containing [y, xjuj] and [y, xj], it follows that [y, uj] ∈ CGj
(Uj+1/Cj+1). This

shows that φ(x1U1, . . . , xj−1Uj−1, Uj, Uj+1, . . . , Ut) = 1, as we wanted.
For the case j = 1, note that both x1 and x1U1 lay in CG1(U2/C2), so that

U1 ≤ CG1(U2/C2).
(ii) For every i ∈ {j + 1, . . . , t} we define Ci as in (i). For i ∈ {1, . . . , t}, let

ui ∈ Ui and shorten y = [x1u1, . . . , xj−1uj−1]. Then,

[y, xjuj] = [y, u′xj] = [y, xj][y, u
′]xj = [y, u′]xi[xj ,y][y, xj]

for some u′ ∈ Uj, and note that z := [y, u′]xj [xj ,y] ∈ CGj
(Uj+1/Cj+1). Then

[z, u′
j+1, . . . , u

′
t] = 1 for every u′

i ∈ Ui, i ∈ {j + 1, . . . , t}, so that

[y, xjuj, uj+1, . . . , ut] = [z[y, xj], uj+1, . . . , ut] = [y, xj, uj+1, . . . , ut],

where the last equality follows from Lemma 4.21. The lemma follows.
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Definition 4.27 (Subgroup Nσ). Let G1, . . . , Gt be pronilpotent subgroups of a
profinite group G such that Gj ≤ NG(Gi) for all j ≤ i. Let σ be a finite set of
primes. We define the normal subgroup

Nσ = 〈φ∗
{j}(Hi;Gi) | j is such that |π(Gj)| =∞〉G,

where Hi is the Hall σ-subgroup of Gi for every i. If |π(Gi)| < ∞ for all i, then
Nσ = 〈∅〉G = 1 for every σ.

The subgroups G1, . . . , Gt of G for which the definition of Nσ applies will be
clear from the context. Notice that for any finite sets of primes σ1 and σ2 such
that σ1 ⊆ σ2 we have

Nσ1 ≤ Nσ2 . (4.4)

Lemma 4.28. Let G1, . . . , Gt be pronilpotent subgroups of a profinite group G
such that Gj ≤ NG(Gi) for all j ≤ i. Fix ℓ ∈ {1, . . . , t} and xℓ ∈ Gℓ. For
i ∈ {1, . . . , ℓ − 1}, let Xi ⊆ Gi, and for i ∈ {ℓ, . . . , t} let Ui ⊴o Gi be such
that Gj ≤ NG(Ui) for j ≤ i. Suppose that (|xℓ|, |xℓ−1|) = (|xℓ|, |Uℓ+1|) = 1 for
every xℓ−1 ∈ Xℓ−1. If φ∗(X1, . . . , Xℓ−1, xℓUℓ, Uℓ+1, . . . , Ut) = 1, then we have
φ∗(X1, . . . , Xℓ−1, Uℓ, . . . , Ut) = 1.

Proof. First of all, observe that since φ∗(X1, . . . , Xℓ−1, xℓUℓ, Uℓ+1, . . . , Ut) 6= ∅,
there are y1, . . . , yℓ−1 such that yi ∈ Xi and

(|yj|, |yj+1|) = 1 (4.5)

for all j ∈ {1, . . . , ℓ − 2}. Note that the tuple (y1, . . . , yℓ−1, 1, . . . , 1) is in C and
then φ∗(X1, . . . , Xℓ−1, Uℓ, . . . , Ut) 6= ∅.

Fix then a tuple (x1, . . . , xℓ−1, uℓ, . . . , ut) ∈ C with xj ∈ Xj and uj ∈ Uj. In
order to conclude we want to prove that φ∗(x1, . . . , xℓ−1, uℓ, . . . , ut) = 1. For
i ∈ {ℓ, . . . , t}, let Hi be the minimal Hall subgroup of Ui containing ui, and notice
that we have

(|xℓ−1|, |Hℓ|) = (|Hj|, |Hj+1|) = 1 (4.6)
for all j ∈ {ℓ, . . . , t − 1}. Since Gℓ is pronilpotent, we have π(xℓh) ⊆ π(xℓ) ∪
π(h) for all h ∈ Hℓ, and hence, as (|xℓ|, |xℓ−1|) = (|xℓ|, |Uℓ+1|) = 1, we have
φ(x1, . . . , xℓ−1, xℓHℓ, Hℓ+1, . . . , Ht) ⊆ φ∗(X1, . . . , Xℓ−1, xℓUℓ, Uℓ+1, . . . , Ut), and it
is then equal to the trivial subgroup.

Lemma 4.26(i) now gives φ(x1, . . . , xℓ−1, Hℓ, . . . , Ht) = 1, and therefore we have
φ∗(x1, . . . , xℓ−1, uℓ, . . . , ut) = 1.

Lemma 4.29. Let Gi, ℓ,Xi, Ui be as in Lemma 4.28.
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(i) For i ∈ {ℓ, . . . , t}, suppose that either |π(Gi)| = ∞, in which case we write
Yi = Gi, or |π(Gi)| = 1, in which case we write Yi = Ui. Assume moreover
that if π(Gi) = {p} consists of a single prime, then p /∈ π(Gi−1) ∪ π(Gi+1).
Suppose we also have that φ∗(X1, . . . , Xℓ−1, xℓUℓ, . . . , xtUt) = 1 for some
xℓ ∈ Gℓ such that (|xℓ|, |xℓ−1|) = 1 for every xℓ−1 ∈ Xℓ−1. Then, there
exists a finite set of primes σ such that φ∗(X1, . . . , Xℓ−1, Yℓ, . . . , Yt) ⊆ Nσ

(cf. Definition 4.27).

(ii) Suppose that we fix xi ∈ Gi, i = ℓ, . . . , t, such that (|xi|, |xi+1|) = 1
for all i ∈ {ℓ, . . . , t − 1} and (|xℓ|, |xℓ−1|) = 1 for all xℓ−1 ∈ Xℓ−1. If
the set φ∗(X1, . . . , Xℓ−1, xℓUℓ, . . . , xtUt) is empty, then we also have that
φ∗(X1, . . . , Xℓ−1, Gℓ, . . . , Gt) = ∅.

Proof. (i) Write L = {ℓ, . . . , t}, and for i ∈ L, define

σi =


π(Gi/Ui) if |π(Gi)| =∞,

π(Gi) if |π(Gi)| = 1.

Let σ = σℓ ∪ · · · ∪ σt. Up to changing the representative, we can assume
that every xi is a good representative of xiUi, and in particular that they are
all σ-elements by Lemma 4.24. Furthermore, since φ∗

L(xiUi;Xi) 6= ∅ and
π(xj) ⊆ π(xjuj) for every uj ∈ Uj, it follows that (|xi|, |xi+1|) = 1 for all
i ∈ {ℓ, . . . , t− 1}.
For i ∈ L with |π(Gi)| = ∞, let Vi be the Hall σ′-subgroup of Gi, and for
i ∈ L with |π(G)| = 1, set Vi = Ui (notice that Vi ≤ Ui if |π(Gi)| = ∞).
We want to apply Lemma 4.28 t − ℓ + 1 times, first to the index t, then
decreasing until we reach the index ℓ, with the Vi taking the role of the Ui.
Say we are applying it to the index ℓ ≤ j ≤ t and let us check that the
two coprimality conditions of Lemma 4.28 are satisfied. We first check the
hypothesis (|xj|, |Vj+1|) = 1. If |π(Gj+1)| = ∞, then π(Vj) ⊆ σ′ and the
hypothesis is satisfied. If π(Gj+1) = {p}, then p /∈ π(Gj) and in particular
p /∈ π(xj). As for the other condition, if j = ℓ, it is simply one of the
hypotheses of the lemma. If ℓ + 1 ≤ j ≤ t, we have that (|xj|, |xj−1|) = 1
and (|xj|, |vj−1|) = 1 for all vj−1 ∈ Vj−1, either because Vj−1 is a σ′-subgroup
if |π(Gj−1)| =∞ or by hypothesis if |π(Gj−1)| = 1.
At the end of this process we obtain φ∗

L(Vi;Xi) = 1. Now, if |π(Gi)| = 1,
then Yi = Ui = Vi. If |π(Gi)| = ∞, writing Hj for the Hall σ-subgroup of
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Gj, then φ∗(X1, . . . , Xℓ, Gℓ+1, . . . , Gj−1, Hj, Gj+1, . . . , Gt) ⊆ Nσ by definition
and by Lemma 4.22(i) we obtain that φ∗

L(Yi;Xi) ⊆ Nσ.

(ii) If φ∗(X1, . . . , Xℓ−1, xℓUℓ, . . . , xtUt) = ∅ then in particular we have that
φ∗(X1, . . . , Xℓ−1, xℓ, . . . , xt) = ∅. The only way for this to happen is that
there exists an index j ∈ {1, . . . , l − 2} such that (|xj|, |xj+1|) 6= 1 for all
xj ∈ Xj, xj+1 ∈ Xj+1, and the lemma follows.

The following lemma is the focal point of the proof of Proposition 4.33, as it will
allow us to funnel some values of certain coprime commutators into an accurately
chosen subgroup.

Lemma 4.30. Let G1, . . . , Gt be pronilpotent subgroups of a profinite group G
such that Gj ≤ NG(Gi) for all j ≤ i, and |δ∗t−1{G}| < 2ℵ0. Then, there exist a
finite set W ⊆ φ∗(Gi) and a finite set σ of primes such that φ∗(Gi) ⊆ Nσ〈W 〉G.

As this is the most technical proof, we will first give an example of the procedure
for a specific case to clarify the main ideas.

Example 4.31. We restrict to the case t = 2, so we are studying φ∗(G1, G2), in
the specific case when |π(G1)| = 1, |π(G2)| =∞ and π(G1) ∩ π(G2) = ∅. Notice
that for t = 2 some easier reasoning could lead to an analogous result, but we will
follow the algorithm beneath the proof of Lemma 4.30 in order to illustrate it.

By Lemma 4.25, for i ∈ {1, 2}, we obtain Ui ⊴o Gi and xi ∈ Gi such that
φ∗(x1U1, x2U2) = {w} consists of a single value. Set W = {w}, we will work in
G/〈W 〉G and assume w = 1. We recall that by Remark 4.16, we can always refine
an open normal subgroup U2 ⊴ G2 with another normal open subgroup which is
normalized by G1 too, so we will always assume that G1 ≤ NG(U2).

Lemma 4.29 (with ℓ = 1) gives a set σ(∅) of primes such that φ∗(U1, G2) ⊆
Nσ(∅). We can factor out this subgroup and assume φ∗(U1, G2) = 1. Fix now
a set S = {s1 = 1, . . . , sm} of coset representatives of U1 in G1. As 1 ∈ S and
π(G1) = 1, every element of S is a good representative for U1.

Set now V0 = G2. For every ℓ ∈ {1, . . . ,m}, if φ∗(sℓ, Vℓ−1) = ∅, then set
Vℓ = Vℓ−1, otherwise Lemma 4.25 gives a coset Vℓ ⊆ Vℓ−1, such that φ∗(sℓ, Vℓ) = 1.
Notice that each Vℓ is a coset of an open subgroup of G2. Repeating this procedure
m times we get Vm = gV for V ⊴o G2, g ∈ G2 such that φ∗(sℓ, gV ) is either empty
or consists of the trivial element for every ℓ = 1, . . . ,m. Notice that, being 1 ∈ S,
the set φ∗(S, gV ) is non-empty.
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Applying now Lemma 4.29, this time with ℓ = 2, we can obtain a finite set
of primes σ satisfying φ∗(S,G2) ⊆ Nσ. Now, if we work in G/Nσ, we can apply
Lemma 4.22 and obtain that φ∗(sℓU1, G2) is either empty or trivial for every
ℓ ∈ {1, . . . ,m}. As S was a set of coset representatives of U1 in G1, we have that
φ∗(G1, G2) = 1. Since the beginning of the proof, we have factored out the normal
subgroups 〈W 〉G and Nσ(∅)∪σ, settling Lemma 4.30 in our case.

Overall with several subgroups G1, . . . Gt some additional steps might be neces-
sary, but this case exemplifies the main ideas of the proof.

Proof of Lemma 4.30. Let

I = {i ∈ {1, . . . , t} | |π(Gi)| =∞}.

It suffices to prove the theorem in the case when |π(Gi)| = 1 for all Gi with i /∈ I.
The general case, where each Gi, i /∈ I, is the product of its Sylow subgroups
follows by applying Lemma 4.22.

For i /∈ I, let pi be a prime such that π(Gi) = {pi}. Then we have

φ∗(Gi) = φ∗(G1, . . . , Gi−2, Hi−1, Gi, Hi+1, Gi+2, . . . , Gt),

where Hi−1 and Hi+1 are the Hall p′i-subgroups of Gi−1 and Gi+1, respectively.
We can therefore assume, again by Lemma 4.22(i), that for all i /∈ I we have

pi /∈ π(Gi−1) ∪ π(Gi+1). (4.7)

We claim that that for every J ⊆ {1, . . . , t} r I there exist a finite set WJ ⊆
φ∗(Gi), a finite set of primes σ(J) and subgroups UJ

i ⊴o Gi with i /∈ I ∪ J such
that φ∗

I∪J(Gi;U
J
i ) ⊆ Nσ(J)〈WJ〉G.

We proceed by induction on |J |. Assume first J = ∅. By Lemma 4.25, for
every i ∈ {1, . . . , t} there exist elements xi ∈ Gi and subgroups U∅

i ⊴o Gi such
that φ∗(xiU

∅
i ) = {w∅} for a suitable w∅ ∈ G. Moreover, by Remark 4.16, we may

assume that Gj ≤ NG(U
∅
i ) for every j ≤ i. Hence, Lemma 4.29 produces a finite

set σ(∅) of primes such that φ∗
I(Gi;U

∅
i ) ⊆ Nσ(∅)〈w∅〉G, so the claim follows for

|J | = 0.
Assume now that |J | ≥ 1 and that for every J− ( J there exist a finite set

WJ− ⊆ φ∗(Gi), a finite set of primes σ(J−) and subgroups UJ−
i ⊴o Gi, i /∈

I ∪ J−, such that φ∗
I∪J−(Gi;U

J−
i ) ⊆ Nσ(J−)〈WJ−〉G. For convenience, we also set

UJ−
i = Gi if i ∈ J−, so that UJ−

i is defined for all i /∈ I. Let WJ =
⋃

J− WJ− ,
ρ =

⋃
J− σ(J−) and Vi =

⋂
J− UJ−

i for all i /∈ I, so that, by (4.4), we have
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φ∗
I∪J−(Gi;Vi) ⊆ Nρ〈WJ〉G for every J− ( J . Furthermore, by factoring out

Nρ〈WJ〉G, we may assume that

φ∗
I∪J−(Gi;Vi) = 1 (4.8)

for every J− ( J . Moreover, taking into account Remark 4.16 we may further
assume that Vi is invariant under the conjugacy action of Gj for every j ≤ i.

