

Universidad Euskal Herriko

PhD Thesis

On Conciseness and Profinite RAAGs

Matteo Pintonello

Supervisors:
Montserrat Casals-Ruiz
Gustavo A. Fernández-Alcober

December 2023
(cc) 2023 Matteo Pintonello (cc by-nc 4.0)

This thesis has been carried out at the University of the Basque Country (UPV/EHU) under the financial support of the grant FPI-2018 of the Spanish Government. In addition, the author was supported by the Basque Government, projects IT974-16 and IT483-22, and the Spanish Government, projects MTM2017-86802-P and PID2020-117281GB-I00, partly with ERDF funds.

Contents

Acknowledgments vii
Introduction 1
Resumen de la tesis en castellano 7
1 Problems on group words 13
1.1 Words and verbal subgroups 14
1.2 Varieties and relatively free groups 15
1.3 On three questions of P.Hall 17
1.4 Conciseness 18
1.5 Conciseness in other classes of groups 20
1.6 A comprehensive list of known concise words 22
1.7 Tables of concise words 26
2 CONCISENESS ON NORMAL SUBGROUPS 29
2.1 Preliminaries 30
2.2 Lower central words 34
2.3 An example: the word δ_{2} 37
2.4 Outer commutator words 41
3 Counterexamples to Hall's conjecture 51
3.1 Elements of small cancellation theory 52
3.2 Ivanov's counterexample 55
3.3 Olshanskii's counterexample 62
3.4 Olshanskii's word in profinite groups 65
3.5 On generation of verbal subgroups 68
4 Coprime commutators 71
4.1 History of coprime commutators 72
4.2 Preliminaries 74
4.3 Introduction to the proofs 77
4.4 The meta-pronilpotent case for γ_{k}^{*} 81
4.5 The poly-pronilpotent case for δ_{*}^{*} 83
4.6 Strong conciseness of coprime commutators 94
5 Profinite right-angled Artin groups 97
5.1 Profinite groups acting on profinite trees 98
5.2 Basics on pro-C RAAGs 103
5.3 Direct product decomposition of pro-C RAAGs 106
5.4 Centralisers and normalisers of elements 109
5.5 Subgroups of pro-C and pro-p RAAGs 111
6 Abelian splittings of RAAGs 117
6.1 Abelian splittings of profinite RAAGs 118
6.2 JS.J decompositions 121
6.3 (\mathcal{A}, \mathcal{H})-JSJ decomposition of pro- \mathcal{C} RAAGs 124
6.4 \mathcal{A}-JSJ decomposition of pro- \mathcal{C} RAAGs 127
Bibliography 139

To my parents.

Acknowledgments

A PhD is not only an academic achievement, but a stage of life in which we have both great and hard times. Looking back at my time in Bilbao, I am overwhelmed by the amount of people that have helped me during these years.

First of all, the two people without whom I would not be here, my advisors. Gustavo, thank you for wanting me here, for helping me and pushing me, and for always being positive. I cannot say I'm a full believer yet, but you taught, and showed me with facts, that it's better not to be a non-believer. You were right, and I owe you a lot! To Montse, I cannot put into words how thankful I am for all the help you gave me! You stepped up in the moments I was struggling, you supported me a lot, and you have always been patient. Among all the great and amazing people I met here in Bilbao, you are the kindest one!

Apart from my advisors, I'll forever be grateful to Ilya for supporting me, not only economically. Half of the mathematicians that I met in Bilbao were here thanks to you, you must be proud of the network you are creating!

I thank every member of the committee that gracefully accepted to read and correct this thesis: Marta, Enric, and Leire. Thanks also to all the substitute members, in particular to Eloisa for writing the first report.

It is undeniable the importance that my coauthors have had in this work, each one of them was essential in my PhD. First of all to Pavel Zalesskii, thanks for always answering all my silly questions with your enormous knowledge and experience, and for all your patience. Then, a gigantic thank you to Pavel Shumyatsky. Your positive attitude really inspired me, and I'm grateful for collaborating with a mathematician I deeply admire. Iker, we went through a lot of adventures (and disadventures) together. I really owe you a lot, thanks for the motivation that you gave me, and for always believing! I also deeply thank Cristina for the opportunity of visiting her in Modena.

In these years in Bilbao I met many important people in my life, and I can't describe how happy I am for having had them in my life. I'll try to thank them all, roughly in chronological order. First of all Marialaura: I will be in debt
forever for calling me here; your energy and passion are an inspiration! Then, Andoni: when I met you, on my first day here, I couldn't have guessed that you would have been my flatmate, and shared the ups and downs of a PhD from the beginning till the end! I officially forgive you for the mistake at the yinkana! My Italian brother Federico, thanks for all the coffees, beers, games, mathematics that we shared! Sam, for the constant smiles you have, and for being the best handshaker ever!! Thanks to Elena, for your calm and positive attitude, to Bruno and Natalia and to the already mentioned Iker. To Xuban, for all the fun times we had with pizzas and drinks, and to Javi C. for all the Magic games we played together. To Igor, for the great tortillas, and Jone L., for sharing her non-vegeterian dishes with me. To Oihana, for introducing me to pala, to Albert, for the career discussions, and to Matteo "the wise" for trying to introduce me to surf, and for being always interested in profinite problems. To Jon G., for the inspiration, the climbs, and a special thanks for agreeing to be in my committee. A huge thank you to Lander: you are both the best organizer of everything, the serious person that solves problems, and the great friend who is always there when you need him! Thanks to my incredible friend and officemate Badre and to my amazing flatmate Thanasis, I hope you will be able to share more of your wisdom, maybe in a nice walk in the mountains. To Carmelo, that knows how to solve every problem of the apartment. To Anne, for proving that it's possible to have a great career without turning down a great normal life. A huge thank you to Mikel and Jorge! It was a pleasure to have officemates and flatmates who share almost every interest that I have, from maths to boardgames, from climbing to pizzas. You saw me more often than your girlfriends, overall! To Ivan, my honorary officemate, for the essential influence on my social life. Thanks to Richard for the long discussions in the bus rides, and to Mallika and Jon M. for all the fun we had talking and playing boardgames. Thanks to Dario, for being the best pasta-addicted flatmate I ever had. Also thanks to the people who have been here in the department, either for a long time, briefly or visiting, and I had an amazing time with, like Urban, Sasha, Doryan, Jone U., Javi de la Nuez, Sangrok, Tommaso, Elena and Francesca. Finally, thanks to all the professors of the department for their help, in particular to Javier G., Txomin and Antonio.

Out of the department of Mathematics, I shared amazing moments with many people in Bilbao. First of all, Tamara, thanks for the parties, great times and for the serious discussion walking home, they meant a lot to me! Then, Miguel: you have not (yet!) made the best pasta ever, but you won everything with your paella! And then, thanks to Lucia, Idoia, Ibai, Enric and James. I must thank all the PhD students that I met in Cambridge, Brasilia and Modena that made me
have a great time in every visit, with a special mention to Macarena and Thibault; Gla and Andrés; Daddo e Giorgia. In the last year in Bilbao, climbing has been a stress valve and has risen as one great passion, but that is a consequence of all the amazing people I met in Piugaz. You are many, but I am particularly grateful to Maite, Eli, Pablo, Dani, Antonio, Ander, Ana, Gari, Lucia, Juan, Iker and Cedric for the great times I had with you in and out of the bouldering gym!

I am grateful for having an enormous amount of friends around the world, that bless me continuously with their presence and encouragement! They are too many to thank one by one, but each individual is enormously precious to me. First of all, thanks to the extended group of the Boys. Our weekly calls are the strongest connection to my city while I am abroad, and I cannot express the importance that they have for me. It has always been much more than just playing. In Padova and Leiden I have been surrounded by an insane number of Italian mathematicians, with whom I share every possible passion. Visiting so many friends scattered around the world has been great. Thanks to all of you, with a special mention to Sergej, for sharing fun times and struggles. In Leiden I made some strong connections that I'm proud of: thanks to Ieva, Jared and Guillermo for all the visits, messages and calls we had together. Living abroad often means losing contact with people in your hometown, but not when you have an (extended) neighbourhood group like the one I have. Thanks for always welcoming me every time I'm back at home, and for being there for 15 years! A pandemic brings mainly terrible things, but it also gifted me the amazing group of InTENDAre. You are amazing, thanks for all the excursions, nights out, and for enjoying my terrible puns. Among all of these people, I owe a special thank to Marco for always being there, you are simply the best! Thanks to all the many friends, from my high school class, from "the old times", from Fermi, or that I met through videogames, with whom I'm happy to talk so often!

Overall, an enormous inspiration is due to my family! Thanks to my grandma Liliana, and my other grandparents that have been so important to me. Your examples and sacrifices allowed me to be here. Then thanks to my uncles, aunts and cousins, with a huge special mention to Claudio and Doriana.

At last, the most important people out of all: my parents Mara and Massimo. Mi avete cresciuto e supportato ogni singolo giorno. Mi avete dato opportunità che voi non avete avuto da giovani, come quelle di studiare e di viaggiare. Mi avete lasciato libero quando volevo esserlo, ed accolto ogni volta che ne avevo bisogno. E più importante di tutto, mi avete insegnato come vivere con gli altri, come questi lunghissimi ringraziamenti testimoniano. Ogni pregio che ho, l'ho appreso da voi, mentre i difetti sono tutti miei. Questa tesi è per voi.

Introduction

While the origin of group theory is often attributed to the work of Galois, Jordan, and Klein, all of their works were motivated by the connection that this discipline has either with number theory or geometry. The theory of abstract discrete groups obtained independent interest, without a geometrical inspiration, mainly at the beginning of the $20^{\text {th }}$ century, and a milestone for this is due to the work of William Burnside. In 1902 he asked whether a finitely generated torsion group is necessarily finite [15], the so-called "Burnside Problem". This question sparked interest in even deeper problems, like the study of the finiteness of finitely generated groups of finite exponent, also called "Bounded Burnside Problem". Explicitly, Grün [36] asked whether a finitely generated group G satisfying $g^{n}=1$ for all $g \in G$ is necessarily finite.

We could observe that this problem can be embedded in the greater framework of one of the most natural questions that can be asked about an algebraic structure, which is "What can we say about a group if this group follows a fixed rule?"

Of course the question is extremely heuristical, but we can view a lot of the developments in earlier group theory through this approach, which can be encoded as an example of a word problem in groups.

A group word w is a finite concatenation of variables and of their inverses, which can be seen as an element of the free group generated by n variables x_{1}, \ldots, x_{n}. For any group G, the word w naturally gives a map from G^{n} to G, simply by substituting the elements of the group in the variables in every possible way. The
image of this map is the set of word values in G, usually denoted by $w\{G\}$, and the subgroup $w(G)$ they generate is called verbal subgroup. Of special interest is the study of varieties of groups, that are the classes of groups in which a certain word w is a law, in the sense that it takes only the trivial value.

The "rules" mentioned in Grün's question are simply group laws, so in modern terms he asked how to study the variety of groups generated by the law x^{n}. Other problems that can be seen in this optics can be the study of abelian, or nilpotent and solvable groups of bounded class, which are the varieties generated by the commutator word $\left[x_{1}, x_{2}\right]$, by a lower central word or by a derived word respectively.

Rather than studying only groups in which a word w is a law, we could also wonder whether the fact that w takes finitely many values in a group G has any implication on the structure of G. It is easy to realise that any group with finitely many commutators is finite-by-abelian, or, in other words, if the set of γ_{2}-values is finite in a group G, then the corresponding verbal subgroup is finite. Philip Hall realized that the same is true for all power words and lower central words, not only for γ_{2}. As a consequence, Hall conjectured that for any group word, if the set $w\{G\}$ of word values in a certain group G is finite, then the verbal subgroup $w(G)$ is finite too. If a word satisfies this property for every group G, it is called concise and, if it does for all groups in a given class \mathcal{C}, it is said to be concise in \mathcal{C}.

Many words have been proven to be concise, moreover it was proved by Merzljakov that all words are concise in linear groups, but a counterexample for the general case was constructed by Ivanov, using small cancellation theory. Later, further counterexamples were obtained by Olshanskii and Storozhev with similar methods. The study of concise words progressed anyway, both by seeking new words that are concise in all groups, and by studying the same problem in other classes of groups. As finitely generated linear groups are residually finite, the natural candidate for the biggest class of groups in which all words are concise is the class of residually finite groups. It is interesting to notice that a word is concise in residually finite groups if and only if it is concise in profinite groups, so another important development has been recently proposed. Every profinite group of cardinality smaller than $2^{\aleph_{0}}$ is finite, and it was suggested that a similar phenomenon happens for word values too, leading to the conjecture that every set of word values with less than $2^{\aleph_{0}}$ values is finite. Joining this open problem with the conjecture that all words are concise in residually finite groups, it makes sense to define that a word is strongly concise in profinite groups if, whenever it takes less than $2^{\aleph_{0}}$ values, its (closed) verbal subgroup is finite.

In the first part of this thesis we discuss several contributions by the author to the theory of conciseness problems.

The first contribution concerns the most general version of the problem, which is seeking new concise words in all groups. One of the first class of words that have been proven to be concise by Philip Hall are non-commutator words, that are words not lying in the derived subgroup of the free group generated by the variables. More recently, Delizia, Shumyatsky, Tortora and Tota proved that the same is true for the word $\gamma_{2}\left(u_{1}, u_{2}\right)$, where u_{1}, u_{2} are disjoint non-commutator words (i.e. in disjoint sets of variables). This result has been generalized in 2022 by Azevedo and Shumyatsky, who proved that the word $\gamma_{3}\left(u_{1}, u_{2}, u_{3}\right)$, for u_{i} disjoint non-commutator words, is concise.

In [34], Fernández-Alcober and the author proved that $w\left(u_{1}, \ldots, u_{k}\right)$, with u_{i} disjoint non-commutator words, is concise in the case w is a lower central word (proving a conjecture of Azevedo and Shumyatsky), and in the case w is a derived word. The arguments involved in the aforementioned article also work, with some small modifications, when w is an outer commutator word, and we therefore fully prove this case, which includes and generalizes the case of lower central and derived words. We actually obtain a stronger property and show that all outer commutator words are concise on normal subgroups, in the sense that whenever the set of values that the word takes on a tuple \mathbf{N} of normal subgroups is finite, then the subgroup they generate is also finite.

These new concise words try to approach the limit between concise and nonconcise words. Indeed, there is no general condition for a word not to be concise. The techniques that are used to build up the three counterexamples that are known, by Ivanov, Olshanskii and Storozhev respectively, were developed through Small Cancellation Theory. This area of geometric group theory is based on the idea that, if the relations of a fixed presentation $G=\langle S \mid R\rangle$ of a group satisfy some additional conditions, it is possible to deduce some geometric and algebraic properties of the groups. This is done by looking at diagrams, built using the relations of G, that encode trivial words in the group. The complete construction of the three non-concise words, and of the groups in which these words are not concise, is quite technical. Because of this, we just try to give a glimpse of the general idea involved in Ivanov's result, and then highlight some differences among the three different non-concise words.

We then focus on Olshanskii's counterexample. As Shumyatsky and the author proved in [68], Olshanskii's word, that is not concise in general, is actually concise in residually finite groups. This is the first example of a word that is not concise in all groups but is concise in residually finite groups. After this, we also show
that this same word is strongly concise in profinite groups, settling that these problems differ substantially from the classical questions in abstract groups.

Then, the thesis pursues the study of problems in profinite groups, beginning from some results related to strong conciseness. As we remarked, this problem could be split into two different sub-problems: proving that if $|w\{G\}|<2^{\aleph_{0}}$ for a word w in a group G, then $w\{G\}$ is finite, and then proving conciseness in residually finite groups for w. For this reason, several results on strongly concise words relied on the additional hypothesis that, if a verbal subgroup of a profinite group is topologically finitely generated, then it can be generated by finitely many word values. We provide an example, with lower central words, that shows that this additional condition is not always satisfied.

We then study strong conciseness for higher order coprime commutators, that are maps strongly resembling group words. They are a useful tool to generate some important characteristic subgroups of profinite groups, like pronilpotent residuals, with an accurately chosen generating set. Similarly to usual words, we can ask whether they are (strongly) concise, in the sense that in any group with finitely many (or less than $2^{\aleph_{0}}$) coprime commutators, these elements generate a finite subgroup. It was shown by Acciarri, Shumyatsky and Thillaisundaram that higher order coprime commutators are concise in residually finite groups, while Detomi, Morigi and Shumyatsky proved that the basic coprime commutator map γ_{2}^{*} is strongly concise. In a joint work with de las Heras and Shumyatsky, the author proved in [39] that higher order coprime commutators γ_{k}^{*} and δ_{k}^{*} are strongly concise in profinite groups, and we provide a full detailed proof of these results.

In the second part of the thesis, we initiate the study of profinite right angled Artin groups. Abstract right angled Artin groups (RAAGs) are finitely generated groups whose only relations are commutators in the generators. These groups have a finite graph associated to their presentation, and they include, among others, free groups, free abelian groups and free or direct products of them.

The central idea in geometric group theory is to study groups via actions on spaces. For example, free action of groups on a space should provide a connection between the geometry of the space and the algebra of the group. This is the case with actions on trees: a group acts freely if and only if the group is free. If we do not require the action to be free, Bass-Serre theory gives a description of the structure of groups acting on trees through HNN extensions and amalgamated products.

If, rather than on a single tree, we require our group G to act on a direct product of two trees, then the situation is different. Indeed Burger and Mozes constructed infinite simple groups acting freely and cocompactly on them. However, Bridson,

Howie, Miller and Short proved that if we require some additional residual properties, then such a group G is virtually a direct product of free groups. These results were generalised by Haglund and Wise who proved that groups acting freely, and with some additional conditions, on $\operatorname{CAT}(0)$ cube complexes are subgroups of RAAGs.

As profinite groups satisfy good residual properties, one can asked if no further conditions are required in this setting, namely a profinite group acts on a direct product of two profinite trees (or, even more ambitiously, on a profinite cubing) if and only if it is virtually a subgroup of a profinite RAAG. In order to approach this line of research, we must first study systematically profinite RAAGs. For a generic pseudovariety \mathcal{C} of finite groups, pro- \mathcal{C} RAAGs are the pro- \mathcal{C} completion of abstract RAAGs and have been studied by Wilkes, Kropholler, Snopce and Zalesskii.

In accordance to the contents of the article [16], joint with Casals-Ruiz and Zalesskii and currently in preparation, we study pro-C RAAGs using profinite Bass-Serre theory as the main tool. This theory is an analogue of the abstract one developed mainly by Mel'nikov, Ribes and Zalesskii. We use these methods to obtain standard properties of pro-C RAAGs, like the structure of their centralizers, studying a Tits alternative for their subgroups, and characterizing 2-generated subgroups of pro- p RAAGs.

We then describe some properties of a pro-C RAAG that are immediately detectable by studying their underlying graph. For example, Krophopller and Wilkes already observed that a profinite RAAG splits as a free product if and only if the underlying graph is disconnected. We prove that pro-C RAAGs are directly decomposable if and only if their underlying graph is a join, and we then obtain a characterization of their splittings, as pro- \mathcal{C} amalgams or HNN extensions, over abelian subgroups.

We then continue the investigation of their abelian splittings by defining JSJ decompositions. These constructions are a description of all the ways a group G can split over a certain class \mathcal{A} of subgroups, and they can be either general (so \mathcal{A}-JSJ decompositions) or relative to another class \mathcal{H} of subgroups (the so-called $(\mathcal{A}, \mathcal{H})$-JSJ decompositions), in the sense that we require all the subgroups of G in the class \mathcal{H} to be elliptic.