Write J = {j1, . . . , jn} with j1 < · · · < jn, and for every i ∈ J , fix a set Si of
coset representatives for Vi in Gi containing the identity. Write

Sj1 × · · · × Sjn = {s1, . . . , sm}

with sℓ = (sℓ,j1 , . . . , sℓ,jn) for ℓ ∈ {1, . . . ,m}. Denote Vi = Gi for i ∈ I. Since
1 ∈ Si for every i, we have φ∗

J(Si;Vi) 6= ∅, so applying Lemma 4.25 we obtain
elements xi ∈ Vi and subgroups Ui ⊴o Vi such that φ∗

J(Si; xiUi) takes a single
value. Actually, since 1 = φ∗

J(1; xiUi) ⊆ φ∗
J(Si; xiUi), we have φ∗

J(Si; xiUi) = 1.
Thus, for every ℓ ∈ {1, . . . ,m}, we either have

φ∗
J(sℓ,i; xiUi) = ∅ or φ∗

J(sℓ,i; xiUi) = 1. (4.9)

We may assume xi to be a good representative of the coset xiUi and therefore, if
J does not contain neither i nor i + 1, then (|xi|, |xi+1|) = 1. Also, by Remark
4.16 we may further assume that Ui is invariant under the conjugacy action of Gj

for every j ≤ i.
Let J0 = ∅, and for r ∈ {1, . . . , n}, let Jr = {j1, . . . , jr}. We also write j0 = 0

for convenience. We will show that for every r ∈ {0, . . . , n}, there exists a finite
set of primes τ(r) such that φ∗

Jr
(sℓ,i;Y

(r)
i ) ⊆ Nτ(r) for every ℓ ∈ {1, . . . ,m}, where

Y
(r)
i =


Gi if i ≥ jr, i ∈ I ∪ J,

Ui if i > jr, i 6∈ I ∪ J,

xiUi if i < jr.

Notice that right now we are not using Y
(r)
jr

, but it will be convenient to have
it defined for later. We argue by reverse induction on r ∈ {0, . . . , n}; assume first
r = n. Since jr 6∈ I, we deduce from (4.7) that (|sℓ,jr |, |Gjr−1|) = (|sℓ,jr |, |xjr+1|) =
1. Thus, for all ℓ ∈ {1, . . . ,m}, we obtain from (4.9) and Lemma 4.29 a finite set
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of primes τ(r, ℓ) such that φ∗
Jr
(sℓ,i;Y

(r)
i ) ⊆ Nτ(r,ℓ). Defining τ(r) =

⋃m
ℓ=1 τ(r, ℓ),

we obtain φ∗
Jr
(sℓ,i;Y

(r)
i ) ⊆ Nτ(r) for every ℓ ∈ {1, . . . ,m}.

Hence, we assume r ≤ n − 1. By induction, we know that there exists a finite
set of primes τ(r + 1) such that

φ∗
Jr+1

(sℓ,i;Y
(r+1)
i ) ⊆ Nτ(r+1) (4.10)

for every ℓ ∈ {1, . . . ,m}.
The inductive step will be divided in two phases. We will first show that

φ∗
Jr
(sℓ,i;Y

(r+1)
i ) ⊆ Nτ(r+1) (meaning that the only difference from (4.10) is position

jr+1). In order to obtain this, we have to substitute in the jr+1-th position first
sℓ,jr+1 , and then sℓ,jr+1Ujr+1 for all ℓ ∈ {1, . . . ,m}. We will then conclude the
inductive step by proving that there exists a finite set τ(r) of primes such that
φ∗
Jr
(sℓ,i;Y

(r)
i ) ⊆ Nτ(r) for every ℓ ∈ {1, . . . ,m}.

We begin by noting that Y (r+1)
i ≤ Vi for every i 6∈ I ∪ J and that Ujr+1 ≤ Vjr+1 ,

so (4.8) yields
φ∗
Jr(sℓ,i; Ỹi) ⊆ Nτ(r+1), (4.11)

where Ỹi = Y
(r+1)
i if i 6= jr+1 and Ỹjr+1 = Ujr+1 . As we chose the sets of rep-

resentatives Sj in such a way that the identity is contained in them, for every
ℓ ∈ {1, . . . ,m}, either sℓ,jr+1 is trivial or |π(sℓ,jr+1)| = 1, so in particular sℓ,jr+1 is
a good representative. Thus, by (4.10) and (4.11), we deduce from Lemma 4.22
that φ∗

Jr
(sℓ,i;Y i) ⊆ Nτ(r+1), where Y i = Y

(r+1)
i if i 6= jr+1 and Y jr+1 = sℓ,jr+1Ujr+1 .

Since this holds for every ℓ ∈ {1, . . . ,m}, and since Gjr+1 =
⋃

s∈Sjr+1
sUjr+1 , we

obtain φ∗
Jr
(sℓ,i;Y

(r+1)
i ) ⊆ Nτ(r+1), as we wanted.

Now using (4.7) and Lemma 4.29, we conclude exactly as in the case r = n that
there exists a finite set τ(r) of primes such that φ∗

Jr
(sℓ,i;Y

(r)
i ) ⊆ Nτ(r) for every

ℓ ∈ {1, . . . ,m}.
This completes the reverse induction on r. In particular, for r = 0, it follows

that φ∗
J(Gi;Ui) ⊆ Nτ(0), so this, in turn, concludes the inductive step on |J |, and

the claim is proved.
Finally, taking J in such a way that I ∪J = {1, . . . , t}, we obtain a finite set of

primes σ(J) and a finite set W ⊆ φ∗(Gi) such that φ∗(G1, . . . , Gt) ⊆ Nσ(J)〈W 〉G,
as desired.

Recall that if G is a prosolvable group of Fitting height k+ 1, there exist some
pronilpotent subgroups U0, . . . , Uk satisfying Proposition 4.15.

We remark that φ and φ∗ were defined with variables {xi | i = 1, . . . , t} for
a generic positive integer t. Since we now want to apply the previous results to
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the subgroups U0, . . . , Uk, we will set t = k + 1 and we will write φ(Ui−1) for
φ(U0, . . . , Uk) and φ∗(Ui−1) for φ((U0 × · · · × Uk) ∩ C), where C is defined as in
(4.3).

Lemma 4.32. Let G = U0 · · ·Uk be as in Proposition 4.15 with Uk = δ∗k(G)
abelian, and assume |δ∗k{G}| < 2ℵ0. Let g ∈ φ∗(Ui−1). Then, there exists a finite
normal subgroup N ⊴ G such that g ∈ N .

Proof. Write g = [x0, . . . , xk], where xj ∈ Uj for all j and (|xℓ|, |xℓ+1|) = 1 for all
ℓ ∈ {0, . . . , k−1}. By Lemma 4.9, [x0, . . . , xj] is a δ∗j -value for every j ∈ {0, . . . , k}.

In particular x := [x0, . . . , xk−1] is a δ∗k−1-value. Let H be the minimal Hall
subgroup of δ∗k(G) containing xk, so that (|x|, |H|) = 1, again by Lemma 4.9.
Since, again, [x, h] is a δ∗k-value for every h ∈ H, the set K := {[x, h] | h ∈ H}
has less than 2ℵ0 values, and, since H is abelian and normal in G, it follows
that K is actually a closed subgroup of G. In particular, K is finite, so every
element of K has finite order. Thus, we deduce from Lemma 3.17 that the set
S :=

⋃
{kG | k ∈ K} is finite, and therefore N = 〈S〉 is finite by Dietzmann’s

Lemma (see Lemma 14.5.7 of [73]).

We are now ready to prove the strong conciseness of δ∗k in prosoluble groups of
Fitting height k + 1.

Proposition 4.33. Let G be a prosoluble group of Fitting height k + 1. Assume
that |δ∗k{G}| < 2ℵ0. Then δ∗k(G) is finite.

Proof. In view of Lemma 4.12, we may assume that δ∗k(G) is abelian. Thus, we can
take U0, . . . , Uk ≤ G as in Proposition 4.15, so that G = U0 · · ·Uk with Uk = δ∗k(G)
abelian.

We claim that for every family of subgroups Gi−1 ≤ Ui−1 with i ∈ {1, . . . , k+1}
such that Gj ≤ NG(Gi) for j ≤ i, we have |φ∗(Gi−1)| <∞. We argue by induction
on |I|, where

I = {i ∈ {1, . . . , k + 1} | |π(Gi−1)| =∞}.
If |I| = 0, then Lemma 4.30 gives the result since for every finite set W ⊆
φ∗(Gi−1), the normal subgroup 〈W 〉G is finite by Lemma 4.32, and since, by
definition, Nσ = 1 for every finite set of primes σ. Suppose thus |I| ≥ 1. Then,
Lemma 4.30 produces a finite set of primes σ and a finite set W ⊆ φ∗(Gi−1) such
that φ∗(Gi−1) ⊆ Nσ〈W 〉G. Observe that by induction, for every j ∈ I, we have
|φ∗

{j}(Hi−1;Gi−1)| <∞, where Hi−1 is the Hall σ-subgroup of Gi−1, and therefore
Nσ is finite by Lemma 4.32. Again by Lemma 4.32, 〈W 〉G is also finite, and the
claim follows.
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In particular, we have shown that |φ∗(Ui−1)| <∞.
Denote by Pi(p) the Sylow p-subgroup of Ui for every p ∈ π(G), i ∈ {0, . . . , k}.

As each Ui is a pronilpotent subgroup, for every j ∈ {1, . . . , k} and every p ∈ π(G)
Proposition 4.15 yields

Pj(p) =
∏

q∈π(G)
q ̸=p

[Pj−1(q), Pj(p)].

Therefore, for every qk ∈ π(G),

Pk(qk) =
∏

(q0,...,qk−1)∈Sqk

[P0(q0), . . . , Pk(qk)],

where

Sqk = {(q0, . . . , qk−1) ∈ π(G)k | qj 6= qj+1 for every j = 0, . . . , k − 1}.

By Lemma 4.21, this implies that Pk(qk) ≤ 〈φ∗(Ui−1)〉 for every qk ∈ π(G), and
so

δk(G) = Uk =
∏

p∈π(G)

Pk(p) ≤ 〈φ∗(Ui−1)〉.

The proposition follows from Lemma 4.32, as we already proved that |φ∗(Ui−1)| <
∞.

4.6 Strong conciseness of coprime commutators

We recall that a minimal simple group is a finite non-abelian simple group all
of whose proper subgroups are soluble. These groups have been classified by
Thompson in [79]. By applying induction on the order of the group, it is immediate
to see that every finite simple group has a section that is a minimal simple group.

Lemma 4.34. In every minimal simple group there exist an involution e and an
element h of odd order such that he = h−1. Moreover, for every positive integer
k, the element

gk = [h, e, k−1. . ., e]

is both a non-trivial γ∗
k-value and a non-trivial δ∗k−1-value.
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Proof. The first claim follows from Theorem 2.13 of [42] and the fact that non-
abelian simple groups are of even order. Notice that gk = h(−2)k−1 , so gk 6= 1 for
every positive integer k. Clearly gi and e are coprime for every i ∈ {1, . . . , k− 1},
so gk is a γ∗

k-value. Thus, it suffices to prove that the same is true for δ∗k−1. By
Proposition 25 of [11], every involution of a minimal simple group is a δ∗ℓ -value for
every ℓ ∈ N. Hence, we can use Lemma 4.8 with g1 = · · · = gk−1 = e and H = 〈h〉
and conclude the proof.

We are now ready to prove our main results. As in [28], we start showing
that the Fitting subgroup of any infinite profinite group G with |γ∗

k{G}| < 2ℵ0 or
|δ∗k{G}| < 2ℵ0 is infinite.

Proposition 4.35. Let G be an infinite profinite group and let w∗ = δ∗k or w∗ = γ∗
k.

Suppose that 1 6= |w∗{G}| < 2ℵ0. Then the Fitting subgroup F of G is infinite.

Proof. We first show that F is non-trivial. Assume by contradiction that F = 1.
For every non-trivial w∗-value x of G, the normal closure 〈xG〉 is finite. Indeed, by
Lemma 3.17, xG is finite, so in particular |G : CG(〈xG〉)| <∞. As a consequence,
the index |〈xG〉 : Z(〈xG〉)| is also finite, but Z(〈xG〉) is contained in F = 1. This
implies that G possesses finite minimal normal subgroups, so let N be the product
of all of the subgroups obtained in this way from the set of w∗-values.

If N is finite, then there exists a normal open subgroup K ⊴o G such that
K ∩ N = 1. Such a subgroup cannot contain any non-trivial w∗-value since
otherwise, repeating the same argument as before, we would obtain a minimal
normal subgroup of G contained in K, contradicting that K ∩N = 1. If w∗(K) =
1, then by Theorem 4.2 K is either pronilpotent (if w∗ = γ∗

k) or prosoluble of
Fitting height k (if w∗ = δ∗k), and this contradicts the fact that F ∩K = 1. This
proves that N is an infinite subgroup of G.

None of the infinitely many minimal normal subgroups of G contained in N
is abelian because F = 1, so each of these minimal normal subgroups contains a
section isomorphic to a minimal simple group. For each minimal normal subgroup
Ni, with i ∈ I, choose a section isomorphic to a minimal simple group Si. We
remark that by the previous discussion I is an infinite set and so the Cartesian
product of Si is a section of G. By Lemma 4.34 in each of these groups Si there
exist an involution ei ∈ Si and an element hi ∈ Si of odd order with hei

i = h−1
i

such that gi := [hi, ei, k−1. . ., ei] is a non-trivial w∗-value. Now, using the structure of
Cartesian product, for each subset J ⊆ I the element cJ =

∏
j∈J gj can be written

as
cJ =

[∏
j∈J

hj,
∏
j∈J

ej, . . . ,
∏
j∈J

ej

]
.

95



Clearly
∏

j∈J ej is an involution normalizing the cyclic subgroup generated by the
element of odd order

∏
j∈J hj, and hence it is a w∗-value (if w∗ = δ∗k we also need

to use Lemma 4.8). However, there exist at least 2ℵ0 distinct subsets J ⊆ I that
give rise to different cJ , against the assumption that |w∗{G}| < 2ℵ0 , so F 6= 1.

If we assume by contradiction that the Fitting subgroup F is finite, then there
would be a subgroup K ⊴o G with K ∩ F = 1, so that K has trivial Fitting
subgroup. By the previous argument, this can happen only if w∗(K) = 1, so K is
either pronilpotent or prosoluble of Fitting height k, contradicting that K∩F = 1
and proving the proposition.

Proofs of Theorems 4.3 and 4.4. In view of Theorem 4.2 it is sufficient to show
that if |w∗{G}| < 2ℵ0 , then G is finite-by-pronilpotent in the case w∗ = γ∗

k or
finite-by-(prosoluble of Fitting height at most k) if w∗ = δ∗k. We can assume G to
be infinite, otherwise the theorem is trivially true.

We will denote the Fitting subgroup of G by F , and for i ≥ 2, let Fi be the i-th
Fitting subgroup of G. By Proposition 4.35, F is infinite (and hence the same is
true for all Fk). Let n = 2 if w∗ = γ∗

k and n = k + 1 if w∗ = δ∗k. By Propositions
4.20 and 4.33, w∗(Fn) is finite. Therefore there exists an open normal subgroup
R ⊴o Fn with R ∩ w∗(Fn) = 1. Theorem 4.2 implies that the Fitting height of R
is at most n−1, and hence R is contained in Fn−1. However, since Fn/Fn−1 is the
Fitting subgroup of G/Fn−1, it follows that G/Fn−1 has finite Fitting subgroup,
and by Proposition 4.35 this can only happen if G/Fn−1 is finite.

Thus, we will prove the result by induction on |G : Fn−1(G)|, with the base case
G = Fn−1(G) being trivial by Theorem 4.2. Assume then that |G : Fn−1(G)| > 1
and suppose first that G/Fn−1 has a nontrivial proper normal subgroup N . The
inductive hypothesis yields |w∗(N)| <∞, and working in G/w∗(N), we obtain by
Theorem 4.2 that N/w∗(N) is prosoluble of Fitting height at most n − 1. This
implies that N/w∗(N) is contained in the (n−1)-th Fitting subgroup of G/w∗(N)
and by inductive hypothesis w∗(G/w∗(N)) must be finite, so w∗(G) is finite too.

We can hence assume that G/Fn−1 is a simple group. Notice that if G/Fn−1 is
abelian, then we can conclude simply by applying Proposition 4.20 or Proposition
4.33. Thus, the only case left is when G/Fn−1 is a finite non-abelian simple group.
By Theorem 4.2 we have w∗(G/Fn−1) = G/Fn−1, so there is a finite set S consisting
of w∗-values such that G = 〈S〉Fn−1. By Lemma 3.17 the set T :=

⋃
{sG | s ∈ S}

is finite, so the index |G : CG(T )| is also finite. This implies that the center of 〈T 〉
has finite index in 〈T 〉, so by Schur’s theorem 〈T 〉′ is finite too. Note that 〈T 〉′ is
normal in G. Factoring out 〈T 〉′, we can assume G/Fn−1 to be abelian, and we
conclude the proof as before.
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5
Profinite right-angled Artin groups

In this chapter we will begin developing the theory of pro-C right-angled Artin
groups. This chapter and the next are part of a preprint, which is currently in
preparation, joint with M. Casals Ruiz and P. Zalesskii.

The first section is devoted to describing the profinite version of Bass-Serre
theory developed mainly by Melnikov, Ribes and Zalesskii. This theory aims at
understanding the structure of groups by their action on a profinite tree. One of
the main reasons to use this approach is that the action of a profinite group on a
profinite tree naturally gives a description of the structure of its subgroups, that
can be directly obtained by looking at the action of the subgroup on the tree.

In the second section we define profinite right-angled Artin groups and we de-
velop their basic properties. These groups are defined by a finite graph, choosing
vertices as generators and setting as relations that two adjacent vertices commute.
We then obtain some results on standard subgroups, which are the subgroups gen-
erated by a subset of the canonical generators of a profinite RAAG, and we show
that all these groups are torsionfree.

In Section 3 we prove that a profinite RAAG splits as a direct product if and
only if its underlying graph is a join. We then obtain a description of centralisers
of elements analogous to the one of abstract RAAGs obtained by Baudisch in
[12], proving that they split as a direct product of a standard subgroup and of
some projective groups. We will then use this characterization to conclude that,
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in pro-p RAAGs, centralisers are retracts.
In the last section, we conclude by proving that a pro-C RAAG either contains

free pro-C groups or it is solvable, and then give a description of two-generated
subgroup of pro-p RAAGs.

5.1 Profinite groups acting on profinite trees

In this section, we describe the analogue results of Bass-Serre theory for profinite
groups acting on profinite trees. A deeper description can be found in [70] or, for
pro-p groups, in [72] and [71].

In the current and next chapter, we assume C to be a class of finite groups closed
under taking subgroups, homomorphic images, direct product and extensions with
abelian kernel. The primes involved in C is the set of primes that divide the order
of a group G ∈ C and will be denoted as π(C). As usual, if π is a set of primes, a
pro-π group is an inverse limit of finite groups of π-order.

Definition 5.1 (Profinite graph). A profinite graph is a profinite space Γ with
a distinguished non-empty closed subset V (Γ) and two continuous maps (called
incidence maps) d0, d1 : Γ→ V (Γ) which restrict to the identity on V (Γ).

The elements of V (Γ) are the vertices of the profinite graph, whereas the ele-
ments of E(Γ) := Γ r V (Γ) are the edges. A morphism α : Γ → ∆ is a map of
profinite spaces respecting incidence maps, so αdi = diα for i ∈ {0, 1}. A profinite
graph is the inverse limit of its finite quotients graphs (see Proposition 1.5 of [71])
and we say that Γ is connected if all of these finite quotient graphs are connected
(as abstract finite graphs).
For each profinite graph Γ, we define (E∗(Γ), ∗) = (Γ/V (Γ), ∗) the pointed profin-
ite quotient space, where the distinguished point is the representative of V (Γ).
For every prime p, we have a complex of free profinite Fp-modules

0 −→ Fp[[E
∗(Γ), ∗]] δ−→ Fp[[V (Γ)]]

ϵ−→ Fp −→ 0 (5.1)

where the maps are defined as δ(e) = d1(e) − d0(e) for every e ∈ E∗(Γ) and
ϵ(v) = 1 for every v ∈ V (Γ).

Definition 5.2 (Profinite tree). A profinite graph Γ is a pro-p tree if the associated
chain complex (5.1) is an exact sequence. A profinite graph is a pro-C tree if the
associated chain complex (5.1) is an exact sequence for each prime p ∈ π(C).
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In particular, a pro-C tree is a pro-π tree with π = π(C) (see Proposition 2.4.2
of [70]). As every pro-C group is a pro-π(C) group, we can often reduce the study
of pro-C groups acting on pro-C trees to the study of pro-π groups acting on pro-π
trees. For this reason, many theorems we refer to are originally stated in the pro-π
version in the sources we cite but they are still valid for pro-C groups and trees,
and we state them in this form.

All the subtrees of a pro-C tree Γ are partially ordered by inclusion and the
minimal subtree containing two vertices v, w ∈ V (Γ), which we denote as [v, w],
is called a geodesic.

Some results that are valid for abstract trees are true for pro-C trees too. For
example, we will make use of Helly’s Theorem for pro-C trees.

Lemma 5.3. Let S = {Ti, i ∈ I} be an arbitrary family of non-empty pro-C
subtrees of a pro-C tree T and suppose Ti ∩ Tj 6= ∅ for every i, j ∈ I. Then⋂

i∈I Ti 6= ∅.

Proof. As the pro-C tree T is compact, it suffices to prove that every finite subset
of S has a non-empty intersection, so we prove the result for Sk = {Ti, i = 1, . . . , k}
by induction on k.

If k = 1 or k = 2, the statement holds trivially from the assumption that the
trees pairwise intersect. We treat the case k = 3 separately as it is going to be
used in the inductive step. Let v12, v13 ∈ V (T ) be vertices in T1 ∩ T2 and T1 ∩ T3

respectively. The geodesic [v12, v13] is contained in T1, and by Lemma 2.8 of [71]
we have that [v12, v13] ∩ T2 ∩ T3 6= ∅, hence T1 ∩ T2 ∩ T3 6= ∅.

Suppose by induction that the result holds for every set with less than k trees
and consider the set Sk = {Ti | i = 1, . . . , k}. Define T = Tk−1 ∩ Tk. Notice that
by Proposition 2.4.9 of [70], the intersection of any family of pro-C subtrees is still
a pro-C subtree (possibly empty) and so T is a pro-C tree. By induction (using
the case k = 3) we have that T ∩ Ti 6= ∅ for all i ∈ {1, . . . , k − 2}, hence we can
apply the inductive hypothesis to the family Sk = {T , T1, . . . , Tk−2}, which has
by definition the same intersection as the family Sk and the result follows.

A pro-C group G acts on a pro-C tree Γ if it respects the incident maps, i.e.
gdi = dig for i ∈ {0, 1}, g ∈ G, and the action is continuous. If an element g ∈ G
fixes at least a point of Γ we say that g is elliptic, on the other hand, if g does not
fix any point, then g is a hyperbolic element. We moreover say that a subgroup
H ≤ G is elliptic if the whole subgroup fixes a point of Γ.
Whenever an element g ∈ G (or a subgroup H ≤ G) is elliptic, we can consider
the set of fixed points T g (respectively TH), that is a pro-C tree by Theorem 4.1.5
of [70].
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When studying actions of groups on trees, we often need to restrict to minimal
invariant subtrees, whose existence is guaranteed by the following lemma, which
is Proposition 2.4.12 of [70].

Lemma 5.4. If G is a pro-C group acting on a pro-C tree Γ, then there exists a
minimal G-invariant pro-C subtree ∆ of Γ. If ∆ contains more than one vertex,
then it is unique.

The action of G on a pro-C tree Γ is irreducible if Γ has no proper G-invariant
subtrees. From now on, for every subset S of a group G acting on a pro-C tree
T , we denote by TS the minimal pro-C subtree on which 〈S〉 ≤ G acts. Similarly
to the abstract case, when elements commute we can obtain some additional
information on their action.

Lemma 5.5. Let G be a pro-C group acting faithfully on a pro-C tree T .

1. Let g, h ∈ G be such that h normalises 〈g〉, then h leaves Tg invariant and
in particular, if [g, h] = 1 then Tg = Th.

2. Let S = {g1, . . . , gk} be a set of elements such that the action of each gi,
i ∈ {1, . . . , k}, is elliptic. If [gi, gj] = 1 for every i, j ∈ {1, . . . , k}, then
there exists a vertex of T fixed by the whole set S.

Proof. Part (1) follows immediately by observing that h · (Tg) = Thgh−1 ⊆ Tg.
We first prove part (2) for two elements g1, g2 ∈ G. If both g1 and g2 are elliptic,
consider the subtrees T g1 and T g2 fixed by g1 and g2 respectively; by (1) we
have that T g1 is a non-empty pro-C subtree invariant under the action of g2. By
Corollary 4.1.9 of [70], g1 fixes a vertex of T g2 , hence T g2 ∩ T g1 is not trivial.
Applying the case k = 2 to each pair, we have that T gi ∩ T gj 6= ∅ and gi and gj
fix pointwise the intersection for every i, j ∈ {1, . . . , k} so we can apply Lemma
5.3 to the set {T g1 , . . . , T gk} and conclude that

⋂
i∈I Ti 6= ∅ and each gi fixes this

intersection, thus (2) follows.

Let ∆ = (V (∆), E(∆)) be a graph. We set m ∈ ∆ if m ∈ V (∆) or m ∈ E(∆).
A finite graph of pro-C groups (G,∆) over a finite abstract graph ∆ is a collection

of pro-C groups G(m) for each m ∈ ∆, and continuous monomorphisms ∂i :
G(e) −→ G(di(e)) for each edge e ∈ E(∆), i ∈ {0, 1}. We only work with finite
graphs of pro-C groups, in the sense that the graph ∆ is finite, but it is possible
to define an analogous concept for graphs of pro-C groups over profinite graphs ∆
(see Chapter 6 of [70]). A graph of groups is reduced if edge groups corresponding
to edges that are not loops are properly contained in adjacent vertex groups.
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Definition 5.6 (Pro-C fundamental group). Given a finite graph of pro-C groups
(G,∆), we define its pro-C fundamental group G = Π1(G,∆) as follows. Fix a
maximal subtree D of ∆; then G is a pro-C group, together with a collection of
continuous homomorphisms

νm : G(m) −→ G (m ∈ ∆)

and a continuous map E(∆) −→ G, denoted e 7→ te (e ∈ E(∆)), such that te = 1
if e ∈ E(D), and such that

(νd0(e)∂0)(x) = te(νd1(e)∂1)(x)t
−1
e ∀x ∈ G(e), e ∈ E(∆);

that satisfies the following universal property:
whenever we have

• a pro-C group H,
• a collection of continuous homomorphisms βm : G(m) −→ H, (m ∈ ∆),
• a map e 7→ se (e ∈ E(∆)) with se = 1 if e ∈ E(D), and
• (βd0(e)∂0)(x) = se(βd1(e)∂1)(x)s

−1
e ∀x ∈ G(e), e ∈ E(∆),

then there exists a unique continuous homomorphism δ : G −→ H with δ(te) = se
(e ∈ E(∆)) such that for each m ∈ ∆ the diagram

G

δ

��

G(m)

νm

<<yyyyyyyy

βm
""E

EE
EE

EE
E

H

commutes.