We give a constructive proof of the existence of the $(\mathcal{A}, \mathcal{H})$-JSJ decomposition of a pro- \mathcal{C} RAAG G choosing \mathcal{A} to be the class of abelian subgroups, and with the assumption that canonical generators of G act elliptically. We then conclude by obtaining the general \mathcal{A}-JSJ decomposition of the pro- \mathcal{C} RAAG G.

Structure of the Thesis

In Chapter 1 we give an overview of the known theory of conciseness, giving a considerable importance to the historical development of the theory.

In Chapter 2 we prove that outer commutator words are concise on normal subgroups. This will be obtained first in the case of lower central words, and we will then approach the general proof by giving an explicit description for $w=\delta_{2}$, and then concluding with the proof of the general case.

Chapter 3 will be devoted to the description of the counterexamples on conciseness, and then to the proof that Olshanskii's word is boundedly concise in residually finite groups and strongly concise in profinite groups. We conclude the chapter giving an example of a profinite group with procyclic derived subgroup, but whose subgroup cannot be generated by finitely many commutators.

In Chapter 4 we prove that higher order coprime commutators γ_{k}^{*} and δ_{k}^{*} are strongly concise in profinite groups.

In Chapter 5, after an overview of profinite Bass-Serre theory, we focus on proving basic properties of profinite RAAGs, like the structure of their centralizers, and on characterizing their abelian splittings.

We conclude the investigation of their abelian splittings in Chapter 6, where we explicitly construct their general and relative abelian JSJ decompositions.

Resumen de la tesis en castellano

Aunque el origen de la teoría de grupos suele atribuirse a los trabajos de Galois, Jordan y Klein, todos estos trabajos estuvieron motivados por la conexión que esta disciplina tiene con la teoría de números o con la geometría. La teoría de grupos abstractos discretos obtuvo un interés independiente, sin inspiración geométrica, principalmente a principios del siglo XX, y un hito para ello se debe a los trabajos de William Burnside. En 1902 él preguntó si un grupo de torsión finitamente generado es necesariamente finito [15] , actualmente nos referimos a esta cuestión como el "Problema de Burnside". Este trabajo despertó el interés por problemas aún más profundos, como el estudio de la finitud de los grupos finitamente generados de exponente finito, también llamado "Problema de Burnside acotado". Explícitamente, Grün [36] se preguntó si un grupo G finitamente generado que satisface $g^{n}=1$ para todo $g \in G$ es necesariamente finito.

Podríamos observar que este problema se puede encuadrar en el contexto más amplio de una de las preguntas más naturales que se pueden hacer sobre una estructura algebraica, que es "¿Qué podemos decir sobre un grupo si este grupo sigue una regla fija?"

Por supuesto, la pregunta es extremadamente heurística, pero podemos ver muchos de los primeros resultados en teoría de grupos a través de este enfoque, que puede ser interpretado como un ejemplo de un problema de palabras en grupos.

Una palabra de grupo w es una concatenación finita de variables y de sus inversas, que puede verse como un elemento del grupo libre generado por n variables
x_{1}, \ldots, x_{n}. Para cualquier grupo G, la palabra w define naturalmente una aplicación de G^{n} a G, simplemente sustituyendo los elementos del grupo en las variables de todas las formas posibles. La imagen de esta aplicación es el conjunto de valores de la palabra en G, normalmente denotado por $w\{G\}$, y el subgrupo $w(G)$ que generan se llama subgrupo verbal. De especial interés es el estudio de las variedades de grupos, que son las clases de grupos en las que una determinada palabra w es una ley, en el sentido de que toma sólo el valor trivial.

Las "reglas"mencionadas en la pregunta de Grün son simplemente leyes en el grupo, así que en términos modernos la cuestión es cómo estudiar la variedad de grupos generada por la ley x^{n}. Otros problemas que pueden verse desde esta óptica son el estudio de los grupos abelianos, nilpotentes y resolubles de clase acotada, que son las variedades generadas por la palabra conmutador $\left[x_{1}, x_{2}\right]$, por una palabra central inferior o por una palabra derivada respectivamente.

En lugar de estudiar sólo los grupos en los que una palabra w es una ley, también podríamos preguntarnos si el hecho de que w tome un número finito de valores en un grupo G tiene alguna implicación en la estructura de G. Es fácil darse cuenta de que cualquier grupo con un número finito de conmutadores es finito-por-abeliano, o, en otras palabras, si el conjunto de valores de γ_{2} es finito en un grupo G, entonces el subgrupo verbal correspondiente es finito. Philip Hall se dio cuenta de que lo mismo es cierto para todas las palabras potencia x^{n}, y las centrales inferiores γ_{k}, no sólo para γ_{2}. Como consecuencia, Hall conjeturó que para cualquier palabra de grupo, si el conjunto $w\{G\}$ de valores en un cierto grupo G es finito, entonces el subgrupo verbal $w(G)$ también es finito. Si una palabra satisface esta propiedad para cualquier grupo G, se llama concisa y, si lo hace para todos los grupos de una clase dada \mathcal{C}, se dice que es concisa en \mathcal{C}.

Se ha demostrado que muchas palabras son concisas, además Merzljakov demostró que todas las palabras son concisas en grupos lineales, pero Ivanov construyó un contraejemplo para el caso general utilizando la Teoría de la cancelación pequeña. Más tarde, Olshanskii y Storozhev obtuvieron otros contraejemplos con métodos similares. El estudio de las palabras concisas progresó de todos modos, tanto buscando nuevas palabras que fueran concisas en todos los grupos, como estudiando el mismo problema en otras clases de grupos. Como los grupos lineales finitamente generados son residualmente finitos, el candidato natural para la mayor clase de grupos en los que todas las palabras son concisas es la clase de los grupos residualmente finitos. Es interesante observar que una palabra es concisa en grupos residualmente finitos si y sólo si es concisa en grupos profinitos, por lo que recientemente se ha propuesto otro avance importante.

Cada grupo profinito de cardinalidad menor que $2^{\aleph_{0}}$ es finito, y se sugirió que
un fenómeno similar ocurre también para los valores de las palabras, llevando a la conjetura de que cada conjunto de valores de palabras con menos de $2^{\aleph_{0}}$ valores es finito. Uniendo este problema abierto con la conjetura de que todas las palabras son concisas en grupos residualmente finitos, tiene sentido definir que una palabra es fuertemente concisa en grupos profinitos si, siempre que tome menos de $2^{\aleph_{0}}$ valores, su subgrupo (cerrado) verbal es finito.

En la primera parte de esta tesis se discuten varias contribuciones que el autor ha aportado a la teoría de los problemas de concisión.

La primera contribución se refiere a la versión más general del problema, que consiste en buscar nuevas palabras concisas en todos los grupos. Una de las primeras clases de palabras que Philip Hall demostró que son concisas son las palabras no conmutadoras, es decir, las palabras que no se encuentran en el subgrupo derivado del grupo libre generado por las variables. Más recientemente, Delizia, Shumyatsky, Tortora y Tota demostraron que lo mismo es cierto para la palabra $\gamma_{2}\left(u_{1}, u_{2}\right)$, donde u_{1}, u_{2} son palabras no conmutadoras disjuntas (es decir, en conjuntos disjuntos de variables). Este resultado fue generalizado en 2022 por Azevedo y Shumyatsky, quienes demostraron que la palabra $\gamma_{3}\left(u_{1}, u_{2}, u_{3}\right)$, para u_{i} palabras no conmutadoras disjuntas, es concisa.

En [34], Fernández-Alcober y el autor demostraron que $w\left(u_{1}, \ldots, u_{k}\right)$, con u_{i} palabras no conmutadoras disjuntas, es concisa en el caso de que w sea una palabra central inferior (demostrando una conjetura de Azevedo y Shumyatsky), y en el caso de que w sea una palabra derivada. Los argumentos del artículo mencionado también funcionan, con algunas pequeñas modificaciones, cuando w es un conmutador externo, por lo que probamos completamente este caso, que incluye y generaliza el caso de las palabras centrales inferiores y derivadas. En realidad obtenemos una propiedad más fuerte y demostramos que todos los conmutadores externos son concisos en subgrupos normales, en el sentido de que siempre que el conjunto de valores que toma la palabra en una tupla \mathbf{N} de subgrupos normales sea finito, entonces el subgrupo que generan también lo es.

Estas nuevas palabras concisas intentan acercarse al límite entre las palabras concisas y las que no lo son. De hecho, actualmente se desconocen condiciones generales para que una palabra no sea concisa. Las técnicas utilizadas para construir los tres contraejemplos conocidos, el de Ivanov, de Olshanskii y de Storozhev respectivamente, han sido desarrolladas dentro de la Teoría de la cancelación pequeña. Esta área de la teoría geométrica de grupos se basa en la idea de que, si las relaciones de una presentación fija $G=\langle S \mid R\rangle$ de un grupo satisfacen algunas condiciones adicionales, es posible deducir algunas propiedades geométricas y algebraicas de los grupos. Esto se consigue observando diagramas, construidos
utilizando las relaciones de G, que representan elementos triviales en el grupo. La construcción completa de las tres palabras no concisas, y de los grupos en los que estas palabras no son concisas, es bastante técnica. Por ello, sólo trataremos de dar una idea general del resultado de Ivanov y, a continuación, destacaremos algunas diferencias entre las tres palabras no concisas.

A continuación, nos centramos en el contraejemplo de Olshanskii. Como demostraron Shumyatsky y el autor en [68], la palabra de Olshanskii, que no es concisa en general, es en realidad concisa en grupos residualmente finitos. Este es el primer ejemplo de una palabra que no es concisa en todos los grupos, pero es concisa en grupos residualmente finitos. Luego mostramos también que esta misma palabra es fuertemente concisa en grupos profinitos, estableciendo que estos problemas difieren sustancialmente de las cuestiones clásicas en grupos abstractos.

La tesis prosigue con el estudio de problemas en grupos profinitos, partiendo de algunos resultados relacionados con la concisión fuerte. Como comentamos, este problema podría dividirse en dos subproblemas diferentes: probar que si $|w\{G\}|<2^{\aleph_{0}}$ para una palabra w en un grupo G, entonces $w\{G\}$ es finito, y luego probar la concisión en grupos residualmente finitos para w. Por esta razón, varios resultados sobre palabras fuertemente concisas se basaban en la hipótesis adicional de que, si un subgrupo verbal de un grupo profinito es topológicamente finitamente generado, entonces puede ser generado por un número finito de valores de la palabra. Aportamos un ejemplo, con palabras centrales inferiores, que muestra que esta condición adicional no siempre se cumple.

A continuación, estudiamos la concisión fuerte para conmutadores coprimos de orden superior, que son aplicaciones muy similares a las palabras de grupo. Son una herramienta útil para generar algunos subgrupos característicos importantes de los grupos profinitos, como los residuales pronilpotentes, con un conjunto generador elegido con cuidado. De forma similar a las palabras usuales, podemos preguntarnos si son (fuertemente) concisas, en el sentido de que en cualquier grupo con un número finito (o menor que $2^{\aleph_{0}}$) de conmutadores coprimos, estos elementos generan un subgrupo finito. Acciarri, Shumyatsky y Thillaisundaram demostraron que los conmutadores coprimos de orden superior son concisos en grupos residualmente finitos, mientras que Detomi, Morigi y Shumyatsky demostraron que el conmutador coprimo básico γ_{2}^{*} es fuertemente conciso. En un trabajo conjunto con de las Heras y Shumyatsky, el autor demostró en [39] que los conmutadores coprimos de orden superior γ_{k}^{*} y δ_{k}^{*} son fuertemente concisos en grupos profinitos, y nosotros proporcionamos una demostración detallada completa de estos resultados.

En la segunda parte de la tesis, iniciamos el estudio de los grupos de Artin de án-
gulos rectos profinitos. Los grupos abstractos de Artin de ángulos rectos (RAAGs) son grupos finitamente generados cuyas únicas relaciones son conmutadores en los generadores. Estos grupos tienen un grafo finito asociado a su presentación, e incluyen, entre otros, los grupos libres, los grupos abelianos libres y los productos libres o directos de ellos.

La idea central de la teoría geométrica de grupos es estudiar los grupos mediante acciones en espacios. Por ejemplo, la acción libre de grupos en un espacio debería proporcionar una conexión entre la geometría del espacio y el álgebra del grupo. Éste es el caso de las acciones en árboles: un grupo actúa libremente en un árbol si y sólo si el grupo es libre. Si no exigimos que la acción sea libre, la teoría de Bass-Serre proporciona una descripción de la estructura de los grupos que actúan en árboles en términos de extensiones HNN y productos amalgamados.

En lugar de en un único árbol, si requerimos que nuestro grupo G actúe en un producto directo de dos árboles, entonces la situación es diferente. En efecto, Burger y Mozes construyeron grupos simples infinitos que actúan libre y cocompactamente en ellos. Sin embargo, Bridson, Howie, Miller y Short demostraron que si exigimos algunas propiedades residuales adicionales, entonces tal grupo G es virtualmente un producto directo de grupos libres. Estos resultados fueron generalizados por Haglund y Wise, quienes demostraron que los grupos que actúan libremente, y con algunas condiciones adicionales, en complejos cúbicos CAT(0) son subgrupos de los RAAG.

Como los grupos profinitos satisfacen buenas propiedades residuales, cabe preguntarse si no se requieren más condiciones en este contexto, a saber, que un grupo profinito actúa en un producto directo de dos árboles profinitos (o, aún más ambicioso, en una cubicación profinita) si y sólo si es virtualmente un subgrupo de un RAAG profinito. Para abordar esta línea de investigación, primero debemos estudiar sistemáticamente los RAAG profinitos. Para una pseudovariedad genérica \mathcal{C} de grupos finitos, los RAAG pro- \mathcal{C} son la compleción pro- \mathcal{C} de los RAAG abstractos y han sido estudiados por Wilkes, Kropholler, Snopce y Zalesskii.

De acuerdo con el contenido del artículo 16], conjunto con Casals-Ruiz y Zalesskii y actualmente en preparación, estudiamos RAAGs pro-C utilizando la teoría profinita de Bass-Serre como herramienta principal. Esta teoría es un análogo de la abstracta desarrollada principalmente por Mel'nikov, Ribes y Zalesskii. Utilizaremos estos métodos para obtener propiedades estándar de los RAAGs pro-C, como la estructura de sus centralizadores, estudiando una alternativa de Tits para sus subgrupos, y caracterizando subgrupos 2-generados de RAAGs pro-p.

A continuación, describiremos algunas propiedades de un RAAG pro- \mathcal{C} que se pueden detectar inmediatamente a partir de su grafo subyacente. Por ejemplo,

Krophopller y Wilkes ya observaron que un RAAG profinito se descompone como producto libre si y sólo si el grafo subyacente es disconexo. De manera dual, demostraremos que un RAAG pro- \mathcal{C} se descompone como producto directo si y sólo si su grafo subyacente es una suma de grafos, y a continuación obtendremos una caracterización de sus decomposiciones, como amalgamas pro-C o extensiones HNN, sobre subgrupos abelianos.

Posteriormente, continuamos con la investigación de las decomposiciones abelianas de un RAAG pro- \mathcal{C}, esta vez en el contexto de las decomposiciones JSJ. Estas construcciones son una descripción de todas las formas en que un grupo G puede decomponerse sobre una cierta clase \mathcal{A} de subgrupos, y pueden ser generales (por tanto descomposiciones \mathcal{A}-JSJ) o relativas a otra clase \mathcal{H} de subgrupos (las llamadas descomposiciones $(\mathcal{A}, \mathcal{H})$-JSJ), en el sentido de que requerimos que todos los subgrupos de G en la clase \mathcal{H} sean elípticos.

Daremos una prueba constructiva de la existencia de la decomposición $(\mathcal{A}, \mathcal{H})$ JSJ de un RAAG G pro- \mathcal{C} eligiendo \mathcal{A} como la clase de subgrupos abelianos, y con el supuesto de que los generadores canónicos de G actúen elípticamente. Concluiremos obteniendo la descomposición general \mathcal{A}-JSJ del pro-C RAAG G.

1

Problems on group words

In this chapter we set the foundations of the theory of concise words.
Initially we give the basic definitions of word maps and verbal subgroups. We then describe varieties of groups, that are one of the main motivations driving the development of word problems in groups.
In Section 3, we give the formulation of three conjectures of Philip Hall. We briefly analyse the partial answer to the first two of them, and then we discuss the follow-up of the third problem in the fourth section. Indeed, the last question of Hall consisted in proving that, if a word w takes finitely many values in a group G, the associated verbal subgroup is finite. A word satisfying this is said to be concise. We describe the partial positive answers and then mention the counterexamples to Hall conjecture.

In Section 5, we describe the more recent driving areas in conciseness, namely the study of words that are concise in residually finite groups. A further investigation is due to the conjecture that every word w is strongly concise in profinite groups, meaning that whenever the set of w-values has less than $2^{\aleph_{0}}$ elements, then the verbal subgroup is finite.

In Section 6 we glide over all the results of conciseness, addressing in which threads of investigation the mathematical community was able to make improvements, and then conclude with a summary of the best results obtained so far in each direction.

1.1 Words and verbal subgroups

Consider the free group $F\left(X_{\infty}\right)$ of countable rank over the set $X_{\infty}=\left\{x_{i} \mid i \in \mathbb{N}\right\}$. We will say that any element of this set is a group word. Of course any such element can be written using finitely many variables, so we will denote a generic element by $w\left(x_{1}, \ldots, x_{n}\right)$ where $n \in \mathbb{N}$ is the number of indeterminates involved in the word (as up to reordering we can always assume that, if $w \in F\left(X_{\infty}\right)$, then in w appear exactly the variables $x_{1}, \ldots x_{n}$).

Fix now an arbitrary abstract group G. We can associate to w a valuation map on G obtained by substituting a tuple $\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right)$ of elements of G for the indeterminates x_{1}, \ldots, x_{n}, explicitly

$$
\begin{array}{rccc}
\nu_{w}: & G^{n} & \rightarrow & G \\
\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right) & \mapsto & w(\mathbf{g})
\end{array}
$$

Definition 1.1 (Word values and verbal subgroup). The set $w\{G\}=\{w(\mathbf{g}) \mid \mathbf{g} \in$ $\left.G^{n}\right\}$ is the set of w-values.

The subgroup $w(G)=\langle w\{G\}\rangle$ is the verbal subgroup of w.
Obviously in general the set of word values is not a subgroup. As for each homomorphism $\phi: G \rightarrow H$ we have that $\phi\left(w\left(g_{1}, \ldots, g_{n}\right)\right)=w\left(\phi\left(g_{1}\right), \ldots \phi\left(g_{n}\right)\right)$, we immediately get that $w\{G\} N / N=w\{G / N\}$ and therefore $w(G) N / N=w(G / N)$, and also that verbal subgroups are fully invariant subgroups, and in particular they are characteristic and normal.

Example 1.2. - For each integer $n \in \mathbb{Z}$ we can consider the power word $w\left(x_{1}\right)=x_{1}^{n}$. The set $w\{G\}$ is the set of elements of G that are n-th powers, and we will denote the corresponding verbal subgroup as G^{n}.

- The commutator word $w\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]=x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}$. The verbal subgroup $w(G)$ is the derived subgroup G^{\prime}.
- The lower central words (or simple commutators) γ_{k} in k variables, defined inductively as $\gamma_{1}=x_{1}, \gamma_{k}=\left[\gamma_{k-1}, x_{k}\right]$. The corresponding verbal subgroups are the subgroups of the lower central series of G.
- The derived words δ_{k} in 2^{k} variables, defined as $\delta_{0}=x_{1}$ and

$$
\delta_{k}=\left[\delta_{k-1}\left(x_{1}, \ldots, x_{2^{k-1}}\right), \delta_{k-1}\left(x_{2^{k-1}+1}, \ldots, x_{2^{k}}\right)\right] .
$$

The corresponding verbal subgroups are the subgroups of the derived series.

- The outer commutator words, defined recursively. Any single variable $x_{i} \in$ X_{∞} is an outer commutator, and any commutator $[u, v]$ where u and v are outer commutators in disjoint sets of variables, is an outer commutator. This class includes γ_{k}, δ_{k} and several other words, like $\left[\left[x_{1},\left[x_{2}, x_{3}\right]\right],\left[x_{4}, x_{5}\right]\right]$.
- The Engel words $e_{n}, n \in \mathbb{N}$, defined recursively as $e_{1}=\left[x_{1}, x_{2}\right]$ and $e_{n}=$ $\left[e_{n-1}, x_{2}\right]$.

Together with the verbal subgroup, there is another important subgroup connected to it, the one consisting of the elements that can be freely removed from the word.

Definition 1.3 (Marginal subgroup). The marginal subgroup of a word w in a group G is defined as

$$
\begin{gathered}
w^{*}(G)=\left\{a \in G \mid w\left(g_{1}, \ldots, g_{i}, \ldots, g_{n}\right)=w\left(g_{1}, \ldots, a g_{i}, \ldots, g_{n}\right)\right. \\
\text { for all } \left.g_{i} \in G, i=1, \ldots, n\right\}
\end{gathered}
$$

Example 1.4. Let $w=\left[x_{1}, x_{2}\right]$. Any element in the center $Z(G)$ is obviously in the marginal subgroup, moreover if $y \in w^{*}(G)$, for every $g \in G$ we have $[y, g]=[1, g]=1$, so $y \in Z(G)$.

1.2 Varieties and relatively free groups

If \mathcal{V} is a set, possibly infinite, of group words, then we will denote by $\mathcal{V}(G)$ the subgroup $\langle v(G) \mid v \in \mathcal{V}\rangle$. We will say that a word v is a law in a group G if $v(G)=1$, and extend this definition naturally to sets of groups words.

Definition 1.5 (Closed sets of words). A set of words $\mathcal{V} \subseteq F\left(X_{\infty}\right)$ is closed if and only if it is closed by inverses, products and if for every $v \in \mathcal{V}$ word in n variables and any tuple $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in X_{\infty}^{n}$ we have $v(\mathbf{u}) \in \mathcal{V}$.

For each set of words \mathcal{V}, we can define its closure $\overline{\mathcal{V}}$ as the smallest closed set of words containing it. It is possible to see that $\mathcal{V}(G)=\overline{\mathcal{V}}(G)$ for any group G, or in other words the verbal subgroup defined by \mathcal{V} is the same as the one defined by its closure.

Definition 1.6 (Varieties). The class of groups satisfying a certain set of laws \mathcal{V} is called the variety defined by \mathcal{V}.

By the previous discussions, each variety corresponds to a single closed set of laws. Let F_{n} and F_{∞} be the free groups on n and countably many generators respectively. In each variety there is an infinitely generated group that satisfies exactly all the laws of the closed set $\overline{\mathcal{V}}$, which is precisely $F_{\infty} / \mathcal{V}\left(F_{\infty}\right)$, and all groups of the variety defined by \mathcal{V} are quotients of this group. In general, every d-generated group in the variety generated by \mathcal{V} is a quotient of $F_{d} / \mathcal{V}\left(F_{d}\right)$. We will say that these groups are the relatively free groups in the variety generated by \mathcal{V}. They all have a generating set S such that every mapping of this set into the group itself can be extended to a homomorphism.

Even if, for a generic group, not every fully invariant subgroup is verbal, this is true for relatively free groups.

Theorem 1.7 (Theorem 13.31 [58]). Every fully invariant subgroup of a relatively free group G is of the form $\mathcal{W}(G)$ for a (possibly infinite) set \mathcal{W} of words.

An important theorem of Birkhoff characterizes precisely which classes of groups are varieties.

Theorem 1.8 (Birkhoff). A class of groups is a variety if and only if it is closed by subgroups, quotients and (unrestricted) cartesian products.

Example 1.9. - The variety generated by $w\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]$ is the variety of abelian groups. The relatively free d-generated group of this variety is $F_{d} / F_{d}^{\prime} \cong \mathbb{Z}^{d}$.

- The variety generated by $w(x)=x^{n}$ is the Burnside variety. The d-generated relatively free group in this variety is denoted by $\mathcal{B}(d, n)$. The Bounded Burnside problem asked for which integers n the free Burnside group $\mathcal{B}(d, n)$ is finite. These groups are finite for $n=2,3,4,6(n=2$ is an easy exercise, the other results are of Burnside, Sanov and M. Hall respectively). Novikov and Adian proved in 1968 [61] [62] [63] that for big odd integers n and $d \geq 2$ these groups are infinite. The best bound that guarantees the infiniteness of free Burnside groups of odd exponents is $n>665$ [6]. The infiniteness of $\mathcal{B}(d, n)$ for even numbers $n>2^{48}$ was proved by Ivanov [44], with an improvement to $n>8000$ obtained by Lysenok [55].
- With his solution of the Restricted Burnside Problem, Zelmanov proved in [86] [87] that the locally finite groups of finite exponent form a variety, and in particular for each positive integer d, n each finite d-generated group of exponent n is a quotient of of the finite relatively free group $\mathcal{Z}(d, n)$.

Of course this variety satisfies the law $w(x)=x^{n}$, but it is unclear which additional laws have to be added in order to restrict the Burnside variety to locally finite groups.

The version of small cancellation theory that was developed by Olshanskii was constructed to obtain a more accessible proof of the aforementioned NovikovAdian theorem. This proof is much more accessible, but settles the problem only for odd $n>10^{10}$.

1.3 On three questions of P.Hall

A classical result that Schur proved in 1904 is the following:
Theorem 1.10 (Schur). If $[G: Z(G)]=m$, then G^{\prime} is finite and of exponent dividing m.

The converse of this theorem is not true, as we can consider a countable product of the quaternion group Q_{8} and amalgamating all the centers. In this group the commutator subgroup has order two, but the center has infinite index.

All the counterexamples to the converse of Schur's Theorem require the group G to be infinitely generated. Indeed, if $G=\left\langle g_{1}, \ldots, g_{k}\right\rangle$ and the set of commutators $\gamma_{2}\{G\}$ is finite, the index $\left[G: C_{G}\left(g_{i}\right)\right]$ is finite (as the set of right cosets of $C_{G}\left(g_{i}\right)$ is in bijection with the set $\left.\left\{\left[g, g_{i}\right] \mid g \in G\right\}\right)$. This implies that the center $Z(G)=\bigcap_{i=1}^{k} C_{G}\left(g_{i}\right)$ has finite index in G too.

In the previous paragraph, in order to prove that $[G: Z(G)]<\infty$, we have not used the finiteness of the whole subgroup G^{\prime}, but only the finiteness of the set of commutators $\gamma_{2}\{G\}$. If we then apply Schur's Theorem we have actually proved that the finiteness of $\gamma_{2}\{G\}$ implies the finiteness of $\gamma_{2}(G)=G^{\prime}$. Notice that we could reach the same conclusion, under the hypothesis of $\left|\gamma_{2}\{G\}\right|<\infty$, even if G is not finitely generated. Indeed we could find a finite set S of elements of G such that $\gamma_{2}\{G\}=\left\{\left[s_{1}, s_{2}\right] \mid s_{1}, s_{2} \in S\right\}$, then apply the previous reasoning to $\langle S\rangle$ and obtain that $G^{\prime}=\langle S\rangle^{\prime}$ is finite.

In the 50 's Philip Hall asked whether all the interlacing among finiteness of $w\{G\}, w(G)$ and $\left[G: w^{*}(G)\right]$ is valid for every group word w rather than only for $w=\gamma_{2}$.
(Q1) If $\left[G: w^{*}(G)\right]$ is finite and a π-number, is $|w(G)|$ finite and a π-number?
(Q2) If $w(G)$ is finite and G satisfies the maximal condition on subgroups, is $\left[G: w^{*}(G)\right]$ finite?
(Q3) If $w\{G\}$ is finite, is $w(G)$ finite too?

We recall that a group satisfies the maximal condition on subgroups if and only if every ascending chain of subgroups stabilizes or, equivalently, every subgroup is finitely generated.

The previous questions appeared for the first time in the article [80] of TurnerSmith, but were all attributed to Philip Hall. As we have already discussed, if $w=\gamma_{2}$ all these questions have a positive answer.

The answer to Question 1 is positive for outer commutator words (Baer 10). Moreover Stroud [78] proved that the same is true if w is a word such that every group in which w is a law is locally residually finite.

In [81], Turner-Smith proved that the answer to Question 2 is also positive whenever w is an outer commutator word. He attributed this result to P. Hall again, but also proved a slightly stronger version of this statement for outer commutator words.

It is interesting to point out that the answer to Question 2 is negative if we remove the requirement of G satisfying the maximal condition on subgroups. One example are all infinite extraspecial groups, like the one obtained by amalgamating the centers of an infinite product of copies of Q_{8}.

If w is not an outer commutator word, the answer to both questions is negative. Indeed Kleiman [49] constructed a word w and a group G with $\left[G: w^{*}(G)\right]=p^{2}$ for a prime $p \neq 2$, but such that $|w(G)|=2$. We could anyway still ask whether the finiteness of $\left[G: w^{*}(G)\right]$ implies the finiteness of $w(G)$. Of course we have that if w is a word in n variables and $\left[G: w^{*}(G)\right]=m<\infty$, then $\left|G_{w}\right| \leq m^{n}$, but the finiteness of the verbal subgroup has yet to be proved or disproved.
A counterexample to Question 2 was provided by Ashmanov and Olshanskii in [7]. It is important to notice that both the counterexample of Kleiman and the counterexample of Ashmanov and Olshanskii are obtained through the version of Small Cancellation Theory developed by Olshanskii. We will talk in further detail about this theory in Chapter 3 .

The first two questions of Hall have not had a huge follow-up, but the third question led to the development of a whole theory in order to tackle the problem.

1.4 Conciseness

The third problem of Philip Hall has been intensively studied, giving rise to several methods in order to tackle problems of conciseness of words.

Definition 1.11 (Concise words). A group word w is concise wordconcise if $w(G)$ is finite for every group G such that $w\{G\}$ is finite.

We begin with some general reductions. The following result is classical, but was first explicitly given in a quantitative way in Lemma 4 of [26]. We will anyway provide a proof, due to the importance of this lemma.

Lemma 1.12. Let w be a group word and G be a group such that $|w\{G\}| \leq m$. Then $\left|w(G)^{\prime}\right| \leq f(m)$ for a function $f: \mathbb{N} \rightarrow \mathbb{N}$.

Proof. The set $w\{G\}$ is closed by conjugation, therefore for each $g \in w\{G\}$ we have $\left|G: C_{G}(g)\right|=\left|g^{G}\right| \leq m$. This implies that $\left|G: C_{G}(w(G))\right| \leq m^{m}$, so by Schur's Theorem $w(G)$ is finite and of exponent dividing m^{m}. Notice that $w(G)$ is generated by the finite normal set $\left\{\left[h_{1}, h_{2}\right] \mid h_{1}, h_{2} \in w\{G\}\right\}$, so $w(G)^{\prime}$ is a subgroup generated by at most m^{2} elements and of exponent m^{m}. By Dietzman's Lemma (Lemma 14.5.7 of [73], the proof gives a bound) there is a function f : $\mathbb{N} \rightarrow \mathbb{N}$ such that $\left|w(G)^{\prime}\right| \leq f(m)$.

This basic result implies that, whenever we are trying to study if a group word w is concise, we can always assume $w(G)$ to be abelian, and therefore just study whether $w(G)$ is periodic. An immediate application of this is the following Lemma, which Turner-Smith attributes to P. Hall in [80], of which we will give a proof because some of the ideas involved in this short proof are commonly used in more recent results. We will say that a word $w \in F\left(X_{\infty}\right)$ is a non-commutator word if $w \notin F\left(X_{\infty}\right)^{\prime}$.

Lemma 1.13. Every non-commutator word is concise.
Proof. Let w be a non-commutator word in n variables x_{1}, \ldots, x_{n}. By applying the classical commutator calculus formula $a b=b a[a, b]$, we can rewrite w as

$$
w\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{e_{1}} \cdots x_{n}^{e_{n}} v\left(x_{1}, \ldots, x_{n}\right)
$$

with $v\left(x_{1}, \ldots, x_{n}\right) \in F\left(X_{\infty}\right)^{\prime}$. As w is a non-commutator word, there exists at least an index $i \in\{1, \ldots, n\}$ such that $e_{i} \neq 0$. By reordering the indices, we can assume $i=1$.

Let G be a group with $|w\{G\}| \leq \infty$ and choose $g \in G$. By substituting g to x_{1} and the identity to each $x_{i}, i=2, \ldots, n$, we have that $w(g, 1 \ldots, 1)=g^{e_{1}}$ and in particular the set $\left\{g^{e_{1}} \mid g \in G\right\}$ is finite. This implies that G is a group of finite exponent, hence the abelian quotient $w(G) / w(G)^{\prime}$ is finite, and by Lemma 1.12 this is sufficient to conclude.

We can therefore restrict our search to commutator words. In [81], Turner-Smith proved that lower central words γ_{k} are concise (this was already known to P. Hall), moreover he extended the result to derived words δ_{k}, but the arguments in this case are already more advanced. For several years the problem was untouched, until Wilson proved in [82] that all outer commutator words are concise.

The dreams of obtaining an affirmative answer to conciseness problems were shattered by a counterexample, obtained by Ivanov in 1989 [43]. We will give some ideas of the construction of this counterexample in Section 3.2.

Still, many more words have been proved to be concise. Even further, many words have been proved to be boundedly concise.

Definition 1.14 (Boundedly concise words). A word w is boundedly concise in a class \mathcal{C} of groups if there exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that, if there is a group $G \in \mathcal{C}$ with $|w\{G\}| \leq m$, then $|w(G)| \leq f(m)$.

In 2009, Fernández-Alcober and Morigi obtained a different proof of conciseness of outer commutator words in [31]. In the same article, there are two proofs of the following result, one by the authors and one that was communicated to them by Mann.

Theorem 1.15. Any word w that is concise is boundedly concise.

1.5 Conciseness in other classes of groups

The counterexample of Ivanov did not impede pursuing better and further results on conciseness. In particular, a huge development of the theory shifted toward proving in which classes of groups every word is concise.

Definition 1.16 (Verbal conciseness). We will say that a class of groups \mathcal{C} is verbally concise if, for every group $G \in \mathcal{C}$ and any group word w we have that, if $w\{G\}$ is finite, then $w(G)$ is finite too.

Some classes of groups that are obviously verbally concise are abelian groups (because, if G is abelian, $w(G)=w\{G\}$) or finite groups. Turner-Smith proved that each word is concise in residually finite groups such that all of their quotients are residually finite [81].

The most important open conjecture regarding conciseness is the following. This conjecture was discussed by several authors, but it is usually attributed to either Jaikin-Zapirain or Segal.

Conjecture 1.17. The class of residually finite groups is verbally concise.

Studying conciseness in residually finite groups involves a different machinery compared to the analogous problem in general abstract groups. These additional tools made it possible to prove that some words, which are unknown to be concise or not in general, are actually concise in residually finite groups. Consider, as an example, Engel words, that are defined iteratively as $e_{1}(x, y)=[x, y]$ and $e_{n}=\left[e_{n-1}, y\right]=[x, y, \overbrace{\bullet}^{n} y]$. It is known that these words are concise only in the cases of $n \leq 4$ (see [1] [32]), but it is unknown whether they are in general. However, all these words are concise in residually finite groups ([26]).

Any residually finite group embeds in its profinite completion, so it is a natural question whether the study of conciseness in profinite groups can yield an affirmative answer to the previous conjecture. An important remark is that in profinite groups we will denote by $w(G)$ the closure of the abstract subgroup generated by the set $w\{G\}$. In this setting, it is actually possible to prove that it is equivalent to formulate Conjecture 1.17 for profinite groups.

Proposition 1.18. A word w is concise in all residually finite groups if and only if it is concise in all profinite groups.

Proof. Let w be a word that is concise in residually finite groups and suppose that $w\{G\}$ is finite in a profinite group G. As G is residually finite, the abstract subgroup generated by $w\{G\}$ is finite too, but finite subsets are closed, and therefore $w(G)$ is finite too.

Suppose now that w is concise in profinite groups and assume that it takes finitely many values in a residually finite group G. Each residually finite groups embeds in its profinite completion \widehat{G}. The first step is to prove that w takes finitely many values in \widehat{G}. Let $g_{1}, \ldots, g_{k} \in \widehat{G}$. For each $j=1, \ldots, k$ we can find a net of elements $g_{j, i} \in G$, indexed by a set I, such that $\lim _{i \in I} g_{j, i}=g_{j}$ and therefore $w\left(g_{1}, \ldots, g_{k}\right)=\lim _{i \in I} w\left(g_{1, i}, \ldots, g_{k, i}\right) \in \overline{w\{G\}}=w\{G\}$, where the last equality is true because $w\{G\}$ is finite hence closed. By hypothesis $w(\widehat{G}) \leq \widehat{G}$ is finite and so $w(G)$ is finite too.

Any profinite group is either finite or uncountable. Detomi, Morigi and Shumyatsky realized that a similar duality could be valid also for word maps. For this reason they conjectured in [25] that any word taking countably many values in a profinite group has a finite verbal subgroup, proving the conjecture for outer commutators and other specific words. An improvement of this was obtained in [24], where the authors managed to avoid the dependence on the continuum hypothesis.

Definition 1.19 (Strongly concise words). A word w is said to be strongly concise if, whenever $|w\{G\}|<2^{\aleph_{0}}$ in a profinite group G, then $w(G)$ is finite.

Detomi, Klopsch and Shumhyatsky proved that outer commutators and other specific words are indeed strongly concise, leading to a strengthening of Conjecture 1.17.

Conjecture 1.20. Every word is strongly concise.
In view of Theorem 1.15, we could ask whether words that are concise in residually finite groups are also boundedly concise in residually finite groups. This is currently unknown, because one essential tool in the proofs of Fernández-Alcober and Morigi or Mann in [31] was constructing an ultraproduct of groups. We cannot generalize their proof to residually finite groups because the ultraproduct of residually finite groups is not necessarily residually finite. For this reason, this is currently an open problem.

Conjecture 1.21. Every word that is concise in residually finite groups is also boundedly concise in residually finite groups.

1.6 A COMPREHENSIVE LIST OF KNOWN CONCISE WORDS

We will give a comprehensive list of all results regarding conciseness of words.
As already mentioned, the first article that mentioned the problem is by TurnerSmith [80] in 1964, in which he proved that non-commutator words, lower central words and derived words are concise. Wilson proved that all outer commutator words are concise in [82] in 1974, but the proof is already more convoluted. It is important to mention that Fernández-Alcober and Morigi gave a different proof of this last result in [31]. This last proof developed new methods in the study of outer commutator words, by applying proofs by induction on the height and defect of these words, by representing them as finite trees.