It was proven in [84] that this definition does not depend on the choice of the
maximal subtree D, moreover the existence and uniqueness of this group is proven
in Proposition 6.2.1 and Theorem 6.2.4 of [70].

One can construct the fundamental group of a graph of pro-C groups by iterating
two operations, namely pro-C amalgamated products and pro-C HNN extensions,
denoted by G1qH G2 and HNN(G1, H, f) respectively, and where G1 and G2 are
pro-C groups, H ≤ G1, and f : H → H ′ ≤ G1 is an isomorphism. Both of these
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constructions are defined by means of a universal property and can be obtained
as a certain pro-C completion of the abstract amalgamated product and HNN
extension of the corresponding groups. We refer to Sections 9.2 and 9.4 of [72] for
the precise definitions and basic properties.
It is important to remark that, contrary to the abstract case, the factors G1 and
G2 (resp. the base group G1) do not necessarily embed into G1 qH G2 (resp.
HNN(G1, H, f)). Whenever they embed, the amalgamated product (resp. HNN
extension) is said to be proper. Some necessary and sufficient conditions for pro-
C amalgamated products and HNN extensions to be proper were described in
Theorem 9.2.4 and Proposition 9.4.3 of [72]. We remark that properness is assured
if if the amalgamated subgroup H is a virtual retract of G1 and G2 (as G1 and
G2 would induce the full pro-C topology on H and the hypothesis of Thm 9.2.4
in [72] hold in this case).
Abstract Bass-Serre theory relates fundamental groups of graphs of groups with
groups acting on trees. Such a relation is true for the pro-C case assuming that
the action on a pro-C tree is cofinite and not true in general. Namely given a
fundamental group of a graph of pro-C groups (G,∆), there is a natural pro-C tree
T on which it acts. The construction of this tree, called the standard pro-C tree,
is described in Chapter 6 of [70]. The converse is true only for the cofinite action.

If the fundamental group of the graph of pro-C groups is a pro-C amalgamated
product G = G1 qH G2 or a pro-C HNN extension G = HNN(G1, H, f), then
each vertex stabiliser Gv of a vertex v is a conjugate of G1 or G2 (or of G1 if
G = HNN(G1, H, f)) and each edge stabiliser Ge is a conjugate of H.

Abstract Bass-Serre theory is extremely useful for studying the structure of
subgroups of fundamental groups of graphs of groups. The same is true for the
pro-C version of Bass-Serre theory, and the main tool is Theorem 7.1.7 of [70].
We state the applications of these results to the case when the group acting on
the pro-C tree is a pro-C amalgamated product or HNN extension. As usual, we
denote by ẐC =

∏
p∈π(C) Zp the pro-C completion of Z for any set of primes π(C).

Theorem 5.7. Let K be a subgroup of a proper free amalgamated pro-C product
G = G1 qH G2 of pro-C groups. Then one of the following holds:

1. K ≤ gGig
−1 for g ∈ G and i ∈ {1, 2};

2. K has a non-abelian free pro-p subgroup P for a certain p ∈ π(C) such that
P ∩ gGig

−1 = 1 for all g ∈ G and i ∈ {1, 2};
3. there exists a subgroup H0 ⊴ K (which is the kernel of the action of K on

TK) that is contained in a conjugate of H and such that K/H0 is solvable
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and isomorphic to a projective group Zσ o Zρ (σ, ρ ⊆ π(C) with σ ∩ ρ = ∅)
or Zσ o Cn (with σ ⊆ π(C) and Cn a finite cyclic group). In the last case,
it can be a profinite Frobenius group or, if Cn = C2 and 2 ∈ σ, an infinite
dihedral pro-σ group.

Theorem 5.8. Let K be a subgroup of a proper pro-C HNN extension G =
HNN(G1, H, f). Then one of the following holds:

1. K ≤ gG1g
−1 for g ∈ G;

2. K has a non-abelian free pro-p subgroup P for p ∈ π(C) such that P ∩
gG1g

−1 = 1 for all g ∈ G;
3. there exists a subgroup H0 ⊴ K (which is the kernel of the action of K on

TK) that is contained in a conjugate of H and such that K/H0 is solvable
and isomorphic to a projective group Zσ o Zρ (σ, ρ ⊆ π(C) with σ ∩ ρ = ∅)
or Zσ o Cn (with σ ⊆ π(C) and Cn a finite cyclic group). In the last case,
it can be a profinite Frobenius group or, if Cn = C2 and 2 ∈ σ, an infinite
dihedral pro-σ group.

A useful remark is that, in the third case of the previous theorems, H/H0 is
torsionfree if and only if it is isomorphic to Zσ o Zρ. In this case, as this is a
projective group, we have that H ∼= H0 o (Zσ o Zρ).

Finally, we record the following observation.

Lemma 5.9. Let G = G1 qH G2 be a proper amalgamated pro-C product of two
pro-C groups G1 and G2 and let T be the standard pro-C tree associated with this
splitting. Let g1, . . . , gk be a sequence of elliptic elements such that [gi, gi+1] = 1
for all i ∈ {1, . . . , k − 1}. Then there are some vertices v1, . . . , vk ∈ V (T ) (not
necessarily distinct) such that g1 ∈ Gv1 and gi ∈ Gti for each ti ∈ [vi−1, vi].

Proof. By Lemma 5.5 there exists a vertex vi stabilized by every pair of commuting
elements gi, gi+1 for every i ∈ {1, . . . , k− 1}. Define vk to be any vertex stabilized
by gk. In this setting, gi stabilizes both vi−1 and vi, hence it stabilizes the whole
subtree [vi−1, vi] by Corollary 4.1.6 of [70].

5.2 Basics on pro-C RAAGs

The aim of this section is to describe basic properties pro-C RAAGs. The abstract
version of the definitions and results that we discuss can be found, for example,
in [18].
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Let Γ = (V (Γ), E(Γ)) be an undirected finite graph without double edges or
loops, where V (Γ) and E(Γ) are the set of vertices and edges respectively. A
subgraph ∆ < Γ is called full if for all e ∈ Γ with d0(e), d1(e) ∈ ∆ we have
that e ∈ ∆. Notice that full subgraphs are uniquely determined by the subset of
vertices V (∆) of V (Γ).

Definition 5.10 (Right-angled Artin pro-C groups). The right-angled Artin pro-C
grouppro-C RAAG (pro-C RAAG for short) GΓ is the pro-C group given by the
pro-C presentation

GΓ = 〈V (Γ)|[u, v] = 1 if and only if u and v are adjacent in Γ〉.

We recall some standard terminology.

Definition 5.11 (Canonical Generators). The generators associated with the
vertices of Γ are called canonical generators and, abusing the notation, we denote
them with the same letter as the corresponding vertex.

Definition 5.12 (Standard subgroups). A subgroup of GΓ is called a standard
subgroup if it is the subgroup generated by a subset V ′ ⊆ V (Γ). If Γ = ∅, by
convention we set GΓ to be the trivial subgroup.

Abusing the notation, if S ⊆ V (Γ), we denote by GS the standard subgroup
generated by the full subgraph generated by S. We begin by stating some prop-
erties of standard subgroups.

Lemma 5.13. Let GΓ be a pro-C RAAG. Then:

1. GΓ is the pro-C completion of the abstract RAAG G(Γ);
2. the standard subgroup generated by a subset of vertices V ′ ⊆ V (Γ) is the

pro-C RAAG G∆ generated by the full subgraph ∆ ⊆ Γ determined by V ′;
3. the standard subgroups of GΓ are retracts;
4. the intersection of standard subgroups is a (possibly trivial) standard sub-

group.

Proof. For every group G, we denote by Ĝ its pro-C completion.

1. Follows from the pro-C presentation (see Definition 5.10).
2. In the abstract case, the subgroup of G(Γ) generated by V ′ is exactly G(∆),

see for example Corollary 2.11 of [50]. As this subgroup is a retract of G(Γ),
the pro-C topology of G(Γ) induces on it the full pro-C topology, so the
pro-C subgroup 〈V ′〉 ≤ GΓ is Ĝ(∆), that by (1) coincides with G∆.
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3. The map pr∆ : GΓ → G∆ whose restriction to G∆ is the identity and such
that pr∆(v) = 1 for every v ∈ V (Γ)r V ′ is surjective. Since by (2) G∆ is a
subgroup of GΓ, we have that pr∆ is a retraction onto G∆.

4. Consider two standard subgroups G∆, GΛ of GΓ. By (3), a non-trivial ele-
ment g of GΓ is in G∆ ∩ GΛ if and only if pr∆(prΛ(g)) = g, but this com-
position of maps corresponds exactly to pr∆∩Λ(g), and therefore G∆∩GΛ =
G∆∩Λ.

It follows from the pro-C version of Theorem 9.2.4 of [72] that, if H is a retract
of two groups G1 and G2, then a pro-C G1 qH G2 is a proper pro-C amalgam-
ated product. Similarly, it follows from Theorem 9.4.3 that pro-C HNN-extension
HNN(G1, H, f) is proper if H is a retract of G1. As standard subgroups of a
RAAG are retracts, we deduce the following.

Corollary 5.14. Let GΓ be a pro-C RAAG. If GΓ is a pro-C amalgamated product
G1qH G2 or a pro-C HNN extension HNN(G1, H, f) with G1, G2, H, f(H) stand-
ard subgroups of GΓ, then the free product with amalgamation or HNN extension
is proper.

We now want to define the notion of support of an element, but we first begin
by proving that this concept is well-defined.

Lemma 5.15. Let GΓ be a pro-C RAAG and let g ∈ GΓ. Then there exists a
unique minimal standard subgroup containing g. Moreover there exists an element
h in the conjugacy class of g whose corresponding minimal standard subgroup is
contained in each standard subgroup containing conjugates of g.

Proof. The unique minimal standard subgroup containing g is the intersection of
all the standard subgroups containing it, and this intersection is still a standard
subgroup by Lemma 5.13. Suppose now that ∆1,∆2 are full subgroups of Γ such
that g ∈ G∆1 and gt ∈ G∆2 for t ∈ GΓ. We claim that there exists s ∈ GΓ such
that gs ∈ G∆1∩∆2 . Indeed let pr∆1

be the retraction of GΓ to G∆1 and define
s = pr∆1

(t). Then gs = pr∆1
(gt) ∈ G∆1∩∆2 . In order to prove the lemma it

suffices to apply this observation to the lattice of full subgraphs of Γ containing a
conjugate of g. Notice that if g = 1 we have that g ∈ G∅ and by convention, the
standard subgroup generated by the empty set is the trivial group.
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Definition 5.16 (Support of an element). Let g be an element of a (pro-C) RAAG
GΓ. The support α(g) of g is the set of canonical generators of the unique minimal
standard subgroup of GΓ containing g.

In view of Lemma 5.15, in any conjugacy class there exists an element g such
that α(g) ⊆ α(gt) for every t ∈ G, in this case we say that gt is an element of
minimal support among its conjugates.
Definition 5.17 (Links and stars). Let g be an element of a (pro-C) RAAG GΓ.
The link Link(g) of g is the set of vertices of Γ r α(g) that are adjacent to each
of the vertices in α(g).
If v is a canonical generator, we denote by Star(v) the full subgraph generated by
Link(v) ∪ v.
Remark 5.18. If v ∈ V (Γ), we can split GΓ as a pro-C HNN extension as

GΓ = HNN(GΓr{v}, GLink(v), id) (5.2)

with stable letter v, and by Corollary 5.14 this is a proper pro-C HNN extension.
It follows that if g is an element with minimal support among its conjugates and
v ∈ α(g), then Theorem 5.8 guarantees that its action on the standard pro-C tree
T associated with this splitting is hyperbolic.

Abstract right-angled Artin groups are torsion-free, but the pro-C completion
of torsion-free groups is not always torsion-free (even the profinite completion as
shown in [54],[19]). However, in the case of pro-C RAAGs this is true.
Theorem 5.19. Pro-C RAAGs are torsion-free profinite groups.
Proof. A pro-C RAAG is the pro-C completion of the corresponding (abstract)
RAAG. In [30], the authors proved that abstract RAAGs are residually (finitely
generated torsion-free nilpotent), and hence the pro-C completion of a RAAG
embeds in a direct product of the pro-C completions of finitely generated torsion-
free nilpotent groups. By Theorem 4.7.10 of [72] the profinite completion N̂ of a
finitely generated torsion-free nilpotent group N is torsion-free. But N̂ =

∏
p N̂p

is the direct product of the pro-p completions and the pro-C completion of N is the
direct product

∏
p∈π(C) Np. Hence the pro-C completion of N is torsion-free.

5.3 Direct product decomposition of pro-C RAAGs

Our goal is to show that the direct product decomposition of a pro-C RAAG is
determined by the defining graph. More precisely GΓ ' A1 × A2, where A1 and
A2 are non-trivial pro-C groups, if and only if Γ is a join, see Theorem 5.22.
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Lemma 5.20. Let GΓ be a pro-C RAAG and let g ∈ GΓ be an element with
minimal support among its conjugates. Then, the centraliser of g is contained in
the standard subgroup generated by Link(g) ∪ α(g). In particular, if g = v is a
standard generator, then CG(v) = GStar(v) = 〈v〉 ×GLink(v).
Proof. Suppose towards contradiction that there is an element h commuting with
g whose support is not contained in Link(g) ∪ α(g). Then there exists v ∈ α(h)
such that v /∈ Link(g) ∪ α(g). Denoting by G0 = GΓr{v} and by A = GLink(v) and
using Remark 5.18, we have that the group GΓ splits as a proper HNN extension
of the form

GΓ = HNN(G0, A, id)

where the action by conjugation of v on A is trivial. Notice that from the as-
sumption on h, we have that h /∈ G0. We next study the action of g and h on the
standard pro-C tree T associated with this splitting.