Apart from outer commutator words, the first type of words for which conciseness problems were extensively studied are Engel words. Indeed, in 2011 both Abdollahi and Russo [1] and Fernández-Alcober, Morigi and Traustason [32] proved that Engel words $e_{n}=[x, n y]$ are concise for $n \leq 4$. These results rely heavily on the fact that any group in which e_{4} is a law is locally nilpotent, whereas it is unknown if the same is true for the general n-Engel word e_{n}. The proof of Fernández-Alcober, Morigi and Traustason obtains some structural results for groups G such that $e_{n}\{G\}$ is finite for a certain positive integer n. Indeed, they proved that in this case $\left[e_{n}(G), G\right]$ is a finite subgroup.

Another class of words that was studied are words obtained by nesting noncommutator words into outer commutator words. We will say that some words u_{1}, \ldots, u_{n} are disjoint if the sets of variables appearing in each of them are pairwise disjoint. In 2019 Delizia, Shumyatsky, Tortora and Tota proved in [22] that the word [u_{1}, u_{2}] is concise for u_{1}, u_{2} disjoint non-commutator words. This result was generalized by Azevedo and Shumyatsky in [9] to commutators $\left[u_{1}, u_{2}, u_{3}\right]$ for u_{1}, u_{2}, u_{3} disjoint non-commutator words. In the same article, Azevedo and Shumuyatsky proved that, if u_{1}, \ldots, u_{k} are disjoint copies of the same non-commutator word u and v is another non-commutator word disjoint from u_{1}, \ldots, u_{k}, then both $\left[u_{1}, \ldots, u_{s}\right]$ and $\left[v, u_{1}, \ldots, u_{s}\right]$ are concise. Lastly, they proved that if u is an outer commutator word and v is a disjoint non-commutator word, then $[u, v]$ is concise.

In Chapter 2 we will give a full proof of a result that generalizes all of these. In [34], Fernández-Alcober and the author proved a stronger version of a conjecture of Azevedo and Shumyatsky, showing that, whenever u_{1}, \ldots, u_{k} are non-commutator words, then the words $\gamma_{k}\left(u_{1}, \ldots, u_{k}\right)$ and $\delta_{k}\left(u_{1}, \ldots, u_{2^{k}}\right)$ are concise.

Theorem 1.15 assures that any word that is concise is also boundedly concise. However, some results proved that some sets of words \mathcal{W} are uniformly boundedly concise, which means that for every $w \in \mathcal{W}$ the same function f gives a bound as in Definition 1.14. In [13] Brazil, Krasilnikov and Shumyatsky proved that all lower central words and derived words are uniformly boundedly concise. This result was generalized to all outer commutator words by Fernández-Alcober and Morigi in [31].

Moving towards conciseness in some restricted classes of groups, we already mentioned that Turner-Smith proved that every word is concise in residually finite groups all whose quotients are residually finite. In 1967 an extremely important result of Merzljakov in [57] extended verbal conciseness to the class of groups such that, for each integer $m \in \mathbb{N}$, there exists a finite index normal subgroup $N(m)$ such that $N(m)$ is residually (finite of order coprime to m). This result was used in Merzljakov's article to prove that every finitely generated linear group is verbally concise. In this direction, a recent result of Zozaya [89] proved that the class of compact R-analytic groups is also verbally concise.

In a similar way, there are other classes of groups that are verbally concise simply because no word can take finitely many values, like the class of groups that do not satisfy any law. This class of groups contains for example free groups and, as shown by Abért in [2], Thompson's group F, weakly branch groups or profinite groups with alternating composition factors of unbounded degree. Conciseness for this class of groups follows from this easy lemma.

Lemma 1.22. If a word w takes finitely many values in a group G, then G satisfies a law.

Proof. Assume $|w\{G\}| \leq m$ and that w is a word in n variables. Consider $n \times$ $(m+1)$ variables, that we denote by $x_{i}^{j}, i \in\{1, \ldots, n\}, j \in\{1, \ldots, m+1\}$ and define $w_{a}=w\left(x_{1}^{a}, \ldots, x_{n}^{a}\right), w_{a, b}=w_{a}^{-1} w_{b}$. If γ_{t} is the simple commutator of length $t=m(m-1) / 2$, the word

$$
\gamma_{t}\left(w_{1,2}, \ldots, w_{1, m+1}, w_{2,3} \ldots, w_{m-1, m}\right)
$$

obtained by computing γ_{t} on all couples $(a, b) \in\{1, \ldots, m+1\}^{2}$ with $a<b$ is a law, because at least two of the $w_{i}, i \in\{1 \ldots, m+1\}$ must be equal.

We will now discuss conciseness in residually finite and profinite groups.
The first words that were proven to be concise in the class of residually finite groups, but which are not known to be concise in all groups, are words of the type w^{q} for w an outer commutator word and q a prime power. This was proved by Acciarri and Shumyatsky in [3], where they also showed that if w is a lower central word, then w^{q} is boundedly concise in residually finite groups.

In 2015 Guralnick and Shumyatsky proved that weakly rational words are concise in residually finite groups [38]. A word w is weakly rational if, for all finite groups G and every integer e coprime to $|G|$ the set $w\{G\}$ is closed by taking e-th powers.

Burns and Medvedev in 14 defined that a word w implies virtual nilpotency if every finitely generated metabelian group in which w is a law has a nilpotent subgroup of finite index. The authors proved that w implies virtual nilpotency if and only if for all primes p, w is not a law in the wreath product C_{p} 乙 C_{∞}. Some examples of words that imply virtual nilpotency are $u v^{-1}$ for u, v semigroup words in finitely many generators, Engel words and some generalizations of Engel words.

In a series of two articles [26] and [27], Detomi, Morigi and Shumyatsky proved bounded conciseness in residually finite groups for words implying virtual nilpotency and several words of Engel type $\left[w,_{n} y\right]$ for n positive integer and w an outer commutator word. For $w=\gamma_{k}^{n}$ for n positive integer they showed that both $\left[w,_{n} y\right]$ and $\left[y,_{n} w\right]$ are boundedly concise. If w is a prime power of an outer commutator word, they proved that $\left[w,_{n} y\right]$ is concise in residually finite groups, but it is unknown whether it is boundedly concise too. The best result in this direction was recently obtained by Acciarri and Shumyatsky in [4] , showing that w and $\left[w,{ }_{n} y\right]$ are concise in residually finite groups for w an arbitrary power of an outer commutator word and y a variable not appearing in w.

A more recent result of Azevedo and Shumyatsky [9] states that whenever u, v are two disjoint words, if u is concise in residually finite groups and v is a noncommutator word, then $[u, v]$ is concise in residually finite groups. Moreover, if u is boundedly concise, then the same is true for $[u, v]$.

In [25] Detomi, Morigi and Shumyatsky proved that if $w\{G\}$ is countable in a profinite group G for $w=x^{2}, w=\left[x^{2}, y\right]$ or w an outer commutator word, then $w(G)$ is finite. All these results were generalized to the case $|w\{G\}|<2^{\aleph_{0}}$ by Detomi, Klopsch and Shumyatsky in [24], where they obtained the same result also for the words $w=x^{2}, w=x^{3}, w=x^{6}, w=\left[x^{3}, y\right], w=[x, y, y], w=$ $\left[x, y, y, z_{1}, \ldots, z_{r}\right], w=\left[x^{2}, z_{1}, \ldots, z_{r}\right]$ and $w=\left[x^{3}, z_{1}, \ldots, z_{r}\right]$ where x, y, z_{i} are different variables. In [48], Khukhro and Shumyatsky obtained strong conciseness for all Engel words $w=\left[x,{ }_{n} y\right]$ in finitely generated profinite groups. We can also extend the notion of strong conciseness to some maps that are not word maps, like coprime and anti-coprime commutators. We will discuss these maps in detail in Chapter 4.

We also mention some results on strong conciseness under the additional hypothesis that $w(G)$ is generated by finitely many w-values. In [24] the authors proved that in this case, weakly rational words and words implying virtual nilpotency are strongly concise. Under the same hypothesis, Azevedo and Shumyatsky proved in [8] that $\left[y,_{n} v^{q}\right]$ and $\left[v^{q}{ }_{n}, y\right]$ are strongly concise for $v=\gamma_{k}\left(x_{1}, \ldots, x_{k}\right)$, and extended this result to some additional specific words under more conditions.

Overall, Conjectures 1.17 and 1.20 are still widely open, but they have been partially settled for some specific subclasses of profinite groups. Indeed in [23] Detomi proved that every word is strongly concise in virtually nilpotent profinite groups, whereas in [4] Acciarri and Shumuyatsky proved that Conjecture 1.17 reduces to proving conciseness in the class of virtually pro- p groups for an arbitrary prime p.

1.7 TABLES OF CONCISE WORDS

We conclude the chapter with some tables summarizing the results we described, highlighting only the most general results.

Concise words		
Words	References	Notes
Non-commutators	$[81]$ (P. Hall)	
Outer commutators	$[82],[31]$	Uniformly concise $[31]$
Engel words $e_{n}, n \leq 4$	$[1],[32]$	$\left[e_{n}(G), G\right]$ is finite for every $n[32]$
$\gamma_{k}\left(u_{1}, \ldots, u_{k}\right), \delta_{k}\left(u_{1}, \ldots, u_{2} k\right.$ u_{i} disjoint non-commutators	$[34]$	

Verbally concise classes of groups	
Class of groups	References
Res. finite with all quotients res. finite	$[81$
Linear groups	$[57$
Compact R-analytic	$[89$
Groups without any law	Lemma 1.22

We also remark that every word is strongly concise in virtually nilpotent profinite groups ([23]).

Words concise in residually finite groups		
Words	References	Notes
$w^{q},\left[w^{q},{ }_{n} y\right]$ w outer comm., $q \in \mathbb{N}$	$[4]$	
Weakly rational	$[38]$	
Words implying virtual nilpotency	$[26]$	
$\left[w^{q},{ }_{n} y\right],\left[y,_{n} w^{q}\right]$ w outer comm., $q \in \mathbb{N}$	$[27]$	boundedly concise for $\left[\gamma_{k}^{q}, n\right.$ $[u],\left[y, \gamma_{n}^{q} \gamma_{k}\right]$
$[u, v], u, v$ disjoint, u concise in res. finite v non-commutator	$[9]$	boundedly concise if u boundedly concise

We will write (FG) for " $w(G)$ is generated by finitely many w-values".

Strongly concise words		
Words	References	Notes
Outer commutator	$[24$	
$w=x^{q}, q=2,3,6$ and some specific words	$[24$	
Engel words $e_{n}, n \in \mathbb{N}$	$[48]$	For finitely generated profinite groups
Coprime commutators $\gamma_{k}^{*}, \delta_{k}^{*}$	$[39]$	Not group words see Chapter

Strongly concise words under additional conditions
$\left.\begin{array}{|c|c|c|}\hline \hline \begin{array}{c}\text { Weakly rational, } \\ \text { implying virtual nilpotency }\end{array} & {[24]} & \text { Condition (FG) } \\ \left.\hline \begin{array}{c}{[y, n} \\ \left.\gamma_{k}^{q}\right],\left[\gamma_{k}^{q}, n\right.\end{array}\right] \\ y, \gamma_{k} \text { disjoint, } q \in \mathbb{N} \\ \text { and some specific words }\end{array}\right][8] ~$ Condition (FG)

2

Conciseness on normal subgroups

In this chapter we describe some contributions to the list of known concise words. Delizia, Shumyatsky, Tortora, and Tota proved in [22] that, if u_{1} and u_{2} are noncommutator words in disjoint sets of variables, then $\left[u_{1}, u_{2}\right]$ is concise too. This result has been extended to the case when u_{1} is an outer commutator word and u_{2} is a non-commutator and to commutators $\left[u_{1}, u_{2}, u_{3}\right]$ of non-commutators in [9]. For longer commutators, the only partial result was obtained by Azevedo and Shumyatsky in [9], who proved that if u_{1}, \ldots, u_{k} are copies of the same noncommutator word in different variables, then $\left[u_{1}, \ldots, u_{k}\right]$ is concise.

Azevedo and Shumyatsky conjectured that, if u_{i} are non-commutator words in disjoint sets of variables and $w=\gamma_{k}$, then $w\left(u_{1}, \ldots, u_{k}\right)$ is concise. The aim of this chapter is to prove this conjecture, and moreover to extend it to the case of a generic outer commutator word w. We will roughly follow the article [34] of Fernández-Alcober and the author, where we proved these results for lower central words and derived words.

In the first section we will develop some preliminary lemmas. These will be sufficient to settle the conjecture of Azevedo and Shumyatsky, for $w=\gamma_{k}$, in the second section. The main idea of the proof is to find a series of verbal subgroups such that each section of this series has some linearity properties. This could be obtained as a corollary of the case of generic outer commutator words, but the proof in this case is more straightforward and easier, so it makes sense to have a
section dedicated to it.
The proof for a generic outer commutator word w, however, involves some further technicalities. The focal point of the arguments is producing a series of subgroups similarly to the case $w=\gamma_{k}$, but this series is more complicated than the lower central words case. In order to illustrate the main steps of the proofs, we will first give an explicit construction of such a series in the case $w=\delta_{2}$ in Section 3, and we will formally prove the conjecture for a generic w, in Section 4.

2.1 Preliminaries

The aim of this chapter is to prove the following
Theorem 2.1. Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be an outer commutator word. If u_{1}, \ldots, u_{r} are non-commutator words in disjoint sets of variables, then the word $w\left(u_{1}, \ldots, u_{r}\right)$ is concise. In particular, the word $w\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right)$ is concise whenever $n_{1}, \ldots, n_{r} \in$ $\mathbb{Z} \backslash\{0\}$.

In order to obtain this result, we will need to work on studying the values of an outer commutator words with some additional restrictions on the subgroups where the variables take values from. Similarly to how we defined usual word values in a group G, if $\mathbf{S}=\left(S_{1}, \ldots, S_{r}\right)$ is an r-tuple of subsets of G, we can consider the set of values

$$
w\{\mathbf{S}\}=\left\{w(\mathbf{g}) \mid \mathbf{g} \in S_{1} \times \cdots \times S_{r}\right\}
$$

and the corresponding verbal subgroup on \mathbf{S}, namely $w(\mathbf{S})=\langle w\{\mathbf{S}\}\rangle$. Of special interest is the case when \mathbf{S} is a tuple $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ of normal subgroups of G. We then say that $w(\mathbf{N})$ is the \mathbf{N}-verbal subgroup of w and that it is a verbal subgroup on normal subgroups. We can also say that w is concise on normal subgroups if $w(\mathbf{N})$ is finite whenever $|w\{\mathbf{N}\}|<\infty$ for any tuple \mathbf{N} of normal subgroup.

The other main result of this chapter will be the following:
Theorem 2.2. Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be an outer commutator word in r variables. Assume that $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ is a tuple of normal subgroups of a group G such that $w\{\mathbf{N}\}$ is finite. Then the subgroup $w(\mathbf{N})$ is also finite.

We first need a few results regarding word values and verbal subgroups on normal subgroups or on normal subsets, in the case of outer commutator words. If $w=w\left(x_{1}, \ldots, x_{r}\right)$ is an outer commutator word that is not a variable, then
we can write $w=[\alpha, \beta]$, where α and β are again outer commutator words. Without loss of generality, after renaming variables if necessary, we may assume that $\alpha=\alpha\left(x_{1}, \ldots, x_{q}\right)$ and $\beta=\beta\left(x_{q+1}, \ldots, x_{r}\right)$, with $1 \leq q<r$.

Lemma 2.3. Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be an outer commutator word, and let $\mathbf{N}=$ $\left(N_{1}, \ldots, N_{r}\right)$ be an r-tuple of normal subgroups of a group G.

1. Assume that $w=[\alpha, \beta]$, with $\alpha=\alpha\left(x_{1}, \ldots, x_{q}\right)$ and $\beta=\beta\left(x_{q+1}, \ldots, x_{r}\right)$. If we set $\mathbf{N}_{1}=\left(N_{1}, \ldots, N_{q}\right)$ and $\mathbf{N}_{2}=\left(N_{q+1}, \ldots, N_{r}\right)$, then $w(\mathbf{N})=$ $\left[\alpha\left(\mathbf{N}_{1}\right), \beta\left(\mathbf{N}_{2}\right)\right]$.
2. Assume that $N_{i}=\left\langle S_{i}\right\rangle$ for every $i=1, \ldots, r$, where each S_{i} is a normal subset of G. If we set $\mathbf{S}=\left(S_{1}, \ldots, S_{r}\right)$, then the subgroup $w(\mathbf{N})$ is generated by $w\{\mathbf{S}\}$.

Proof. Both (i) and (ii) follow immediately from the simple fact that if S and T are two normal subsets of a group G then

$$
[\langle S\rangle,\langle T\rangle]=\langle[s, t] \mid s \in S, t \in T\rangle,
$$

where for part (ii) we use (i) and induction on the number of variables.
We are interested in words of the form $w\left(u_{1}, \ldots, u_{r}\right)$, where u_{1}, \ldots, u_{r} are noncommutator words that involve different variables. Let us introduce the following concept.

Definition 2.4 (Disjoint words). Let u_{1}, \ldots, u_{r} be group words. We say that these words are disjoint if the sets of variables that they involve are pairwise disjoint.

If w is a word in r variables and u_{1}, \ldots, u_{r} are disjoint words, then the set of values of the word $w^{*}=w\left(u_{1}, \ldots, u_{r}\right)$ in a group G can be written as $w\{\mathbf{S}\}$, where

$$
\mathbf{S}=\left(u_{1}\{G\}, \ldots, u_{r}\{G\}\right) .
$$

Since every $u_{i}\{G\}$ is a normal subset of G, we get the following consequence of the previous lemma.

Corollary 2.5. Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be an outer commutator word and let u_{1}, \ldots, u_{r} be arbitrary disjoint words. If $w^{*}=w\left(u_{1}, \ldots, u_{r}\right)$ then for every group G we have

$$
w^{*}(G)=w\left(u_{1}(G), \ldots, u_{r}(G)\right)
$$

Now we want to make part (ii) of Lemma 2.3 quantitative. If we take a standard generator $w\left(n_{1}, \ldots, n_{r}\right)$ of $w(\mathbf{N})$, with $n_{i} \in N_{i}$, how can we estimate the number of factors from $w\{\mathbf{S}\}^{ \pm 1}$ that are needed to write it? We need to introduce the following notation.

Definition 2.6 (Sets $S^{* n}$). Let G be a group and let S be a subset of G. For every $n \in \mathbb{N}$, we define $S^{* n}$ to be the set of all products of elements of $S \cup S^{-1}$ of length at most n.

In other references, $S^{* n}$ is defined as the set of products of exactly n elements of S. Since we can always replace S with $S \cup S^{-1} \cup\{1\}$, both definitions are basically equivalent. We prefer the definition above because it suits better the description of the elements of the subgroup $\langle S\rangle$. Also, with this definition, we have $S^{* k} \subseteq S^{* n}$ whenever $n \geq k$. Note that if $|S| \leq m$ then $\left|S^{* n}\right| \leq(2 m+1)^{n}$ for every $n \in \mathbb{N}$. Let us connect this concept with values of outer commutator words.
Lemma 2.7. Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be an outer commutator word, and let S be a normal subset of a group G. Suppose that $\mathbf{t}=\left(t_{1}, \ldots, t_{r}\right)$ is a tuple of elements of G, one of whose components belongs to S. Then $w(\mathbf{t}) \in S^{* 2^{r-1}}$.