Notice that g ∈ G0 and so g is elliptic. However, g cannot belong to any edge
stabiliser. Indeed, otherwise, there would exist an element t ∈ GΓ such that gt ∈ A
and in this case, since g has by assumption minimal support, it would follow from
Lemma 5.15 that α(g) ⊆ α(gt) ⊆ Link(v) and so v ∈ Link(g) contradicting the
choice of v. Since g cannot be in any edge stabiliser, we conclude that g only
fixes the vertex v stabilised by G0, i.e. Tg = {v}. From Lemma 5.5 (1), h has to
leave Tg = {v} invariant and, in particular, h fixes v. Then h belongs to G0, a
contradiction.
Lemma 5.21. Suppose a pro-C RAAG G = GΓ decomposes as a direct product
GΓ = A1 ×A2 of non-trivial groups. Then for each canonical generator v ∈ Γ, at
least one factor Ai is contained in GStar(v).
Proof. Let v be a canonical generator. Since α(v) = {v}, by Lemma 5.20 we have
that CG(v) = GStar(v) = 〈v〉 ×GLink(v).

Suppose that v = a1·a2 where ai ∈ Ai, i = 1, 2. Since CG(v) = CA1(a1)×CA2(a2)
and ai ∈ CAi

(v), from the description of the centraliser CG(v), we deduce that
ai = veia′i for ei ∈ Zπ(C) and a′i ∈ GLink(v). Since v = a1 · a2, we have that ei 6= 0
for either i = 1 or i = 2; without loss of generality assume e1 6= 0. Let t be
an element such that t−1a1t has minimal support among its conjugates, we can
assume t ∈ A1 because A2 ⊆ CG(a1). Applying Lemma 5.20 we have

tA2t
−1 = A2 ⊆ CG(a1) = tCG(t

−1a1t)t
−1 ⊆ t

(
Gα(t−1a1t) ×GLink(t−1a1t)

)
t−1.

Notice that by Lemma 5.15 α(t−1a1t) ⊆ α(a1) ⊆ Star(v) and, since v ∈ α(t−1a1t),
the definition of link implies that Link(t−1a1t) ⊆ Star(v). Overall, we conclude
that A2 ⊆ GStar(v).
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We are now ready to fully characterize when a pro-C RAAG splits as a direct
product. We recall that a graph is a join if and only if there is a non-empty
subgraph ∆ � Γ such that for each v ∈ ∆ and each w ∈ Γr∆, v, w are adjacent.

Theorem 5.22. Let GΓ be a pro-C RAAG. Then GΓ has a non-trivial direct
product decomposition if and only if Γ is a join. In particular, each factor in a
direct product decomposition of GΓ is a standard subgroup.

Proof. The analogous result for abstract RAAGs is classical (see for example
Corollary 2.15 in [50]). From the abstract result and Lemma 5.13, it is straight-
forward that whenever Γ is a join, then GΓ splits as a direct product.

We now want to prove the converse implication. By Lemma 5.21 for each
canonical generator v, at least one among A1 or A2 is contained in GStar(v).

Let Γ1 ⊆ V (Γ) be the set of canonical generators v such that A1 < Star(v) and
Γ2 = Γr Γ1. Then, for each canonical generator v ∈ Γ2, since by definition of Γ2

we have that A1 6< Star(v), by Lemma 5.21 again we conclude that A2 ≤ GStar(v).
For i = 1, 2 define ∆i ⊆ Γ such that G∆i

=
⋂

v∈Γi
GStar(v); by Lemma 5.13

G∆i
is a standard subgroup and by definition it contains Ai and each v ∈ Γi is

connected to each w ∈ ∆i. In particular ∆i are non-empty graphs. Notice that
if there is a canonical generator w ∈ ∆1 ∩∆2, then w is by definition in the star
of each vertex in Γi and so Γ1,Γ2 < Star(w). Hence such a canonical generator
w ∈ ∆1 ∩∆2 would be central and Γ would decompose as a join. For this reason
we can assume that G∆1 and G∆2 are disjoint and since A1 and A2 generate G,
so do G∆1 and G∆2 .

Hence, we can decompose V (Γ) as the disjoint union of the (possibly empty)
sets Γ2 ∩∆1, Γ1 ∩∆2 and Λ = (Γ1 ∩∆1) ∪ (Γ2 ∩∆2).

Since ∆i is non-empty for i = 1, 2, then either Λ 6= ∅ or Γ2 ∩∆1 and Γ1 ∩∆2

are non-empty. If at least two of the sets are non-empty, then they define a join,
because each vertex in a set is connected to each vertex in the other set, because
each element in Γi is connected to each element in ∆i for i = 1, 2.

We are left to consider the case when only Λ is non-empty, so that Λ = V (Γ).
In this case, each vertex in Γi is in ∆i too and in particular they are connected
to each other. It follows that Γi ∩∆i = Γi = ∆i is a complete graph for i = 1, 2.
Since Ai ≤ G∆i

and G∆i
is abelian, so is Ai. Hence G = A1 × A2 is abelian and

Γ is a complete graph and a join.

These results are in line with other properties of pro-C RAAGs that can be
recognized from the abstract graph. For example, abstract RAAGs split as a
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free product if and only if the underlying graph is disconnected, and Wilkes and
Kropholler proved that the same is true for profinite RAAGs in [51]. Similarly,
both abstract and pro-p RAAGs are coherent if and only if the underlying graph
is chordal, see [76].

5.4 Centralisers and normalisers of elements

In this section, we describe explicitly the structure of centralisers of elements in
pro-C RAAGs, obtaining a description similar to the one that Baudisch proved for
abstract RAAGs in [12]. In a free pro-p group, centralisers of elements are cyclic.
However, in the pro-C case, the situation is substantially different as the centraliser
of an element does not need to be cyclic. Indeed, for example, the projective group
Z3 o Z2, with the generator of Z2, say a, acting on Z3 by inversion, embeds in a
free profinite group, so the centraliser of a2 contains this solvable projective group.

Theorem 5.23. Let G = GΓ be a pro-C RAAG and let g0 ∈ G. Then there is an
element g in the conjugacy class of g0 such that its centraliser is of the form

CG(g) = H1 × · · · ×Hs × 〈Link(g)〉

where:

1. α(Hi), α(Hj), Link(g) are all disjoint for i 6= j;
2. Gα(g) = Gα(H1) × · · · ×Gα(Hs);
3. Hi are projective pro-C groups;
4. if G is pro-p, Hi = 〈hi〉 and g = hk1

1 · · · hks
s , for some ki ∈ Zp.

Proof. We begin the proof with some reductions.
If g is trivial, then V (Γ) = Link(g) and the result holds trivially, so we further

assume g 6= 1.
Among the conjugates of g0, we choose an element g of minimal support among

its conjugates, so that by Lemma 5.20 CG(g) is contained in the standard subgroup
generated by Link(g) ∪ α(g). Hence, we can assume that V (Γ) = Link(g) ∪ α(g).
In this case, we have from Theorem 5.22 that G = Gα(g) × GLink(g). Clearly
GLink(g) ≤ CG(g), so it suffices studying the centraliser in the standard subgroup
Gα(g) and then

CG(g) = CGα(g)
(g)×GLink(g).

We further assume that α(g) = V (Γ). If G is decomposable as a direct product
GΓ = G1 × · · · × Gs, then g = g1 × · · · × gs for gi ∈ Gi, i ∈ {1, . . . , s}, and the
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centraliser CG(g) decomposes as CG(g) = CG1(g1) × · · · × CGs(gs). Moreover, by
Theorem 5.22, each Gi is a standard subgroup. As g was chosen to be an element of
minimal support among its conjugates, every gi has also minimal support among
its conjugates, so we have reduced the problem to studying centralisers when
G = Gα(g) is directly indecomposable.

Our goal is to show that if G = Gα(g) is directly indecomposable, then CG(g)
is a projective group. Fix any vertex v of Γ and denote by G0 = GΓr{v} and by
A = GLink(v). Consider the decomposition as an HNN extension

G = HNN(G0, A, id);

as described in Remark 5.18, the action of g on the standard pro-C tree T associ-
ated with this splitting is hyperbolic.
We first claim that no nontrivial element h ∈ CG(g) is contained in a conjugate
of A. Indeed, take any element h ∈ CG(g) and assume that t ∈ G is an ele-
ment such that ht has minimal support among the G-conjugates of h, so that by
Lemma 5.15 we have α(ht) ⊆ Γr {v}. Then ht ∈ CG(g

t) and by Lemma 5.20 we
have α(gt) ⊆ α(ht) × Link(ht). By Lemma 5.15, V (Γ) = α(g) ⊆ α(gt), but then
G = Gα(ht) × GLink(ht). As G is directly indecomposable and α(ht) is a proper
subset of V (G), h must be trivial.

Let Tg be the minimal g-invariant subtree of g. From the preceding paragraph
we deduce that CG(g) acts faithfully on Tg and so by Lemma 4.2.6 of [70] it is
projective. In particular, if G is a pro-p group, then CG(g) must be isomorphic to
Zp.

Our next goal is to prove that centralisers of elements are virtual retracts in
pro-p groups.

Lemma 5.24. Let G be a pro-p group acting without fixed points on a pro-p tree
T . Assume that H is a procyclic subgroup, generated by a hyperbolic element g.
Then H is a virtual retract of G.

Proof. For each subgroup K of G, define

K̃ = 〈K ∩Gt|t ∈ V (T )〉

to be the subgroup generated by the intersections of K with all vertex stabilisers.
Notice that H̃ = 1 since H is procyclic generated by a hyperbolic element. As
H is closed, it is the intersection of all open subgroups {Ui, i ∈ I} containing it
and then also

⋂
i∈I Ũi = H̃ = 1. This implies that there must be an open U ⊴o G
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such that g /∈ Ũ . But U/Ũ is a free pro-p group by Corollary 3.6 of [71] hence
by the profinite version of Marshall Hall Theorem (see Theorem 9.1.19 of [72])
the procyclic subgroup HŨ/Ũ of U/Ũ is a free factor of a finite index subgroup
of U/Ũ . As H ∩ Ũ is trivial, we can lift the retracts to U and we have that
H ∼= HŨ/Ũ is a virtual retract of U/Ũ , hence a virtual retract of G too.

Theorem 5.25. Let G = GΓ be a pro-p RAAG and let H be the centraliser of an
element h. Then H is a virtual retract of G.

Proof. We can assume that h has minimal support among its conjugates. By
Theorem 5.23, H is contained in the standard subgroup generated by α(h) ∪
Link(h), which is a retract of G. As a virtual retract of a standard subgroup of
G can be lifted to a virtual retract of G, we restrict to the case that V (Γ) =
α(h) ∪ Link(h). Suppose then that G = G1 × · · · × Gk × GLink(h) is the direct
product decomposition of the standard subgroup G. By Theorem 5.23, H = H1×
· · ·×Hk×GLink(h), where Hi is a procyclic subgroup of Gi for every i ∈ {1, . . . , k}.
By Lemma 5.24 and Remark 5.18, every Hi is a virtual retract of Gi, hence the
direct product of all of them is a virtual retract of G and the result follows.

5.5 Subgroups of pro-C and pro-p RAAGs

We now aim to describe the structure of some subgroups of pro-C and pro-p
RAAGs. We recall that a subgroup H ≤ G is isolated (or isolated in G) if
whenever gk ∈ H for a certain g ∈ G k ∈ ZC, then g ∈ H.

Lemma 5.26. Standard subgroups of pro-C RAAGs are isolated.

Proof. Let G = GΓ. The theorem is equivalent to the statement that for every
g ∈ G and k ∈ ZC, α(g) = α(gk). Suppose this is not true, so that there exists a
vertex v ∈ α(g)rα(gk). Then, consider the pro-C tree T associated to the splitting
(5.2) and notice that gk ∈ GΓr{v} stabilizes the vertex t of T , which is stabilized
by the standard subgroup GΓr{v}. Suppose first that g acts hyperbolically on T .
By Theorem 5.8, there exists a subgroup He ⊴ 〈g〉 stabilizing an edge such that
〈g〉 ∼= He o ZC. As g acts hyperbolically, the whole 〈g〉 is not contained in the
edge group, contradicting that gk acts elliptically.

Suppose then that both g and gk act elliptically. In this case, we can argue by
induction on the number of generators of GΓ and suppose that standard subgroups
of pro-C RAAGs with at most |V (Γ)| − 1 generators are isolated. By induction,
and using that isolation is invariant by conjugation, in the pro-C tree T associated
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to the splitting in (5.2), edge stabilizers are isolated in adjacent vertex stabilizers.
Denote by f the projection onto the standard subgroup GΓr{v}, and set x = f(g).

Notice that the set of edges of a standard pro-C tree associated to a splitting is
compact by construction, and therefore for any vertex of any of its pro-C subtrees
containing at least an edge, there always exists an edge of the subtree adjacent
to it. As now xk = gk fixes both the vertex fixed by g and the vertex t stabilized
by GΓr{v}, there exists a stabilizer of an edge adjacent to t that contains xk. By
inductive hypothesis on isolation, such edge contains x too. In particular, this
edge is conjugated to the one stabilized by GLink(v). By applying the conjugation
map that fixes t and sends the vertex stabilized by x onto the vertex stabilized by
GLink(v), we obtain an element g′, conjugated to g, fixing a vertex different from
t, but such that g′k fixes t. Then, f(g′) = y is contained in GLink(v) and yk = g′k.

Denoting by 〈〈v〉〉 the normal closure of v in GΓ, we have that g′ ∈ 〈y〉〈〈v〉〉, as
standard subgroups are retracts. By Theorem B of [85], using that 〈〈v〉〉 does not
intersect any conjugate of GLink(v), we obtain that 〈〈v〉〉 is a free pro-C group F (vS),
with basis vS, where S is the image of a continuous section σ :

(
GΓr{v}/GLink(v)

)
→

GΓr{v}. The element y acts on the set vS by permuting the sections of S and,
letting R = σ

(
CG(y)/GLink(v)

)
, y fixes vr for all r ∈ R.

Let S∗ = (S/〈y〉)rR be the quotient of all sections of S modulo the conjugating
action of y, excluding the ones of R. We claim that 〈x〉 acts freely on F (vS

∗
). As

the action on the set {vS} is by permutation, we only have to check that if there
is a non-trivial y ∈ 〈y〉 such that, for a certain s ∈ S we have vs·y = vs, then
s ∈ R. Indeed, this means that sys−1 ∈ GLink(v). Now, if fv is the projection onto
GLink(v), we have that ys = ys

−1fv(s), or analogously that s−1fv(s) ∈ CG(y). This
implies that s ∈ CG(y)fv(s) ⊆ CG(y)GLink(v), and therefore s ∈ R.