Proof. The result is obvious for $r=1$, so we assume $r>1$. Then we can write $w(\mathbf{t})=\left[\alpha\left(\mathbf{t}^{\prime}\right), \beta\left(\mathbf{t}^{\prime \prime}\right)\right]$, where α and β are outer commutator words, and the tuples \mathbf{t}^{\prime} and $\mathbf{t}^{\prime \prime}$ form a partition of \mathbf{t}. Assume without loss of generality that \mathbf{t}^{\prime} contains an entry from S. By induction on r, we have $\alpha\left(\mathbf{t}^{\prime}\right) \in S^{* 2^{r-2}}$. Consequently,

$$
w(\mathbf{t})=\alpha\left(\mathbf{t}^{\prime}\right)^{-1} \alpha\left(\mathbf{t}^{\prime}\right)^{\beta\left(\mathbf{t}^{\prime \prime}\right)} \in S^{* 2^{r-1}}
$$

since S is a normal subset of G.
On the other hand, by Lemma 2.8 of [40], if $w=w\left(x_{1}, \ldots, x_{r}\right)$ is an outer commutator and g_{1}, \ldots, g_{r}, h are elements of a group G, then for every $i=1, \ldots, r$ we have

$$
\begin{array}{r}
w\left(g_{1}, \ldots, g_{i-1}, g_{i} h, g_{i+1}, \ldots, g_{r}\right)=w\left(g_{1}^{*}, \ldots, g_{i-1}^{*}, g_{i}^{*}, g_{i+1}^{*}, \ldots, g_{r}^{*}\right) \\
\cdot
\end{array} \begin{aligned}
& w\left(g_{1}, \ldots, g_{i-1}, h, g_{i+1}, \ldots, g_{r}\right)
\end{aligned}
$$

where g_{j}^{*} is a conjugate of g_{j} in G for every $j=1, \ldots, r$. The following lemma follows easily from this result by induction on $m_{1} \cdots m_{r}$.

Lemma 2.8. Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be an outer commutator word, and let $\mathbf{S}=$ $\left(S_{1}, \ldots, S_{r}\right)$ be a tuple of normal subsets of a group G. If $\mathbf{t}=\left(t_{1}, \ldots, t_{r}\right)$ with $t_{i} \in S_{i}^{* m_{i}}$ for every $i=1, \ldots, r$, then

$$
w(\mathbf{t}) \in w\{\mathbf{S}\}^{* m_{1} \ldots m_{r}} .
$$

In an abelian group G, the word map $\left(g_{1}, \ldots, g_{r}\right) \mapsto w\left(g_{1}, \ldots, g_{r}\right)$ is a group homomorphism for every word w, and consequently $w(G)=w\{G\}$. Of course, this is far from being true in arbitrary groups. Outer commutator words, although they are also called multilinear words because the same type of commutator arrangements yields multinear words in Lie rings, are not multilinear in groups. However, our approach to proving Theorems 2.1 and 2.2 relies on showing that, in suitable sections that cover the section $w(\mathbf{N}) / w(\mathbf{N})^{\prime}$, outer commutator words are linear in one specific variable (which depends on the section). To this purpose, we give the following definition.

Definition 2.9 (Linearity). Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be a word and let $\mathbf{N}=$ $\left(N_{1}, \ldots, N_{r}\right)$ be an r-tuple of normal subgroups of a group G. We say that w is linear in position i of the tuple \mathbf{N} provided that, for all $g_{j} \in N_{j}$ for $j=1, \ldots, r$ and $h_{i} \in N_{i}$, we have

$$
\begin{align*}
w\left(g_{1}, \ldots, g_{i-1}, g_{i} h_{i}, g_{i+1}, \ldots, g_{r}\right)=w\left(g_{1}, \ldots,\right. & \left.g_{i-1}, g_{i}, g_{i+1}, \ldots, g_{r}\right) \\
& \cdot w\left(g_{1}, \ldots, g_{i-1}, h_{i}, g_{i+1}, \ldots, g_{r}\right) \tag{2.1}
\end{align*}
$$

Typically, we will search for linearity in a normal section K / L of the ambient group G that is generated by the image of $w\{\mathbf{N}\}$, so that condition (2.1) above is required to hold modulo L. Obviously, this type of linearity is inherited by sections of the form $K N / L N$ for a given $N \unlhd G$. Next we show that it is also preserved under taking suitable commutators.

Lemma 2.10. Let $w=[\alpha, \beta]$ be an outer commutator word, with $\alpha=\alpha\left(x_{1}, \ldots, x_{q}\right)$ and $\beta=\beta\left(x_{q+1}, \ldots, x_{r}\right)$. Assume that $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ is a tuple of normal subgroups of a group G, and set $\mathbf{N}_{1}=\left(N_{1}, \ldots, N_{q}\right)$ and $\mathbf{N}_{2}=\left(N_{q+1}, \ldots, N_{r}\right)$. Then the following hold:

1. If K / L is a normal section of G generated by the image of $\alpha\left\{\mathbf{N}_{1}\right\}$ and α is linear in component i of \mathbf{N}_{1} modulo L, then the section U / V, where $U=\left[K, \beta\left(\mathbf{N}_{2}\right)\right]$ and $V=\left[w(\mathbf{N}), \alpha\left(\mathbf{N}_{1}\right)\right]\left[L, \beta\left(\mathbf{N}_{2}\right)\right]$, is generated by the image of $w\{\mathbf{N}\}$ and w is linear in component i of \mathbf{N} modulo V.
2. If K / L is a normal section of G generated by the image of $\beta\left\{\mathbf{N}_{2}\right\}$ and β is linear in component i of \mathbf{N}_{2} modulo L, then the section U / V, with $U=\left[\alpha\left(\mathbf{N}_{1}\right), K\right]$ and $V=\left[w(\mathbf{N}), \beta\left(\mathbf{N}_{2}\right)\right]\left[\alpha\left(\mathbf{N}_{1}\right), L\right]$, is generated by the image of $w\{\mathbf{N}\}$ and w is linear in component $q+i$ of \mathbf{N} modulo V.

Proof. We only prove part (i). To start with, we have

$$
\left[K, \beta\left(\mathbf{N}_{2}\right)\right]=\left[\alpha\left(\mathbf{N}_{1}\right) L, \beta\left(\mathbf{N}_{2}\right)\right]=\left[\alpha\left(\mathbf{N}_{1}\right), \beta\left(\mathbf{N}_{2}\right)\right]\left[L, \beta\left(\mathbf{N}_{2}\right)\right]=w(\mathbf{N})\left[L, \beta\left(\mathbf{N}_{2}\right)\right]
$$

where the last equality follows from (i) of Lemma 2.3. Thus the section U / V is generated by the image of $w\{\mathbf{N}\}$.

As for the assertion about linearity, let us consider the general congruence stating that α is linear in component i of \mathbf{N}_{1} modulo L. This can be written in the form $x \equiv y z(\bmod L)$, where x, y, and z are like the three elements appearing in (2.1) (with α playing the role of w). In particular, $x, y, z \in \alpha\left\{\mathbf{N}_{1}\right\}$. Standard commutator identities then yield that, for every $n \in \beta\left\{\mathbf{N}_{2}\right\}$, we have

$$
[x, n] \equiv[y, n][z, n] \quad\left(\bmod \left[\alpha\left(\mathbf{N}_{1}\right), \beta\left(\mathbf{N}_{2}\right), \alpha\left(\mathbf{N}_{1}\right)\right]\left[L, \beta\left(\mathbf{N}_{2}\right)\right]\right)
$$

This proves the result.

2.2 LOWER CENTRAL WORDS

We can use the previous lemma to determine, for every lower central word γ_{r} and every r-tuple \mathbf{N} of normal subgroups, a series from $\left[\gamma_{r}(\mathbf{N}), \gamma_{r}(\mathbf{N})\right]$ to $\gamma_{r}(\mathbf{N})$ that is linear for γ_{r} at every section.

Theorem 2.11. Let $r \in \mathbb{N}$. Assume that $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ is a tuple of normal subgroups of a group G, and define

$$
\mathbf{N}_{i}=\left(N_{1}, \ldots, N_{i-1}, \gamma_{i}\left(N_{1}, \ldots, N_{i}\right), N_{i+1}, \ldots, N_{r}\right)
$$

for every $i=1, \ldots, r$. Then there is a series

$$
\left[\gamma_{r}(\mathbf{N}), \gamma_{r}(\mathbf{N})\right]=P_{r+1}^{r} \leq P_{r}^{r} \leq \cdots \leq P_{i}^{r} \leq \cdots \leq P_{1}^{r}=\gamma_{r}(\mathbf{N})
$$

such that, for every $i=1, \ldots, r$, the section P_{i}^{r} / P_{i+1}^{r} is generated by the image of $\gamma_{r}\left\{\mathbf{N}_{i}\right\}$ and the word γ_{r} is linear in component i of \mathbf{N}_{i} modulo P_{i+1}^{r}.

Proof. Set $Q_{i}^{r}=\gamma_{r}\left(\mathbf{N}_{i}\right)$ for every $i=1, \ldots, r$, and $Q_{r+1}^{r}=\left[\gamma_{r}(\mathbf{N}), \gamma_{r}(\mathbf{N})\right]$. Obviously, the conditions that $P_{r+1}^{r}=\left[\gamma_{r}(\mathbf{N}), \gamma_{r}(\mathbf{N})\right]$ and that P_{i}^{r} / P_{i+1}^{r} is generated by the image of Q_{i}^{r} mean that we need to choose $P_{i}^{r}=Q_{i}^{r} Q_{i+1}^{r} \ldots Q_{r+1}^{r}$, for $i=1, \ldots, r+1$.

Let us then prove the linearity of γ_{r} in component i of $\gamma_{r}\left(\mathbf{N}_{i}\right)$ modulo P_{i+1}^{r}. We argue by induction on $r-i$. The basis of the induction, $i=r$, follows from the congruence $\left[g, x_{r} y_{r}\right] \equiv\left[g, x_{r}\right]\left[g, y_{r}\right]\left(\bmod P_{r+1}\right)$ for all $g \in G$ and $x_{r}, y_{r} \in \gamma_{r}(\mathbf{N})$, which holds because $P_{r+1}^{r}=\left[\gamma_{r}(\mathbf{N}), \gamma_{r}(\mathbf{N})\right]$.

Let us now assume that $1 \leq i<r$ and that the result is true for differences less than $r-i$. For every $i=1, \ldots, r$, let Q_{i}^{r-1} and P_{i}^{r-1} be defined from the tuple
$\mathbf{N}^{*}=\left(N_{1}, \ldots, N_{r-1}\right)$ in the same way as we defined P_{i}^{r} and Q_{i}^{r} from \mathbf{N}. Then linearity holds in position i of

$$
\mathbf{N}_{i}^{*}=\left(N_{1}, \ldots, N_{i-1}, \gamma_{i}\left(N_{1}, \ldots, N_{i}\right), N_{i+1}, \ldots, N_{r-1}\right)
$$

modulo P_{i+1}^{r-1}. Now we apply Lemma 2.10 by taking $K=P_{i}^{r-1}, L=P_{i+1}^{r-1}$, $\alpha=\gamma_{r-1}$ and $\beta=x_{r}$. Thus γ_{r} is linear in component i of \mathbf{N}_{i} modulo the subgroup

$$
\begin{equation*}
\left[\gamma_{r}(\mathbf{N}), \gamma_{r-1}\left(\mathbf{N}^{*}\right)\right]\left[P_{i+1}^{r-1}, N_{r}\right] . \tag{2.2}
\end{equation*}
$$

Observe that

$$
\left[\gamma_{r}(\mathbf{N}), \gamma_{r-1}\left(\mathbf{N}^{*}\right)\right]=\left[N_{1}, \ldots, N_{r-1}, \gamma_{r}\left(N_{1}, \ldots, N_{r}\right)\right]=Q_{r}^{r} \leq P_{i+1}^{r}
$$

since $r-i \geq 1$. On the other hand,

$$
\left[P_{i+1}^{r-1}, N_{r}\right]=\left(\prod_{j=i+1}^{r-1}\left[Q_{j}^{r-1}, N_{r}\right]\right) \cdot\left[Q_{r}^{r-1}, N_{r}\right]=\left(\prod_{j=i+1}^{r-1} Q_{j}^{r}\right) \cdot\left[Q_{r}^{r-1}, N_{r}\right]
$$

and

$$
\begin{aligned}
{\left[Q_{r}^{r-1}, N_{r}\right]=\left[\gamma_{r-1}\left(N_{1}, \ldots, N_{r-1}\right), \gamma_{r-1}\right.} & \left.\left(N_{1}, \ldots, N_{r-1}\right), N_{r}\right] \\
& \leq\left[N_{1}, \ldots, N_{r-1}, \gamma_{r}\left(N_{1}, \ldots, N_{r}\right)\right]=Q_{r}^{r}
\end{aligned}
$$

where the inclusion follows from P. Hall's Three Subgroup Lemma. Hence the subgroup in (2.2) is contained in P_{i+1}^{r}, and the result follows.

We are now in a position to prove the key theorem that will provide both Theorems 2.1 and 2.2 for lower central words. We need the following version for normal subgroups of a well-known lemma in the theory of concise words (see, for example, [26, Lemma 4]). The proof is exactly the same, based on Schur's Theorem, and taking into account also part (ii) of Lemma 2.3 in this case, so we omit it. In the remainder of the chapter, for a tuple S of parameters, we use the expression S-bounded to mean "bounded by a function of S ".

Lemma 2.12. Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be an arbitrary word and consider an r-tuple $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ of normal subgroups of a group G. Suppose that $N_{i}=\left\langle S_{i}\right\rangle$, where S_{i} is a normal subset of G for every $i=1, \ldots, r$, and set $\mathbf{S}=\left(S_{1}, \ldots, S_{r}\right)$. If $w\{\mathbf{S}\}$ is finite of order m then $w(\mathbf{N})^{\prime}$ is finite of m-bounded order.

Theorem 2.13. Let $r \in \mathbb{N}$ and let $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ be a tuple of normal subgroups of a group G. Assume that $N_{i}=\left\langle S_{i}\right\rangle$ for every $i=1, \ldots, r$, where:

1. S_{i} is a normal subset of G.
2. There exists $n_{i} \in \mathbb{N}$ such that all n_{i} th powers of elements of N_{i} are contained in S_{i}.

If for the tuple $\mathbf{S}=\left(S_{1}, \ldots, S_{r}\right)$ the set of values $\gamma_{r}\{\mathbf{S}\}$ is finite of order m, then the subgroup $\gamma_{r}(\mathbf{N})$ is also finite, of $\left(m, r, n_{1}, \ldots, n_{r}\right)$-bounded order.

Proof. We follow the notation \mathbf{N}_{i} and P_{i}^{r}, introduced in the statement of Theorem 2.11. We are going to prove that P_{i}^{r} is finite of bounded order for $i=$ $1, \ldots, r+1$ by reverse induction on i. Since $P_{1}^{r}=\gamma_{r}(\mathbf{N})$, this proves the result.

The basis of the induction follows from Lemma 2.12, since we have that $P_{r+1}^{r}=$ $\left[\gamma_{r}(\mathbf{N}), \gamma_{r}(\mathbf{N})\right]$. Let us assume that P_{i+1}^{r} is finite of bounded order and prove that the same holds for P_{i}^{r}. Recall that the quotient P_{i}^{r} / P_{i+1}^{r} is the image of $\gamma_{r}\left(\mathbf{N}_{i}\right)$, and then, by a suitable application of Lemma 2.3, it can be generated by the images of the set \mathbf{T} of commutators

$$
\left[s_{1}, \ldots, s_{i-1}, x_{i}, s_{i+1}, \ldots, s_{r}\right]
$$

with $s_{j} \in S_{j}$ for $1 \leq j \leq r, j \neq i$, and $x_{i} \in \gamma_{i}\left\{\mathbf{S}_{i}\right\}$, where $\mathbf{S}_{i}=\left(S_{1}, \ldots, S_{i}\right)$. By Lemma 2.7, we have $\gamma_{i}\left\{\mathbf{S}_{i}\right\} \subseteq S_{i}^{* 2^{i-1}}$, and then Lemma 2.8 implies that

$$
\left[s_{1}, \ldots, s_{i-1}, x_{i}, s_{i+1}, \ldots, s_{r}\right] \in \gamma_{r}\{\mathbf{S}\}^{* 2^{i-1}} \subseteq \gamma_{r}\{\mathbf{S}\}^{* 2^{r-1}}
$$

From the assumption that $\left|\gamma_{r}\{\mathbf{S}\}\right|=m$, we get

$$
|\mathbf{T}| \leq(2 m+1)^{2^{r-1}}
$$

and consequently P_{i}^{r} / P_{i+1}^{r} can be generated by an (m, r)-bounded number of elements. Since P_{i}^{r} / P_{i+1}^{r} is abelian, the proof will be complete once we show that all elements in \mathbf{T} have bounded finite order modulo P_{i+1}^{r}.

By Theorem 2.11, the word γ_{r} is linear in position i of the tuple \mathbf{N}_{i} modulo P_{i+1}^{r}. In particular,

$$
\begin{equation*}
\left[s_{1}, \ldots, s_{i-1}, x_{i}, s_{i+1}, \ldots, s_{r}\right]^{\lambda n_{i}} \equiv\left[s_{1}, \ldots, s_{i-1}, x_{i}^{\lambda n_{i}}, s_{i+1}, \ldots, s_{r}\right] \quad\left(\bmod P_{i+1}^{r}\right) \tag{2.3}
\end{equation*}
$$

for every $\lambda \in \mathbb{Z}$. Since $x_{i} \in \gamma_{i}\left(N_{1}, \ldots, N_{i}\right) \leq N_{i}$, it follows from (ii) in the statement of the theorem that $x_{i}^{\lambda n_{i}} \in S_{i}$ for all $\lambda \in \mathbb{Z}$. Thus we get

$$
\left[s_{1}, \ldots, s_{i-1}, x_{i}^{\lambda n_{i}}, s_{i+1}, \ldots, s_{r}\right] \in \gamma_{r}\{\mathbf{S}\}
$$

Since $\gamma_{r}\{\mathbf{S}\}$ is finite of order m, it follows that there exist $\lambda, \mu \in\{0, \ldots, m\}$, $\lambda \neq \mu$, such that

$$
\left[s_{1}, \ldots, s_{i-1}, x_{i}, s_{i+1}, \ldots, s_{r}\right]^{\lambda n_{i}} \equiv\left[s_{1}, \ldots, s_{i-1}, x_{i}, s_{i+1}, \ldots, s_{r}\right]^{\mu n_{i}} \quad\left(\bmod P_{i+1}^{r}\right)
$$

This implies that $\left[s_{1}, \ldots, s_{i-1}, x_{i}, s_{i+1}, \ldots, s_{r}\right]$ has $\left(m, n_{i}\right)$-bounded finite order modulo P_{i+1}^{r}, as desired.

If we take $S_{i}=N_{i}$, we get Theorem 2.2 for the lower central words.
Corollary 2.14. Let $r \in \mathbb{N}$ and let $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ be a tuple of normal subgroups of a group G. If $\gamma_{r}\{\mathbf{N}\}$ is finite of order m, then the subgroup $\gamma_{r}(\mathbf{N})$ is also finite, of (m, r)-bounded order.

Now we deduce Theorem 2.1 for lower central words.
Corollary 2.15. Let $r \in \mathbb{N}$ and let u_{1}, \ldots, u_{r} be disjoint non-commutator words. Then the word $\gamma_{r}\left(u_{1}, \ldots, u_{r}\right)$ is boundedly concise. In particular, $\gamma_{r}\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right)$ is boundedly concise for all $n_{i} \in \mathbb{Z} \backslash\{0\}$.

Proof. Let us consider the word $w=\gamma_{r}\left(u_{1}, \ldots, u_{r}\right)$, and let G be a group in which w takes finitely many values, say $|w\{G\}|=m$. By Corollary 2.5, we have $w(G)=\gamma_{r}\left(u_{1}(G), \ldots, u_{r}(G)\right)$. Note that $u_{i}(G)=\left\langle S_{i}\right\rangle$, where $S_{i}=u_{i}\{G\}$, and that $w\{G\}=\gamma_{r}\{\mathbf{S}\}$, where $\mathbf{S}=\left(S_{1}, \ldots, S_{r}\right)$. Now observe that S_{i} is a normal subset of G and that, since u_{i} is a non-commutator word, for some $n_{i} \in \mathbb{Z} \backslash\{0\}$ we have $\left\{g^{n_{i}} \mid g \in G\right\} \subset u_{i}\{G\}$. Hence $w(G)$ is finite of $\left(m, r, n_{1}, \ldots, n_{r}\right)$-bounded order by Theorem 2.13.

2.3 An EXAMPLE: THE WORD δ_{2}

We now want to prove Theorems the analogues of Theorems 2.1 and 2.2 for a generic outer commutator word w. The general strategy is still the same as for lower central words: we are going to obtain a suitable series of normal subgroups of G, going from $[w(\mathbf{N}), w(\mathbf{N})]$ to $w(\mathbf{N})$, with the property that each of the factors of the series can be generated by a verbal subgroup on a tuple of normal subgroups that is closely related to $w(\mathbf{N})$ and linear in one component. This is basically Theorem 2.20 below. For simplicity, let us refer to such a series as a linear series. The argument needed to obtain a linear series for derived words presents difficulties and subtleties that did not arise with lower central words, and is also significantly
more technical. For the convenience of the reader and in order to make the procedure for a general w more understandable, first of all we are going to provide a sketch of it in the particular case of δ_{2}.

Of course, $\delta_{1}=\gamma_{2}$ and, according to Theorem 2.11, we have the following linear series for $\delta_{1}\left(N_{1}, N_{2}\right)$:

Figure 2.1: Series of $\left[N_{1}, N_{2}\right]$
In this and in the next diagrams, a red box indicates the component in which we have linearity.

Let us see how we can construct a linear series for $\delta_{2}\left(N_{1}, N_{2}, N_{3}, N_{4}\right)$ from the series above for δ_{1}. To this purpose, we will use Lemma 2.10, which ensures that linearity is preserved after taking suitable commutators, and also the remark made before that lemma, saying that linearity is preserved after multiplying by a normal subgroup. To start with, we take the commutator of the terms of the previous series with $\left[N_{3}, N_{4}\right]$, obtaining the series

$$
\begin{gathered}
{\left[\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]\right.} \\
{\left[\left[N_{1}, \frac{\left.\left[N_{1}, N_{2}\right]\right]}{},\left[N_{3}, N_{4}\right]\right]\right.} \\
{\left[\left[\left[N_{1}, N_{2}\right],\left[N_{1}, N_{2}\right]\right],\left[N_{3}, N_{4}\right]\right]}
\end{gathered}
$$

Now we multiply this series by $\left[\left[N_{1}, N_{2}\right],\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]\right]$, which contains the subgroup $\left[\left[N_{1}, N_{2}\right],\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]$ by P. Hall's Three Subgroup Lemma, and we get the following diagram:

$$
\begin{gathered}
{\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]} \\
{[[N_{1}, \underbrace{\left[N_{1}, N_{2}\right]}],\left[N_{3}, N_{4}\right]]} \\
{\left[\left[N_{1}, N_{2}\right],\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]\right]}
\end{gathered}
$$

Figure 2.2: First diagram for $\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]$
Here, and in the remaining diagrams, instead of the subgroups of the series, we are showing verbal subgroups on normal subgroups whose images coincide with the corresponding factors of the series. After all, it is in these subgroups where we are going to obtain the linearity conditions. Be aware then that vertical lines in the diagrams do not denote inclusions from this point onwards.

By swapping the roles of $\left(N_{1}, N_{2}\right)$ and $\left(N_{3}, N_{4}\right)$, we can obtain this other diagram:

$$
\begin{gathered}
{\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]} \\
{\left[\left[N_{1}, N_{2}\right],\left[N_{3},\left[\left[N_{3}, N_{4}\right]\right]\right]\right]} \\
{\left[\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right],\left[N_{3}, N_{4}\right]\right]}
\end{gathered}
$$

Figure 2.3: Second diagram for $\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]$
Now we take the commutator of $\left[N_{1}, N_{2}\right]$ with the terms of this last diagram, and we add the extra term $\delta_{2}\left(N_{1}, N_{2}, N_{3}, N_{4}\right)^{\prime}$ at the bottom:

$$
\begin{gathered}
{\left[\left[N_{1}, N_{2}\right],\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]\right]} \\
{\left[\left[N_{1}, N_{2}\right],\left[\left[N_{1}, N_{2}\right],\left[N_{3},\left[\left[N_{3}, N_{4}\right]\right]\right]\right]\right.} \\
{[\left[N_{1}, N_{2}\right],[\underbrace{\mid}_{\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]},\left[N_{3}, N_{4}\right]]]} \\
{\left[\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right],\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]\right]}
\end{gathered}
$$

Figure 2.4: Series of $\left[\left[N_{1}, N_{2}\right],\left[\left[N_{1}, N_{2}\right],\left[N_{3}, N_{4}\right]\right]\right]$
Finally, by gluing the diagrams in Figures 2 and 4 together, we obtain a linear series for the subgroup $\delta_{2}\left(N_{1}, N_{2}, N_{3}, N_{4}\right)$.

Of course, this is simply a sketch without proofs, but we are going to follow the same procedure in the proof of Theorem 2.20, in order to get a linear series for $w=[\alpha, \beta]$ from the series for the outer commutator words α and β. At this point, it is worth noting an important difference with the situation for a lower central word γ_{r}. In that case, every factor of the linear series is of the following form (again we show the linear component in red):

$$
\left[N_{1}, \ldots, N_{i-1},\left[N_{1}, \ldots, N_{i}\right], N_{i+1}, \ldots, N_{r}\right]
$$

We observe that this subgroup is of the form $\gamma_{r}(\mathbf{M})$, where the j th component M_{j} of \mathbf{M} is either N_{j} or a commutator of the terms of \mathbf{N} that involves N_{j}, and the linearity happens in M_{i}. However, if we look at the series for δ_{2} obtained above, the first two subgroups in Figure 2.4 are

$$
\begin{equation*}
\delta_{2}\left(N_{1} ; N_{2} ;\left[N_{1}, N_{2}\right] ;\left[N_{3}, N_{4}\right]\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2}\left(N_{1} ; N_{2} ;\left[N_{1}, N_{2}\right] ;\left[N_{3},\left[N_{3}, N_{4}\right]\right]\right) \tag{2.5}
\end{equation*}
$$

which are not of the form $\delta_{2}(\mathbf{M})$ with every M_{j} a commutator from \mathbf{N} involving N_{j}, as we can see by looking at the third component of δ_{2}. Also, the linearity does
not happen in a component of δ_{2}, but in a more interior position. Nevertheless, we can write these subgroups as verbal subgroups on normal subgroups for outer commutator words different from δ_{2}. More specifically, if

$$
v\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}\right)=\left[\left[x_{1}, x_{2}\right],\left[\left[y_{1}, y_{2}\right],\left[x_{3}, x_{4}\right]\right]\right]
$$

then the subgroups in (2.4) and (2.5) are $v\left(\mathbf{M}_{1}\right)$ and $v\left(\mathbf{M}_{2}\right)$, where

$$
\begin{equation*}
\mathbf{M}_{1}=\left(N_{1}, N_{2}, N_{3}, N_{4}, N_{1}, N_{2}\right) \text { and } \mathbf{M}_{2}=\left(N_{1}, N_{2}, N_{3},\left[N_{3}, N_{4}\right], N_{1}, N_{2}\right), \tag{2.6}
\end{equation*}
$$

where again we have marked the linear components in red.

2.4 OUTER COMMUTATOR WORDS

After having illustrated the procedure with the case of δ_{2}, let us proceed to systematically develop the tools that are necessary for the proof of Theorem 2.20.

We start by introducing a special type of words that we can derive from a given outer commutator word w, which we call extended words of w. Before giving the definition, we show the idea behind extended words with an example. Consider the word $\delta_{2}=\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]$. This is formed by taking the commutator of x_{1} and x_{2}, taking the commutator of x_{3} and x_{4}, and then taking the commutator of these two commutators. Now suppose that on some occasions, before performing one of these commutators, we introduce a change by taking first the commutator of one (or both) of the components with an outer commutator word not involving the variables x_{1}, \ldots, x_{4} appearing in δ_{2}. For example, before producing $\left[x_{1}, x_{2}\right]$, we take the commutator $\left[\left[y_{1}, y_{2}\right], x_{1}\right]$ and now we follow as in δ_{2} taking the commutator with x_{2}, obtaining $\left[\left[\left[y_{1}, y_{2}\right], x_{1}\right], x_{2}\right]$. We could continue with the process of taking commutators without making any other changes, so getting

$$
\left[\left[\left[\left[y_{1}, y_{2}\right], x_{1}\right], x_{2}\right],\left[x_{3}, x_{4}\right]\right],
$$

but we could also make some similar changes in the process, as in the words

$$
\left[\left[\left[\left[y_{1}, y_{2}\right], x_{1}\right], x_{2}\right],\left[x_{3},\left[y_{3}, x_{4}\right]\right]\right]
$$

and

$$
\left[\left[\left[\left[y_{1}, y_{2}\right], x_{1}\right], x_{2}\right],\left[\left[x_{3},\left[y_{3}, x_{4}\right]\right], y_{4}\right]\right] .
$$

Another possibility is to make a commutator at the very end, after having completed δ_{2}, as in

$$
\left[y_{1},\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]\right] .
$$

Observe that all these extended words are again outer commutator words, because we never repeat a variable when we make changes in the construction of δ_{2}.

Let us now give the formal definition of extended words. Notice that this definition differs from the one of extensions of outer commutator words given in Definition 3.1 of [33].

Definition 2.16 (Extended words). Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be an outer commutator, and let $Y=\left\{y_{n}\right\}_{n \in \mathbb{N}}$ be a set of variables that are disjoint from X. For every $k \in \mathbb{N} \cup\{0\}$, we define recursively the $\operatorname{set}^{\operatorname{ext}_{k}(w) \text { of } k t h ~ e x t e n d e d ~ w o r d s ~ o f ~}$ w as follows:

1. $\operatorname{ext}_{0}(w)=\{w\}$.
2. For $k \geq 1, \operatorname{ext}_{k}(w)$ consists of the set

$$
\begin{aligned}
& \left\{[p, q],[q, p] \mid p \text { outer commutator in } Y, q \in \operatorname{ext}_{k-1}(w), p \text { and } q \text { disjoint }\right\} \\
& =\left\{[p, q] \mid p \text { outer commutator in } Y, q \in \operatorname{ext}_{k-1}(w), p \text { and } q \text { disjoint }\right\}^{ \pm 1}
\end{aligned}
$$

and, if $w=[\alpha, \beta]$, also of the set

$$
\bigcup_{\ell+m=k}\left\{[p, q] \mid p \in \operatorname{ext}_{\ell}(\alpha), q \in \operatorname{ext}_{m}(\beta), p \text { and } q \text { disjoint }\right\} .
$$

If $v \in \operatorname{ext}_{k}(w)$ then we say that w is an extended word of degree k of w by outer commutators.

For brevity, in the remainder we will simply speak of extended words when we mean extended words by outer commutators. Observe that an extended word v of an outer commutator $w=w\left(x_{1}, \ldots, x_{r}\right)$ is again an outer commutator, in the variables $\left\{x_{1}, \ldots, x_{r}\right\} \cup Y$. Whenever it is convenient we will assume, after renaming the variables, that $v=v\left(x_{1}, \ldots, x_{r}, y_{r+1}, \ldots, y_{s}\right)$.

Next we generalize Lemma 2.8 to extended words of an outer commutator word.
Lemma 2.17. Let $v=v\left(x_{1}, \ldots, x_{r}, y_{r+1}, \ldots, y_{s}\right)$ be an extended word of degree k of an outer commutator word $w=w\left(x_{1}, \ldots, x_{r}\right)$. Assume that $\mathbf{S}=\left(S_{1}, \ldots, S_{r}\right)$ is a tuple of normal subsets of a group G. If $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right)$ is a tuple of elements of G such that $t_{i} \in S_{i}^{* m_{i}}$ for every $i=1, \ldots, r$, then

$$
v(\mathbf{t}) \in w\{\mathbf{S}\}^{* m_{1} \ldots m_{r} 2^{k}}
$$

Proof. We use induction on $k+r$. If $k=0$ then $v=w$ and the result is Lemma 2.8. This gives in particular the basis of the induction. Suppose now that the result holds for smaller values of $k+r$, and that $k \geq 1$. According to Definition 2.16, we may assume that $v(\mathbf{t})=\left[p\left(\mathbf{t}^{\prime}\right), q\left(\mathbf{t}^{\prime \prime}\right)\right]$, where p and q are disjoint and

1. either p is an outer commutator word in Y and $q \in \operatorname{ext}_{k-1}(w)$,
2. or $p \in \operatorname{ext}_{\ell}(\alpha), q \in \operatorname{ext}_{m}(\beta)$, with $w=[\alpha, \beta]$ and $\ell+m=k$.

In case (i), all elements t_{1}, \ldots, t_{r} appear in the vector $\mathbf{t}^{\prime \prime}$, and by the induction hypothesis we have $q\left(\mathbf{t}^{\prime \prime}\right) \in w\{\mathbf{S}\}^{* m_{1} \ldots m_{r} 2^{k-1}}$. Then the result follows by applying Lemma 2.7 to the commutator word $\left[x_{1}, x_{2}\right]$ and the normal subset $w\{\mathbf{S}\}^{* m_{1} \ldots m_{r} 2^{k-1}}$.

Suppose now that we are in case (ii), and assume without loss of generality that $\alpha=\alpha\left(x_{1}, \ldots, x_{q}\right)$ and $\beta=\beta\left(x_{q+1}, \ldots, x_{r}\right)$. Set $\mathbf{S}^{\prime}=\left(S_{1}, \ldots, S_{q}\right)$ and $\mathbf{S}^{\prime \prime}=$ $\left(S_{q+1}, \ldots, S_{r}\right)$. Since α and β involve less variables than w, the result is true for p and q, and so

$$
p\left(\mathbf{t}^{\prime}\right) \in \alpha\left\{\mathbf{S}^{\prime}\right\}^{* m_{1} \ldots m_{q} 2^{\ell}} \quad \text { and } \quad q\left(\mathbf{t}^{\prime \prime}\right) \in \beta\left\{\mathbf{S}^{\prime \prime}\right\}^{* m_{q+1} \ldots m_{r} 2^{m}}
$$

Now the result follows by applying Lemma 2.8 to the commutator word $\left[x_{1}, x_{2}\right]$ and the pair of normal subsets $\left(\alpha\left\{\mathbf{S}^{\prime}\right\}, \beta\left\{\mathbf{S}^{\prime \prime}\right\}\right)$.

We also need to define a type of extensions of tuples of normal subgroups and of verbal subgroups on normal subgroups. The idea behind the definition is to be able to deal with tuples like the ones appearing in (2.6) and with the corresponding verbal subgroups on normal subgroups in that paragraph.

Definition 2.18 (Outer commutator extension). Let G be a group and consider two tuples $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ and $\mathbf{M}=\left(M_{1}, \ldots, M_{s}\right)$ of normal subgroups of G. We say that \mathbf{M} is an outer commutator extension of \mathbf{N} if the following conditions hold:

1. $s \geq r$.
2. For every $i=1, \ldots, s$, we have $M_{i}=w_{i}\left(\mathbf{N}_{i}\right)$, where w_{i} is an outer commutator word and all components of \mathbf{N}_{i} belong to \mathbf{N}.
3. For every $i=1, \ldots, r$, the subgroup N_{i} is a component of \mathbf{N}_{i}, and consequently $M_{i} \leq N_{i}$.

Definition 2.19 (Extensions of $w(\mathbf{N}))$. Let $w=w\left(x_{1}, \ldots, x_{r}\right)$ be a word and let \mathbf{N} be an r-tuple of normal subgroups of a group G. An extension of degree k of $w(\mathbf{N})$ by outer commutators is a subgroup of the form $v(\mathbf{M})$, where v is an extended word of degree k of w and \mathbf{M} is an outer commutator extension of \mathbf{N}.

For example, we can see the subgroup in (2.5) as an extension of $\delta_{2}(\mathbf{N})=$ $\delta_{2}\left(N_{1}, N_{2}, N_{3}, N_{4}\right)$ by taking $v=\left[\left[x_{1}, x_{2}\right],\left[\left[y_{1}, y_{2}\right],\left[x_{3}, x_{4}\right]\right]\right]$ and the tuple $\mathbf{M}=$ $\left(N_{1}, N_{2}, N_{3},\left[N_{3}, N_{4}\right], N_{1}, N_{2}\right)$. Note that $v(\mathbf{M})$ is linear in the fourth component modulo the subgroup that appears below it in Figure 4.

We now prove the existence of a linear series for outer commutator words. We recall that the height of an outer commutator word $w=[\alpha, \beta]$ is defined inductively, with a single variable having height 0 , and with the height of w being $1+\max \{\operatorname{height}(\alpha)$, height $(\beta)\}$. Notice that the height of an outer commutator word in s variables will always be at most $s-1$.

Theorem 2.20. Let $r \in \mathbb{N}$ and let $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ be a tuple of normal subgroups of a group G. Consider an outer commutator word $w=[\alpha, \beta]$ in r variables, say of height h. Then there exists a series

$$
[w(\mathbf{N}), w(\mathbf{N})]=V_{0} \leq V_{1} \leq \cdots \leq V_{t}=w(\mathbf{N})
$$

of normal subgroups of G such that, for every $i=1, \ldots, t$, the following hold:

1. The section V_{i} / V_{i-1} is the image of an extension $v_{i}\left(\mathbf{M}_{i}\right)$ of $w(\mathbf{N})$ of degree at most $h-1$.
2. In the section V_{i} / V_{i-1}, the word v_{i} is linear in one component of the tuple M_{i}.

Furthermore, the words v_{i} and the words appearing in the outer commutator extensions \mathbf{M}_{i} depend only on w and r, and not on the group G or on the tuple N.

Proof. We prove the theorem by induction on the height of the outer commutator word w, with the base case being a single variable, which is obvious. We can then assume that there exist two series of subgroups satisfying the conditions of the theorem for the outer commutator words of smaller height α and β. Assume that x_{1}, \ldots, x_{q} and x_{q+1}, \ldots, x_{q+m} are the variables involved in α and β respectively, and in particular $r=q+m$.