Overall, we have proved that that

〈y〉〈〈v〉〉 = 〈y〉F (vS) =
(
〈y〉 × F (vR)

)∐
F (vS

∗
)

Now g′ centralizes gp = yp and yp clearly lies in the factor 〈y〉 × F (vR) of the
free product. By Theorem B of [41], the element g must lie in 〈y〉 × F (vR) too.
Let c ∈ F (vR) be such that g′ = yℓ · c, then yk = g′k = ykℓ · ck. Using that G is
torsion-free by Proposition 5.19, c = 1 and ℓ = 1. This would imply that g′ = y
and that g′ fixes the vertex t of the tree T , and this is a contradiction.

The next result proves that the only subgroups of a pro-C RAAGs that do not
contain free pro-p subgroups are metabelian. This can be seen as an analogous of
Tits alternative for pro-C RAAGs.
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Theorem 5.27. Let H be a subgroup of a pro-C RAAG GΓ that does not contain
a free non-abelian pro-q subgroup for any prime q. Then H is metabelian and
polycyclic. Moreover, if H is pro-p, then H is abelian.

Proof. We use induction on the number of vertices of Γ. If Γ consists of a single
vertex, then any subgroup of GΓ is pro-C cyclic and the result follows. As we
observed in Remark 5.18, GΓ = HNN(GΓ\{v}, GLink(v), id) for an arbitrarily chosen
vertex v. If H is conjugate to a subgroup of GΓ\{v} then we deduce the result
from the induction hypothesis. Otherwise, by Theorem 5.8 there exists a normal
subgroup H0 ⊴ H contained in some conjugate of Link(v) such that H/H0 is
metacyclic. Lemma 5.26 guarantees that GLink(v) is an isolated subgroup of GΓ

and so H0 is isolated in H. It follows that the only possibility for H/H0 in Theorem
5.8 is the projective group Zσ o Zρ, so that H = H0 o P , with P ∼= Zσ o Zρ and
we may assume without loss of generality that [P, P ] ∼= Zσ.

Consider the projection f : GΓ −→ GΓ\{v} and let K be the kernel of f . The
image f([H,H]) is abelian and finitely generated by the induction hypothesis.
Since K ∩ H and H0 are normal in H and do not intersect, as H0 ⊆ GLink(v),
we have that (K ∩ H)H0 = (K ∩ H) × H0. Then the commutator subgroup
[H,H] = [H0, H0][H0, P ][P, P ], and [H0, H0][H0, P ] is abelian and polycyclic be-
cause it is in the image of f([H,H]). Thus we just need to show that [P, P ]
centralizes [H0, H0][H0, P ]. To see this observe that f([P, P ]) is torsion-free and
so [P, P ] ∼= (K ∩ [P, P ])× f([P, P ]). Now K centralizes H0 and f([P, P ]) central-
izes f([H0, H0][H0, P ]) = [H0, H0][H0, P ] by inductive hypothesis, so we deduce
that [H,H] is abelian.

Suppose now H is pro-p. Then P ∼= Zp. But the action of P on H0 is the same
as the action of f(P ) on H0 which is trivial since f(H) is abelian by the inductive
hypothesis. Therefore H = H0 × P is abelian.

The next result describes two-generated subgroups of pro-p RAAGs. The pro-
C case is necessarily more complicate, as metabelian pro-C groups could appear,
as we already discussed, but also pro-C groups of the form (Zσ1

∐
Zτ1) × · · · ×

(Zσℓ

∐
Zτℓ) for σi, τi ⊆ π(C), with σi pairwise disjoint and τi pairwise disjoint.

Theorem 5.28. Let H be a two-generated subgroup of a pro-p RAAG GΓ. Then
H is either free pro-p or free abelian.

Proof. We use induction on the number of vertices of Γ. If Γ is a vertex, then
GΓ is abelian and so is each subgroup so the statement holds. As we noticed
in Remark 5.18, chosen an arbitrary vertex v, we can obtain a decomposition
GΓ = HNN(GΓ\{v}, GLink(v), id). If H is conjugate to a subgroup of GΓ\{v}
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then we deduce the result from the induction hypothesis. Otherwise, H acts
non-trivially on the standard pro-p tree associated with HNN extension GΓ =
HNN(GΓ\{v}, GLink(v), id). Considering the projection f : GΓ −→ GΓ\{v}, by in-
duction hypothesis we can deduce that f(H) is either free or abelian. If f(H) is
free, then we are done because by the Hopfian property (see Proposition 2.5.2 of
[72]) the projection must be an isomorphism.

Suppose suppose now that f(H) is abelian. By the induction hypothesis, we
can assume that every stabiliser of a vertex in H is abelian of rank at most two.
By Lemmas 5.13 and 5.26, GLink(v) is an isolated subgroup of GΓ and so every edge
stabiliser of H is isolated in the vertex stabiliser of its incident vertex. As the only
isolated proper subgroups of an abelian pro-p group of rank two are procyclic, it
follows that such are the edge stabilisers. Then by Theorem 6.8 of [20] H is the
fundamental group of a finite graph of pro-p groups (H,∆) whose vertex and edge
groups are isomorphic to vertex and edge stabilisers in H respectively. Assuming
without loss of generality that this graph of groups is reduced, we deduce that
isolation of edge groups in the incident vertex groups implies that either the edge
groups have strictly smaller rank than the incident vertex groups, or they coincide
(in the case when ∆ contains loops).

As H is two generated and edge groups are isolated, ∆ cannot have more than
two vertices. For the same reason, if |V (∆)| = 2, as the graph of groups is reduced,
the edge group between the two vertices can only be trivial. Another remark is
that the stable letter of each HNN extension corresponding to a loop must be one
of the two generators of the group.

If at least an edge group is trivial, then H splits as a free pro-p product (see
Proposition 2.16 of [17]) and so, being 2-generated, it has to be a free pro-p product
of torsion-free cyclic groups, hence it is free pro-p. We only have to analyse the
case when no edge group is trivial.

If ∆ has a single vertex, we have to analyse the case when there are zero, one,
or two loops. If there are two loops, as each stable letter of an HNN extension
must be one of the two generators, the vertex group must be trivial and H is a
free pro-p group. In all of the other cases, the vertex group has either rank one
or two.

Let us now consider the case when ∆ has a vertex w with a single loop. We are
left to consider the case when the vertex group has either rank one or 2.

Suppose the vertex group has rank one. Since we can assume the edge group
not to be trivial, it has to be also abelian of rank 1 and since edge groups
are retractions, it follows that the edge group coincides with the vertex group.
Since pro-C RAAGs are torsion-free, it follows that H splits as an HNN extension
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HNN(H(w),H(w), id), which is a free abelian pro-p group of rank two.
The last case to consider is when H(w) is free abelian of rank 2. As the group is

two-generated and one generator must be the stable letter t of the HNN extension,
the only possibility is that H(w) = 〈x, xt〉 for some x, t ∈ G, t power of the stable
letter. Consider the retraction f : GΓ → GΓ\{v}. Since 〈x, xt〉 is a free abelian
group of rank 2, we have that x = f(x), xf(t) also generate an abelian group of rank
2 and so, in particular, f(t) ∈ GΓ\{v} is nontrivial. Now, by induction hypothesis,
the 2-generated subgroup 〈x, f(t)〉 < GΓ\{v} is either free or free abelian. The
latter case implies that x = xf(t) contradicting the fact that 〈x, xf(t)〉 is of rank 2.
If x and f(t) generate a free group, then [x, xf (t)] 6= 1 contradicting that the fact
that 〈x, xf(t)〉 is abelian. This proves that this case cannot hold.

Since all the alternatives have been considered, the result follows.
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6
Abelian splittings of RAAGs

In this section we will study how a pro-C RAAG can split as an amalgamated
product or HNN extension over an abelian subgroup.

In [35], Hull and Groves proved that an abstract RAAG splits over an abelian
subgroup if and only if the underlying graph either has a separating complete
graph or it is disconnected. This result extends a previous theorem of Clay [21],
who proved it in the case of cyclic splittings. In the first section we prove that the
same conditions are necessary and sufficient in order to have abelian splittings of
pro-C RAAGs. We also point out that, if the underlying graph is connected, a
conjugate of a standard subgroup is always contained in the abelian amalgamated
subgroup.

Describing all the abelian splittings of a group is in general difficult as some of
them are not compatible with each other. In any case, there is a construction,
called the JSJ decomposition, that encodes all the “universal” splittings of a group
over a chosen class of subgroups. In the second section we give a description of JSJ
decompositions in profinite groups, which is obtained following the approach of
Guirardel and Levitt in [37]. In particular, we can define A-JSJ decompositions,
meaning that we describe all splittings of a group when the amalgamated sub-
groups are in the class of groups A, and then relative (A,H)-JSJ decompositions,
in the sense that every subgroup in the class H is elliptic in the decomposition.

In the third section we obtain a (A,H)-JSJ decomposition of pro-C RAAGs
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in the case that A is the class of abelian groups and H is the class of procyc-
lic subgroups generated by a canonical generator. The proof is constructive, in
the sense that it inheritely provides an algorithm to obtain the aforementioned
decomposition.

In the last section we refine the relative decomposition in order to obtain a
general A-JSJ decomposition. We conclude with an explicit example showing the
algorithm beneath the construction of these decompositions.

6.1 Abelian splittings of profinite RAAGs

The main goal of this section is to describe when and how a pro-C RAAGs splits
over a pro-C abelian group. We begin with two auxiliary lemmas.

Lemma 6.1. Let G = GΓ be a pro-C RAAG associated with a connected graph
Γ. Suppose that G acts on a pro-C tree T without a global fixed point, and that
all canonical generators are elliptic. Then there exist two canonical generators
v, w ∈ V (Γ) such that (v, w) /∈ E(Γ) and 〈v, w〉 does not stabilize any vertex of T .

Proof. Let T v be the subtree of fixed points of a canonical generator v. If, by
contradiction, T v ∩ Tw 6= ∅ for each couple of canonical generators v, w ∈ V (Γ),
by Lemma 5.3 there is a point contained in

⋂
v∈V (Γ) T

v fixed by all the generators
and so fixed by G, contradicting the hypothesis. This implies that there are at
least two vertices v, w ∈ V (Γ) such that 〈v, w〉 does not stabilize any vertex of T .
Notice that such vertices cannot be adjacent by Lemma 5.5 (2).

Lemma 6.2. Let GΓ be a pro-C RAAG over a connected graph Γ acting on a pro-C
tree T with abelian edge stabilisers. Suppose that a canonical generator v ∈ GΓ is
hyperbolic, then:

1. Star(v) is a complete graph;
2. either V (Γ) = Star(v) or the set

S := {u ∈ Link(v) | Star(u) is not a complete graph}

separates Star(v)r S and Γr Star(v);
3. the standard subgroup generated by S stabilizes an edge.

Proof. 1. If there exists a single vertex adjacent to v, then the result holds.
Suppose then that there exist two distinct vertices w1, w2 ∈ Link(v).
For each canonical generator w commuting with v we can restrict to the
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minimal subtree T⟨v,w⟩ on which the abelian subgroup 〈v, w〉 acts. By The-
orems 5.7 and 5.8, the group 〈v, w〉 is a procyclic extension of the kernel
of this action and since 〈v, w〉 is abelian of rank 2, there exists an element
g = ab with a ∈ 〈v〉 ≤ G and b ∈ 〈w〉 ≤ G with b 6= 1 (as v is hyperbolic)
in the kernel of the action, i.e. g fixes pointwise the minimal subtree T⟨v,w⟩.
Pick now two elements gi = aibi with i ∈ {1, 2} for a1, a2 ∈ 〈v〉, b1 ∈ 〈w1〉,
b2 ∈ 〈w2〉 such that b1, b2 are not trivial and such that g1, g2 stabilize point-
wise Tv. By hypothesis g1, g2 are contained in the abelian stabilisers of the
edges of Tv. Let K = 〈g1, g2〉 and let f be the retraction of G onto the
standard subgroup generated by w1, w2. The image f(K) ≤ G{w1,w2} is an
abelian subgroup that contains b1 and b2. The element b1 is in the central-
iser of b2 and they are both with minimal support among their conjugates,
so applying Lemma 5.20 this can happen only if w1 ∈ Link(b2) = Link(w2),
so w1, w2 are adjacent and Star(v) is a complete graph.

2. Suppose V (Γ) 6= Star(v), as Γ is connected we have that

S = {u ∈ Link(v) | Star(u) is not a complete graph}

is non-empty. It is immediate to see that S separates the subgraphs gener-
ated by Star(v)rS and ΓrStar(v) because, as Link(v) is a complete graph
by (1), each vertex in Star(v)r S is connected only to vertices in Star(v).

3. By Lemma 5.5(1), each vertex of S fixes the subtree Tv, which contains at
least an edge because v is hyperbolic. By (1), the action on T of any element
of S is elliptic, and hence Tv is fixed pointwise by S.

We are now ready to prove the main theorem of this section.

Theorem 6.3. Let G = GΓ be a pro-C RAAG associated with a connected graph
Γ. Then G acts on a pro-C tree with abelian edge stabilisers without a global fixed
point if and only if either Γ is a complete graph or Γ has a disconnecting complete
graph.
In the second case, there exists a disconnecting complete graph whose standard
subgroup is contained in one edge stabiliser of T .

Proof. The case when Γ is a complete graph is clear: indeed, denoting by π =
π(C), the pro-C RAAG GΓ is isomorphic to Zn

π, that splits as an HNN-extension
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HNN(Zn−1
π ,Zn−1

π , id). Similarly, if there is a complete graph K that disconnects
Γ, i.e. ΓrK = Γ1 ∪ Γ2 with Γ1,Γ2 disjoint subgraphs, then G splits as

GΓ = GΓ1∪K qGK
GΓ2∪K

and so G acts on the standard pro-C tree associated with this splitting.
Suppose now that G acts on a pro-C tree T with abelian edge stabilisers. If there
exists a hyperbolic canonical generator v of G, by Lemma 6.2 we know that either
Γ is complete or the set S := {u ∈ Link(v) | Star(u) is not a complete graph} is a
disconnecting complete graph contained in an edge stabiliser. We are left to the
case when each canonical generator of G is elliptic.