Set $\mathbf{N}_{1}=\left(N_{1}, \ldots, N_{q}\right)$ and $\mathbf{N}_{2}=\left(N_{q+1}, \ldots, N_{q+m}\right)$. By the induction hypothesis, there exist two series of length s and r respectively

$$
\begin{equation*}
A_{0}=\left[\alpha\left(\mathbf{N}_{1}\right), \alpha\left(\mathbf{N}_{1}\right)\right] \leq \cdots \leq A_{i} \leq \cdots \leq A_{s}=\alpha\left(\mathbf{N}_{1}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{0}=\left[\beta\left(\mathbf{N}_{2}\right), \beta\left(\mathbf{N}_{2}\right)\right] \leq \cdots \leq B_{i} \leq \cdots \leq B_{r}=\beta\left(\mathbf{N}_{2}\right) \tag{2.8}
\end{equation*}
$$

such that, for every $i=1, \ldots, s$, the factors A_{i} / A_{i-1} and B_{i} / B_{i-1} are the images of $v_{i}^{\alpha}\left(\mathbf{M}_{i}^{\alpha}\right)$ and $v_{i}^{\beta}\left(\mathbf{M}_{i}^{\beta}\right)$, respectively, where:
(a) v_{i}^{α} and v_{i}^{β} are extended words of α and β respectively, each of degree at most $h-2$.
(b) \mathbf{M}_{i}^{α} is an outer commutator extension of \mathbf{N}_{1}.
(c) \mathbf{M}_{i}^{β} is an outer commutator extension of \mathbf{N}_{2}.
(d) In the sections A_{i} / A_{i-1} and B_{i} / B_{i-1}, the words v_{i}^{α} and v_{i}^{β} are linear in one component of the tuples \mathbf{M}_{i}^{α} and \mathbf{M}_{i}^{β}, respectively.

Let us now see how to obtain the series for w and for the tuple \mathbf{N} from the two series (2.7) and (2.8). We will have that the length t of the series we are looking for depends on the length of these two series, in the form that $t=r+s+1$. We start by taking the commutator of all terms of the series (2.7) with $\beta\left(\mathbf{N}_{2}\right)$. This way we obtain the series

$$
\begin{equation*}
\left[A_{0}, \beta\left(\mathbf{N}_{2}\right)\right] \leq \cdots \leq\left[A_{i}, \beta\left(\mathbf{N}_{2}\right)\right] \leq \cdots \leq\left[\alpha\left(\mathbf{N}_{1}\right), \beta\left(\mathbf{N}_{2}\right)\right]=w(\mathbf{N}) \tag{2.9}
\end{equation*}
$$

By P. Hall's Three Subgroup Lemma, we have

$$
\begin{aligned}
{\left[A_{0}, \beta\left(\mathbf{N}_{2}\right)\right] } & =\left[\alpha\left(\mathbf{N}_{1}\right), \alpha\left(\mathbf{N}_{1}\right), \beta\left(\mathbf{N}_{2}\right)\right] \\
& \leq\left[\alpha\left(\mathbf{N}_{1}\right), \beta\left(\mathbf{N}_{2}\right), \alpha\left(\mathbf{N}_{1}\right)\right]=\left[\alpha\left(\mathbf{N}_{1}\right), w(\mathbf{N})\right]
\end{aligned}
$$

Now we multiply all terms of the series (2.9) by $\left[\alpha\left(\mathbf{N}_{1}\right), w(\mathbf{N})\right]$, and this is the rightmost part of the series we are seeking (where $t=r+s+1$, as above):

$$
\begin{align*}
& V_{t-s}=\left[\alpha\left(\mathbf{N}_{1}\right), w(\mathbf{N})\right] \leq \cdots \leq V_{t-s+i}=\left[A_{i}, \beta\left(\mathbf{N}_{2}\right)\right][\left.\alpha\left(\mathbf{N}_{1}\right), w(\mathbf{N})\right] \\
& \leq \cdots \leq V_{t}=w(\mathbf{N}) \tag{2.10}
\end{align*}
$$

Note that $t-s=r+1$. The factors in this series are the images of the subgroups

$$
\left[v_{i}^{\alpha}\left(\mathbf{M}_{i}^{\alpha}\right), \beta\left(\mathbf{N}_{2}\right)\right]
$$

which can be represented in the form $v_{i}\left(\mathbf{M}_{i}\right)$ by taking

$$
v_{i}=\left[v_{i}^{\alpha}, \beta\left(x_{q+1}, \ldots, x_{q+m}\right)\right]
$$

and defining \mathbf{M}_{i} to be the concatenation of \mathbf{M}_{i}^{α} and \mathbf{N}_{2}, where the elements of \mathbf{N}_{2} occupy the positions $q+1, \ldots, q+m$ (which are the positions corresponding to the variables $\left.x_{q+1}, \ldots, x_{q+m}\right)$. Note that \mathbf{M}_{i} is an outer commutator extension of \mathbf{N}.

In a symmetric way, by first taking the commutator of $\alpha\left(\mathbf{N}_{1}\right)$ with all terms of the series (2.8) and then multiplying by $\left[w(\mathbf{N}), \beta\left(\mathbf{N}_{2}\right)\right]$, we get the series

$$
\begin{array}{r}
U_{t-r}=\left[w(\mathbf{N}), \beta\left(\mathbf{N}_{2}\right)\right] \leq \cdots \leq U_{t-r+i}=\left[\alpha\left(\mathbf{N}_{1}\right), B_{i}\right]\left[w(\mathbf{N}), \beta\left(\mathbf{N}_{2}\right)\right] \\
\leq \cdots \leq U_{t}=w(\mathbf{N}) . \tag{2.11}
\end{array}
$$

In this series, the factors are given by the images of the subgroups $u_{i}\left(\mathbf{L}_{i}\right)$, where

$$
u_{i}=\left[\alpha\left(y_{2^{h}+1}, \ldots, y_{2^{h}+q}\right), v_{i, 2}^{\beta}\right],
$$

$v_{i, 2}^{\beta}$ being the same word as v_{i}^{β}, with x_{1}, \ldots, x_{m} replaced with x_{q+1}, \ldots, x_{q+m}, and \mathbf{L}_{i} being the concatenation of \mathbf{M}_{i}^{β} and \mathbf{N}_{1}, where we put the components of the second tuple after the components of the first. Note that u_{i} is an extended word of $\beta\left(x_{q+1}, \ldots, x_{q+m}\right)$ of degree at most $h-1$ that only depends on β.

Now we take the commutator of $\alpha\left(\mathbf{N}_{1}\right)$ with the terms of the last series, and subtract s to all indices, getting

$$
\begin{align*}
& Z_{1}=\left[\alpha\left(\mathbf{N}_{1}\right),\left[w(\mathbf{N}), \beta\left(\mathbf{N}_{2}\right)\right]\right] \leq \cdots \leq Z_{t-r-s+i}=\left[\alpha\left(\mathbf{N}_{1}\right), U_{t-r+i}\right] \\
& \leq \cdots \leq Z_{t-s}=\left[\alpha\left(\mathbf{N}_{1}\right), w(\mathbf{N})\right] \tag{2.12}
\end{align*}
$$

since $t-r-s=1$. Finally, we define $V_{0}=[w(\mathbf{N}), w(\mathbf{N})]$ and multiply all terms of (2.12) by this subgroup, setting $V_{i}=Z_{i} V_{0}$ for $i=1, \ldots, t-s$. Since $V_{0} \leq\left[\alpha\left(\mathbf{N}_{1}\right), w(\mathbf{N})\right]$, we get the series

$$
\begin{align*}
& V_{0}=[w(\mathbf{N}), w(\mathbf{N})] \leq \cdots \leq V_{t-r-s+i}=Z_{t-r-s+i} {[w(\mathbf{N}), w(\mathbf{N})] } \\
& \leq \cdots \leq V_{t-s}=\left[\alpha\left(\mathbf{N}_{1}\right), w(\mathbf{N})\right] \tag{2.13}
\end{align*}
$$

In this series, the factors V_{i} / V_{i-1} for $i=2, \ldots, t-s$ are given by the images of the subgroups $v_{i}\left(\mathbf{M}_{i}\right)$, where

$$
v_{i}=\left[\alpha\left(x_{1}, \ldots, x_{q}\right), u_{i+s}\right]
$$

is an extended word of w of degree at most $h-1$, and \mathbf{M}_{i} is the concatenation of \mathbf{N}_{1} and \mathbf{L}_{i+s}, with the components of the second tuple after the components of
the first. On the other hand, the quotient V_{1} / V_{0} is given by the image of $v_{1}\left(\mathbf{M}_{1}\right)$, where

$$
v_{1}=\left[\alpha\left(x_{1}, \ldots, x_{q}\right),\left[y, \beta\left(x_{q+1}, \ldots, x_{q+m}\right)\right]\right]
$$

and $\mathbf{M}_{1}=(\mathbf{N}, w(\mathbf{N}))$.
Now the concatenation of (2.10) and (2.13) is the desired series for w and \mathbf{N}. The discussion of the previous paragraphs shows that $v_{i}\left(\mathbf{M}_{i}\right)$ is an extension of $w(\mathbf{N})$ for every $i=1, \ldots, t$. Thus we only need to check linearity of every word v_{i} in one component of the vector \mathbf{M}_{i}. For $i=t-s+1, \ldots, t$, if v_{i}^{α} is linear in component j of \mathbf{M}_{i}^{α} of the initial series (2.7), then combining this fact with Lemma 2.10, it follows that v_{i} is linear in the same component of \mathbf{M}_{i}. For $i=1, \ldots, t-s$, we can use similarly the linearity of the series (2.8). Finally for $i=1$, since $V_{0}=[w(\mathbf{N}), w(\mathbf{N})]$ we have linearity in the component corresponding to y, that takes values in $w(\mathbf{N})$.

Remark 2.21. Suppose $w=[\alpha, \beta]$ is an outer commutator word of height $h \in \mathbb{N}$. Notice that the number t of terms of the series associated to w in 2.20 is $1+r+s$, where r, s are the lengths of the series of α and β respectively, with the case of a single variable having length one. In particular, it is immediate to prove by induction that the length t is always at most the length of the series for the derived word δ_{h}. This length can be explicitly computed, being equal to one if $h=0$, equal to two if $h=1$ (this can be obtained from $\delta_{1}=\gamma_{2}$) and, using the recursion formula, the length of the series for δ_{h} is equal to $2^{h}+2^{h-1}-1$.

We can now prove the corresponding version of Theorem 2.13 for the a generic outer commutator word w.

Theorem 2.22. Let w be an outer commutator word of height h in r variables and let $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ be a tuple of normal subgroups of a group G. Assume that $N_{i}=\left\langle S_{i}\right\rangle$ for every $i=1, \ldots, r$, where:

1. S_{i} is a normal subset of G.
2. There exists $n_{i} \in \mathbb{N}$ such that all n_{i} th powers of elements of N_{i} are contained in S_{i}.

If for the tuple $\mathbf{S}=\left(S_{1}, \ldots, S_{r}\right)$ the set of values $w\{\mathbf{S}\}$ is finite of order m, then the subgroup $w(\mathbf{N})$ is also finite and of $\left(m, r, n_{1}, \ldots, n_{r}\right)$-bounded order.

Proof. Let us consider the series

$$
[w(\mathbf{N}), w(\mathbf{N})]=V_{0} \leq V_{1} \leq \cdots \leq V_{t}=w(\mathbf{N})
$$

of Theorem 2.20. By Remark 2.21, $t \leq 2^{h}+2^{h-1}-1$, where h is the height of the outer commutator word w. We prove that every V_{i} is finite of bounded order by induction on i. The result for $i=0$ follows from Lemma 2.12. Assume now that $i \geq 1$ and that the result is true for V_{i-1}. By Theorem 2.20, the section V_{i} / V_{i-1} coincides with the image of a subgroup $v_{i}\left(\mathbf{M}_{i}\right)$ that is an extension of $w(\mathbf{N})$ of degree at most $h-1$.

Let $\mathbf{M}_{i}=\left(M_{1}, \ldots, M_{s}\right)$, which is an outer commutator extension of \mathbf{N}. Hence $s \geq r$ and for every $j=1, \ldots, s$ we have $M_{j}=w_{j}\left(\mathbf{N}_{j}\right)$, where w_{j} is an outer commutator word, all components in \mathbf{N}_{j} belong to \mathbf{N}, and one of these components must be N_{j} for $j=1, \ldots, r$.

Let $T_{j}=w_{j}\left\{\mathbf{S}_{j}\right\}$, where \mathbf{S}_{j} is obtained from \mathbf{N}_{j} by replacing each subgroup N_{ℓ} with its given generating set S_{ℓ}. Hence $T_{j} \subseteq M_{j}$. Recall from Theorem 2.20 that the word v_{i} (and hence also the number s of variables of v_{i}) and the words w_{1}, \ldots, w_{s} only depend on w, and not on G or on \mathbf{N}. From this fact, and since \mathbf{S}_{j} consists of normal subsets of G, it follows from Lemma 2.7 that there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $T_{j} \subseteq S_{j}^{* f(r)}$ for every $j=1, \ldots, r$. If we set $\mathbf{T}=\left(T_{1}, \ldots, T_{s}\right)$ then, by Lemma 2.17, we get $v\{\mathbf{T}\} \subseteq w\{\mathbf{S}\}^{* n}$, where

$$
n=f(r)^{r} 2^{h-1} \leq f(r)^{r} 2^{r-1} .
$$

Consequently

$$
\begin{equation*}
\left|v_{i}\{\mathbf{T}\}\right| \leq(2 m+1)^{n} \tag{2.14}
\end{equation*}
$$

and $v_{i}\{\mathbf{T}\}$ is finite of (m, r)-bounded cardinality. On the other hand, it follows from Lemma 2.3 that $v_{i}\left(\mathbf{M}_{i}\right)$ can be generated by the set of values $v_{i}\{\mathbf{T}\}$.

From Theorem 2.20, we know that the word v_{i} is linear in some position $j \in$ $\{1, \ldots, s\}$ of the tuple \mathbf{M}_{i} modulo V_{i-1}. Since $M_{j}=w_{j}\left(\mathbf{N}_{j}\right)$ is as above, we have $M_{j} \leq N_{\ell}$ for some $\ell \in\{1, \ldots, r\}$, and actually $\ell=j$ if $j \in\{1, \ldots, r\}$. Now, from linearity, for every tuple $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right) \in \mathbf{T}$ and every $\lambda \in \mathbb{Z}$, we have

$$
\begin{equation*}
v_{i}(\mathbf{t})^{\lambda n_{\ell}}=v_{i}\left(t_{1}, \ldots, t_{j}, \ldots, t_{s}\right)^{\lambda n_{\ell}} \equiv v_{i}\left(t_{1}, \ldots, t_{j}^{\lambda n_{\ell}}, \ldots, t_{s}\right) \quad\left(\bmod V_{i-1}\right) \tag{2.15}
\end{equation*}
$$

We have $t_{j}^{\lambda} \in M_{j} \leq N_{\ell}$ and then, by (ii) in the statement of the theorem, $t_{j}^{\lambda n_{\ell}} \in S_{\ell}$. So we get

$$
v_{i}\left(t_{1}, \ldots, t_{j}^{\lambda n_{\ell}}, \ldots, t_{s}\right) \in v_{i}\left\{\mathbf{T}_{j}\right\}
$$

where \mathbf{T}_{j} is the tuple obtained from \mathbf{T} after replacing T_{j} with S_{ℓ}. Similarly to (2.14) and taking into account that $\ell=j$ if $j \in\{1, \ldots, r\}$, it follows that the set $v_{i}\left\{\mathbf{T}_{j}\right\}$ is finite of (m, r)-bounded cardinality. Hence there exist (m, r)-bounded integers λ and μ, with $\lambda \neq \mu$, such that

$$
v_{i}(\mathbf{t})^{\lambda n_{\ell}} \equiv v_{i}(\mathbf{t})^{\mu n_{\ell}} \quad\left(\bmod V_{i-1}\right)
$$

This implies that $v_{i}(\mathbf{t})$ has finite order modulo V_{i-1}, bounded in terms of m, r and n_{ℓ}.

Summarizing, the abelian quotient V_{i} / V_{i-1} is the image of the verbal subgroup $v_{i}\left(\mathbf{M}_{i}\right)$, which is generated by the set $v_{i}\{\mathbf{T}\}$ of (m, r)-bounded cardinality, and each element of $v_{i}\{\mathbf{T}\}$ has (m, r, n_{ℓ})-bounded order. We conclude that the order of V_{i} / V_{i-1} is $\left(m, r, n_{\ell}\right)$-bounded, which completes the proof.

Exactly as in the case of lower central words, we obtain Theorems 2.1 and 2.2 as special cases of this last result.

Corollary 2.23. Let w be an outer commutator word in r variables and let u_{1}, \ldots, u_{r} be non-commutator words. Then the word $w\left(u_{1}, \ldots, u_{r}\right)$ is boundedly concise. In particular, $w\left(x_{1}^{n_{1}}, \ldots, x_{r}^{n_{r}}\right)$ is boundedly concise for all $n_{i} \in \mathbb{Z} \backslash\{0\}$.

Corollary 2.24. Let w be an outer commutator word in r variables and let $\mathbf{N}=\left(N_{1}, \ldots, N_{r}\right)$ be a tuple of normal subgroups of a group G. If $w\{\mathbf{N}\}$ is finite of order m, then the subgroup $w(\mathbf{N})$ is also finite, of (m, r)-bounded order.

Counterexamples to Hall's conjecture

In this chapter we present some counterexamples to Hall's conjecture on the conciseness of words in groups.

In the first section, we describe the main ideas of small cancellation theory, which is the key technical tool to build counterexamples to Hall's conjecture. This theory utilises geometric diagrams on surfaces in order to obtain information on the structure of the groups.

In the second and third sections, we give a sketch of Ivanov's, Olshanskii's and Storozhev's counterexamples to Hall's conjecture that all words are concise in every group. All of these examples exhibit a specific word and a specific group where the word takes a single non-trivial value, but the associated verbal subgroup is infinite cyclic.

In the fourth section we obtain some original results regarding Olshanskii's word, following the preprint [68] of Shumyatsky and the author. We prove that this word is actually boundedly concise in residually finite groups. This is the first example of a word that is not concise in general, but is concise in residually finite groups. We then show that this word is also strongly concise in profinite groups.

In Section 5, we provide an answer to a question of [24] on generation of verbal subgroups in profinite groups. We construct a group with derived subgroup that is topologically finitely generated, but that cannot be generated by a finite set of commutators.

3.1 Elements of small cancellation theory

In this section we introduce some basics in small cancellation theory, which are crucial for the construction of the counterexamples to Hall's conjecture. We start with some notation.

Given a surface or a polygon X, we denote by $\partial(X)$ the boundary of X and by $\iota(X)=X \backslash \partial(X)$ the interior of X. If we view an edge X of a polygon as a polygon itself, then $\partial(X)$ consists of the two endpoints.

When defining diagrams over groups, if a group G has a set S of generators, it will be useful to consider the set S^{*} of abstract words in the alphabet $S \cup S^{-1}$. In accordance to the notation introduced by Olshanskii, in this chapter we will denote words in S^{*} by capital letters C, L, M, X, Y, Z. We will write $|X|$ to denote the length of the word $X \in S^{*}$ and, if $X, Y \in S^{*}$, we will write $X \equiv Y$ (and say that X and Y are visually equal) if $|X|=|Y|$ and we have a letter-by-letter equality.

Definition 3.1 (Cells). Consider a n-gon P in a plane with edges e_{1}, \ldots, e_{n}. Consider a map $f: P \rightarrow X$, where X is any surface, such that:

- $\left.f\right|_{\iota(P)}$ is an embedding;
- $\left.f\right|_{\iota\left(e_{i}\right)}$ is an embedding for each $i \in\{1, \ldots, n\}$;
- if $a, b \in P$ are distinct points with $f(a)=f(b)$, then $a, b \in \partial(P)$. If a is a vertex, so is b, otherwise if $a \in e_{i}, b \in e_{j}$, then $f\left(e_{i}\right)=f\left(e_{j}\right)$.
The image $f(P)$ of such a map is called a cell on X.
Informally, a cell is an identification of the n-agon P in X, but we allow vertices and edges to be pasted together by f, still preserving the structure of open disc of $\iota(P)$.