By Lemma 6.1 there exist two vertices v, w ∈ V (Γ) such that no vertex of T is
stabilized by both v and w. As each canonical generator acts elliptically, let tv, tw
be two vertices of T stabilized by v and w respectively. Let S = [tv, tw] be the
geodesic between these two vertices in T .
By Lemma 6.1 S contains at least one edge, and moreover there exists at least one
edge of S that is not stabilised either by v or by w, as by collapsing the subtrees
S ∩Tv and S ∩Tw to a point (noticing that we chose v, w such that Tv ∩Tw = ∅),
we would otherwise have S to be disconnected.Define K as a maximal (by the
number of vertices contained) complete subgraph of Γ contained in an edge group
of S that is not stabilized by either v or w, say e ∈ E(T ). If K is empty, let e be
any edge of S, not stabilized by v or w. It is important to notice that even if S
might contain infinitely many edges satisfying the properties, Γ is finite hence K
is well defined. We claim that K is a complete graph of Γ that disconnects the
vertices v and w.
Suppose by contradiction that it is not, then we could find a finite path p =
(v, u1, . . . , uk, w) in Γ, such that no vertex of p is contained in K. By Lemma
5.9 there exist some vertices t1, . . . , tk+2 such that v stabilizes t1, ui stabilizes
the geodesic Si = [ti, ti+1] for i = 1, . . . , k, and w stabilizes [tk+1, tk+2]. Set
t0 = tv and Tk+3 = tw. In this setting, v stabilizes S0 = [t0, t1] and w stabilizes
Sk+1 = [tk+1, tw]. Furthermore, the union S ′ =

⋃
i∈{0,...,k+1} Si of the Si is a pro-p

tree that contains tv and tw, hence it contains the whole [tv, tw]. In particular,
S ′ contains e, so e ∈ [tj, tj+1] for some j ∈ {0, . . . , k + 3}. By the choice of e,
it cannot be stabilized by v or w, so there exists a vertex uj such that uj ∈ Ge.
Now Ge is an abelian pro-C subgroup of G that contains uj and each vertex of K,
but by Theorem 5.23 this is only possible if uj is adjacent to every vertex of K.
By maximality of K, uj ∈ K, but this contradicts the fact that no element of the
path p is contained in K. If we assumed K to be empty, we have anyway proved
that there is a vertex uj contained in an edge stabiliser of T contradicting that
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K = ∅.
This proves that the graph K is a disconnecting complete graph contained in an
edge stabiliser, as required.

6.2 JSJ decompositions

Prerequisites

In the previous section, we have characterised when a pro-C RAAGs admits a
splitting over an abelian subgroup. Our next goal is to describe all the split-
tings of these groups over abelian subgroups. In the abstract case, the abelian
splittings of a finitely generated group are encoded in a construction called the
JSJ decomposition of a group. We develop this theory following the approach of
Guirardel and Levitt in [37]. We show that it can be naturally extended to the
pro-C world; for additional results and alternative definitions on the theory of JSJ
decompositions see the references in [37].

Definition 6.4 (A-trees). For each class of pro-C groups A closed for subgroups
and conjugation, we define an A-tree (T,G) as a pro-C tree T with an action of a
pro-C group G such that each edge stabiliser is a group in the class A.

We often denote the A-tree as T rather than (T,G) whenever the pro-C group
G acting on it is clear by the context and we will say that an A-tree (T,G) is
trivial if T consists of a single vertex stabilized by the whole G.

We say that a subgroup H of a pro-C group G is universally elliptic (for actions
over A-trees) if the action of H is elliptic over any A-tree (T,G) on which G acts.

Definition 6.5 (JSJ decompositions).

• An A-tree (T,G) is universally elliptic if its edge stabilisers Ge ≤ G are
universally elliptic for actions on A-trees.

• An A-tree (T,G) dominates another A-tree (T ′, G) if the same group G acts
on both of them and the action of vertex stabilisers Gv, v ∈ T is elliptic on
T ′ too.

• Two A-trees (T,G) and (T ′, G) are equivalent if the same pro-C group G
acts on both of them and they dominate each other. An equivalence class
of A-trees for this relation is said to be a deformation space.

• The deformation space of the A-trees that are universally elliptic and that
dominate any other universally elliptic A-tree on which G acts is the JSJ
deformation space and its elements are called the JSJ tree decompositions.
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Notice that the deformation space is unique, but there might be many non-
isomorphic tree decompositions of a pro-C group G.
Definition 6.6 (Rigid and flexible vertices). A vertex v of a JSJ-tree is said to
be rigid if it is universally elliptic for the action on any A-tree (even if the tree is
not universally elliptic) and flexible otherwise.

Notice that if all vertex groups of an A-tree are rigid, then the A-tree is a JSJ
tree, but the converse is not true, as the following example shows.
Example 6.7. If G ∼= Zn

ρ for n ≥ 2, ρ an arbitrary set of primes, the abelian JSJ
decomposition is trivial.
We claim that for each element g ∈ G we can produce an A-tree (T,G) such
that the action of g on T is hyperbolic. Consider a maximal procyclic subgroup
C containing g ∈ G. Any generator of a maximal procyclic group can be part
of a basis of Zn

ρ , so we can pick a complement B ∼= Zn−1
ρ of C in G and write

G = HNN(B,B, id) with a generator of C as the stable letter. The standard
pro-C tree associated with this pro-C HNN extension is a vertex with a single
loop and g is hyperbolic by construction. This proves that no edge group can be
universally elliptic, hence there exists a single universally elliptic A-tree (T,G) on
which G acts, which is a tree T with a single point. This is the JSJ decomposition
of G, which has a single flexible vertex.

Sometimes is convenient to study relative JSJ decompositions, which are defined
as follows.
Definition 6.8 (Relative JSJ Decompositions). Let H be an arbitrary family of
subgroups of a pro-C group G. An A-tree (T,G) is an (A,H)-tree if all the sub-
groups in the class H are elliptic. An (A,H)-tree is an (A,H)-JSJ decomposition
if it is universally elliptic for actions on (A,H)-trees and it dominates every other
universally elliptic (A,H)-tree.

We now turn our attention to the study of the JSJ-decomposition of a pro-C
RAAG over abelian groups. Let G = GΓ be a pro-C RAAG over a finite connected
graph Γ. From here on, we assume A to be the class of abelian pro-C subgroups
of G and H to be the class of procyclic groups generated by canonical generators
of G.

We first construct by induction a decomposition of G over abelian subgroups
relative to H, and prove that it is actually an (A,H)-JSJ decomposition. We then
refine this decomposition in order to obtain the A-JSJ decomposition of G.

As we are interested in splittings over standard subgroups of disconnecting
complete graphs, we first need some basic properties of splittings of this type.
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Lemma 6.9. Let GΓ be a pro-C RAAG over a finite connected graph Γ and K ≤ Γ
be a complete subgraph of Γ.

1. If all cyclic subgroups generated by canonical generators in K are universally
elliptic for their action on A-trees, then the whole standard subgroup GK is
universally elliptic for its action on A-trees.

2. If K is a minimal disconnecting complete graph (in the sense that no proper
subset of K is a disconnecting complete graph), then the standard subgroup
GK is universally elliptic for its action on A-trees.

3. If Star(v) is a complete graph for v ∈ V (Γ), then there exists an A-tree on
which the action of v is hyperbolic.

Proof.

1. Since by assumption Γ is connected, this follows as a consequence of Lemma
5.5 (2).

2. Assume that G acts on an A-tree (T,G) and suppose that there exists at
least one hyperbolic canonical generator v ∈ V (K). By Lemma 6.2(1), we
have that Star(v) is a complete graph. Since a complete graph does not
have any disconnecting subgraphs, it follows that Γ 6= Star(v). From the
minimality of the disconnecting complete graph K, we have that the full
subgraph Γ′ generated by (V (Γ) r V (K)) ∪ {v} is connected and v is a
disconnecting vertex of Γ′. In particular, there are two vertices w1, w2 ∈
V (Γ′) that are adjacent to v but lie in different connected components of
Γ rK. This contradicts the fact that Star(v) is a complete graph. Hence
each canonical generator of K must be elliptic and by (1) the whole K is
elliptic.

3. It suffices to notice that the standard pro-C tree associated with the splitting
(5.2) has abelian edge stabilisers because Link(v) is a complete graph.

We record the following graph theoretical observation.

Lemma 6.10 (Disconnecting graphs of components). Let Γ be a finite connected
simplicial graph. Let K be a disconnecting complete subgraph of Γ and let {Γi |
i ∈ {1, . . . ,m}} be the connected components of ΓrK.

If K ′ is a disconnecting subgraph of Γj ∪K for some j ∈ {1, . . . ,m}, then K ′

is also a disconnecting subgraph of Γ.
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Proof. Suppose on the contrary that ΓrK ′ is connected. Since K is by assumption
a disconnecting subgraph of Γ, it follows that K is not contained in K ′ and so
K \K ′ is nonempty. Since ΓrK ′ is connected and K is disconnecting, for each
vertex v in (Γj ∪ K) r K ′ there is a vertex w(v) in K r K ′ such that v and
w(v) are connected by a path inside (Γj ∪ K) r K ′. As K is complete, there
is an edge between any two vertices in K. It follows that any pair of vertices
v, v′ ∈ (Γj ∪K) rK ′ are connected by the path which is the composition of the
paths from v to w(v), the edge (w(v), w(v′)) and the path from w(v′) to v′. Since
this path is in (Γj ∪K)rK ′, we have that (Γj ∪K)rK ′ is connected, deriving
a contradiction.

6.3 (A,H)-JSJ decomposition of pro-C RAAGs

We first construct the (relative) abelian JSJ decomposition of pro-C RAAGs under
the assumption that all the subgroups in the class H = {〈v〉 | v ∈ V (Γ)} of
procyclic subgroups generated by canonical generators are elliptic.

Theorem 6.11. Let G = GΓ be a pro-C RAAG associated with a connected
abstract finite graph Γ.

There is a (possibly trivial) decomposition of G as a fundamental pro-C group
of a reduced finite tree of pro-C groups (G∆,∆) with the following properties:

• vertex groups of (G∆,∆) are standard subgroups which are either abelian or
their underlying graph does not contain any disconnecting complete subgraph;

• each edge group of (G∆,∆) is a standard subgroup associated with a discon-
necting complete subgraph Ke of Γ and, moreover, Ke is a minimal (with
respect to inclusion) disconnecting complete graph of a subgraph Γ′ of Γ.

Furthermore, the standard pro-C tree associated with this decomposition is an
(A,H)-JSJ tree decomposition (T∆, G) of G.

Proof. We prove the statements by induction on the number of generators of the
pro-C RAAG.

Assume first that Γ has one vertex, i.e. G = Zπ(C). In this case, we consider
the decomposition as a fundamental group of a graph of groups to be trivial, so
∆ is a point and the associated group is Zπ(C). This decomposition satisfies the
required conditions. Furthermore, since G is a standard subgroup, by assumption
it is elliptic and so the (A,H)-JSJ decomposition of G is trivial and agrees with
the decomposition as a fundamental group of a graph of groups.
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Assume that we have already established the decomposition of every pro-C
RAAG whose underlying graph has at most n−1 vertices as a fundamental group
of a graph of groups and that we have proved that the (A,H)-JSJ decomposition
of G is determined by the group decomposition as a fundamental group of a graph
of pro-C groups satisfying the properties of the theorem.

Let now Γ be a connected graph with n vertices, n ≥ 2. Suppose first that Γ
does not have any disconnecting complete subgraph. In this case, we consider the
decomposition as a fundamental group of a graph of groups to be trivial and so ∆
has one vertex with corresponding group G. This decomposition satisfies the re-
quirements. If Γ is a complete graph, then G ' Zn

π(C). Since by assumption, each
canonical generator is elliptic, then by Lemma 6.9, the group G stabilizes a point,
and hence the (A,H)-JSJ decomposition is trivial and coincides with the decom-
position of G as the fundamental group of a graph of groups. If Γ is not complete
and does not have any disconnecting complete subgraph, then by Theorem 6.3 G
cannot act non-trivially on an A-tree, so the (A,H)-JSJ decomposition is again
trivial.

Suppose now that Γ has a disconnecting complete graph. Let K be a disconnect-
ing complete graph such that |V (K)| is minimal among disconnecting complete
graphs.

We first construct a splitting of G as an amalgamated free product over the
standard subgroup GK . Assume that Γ r K has m ≥ 2 nontrivial connected
components Γi, for i ∈ {1, . . . ,m}. In this case, we consider the splitting of G as
a pro-C amalgamated product of the form

G =
m∐
i=1

GK
GK∪Γi .

By Theorem 6.5.2 of [72], this decomposition corresponds to the pro-C funda-
mental group of a tree of groups (G∆,∆) with m vertices V (∆) = {x1, . . . , xm},
whose vertex groups {GK∪Γi | i ∈ {1, . . . ,m}} respectively, and with all edges
of E(∆) stabilised by GK . Since K is a complete graph, GK is a pro-C abelian
subgroup and hence this decomposition is an A-decomposition of G. Notice that
if m > 2, the underlying tree ∆ is not unique. Indeed any tree with m vertices
provides the same fundamental group G since all edge groups coincide. Without
loss of generality, we choose the underlying graph ∆ to be a path consisting of
m points and m − 1 edges, vertex groups GK∪Γi and edge groups GK (with the
natural embeddings). By construction, the graph of pro-C groups (G∆,∆) has G
as its pro-C fundamental group.

125



By the induction hypothesis, for each i ∈ {1, . . . ,m} each vertex group GK∪Γi

has a decomposition as a fundamental group of a tree of pro-C groups (G∆i
,∆i) as

in the statement and this decomposition determines an (A,H)-JSJ tree decom-
position.

For each i ∈ {1, . . . ,m}, by Lemma 6.9 the action of the group GK is elliptic
on any (A,H)-tree (TK∪Γi,GK∪Γi) and so GK is contained in a vertex stabiliser of
TK∪Γi . Hence, a conjugate of GK is contained in a vertex group of the graph of
groups (G∆i

,∆i), namely vi ∈ ∆i. By Lemma 5.15, if a conjugate of a canonical
generator is contained in a standard subgroup, then the standard subgroup con-
tains the generator. As each vertex group of (G∆i

,∆i) is a standard subgroup by
induction, GK itself is contained in the vertex group G∆i

(vi).
We construct a tree of groups (G∆,∆) in the following way. Define V (∆) =⋃m
i=1 V (∆i) and

E(∆) = {E(∆i), (vj, vℓ) | i ∈ {1, . . . ,m}, (vj, vℓ) ∈ E(∆)}.

For each w ∈ V (∆) there is i ∈ {1, . . . ,m} such that w ∈ ∆i and we define the
group G∆(w) of G∆ to be G∆(w) = G∆i

(w). Similarly, if e is an edge of Γ such that
e ∈ E(∆i), then the corresponding group (and vertex embeddings) are induced
from ∆i. If e = (vj, vℓ), we define G∆(δ) = GK (with the natural embeddings).
This graph of groups is well-defined as each edge group embeds in the adjacent
vertex groups and its pro-C fundamental group is exactly G by construction (as
the fundamental group of the graphs (G∆i

,∆i) are the standard subgroups GK∪Γi
).

This graph of groups is reduced. Indeed by induction, edge groups of (G∆i
,∆i)

do not coincide with the adjacent vertex groups. We next show that GK cannot
coincide with any vertex group in G∆(vi). Indeed, by definition, Γi is a nontrivial
connected component of Γ \ K and so GK∪Γi 6= GK and, in particular, if the
decomposition of GK∪Γi is trivial, then the unique vertex group does not coincide
with GK . Assume next that GK∪Γi has a nontrivial decomposition satisfying the
conditions of the statement and suppose by contradiction that there is a vertex
group of (G∆i

,∆i) equal to GK . In particular, since the graph K ∪Γi is connected
and edge groups are standard subgroups of complete disconnecting subgraphs
of K ∪ Γi, there would be disconnecting subgraph K ′ of K ∪ Γi contained in
K. By Lemma 6.10, K ′ would also be a disconnecting complete subgraph of Γ,
contradicting the minimality of K. Hence, we have shown that the graph of groups
is reduced.

We next show that the decomposition as a fundamental group of a graph of
groups satisfies the required properties. Indeed, by the inductive hypothesis on ∆i,
we have that each vertex group of G∆ is a standard subgroup which is either abelian
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or the underlying graph does not have disconnecting complete subgraphs; and the
edge groups of G∆ are either GK or, by induction, they are standard subgroups
associated with disconnecting complete subgraphs of a certain K ∪ Γi, which are
also disconnecting subgraphs for Γ by Lemma 6.10. In the former case, by our
choice GK is the standard subgroup of a minimal complete disconnecting subgraph
of Γ. In the latter case, the induction hypothesis assures that the associated
disconnecting complete subgraph is minimal for a subgraph of K ∪ Γi, which is
also a subgraph of Γ.

Finally, we are left to check that the standard tree (T∆, G) associated with the
decomposition as a fundamental group of a graph of groups given for G is an
(A,H)-JSJ tree. The tree (T∆, G) is universally elliptic since each edge stabiliser
is either universally elliptic by the induction hypothesis or it is a conjugate of GK

and since GK is abelian and generated by universally elliptic elements, by Lemma
6.9 (2), GK acts universally elliptic on any A,H-tree.

In order to prove that (T∆, G) dominates any other (A,H)-tree (T ′, G), consider
a vertex stabiliser H ≤ G given by the decomposition of G as a fundamental group
of graphs of groups. By construction, H is either a standard subgroup associated
with a complete graph, with an elliptic action on any (A,H)-tree by Lemma 6.9
(2), or it is a standard subgroup associated with a graph without disconnecting
complete subgraphs, which is also elliptic for the action on any (A,H)-tree by
Theorem 6.3.

Therefore, the (A,H)-tree is a JSJ-tree decomposition of G.

6.4 A-JSJ decomposition of pro-C RAAGs

In order to obtain the general A-JSJ decomposition, we must further refine the
(A,H)-JSJ decomposition described in Theorem 6.11.

Definition 6.12 (Hanging vertex). We say that a vertex v of Γ is a hanging vertex
if Star(v) is a complete graph and for each w ∈ Link(v), Star(w) is not a complete
graph.

Theorem 6.13. Let G = GΓ be a pro-C RAAG associated with a connected
abstract finite graph Γ.

There is a (possibly trivial) decomposition of G as a fundamental pro-C group
of a reduced finite graph of pro-C groups (GΘ,Θ) with the following properties:

• the underlying graph Θ is either a tree or a tree with loops;
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• vertex groups of (GΘ,Θ) are standard subgroups which are either abelian or
their underlying graph does not contain any disconnecting complete graph;

• each edge group of (GΘ,Θ) is a standard subgroup associated with a discon-
necting complete subgraph of Γ;

• hanging vertices do not belong to any vertex group.

Furthermore, the standard pro-C tree associated with this decomposition is an
A-JSJ tree decomposition (TΘ, G) of G.

Proof. Suppose first that |V (Γ)| = 1, so G = Zπ(C). In this case define a graph
Θ consisting of a single vertex with a loop, so that V (Θ) = {vΘ}, E(Θ) = {eΘ}
with d0(eΘ) = d1(eΘ) = vΘ. Define the corresponding vertex and edge group
as GΘ(eΘ) = GΘ(vΘ) = 1 (with the natural embedding). The graph of groups
(GΘ,Θ) satisfies the required properties and the associated pro-C tree is the A-
JSJ decomposition of G because the trivial element is always elliptic.

Assume now that |V (Γ)| ≥ 2. If Γ does not have disconnecting complete graphs,
then the trivial decomposition, with Θ consisting of a single vertex with corres-
ponding group G, satisfies the requirements. If Γ is a complete graph, then the
associated tree decomposition (TΘ, G), which is trivial, is the A-JSJ decompos-
ition, see discussion in Example 6.7. Similarly, if Γ is not complete and it has
no disconnecting complete subgraph, then the A-JSJ decomposition is trivial by
Theorem 6.3.

In the case when Γ has disconnecting complete subgraphs, we first consider the
graph of pro-C groups (G∆,∆) as described in Theorem 6.11.

Let HV (Γ) ⊂ V (Γ) be the set of hanging vertices of Γ. We claim that, for
each v ∈ HV (Γ), the standard subgroup GStar(v) coincides with an abelian vertex
group of (G∆,∆). Since by definition Star(v) is complete, GStar(v) is abelian and
so by Lemma 6.9 the action of this subgroup on T∆ is elliptic and therefore a
conjugate of this subgroup is contained in at least one vertex group of (G∆,∆).
As each of these vertex groups is a standard subgroup, by Lemma 5.15 GStar(v)

itself is contained in them. Notice that if Star(v) disconnects a graph, then so
does Link(v), and similarly, if Star(v) is contained in a complete disconnecting
subgraph K, then K \ {v} is also a disconnecting subgraph. Since edge groups
are minimal complete disconnecting subgraphs of a subgraph of Γ, see Theorem
6.11, from the latter observation we have that GStar(v) cannot be contained in
any edge group of the graph of groups (G∆,∆) and so GStar(v) is contained in a
unique vertex group, namely the vertex group GΓ′ , which by Theorem 6.11 is a
standard subgroup associated with some subgraph Γ′ < Γ. If GStar(v) � GΓ′ , then
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there is no edge between vertices in Γ′ r Star(v) 6= ∅ and v, and so GΓ′ is not
abelian and Link(v) is a disconnecting subgraph of Γ′, contradicting the vertex
group description of Theorem 6.11. Therefore, we have that GStar(v) is precisely
the vertex group.

Similarly, v cannot be contained in any edge group of (G∆,∆) because such
groups are minimal disconnecting complete graphs K, and K r v would also be a
disconnecting complete graph. For this reason, for each v ∈ HV (Γ), there exists
only a single vertex dv ∈ V (∆) such that 〈v〉 ≤ G∆(dv). Notice that, as G∆(dv) is
abelian, it is immediate from the definition of hanging vertex that v is the only
hanging vertex contained in G∆(dv), so dv1 6= dv2 for each distinct v1, v2 ∈ HV (Γ).

We define a graph of groups (G∆0 ,∆0) in the following way. We define V (∆0) =
V (∆) and E(∆0) = E(∆) ∪ {ev | v ∈ HV (Γ)}, where d0(ev) = d1(ev) = dv. For
w ∈ V (∆0), if w = dv for some v ∈ HV (Γ), then we set G∆0(dv) = G∆0(ev) =
GLink(v) (the embeddings from the edge groups to the vertex groups are the iden-
tity) and otherwise, we set G∆0(w) = G∆(w) for w ∈ V (∆0), w 6= dv, v a handing
vertex and G∆0(e) = G∆(e) for e ∈ E(∆). As we observed above, since hanging
vertices do not belong to any edge group, the embeddings from edges groups to
vertex groups in (G∆,∆) also define embeddings in (G∆0 ,∆0).

The graph of pro-C groups (G∆0 ,∆0) may not be reduced, so we define (GΘ,Θ)
as the reduced graph of groups obtained from (G∆0 ,∆0). By construction, the
graph of groups (GΘ,Θ) is reduced. The underlying graph Θ is obtained from ∆0

by collapsing some edges and in turn, the graph ∆0 is obtained by adding loops
to the tree ∆ and therefore Θ is a tree with loops. Vertex and edge groups are
either equal to GLink(v) for some v ∈ HV (Γ) or they inherit the structure of vertex
and edge groups of (G∆,∆). No hanging vertex can be contained in any vertex
group by construction. As the pro-C fundamental group of each vertex with loop
(G∆0 , {dv, ev}) is exactly the pro-C fundamental group of (G∆, {dv}), the pro-C
fundamental group of (GΘ,Θ) is also G. Therefore, the decomposition of G as a
fundamental group of graph of groups satisfies the requirements of the statement.

In order to conclude, we have to check that the standard tree (TΘ, G) associated
with the decomposition given for G as a fundamental group of a graph of groups
is an A-JSJ tree. Edge stabilisers are either conjugates of a standard subgroup
GLink(v) for some v ∈ HV (Γ), and in this case they act universally elliptic on any
A-trees by Lemma 6.2, or they are conjugates of standard subgroups associated
with disconnecting complete graphs of Γ, as in the (A,H)-JSJ decomposition. In
this case, there exist some subgraphs Γ′ of Γ such that our disconnecting subgraphs
are minimal among complete subgraphs that disconnect Γ′. By Lemma 6.9 (2),
edge stabilisers of TΘ act universally elliptic on each A-tree on which GΓ′ acts,
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and in particular over any A-tree on which G acts. This shows that (TΘ, G) is
universally elliptic.

In order to prove that (TΘ, G) dominates any other (A)-tree (T ′, G), we need to
prove that the action on T ′ of a vertex stabiliser H of TΘ is elliptic for each (T ′, G)
universally elliptic A-tree. Up to conjugation, we can assume that H is a standard
subgroup that corresponds to a vertex group of (GΘ,Θ). If H is non-abelian,
then it is a standard subgroup associated with a subgraph without disconnecting
complete graphs and its action on T ′ is elliptic by Theorem 6.3. Assume now
that H is abelian and suppose that there exists a canonical generator v in H such
that its action on T ′ is hyperbolic. We next show that v is a hanging vertex. By
Lemma 6.2, Star(v) must be a complete graph. Let w ∈ Link(v) such that w is an
element of H. Since H is abelian and 〈v〉 ∼= ẐC, H can not be virtually procyclic
and so by Theorem 7.1.7 of [72] there must be a nontrivial element g ∈ 〈v, w〉
contained in an edge stabiliser of T ′. As (T ′, G) is a universally elliptic A-tree, g
must be a universally elliptic element and w ∈ α(g). By Remark 5.18, the action
of g on the standard pro-C tree of the pro-C HNN extension

G = HNN(GΓr{w}, GLink(w), id)

is hyperbolic, and since g is universally elliptic on A-trees, this implies that
GLink(w) is not abelian and so Star(w) is not abelian either. As this is true for
each w ∈ Link(v), we conclude that v is a hanging vertex. However, by the con-
struction of the decomposition, hanging vertices are not contained in any vertex
stabilisers of TΘ and so we arrived at a contradiction. This proves that the action
on T ′ of each canonical generator in H is elliptic and, applying Lemma 6.9 (1),
we conclude that H is elliptic for its action on T ′, as desired.

This proves that (TΘ, G) is an A-JSJ decomposition of G.

We provide an example of an (A,H)-JSJ decomposition and an A-JSJ decom-
position of a pro-C RAAG.

Example 6.14. Consider the pro-C RAAG associated with the graph P4, which
is

a b c d

As the (A,H) and A-JSJ decompositions are uniquely determined by the asso-
ciated graph of groups, we describe only this graph of groups, writing edge and
vertex groups next to the corresponding edge and vertex. A minimal disconnect-
ing complete graph in P4 is b. The subgroup 〈a, b〉 is abelian, whereas c is a
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disconnecting complete subgraph of the graph generated by b, c, d. The graph of
groups decomposition of GP4

〈a, b〉 〈b, c〉 〈c, d〉

〈b〉 〈c〉

satisfies the conditions of Theorem 6.11 and so the corresponding tree defines
an (A,H)-JSJ decomposition of P4.

The vertex a and d are hanging vertices, because Star(a), Star(d) are complete
graphs and Star(b), Star(c) are not complete. For this reason we substitute each
of the vertices corresponding to 〈a, b〉 and 〈c, d〉 with a vertex and a loop, both
with associated group GLink(a) = 〈b〉 and GLink(d) = 〈c〉 respectively.

〈b〉 〈b, c〉 〈c〉

〈b〉 〈c〉
〈b〉 〈c〉

This graph of groups is not reduced. After reducing it,

〈b, c〉
〈b〉 〈c〉

we obtain a graph of groups decomposition of P4 satisfying the conditions of
Theorem 6.13 and so the associated tree is a A-JSJ decomposition of GP4 .
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