Definition 3.2 (Cell decomposition). A cell decomposition of a surface X is a finite set $\left\{\left(P_{i}, f_{i}\right) \mid i=1, \ldots, m\right\}$ of cells such that $X=\bigcup_{i=1}^{m} f_{i}\left(P_{i}\right)$ and such that $f_{i}\left(P_{i}\right) \cap f_{j}\left(P_{j}\right), i \neq j$ is either empty or it is a set of vertices and/or edges.

A cell decomposition can be thought as a partition of X into a finite set of cells, but allowing these cells to intersect in edges and/or vertices. The images of vertices or edges of any of the P_{i} will be called vertices and edges of the cell decomposition. Normally, we will denote a cell $f_{i}\left(P_{i}\right)$ with a single letter \mathcal{C}.

Even if the theory can be developed for arbitrary surfaces, we will only work with orientable surfaces. It will be useful to give an orientation to edges of a
cell decomposition, by assuming that any edge e admits an inverse e^{-1}, which geometrically corresponds to the same element, but with inverse orientation.

Fix now an alphabet S and assign to each oriented edge e of the cell decomposition a label $\phi(e) \in S \cup S^{-1}$. If these labels are chosen such that $\phi\left(e^{-1}\right)=\phi(e)^{-1}$ for each edge e of the cell decomposition, we will moreover say that the decomposition is a diagram. If p is a path, obtained by concatenating some oriented edges $p=e_{1} \cdots e_{k}$ the label of p is the word $\phi(p)=\phi\left(e_{1}\right) \cdots \phi\left(e_{k}\right) \in S^{*}$, where the endpoint of e_{i} coincides with the beginning of e_{i+1}.

Whenever the surface X underlying a diagram is a disc, it will be called a circular diagram. Notice that if X has a boundary, then it must consist of edges and vertices of the diagram, and therefore each of its connected components will have a label as a path. We will say that any connected component of the boundary ∂X of X is a contour of X. Moreover any cell \mathcal{C} of a diagram can be seen as a disc (possibly with some parts of the boundary pasted together), and in this case the contour is equal to the boundary, and thus we will use the same notation $\partial \mathcal{C}$. We will use the convention that the label of the contour of every cell of a diagram over an orientable surface will be read clockwise, and similarly for the label of the contour of a circular diagram.

If we have a cell \mathcal{C} in a diagram, the boundary $\partial \mathcal{C}$ is a path (induced by the orientation of the polygons), so we can always consider the label $\phi(\partial \mathcal{C})$ of the contour. The length of the contour of a cell or of a surface X is the number of edges of ∂X as a finite path and will be denoted by $|\partial X|$.

Normally, we simply study groups given by a presentation $G=\langle S \mid \mathcal{R}\rangle$. In our case, we will need to consider groups with graded relations, in the sense that we partition the set \mathcal{R} of relations as $\mathcal{R}=\bigcup_{i=1}^{\infty} \mathcal{R}_{i}$ in such a way that no relator in \mathcal{R}_{i} can coincide with a cyclic conjugate of a word in \mathcal{R}_{j} or its inverse if $j \neq i$. In this setting, we will consider the graded presentation

$$
\begin{equation*}
G=\left\langle S \mid \mathcal{R}=\bigcup_{i=1}^{\infty} \mathcal{R}_{i}\right\rangle \tag{3.1}
\end{equation*}
$$

A cell in a diagram Δ is an \mathcal{R}-cell if its label is visually equal (up to cyclic conjugation) to a relator or an inverse of a relator in \mathcal{R}. If such relator is in the set \mathcal{R}_{i}, we will say that the cell is an i-cell, or a cell of rank i. Moreover we will say that it is a 0 -cell (or a cell of rank 0) if its label is visually equal to a word $s s^{-1}$ or $s^{-1} s$ for $s \in S$.

Definition 3.3 (Diagram over a group). If G is a group given by the presentation (3.1), a diagram over G is a diagram Δ over the alphabet S such that all cells
are either \mathcal{R}-cells or 0 -cells. The rank of the diagram is the maximum among the ranks of its cells.

Notice that this definition depends on the presentation (3.1) chosen for G, not only on the group G itself. When studying diagrams over a group G, we want to study the simplest possible version of them. In our case, we will say that a circular subdiagram of rank j can be simplified if we can substitute it with a subdiagram of smaller rank with the same countour label. As it is shown in Section 13.2 of [66], a sequence of these operations can always lead to a reduced diagram, that is a diagram without subgraphs that can be simplified.

In 1933 van Kampen proved that some fundamental problems in group theory, like understanding if a word in the generators is the trivial element in the group, can be solved through the use of diagrams of groups. We will give a version of his result for reduced diagrams over graded groups, and refer to Theorem 13.1 of [66] for the proof.

Theorem 3.4 (van Kampen). Let W be a non-empty word in the alphabet $S \cup S^{-1}$. Then $W=1$ in a group G with graded presentation (3.1) if and only if there exists a reduced circular diagram over G such that the label of its contour is visually equal to W.

Figure 3.1: Van Kampen's Lemma
The name "small cancellation theory" is due to the fact that we often require that different relators have a small overlapping. This can be made more precise with the following definition.

Definition 3.5 (Pieces and Condition $\left.C^{\prime}(\lambda)\right)$. Let G be a group with graded presentation (3.1), and let $R_{1}, R_{2}, R_{1} \neq R_{2}$, be two cyclic conjugates of two relators or inverses of relators in \mathcal{R}. A word X in the alphabet $S \cup S^{-1}$ is a piece if R_{1} and R_{2} are visually equal to words of the form $X Y_{1}$ and $X Y_{2}$ respectively.

The presentation (3.1) satisfies small cancellation condition $C^{\prime}(\lambda)$ for a number $0<\lambda \leq 1$ if, whenever R is a cyclic conjugate of a relator, or of an inverse of a relator, such that it is visually equal to $X Y$ for a piece X, then $|X|<\lambda|R|$.

Example 3.6. The group $\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle$ satisfies $C^{\prime}(\lambda)$ for all $\lambda>1 / 4$. Pieces consist of single letters or their inverses.

The surface group $\langle a, b, c, d|[a, b][c, d]]\rangle$ satisfies $C^{\prime}(\lambda)$ for all $\lambda>1 / 8$, and as before pieces consist of single letters or their inverses.

It is possible to see that any group can have a presentation satisfying condition $C^{\prime}(\lambda)$ for $\lambda>\frac{1}{5}$ (Gol'berg, see Section 12.4 of [66]), but if we ask λ to be smaller, it allows us to obtain interesting conditions on the groups.

Theorem 3.7 (Greendlinger's, Theorem 12.1 [66]). Let Δ be a reduced circular diagram over a presentation of a group G that satisfies $C^{\prime}(\lambda)$ for $\lambda \leq \frac{1}{6}$ with at least one \mathcal{R}-cell. Suppose that the label $\phi(\partial \Delta)$ is cyclically reduced and has no proper subword equal to the identity. Then there exists an exterior arc p (i.e. a path $p \in \partial C \cap \partial \Delta$) of some \mathcal{R}-cell C satisfying $|p|>\frac{1}{2}|\partial C|$.

This theorem has crucial implications in combinatorial group theory because, if there exists a presentation (3.1) of a group G satisfying $C^{\prime}(\lambda)$ for $\lambda \leq \frac{1}{6}$, it is possible to define an algorithm (called Dehn's algorithm) that in a finite number of steps can recognize if a word $W \in S^{*}$ is equal to the identity in G. Moreover this combinatorial condition has strong geometric implications, namely the group G is an hyperbolic group.

Even if the presentations we will use will not satisfy any $C^{\prime}(\lambda)$ condition, we will find an an analogue of Greendlinger's Theorem in groups satisfying weaker small cancellation conditions.

3.2 IVANOV'S COUNTEREXAMPLE

In 1989 Ivanov obtained the first counterexample to P.Hall's conjecture stating that all words are concise in the class of all groups. More precisely, he provided a word w_{I} and a group I in which w_{I} is not concise.

Theorem 3.8 ([43]). The word

$$
w_{I}(x, y)=\left[\left[x^{p n}, y^{p n}\right]^{n}, y^{p n}\right]^{n}
$$

for $n>10^{10}$ odd and $p>5000$ prime, takes only two values $\{1, z\}$ in a torsionfree 2-generated group I but the verbal subgroup $w_{I}(I)=\langle z\rangle$, that corresponds to the center of the group I, is infinite cyclic.

This group is a central extension of an infinite two generated group $G_{I}(\infty)$ of bounded exponent, which is constructed using small cancellation theory.

We first need a crucial result in central extensions. We recall that a set \mathcal{R} of relations for a group $G=\langle S \mid \mathcal{R}\rangle$ is independent if no proper set $\mathcal{R}^{\prime} \subseteq \mathcal{R}$ of relations gives the same group G (with the identity map on S).
Theorem 3.9. Suppose that the group $G=\langle S \mid \mathcal{R}\rangle$ can be considered as $G \cong$ F / N, with F being the free group with basis S and $N=\langle\mathcal{R}\rangle$. Then

- $\bar{G}=F /[F, N]$ is a central extension of $G=F / N$, i.e. $\bar{N}=N[F, N]$ is contained in the center of \bar{G}. Moreover, if G is centerless, then $\bar{N}=Z(\bar{G})$;
- $\bar{G}=\langle S|[r, s]$ for $r \in \mathcal{R}, s \in S\rangle$;
- if \mathcal{R} is an independent set of relations for G, then \bar{N} is a free abelian group with basis $\overline{\mathcal{R}}=\mathcal{R}[F, N]$.
For the proof, we refer to Chapter 31 of [66], in particular to Theorem 31.1 and the discussion above.

In the following we construct the group I, giving an idea of the arguments involved in the proof that w_{I} takes a single non-trivial value in I. In order to do so, we first construct the group $G_{I}(\infty)$, which is a variation of the free Burnside group constructed by Olshanskii in [64] by inductively imposing (possibly different) torsion to elements of a free group, and by obtaining a torsion group as the limit of all of these quotients.

Let $F_{2}=F(a, b)$ the free group in two letters and let $V, W \in F_{2}$ be elements of the free group. Denote by $|V|$ the minimal length of V as a word in the alphabet $\left\{a, b, a^{-1}, b^{-1}\right\}$. Fix an ordering in F_{2} such that if $|V|<|W|$, then $V<W$ (but we do not necessarily have to choose lexicographic order for words of the same length). For each $i \geq 1$ we inductively construct the groups $G_{I}(i)$. Define $G_{I}(0)=F_{2}$, then assume we already constructed $G_{I}(i-1)$. Let $C_{i} \in F_{2}$ be the smallest word (with respect to the fixed ordering of F_{2}) corresponding to an element of infinite order in $G_{I}(i-1)$, such a word will be called period of rank i. Define

$$
G_{I}(i)=G_{I}(i-1) /\left\langle C_{i}^{n_{i}}\right\rangle^{G_{I}(i-1)},
$$

where $\left\langle C_{i}^{n_{i}}\right\rangle^{G_{I}(i-1)}$ is the normal closure of $C_{i}^{n_{i}}$ and n_{i} is a odd number greater than $n=10^{10}$. The limit of these quotients is the group

$$
\begin{equation*}
\left.G_{I}(\infty)=F_{2} /\left\langle C_{i}^{n_{i}} \mid i \in \mathbb{N}\right\rangle\right\rangle^{F_{2}} \tag{3.2}
\end{equation*}
$$

When $n_{i}=n$ for every i we obtain the free Burnside group $B(2, n)$. In this construction, by using diagrams on groups, Olshanskii proved that the set $\left\{C_{i}^{n_{i}} \mid i \in\right.$
$\mathbb{N}\}$ is an independent set of relations (i.e. no proper subsets of relations defines the same group $G_{I}(\infty)$), that every word of finite order in $G_{I}(i)$ is conjugate to a power of a period C_{j} for $j \leq i$ (so in the torsion group $G_{I}(\infty)$ all words are conjugate to a power of a period), and most importantly that the group obtained in this way is infinite and with trivial center.

Ivanov's group I will be obtained as a central extension of $G_{I}(\infty)$ for some specific choices of the exponents n_{i}. In this case, we must choose some relators in a different way and we will impose some specific periods to have different orders. In detail, for $n>10^{10}$ odd and $p>5000$ prime we require that the words C_{i} satisfy that:

- the smallest word of length 1 is $C_{1}=B_{1}=a$ and we impose it to have order $p^{2} n$;
- the smallest word C_{i} of length $4(p n+1)$ is $B_{2}=\left[b a^{p n} b^{-1}, a^{p n}\right]$ and we impose it to have order $p n$;
- the 8 smallest words C_{i} of length $8 n(p n+1)$ will be B_{3}, \ldots, B_{10}

$$
\left[\left[b^{\varepsilon_{1}} a^{\varepsilon_{2} p n} b^{-\varepsilon_{1}}, a^{\varepsilon_{3} p n}\right]^{n}, a^{\varepsilon_{3} p n}\right]
$$

for $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \in\{ \pm 1\}$. We impose these 8 words to have order n;

- all the other words C_{i} will have order n.

In Lemma 2 of [43] it is proved that the word C_{i} has infinite order in $G_{I}(i-1)$ (and hence it can be chosen to be a period of appropriate rank) and that the group $G_{I}(\infty)$ with presentation (3.2) obtained by imposing these restrictions is infinite.

The group I is obtained as the quotient

$$
I=F_{2} /\left\langle\left[C_{i}^{n_{i}}, T\right], C_{i}^{n_{i}}=C_{j}^{n_{j}} \mid i, j \in \mathbb{N}, T \in F_{2}\right\rangle^{F_{2}} .
$$

In accordance to Theorem 3.9, if we considered only the first set of relators $\left\{\left[C_{i}^{n_{i}}, T\right]\right\}$ we would obtain a central extension of $G_{I}(\infty)$. The center of such a group would be a free abelian group with infinite basis $\left\{C_{i}^{n_{i}} \mid n \in \mathbb{N}\right\}$, but by adding the relators $C_{i}^{n_{i}}=C_{j}^{n_{j}}$ for all $i, j \in \mathbb{N}$, we obtain a cyclic center, generated by a single element $z=C_{i}^{n_{i}}$ for every $i \in \mathbb{N}$. Now we want to show that the only non-trivial value taken by the word w_{I} in the group I is exactly z.

Following the steps of a proof in [64], Ivanov proved the following result (Lemma 1 of [43]), which has a clear analogy to Theorem 3.7.

Lemma 3.10. Let Δ be a reduced annular diagram or diagram on a disc with two holes over $G_{I}(\infty)$ (with presentation 3.2, C_{i} as in the previous paragraph) such that the labels of the contour segments are cyclically unshortenable. If Δ contains at least an \mathcal{R}-cell, then there exists a cell C with $\partial C \cap \partial \Delta=p$ for a path p such that $|p| \geq 10^{-4}|\partial C|$.

To show that z is indeed the only value assumed by the word, we need to "funnel" the values of some subwords of the word w_{I}. We will explicitly explain the first steps to show the use of diagrams over groups and to understand why we need the diversification of the exponents.

Suppose first that X and Y are two words in the alphabet $S=\{a, b\}$. We first assume that $\left[X^{p n}, Y^{p n}\right]^{n}=1$ in $G_{I}(\infty)$, in which case $\left[X^{p n}, Y^{p n}\right]^{n}$ is in the center of I so $v(X, Y)=1$. As all words are conjugate to a power of a period in $G_{I}(\infty)$, if X or Y are conjugate to a period different than $C_{1}=a$, then either $X^{p n}$ or $Y^{p n}$ are equal to the identity in $G_{I}(\infty)$ (as all the periods different from $C_{1}=a$ have order dividing $p n$) and we are in the case $\left[X^{p n}, Y^{p n}\right]^{n}=1$ in $G_{I}(\infty)$, that we already considered. We can therefore assume that $X=L^{-1} a^{t_{1}} L$ and $Y=M^{-1} a^{t_{2}} M$ for some words $L, M \in S^{*}, t_{1}, t_{2} \in \mathbb{Z}$, and that $\left[X^{p n}, Y^{p n}\right]^{n} \neq 1$ in $G_{I}(\infty)$.

In this case, the word $\left[X^{p n}, Y^{p n}\right]$ must be conjugate in $G_{I}(\infty)$ to a power of $B_{1}=a$ or B_{2}, being the only periods with order not dividing n in $G_{I}(\infty)$. We want to prove that it cannot be conjugate to a power of a. Suppose by contradiction it is possible. Then, for a certain $N \in S^{*}$, we would have

$$
\left[L^{-1} a^{t_{1} p n} L, M^{-1} a^{t_{2} p n} M\right]=N^{-1} a^{t_{3}} N
$$

By Theorem 3.4, and then pasting the paths of the contour with label N and N^{-1}, we can construct a diagram Δ over $G_{I}(\infty)$ on a disc with an hole such that the exterior contour has label $a^{t_{3}}$ and the interior contour, read clockwise, has label $\left[L^{-1} a^{t_{1} p n} L, M^{-1} a^{t_{2} p n} M\right]$ (see Figure 3.2). We can now paste together the two segments of the internal contour with label $L M^{-1} a^{t_{2} p n} M L^{-1}$ and its inverse respectively, so we get a diagram on a disc with two holes and the contours are $a^{t_{3}}, a^{t_{1} p n}$ and $a^{-t_{1} p n}$ (Figure 3.3). By refining it if necessary, we can assume the diagram to be reduced.

Figure 3.2: Pasting contours with label N

Figure 3.3: Pasting contours with label $L M^{-1} a^{t_{2} p n} M L^{-1}$

Now use small cancellation theory: by Lemma 3.10, if Δ contains at least an \mathcal{R}-cell, there exists a cell \mathcal{C} with contour label $C_{j}^{n_{j}}$ for a certain $j \in \mathbb{N}$ such that it has a boundary arc p of length at least $10^{-4}\left|C_{j}^{n_{j}}\right|$. As $10^{-4} n_{i} \geq 2$ for every $i \in \mathbb{N}$, C_{j}^{2} must be a subword of a^{k} for $k= \pm t_{1} p n$ or $k= \pm t_{3}$, so $C_{j}=C_{1}=a$. We can now excise the cell \mathcal{C}, in the sense that we remove \mathcal{C} and, if $\partial \mathcal{C}=p q$ with p being the boundary arc $\mathcal{C} \cap \delta \Delta$, the new contour of Δ will follow the path q in place of the previous boundary arc p (Figure 3.4).

Figure 3.4: Excision of a cell
By excising all the cells of this type, with labels $a^{ \pm p^{2} n}$, we change the exponents of some labels of the contour, but not their residual class modulo $p^{2} n$. After having excised all these cells, we have a diagram on a disc with two holes and by Lemma 3.10 it cannot contain any \mathcal{R}-cell (and in particular the disc with two holes is degenerate, with no interior, Figure 3.5). Looking at the final diagram, we can notice that the label of the exterior boundary is equal to the label of the path obtained by concatenating the two interior boundaries. This implies that $t_{3} \equiv p n\left(t_{1}-t_{1}\right) \equiv 0\left(\bmod p^{2} n\right)$ so $\left[L^{-1} a^{t_{1} p n} L, M^{-1} a^{t_{2} p n} M\right]=N^{-1} a^{t_{3}} N=1$ in $G_{I}(\infty)$, and this contradicts our assumptions.

Figure 3.5: Final diagram, after exicisions
With similar arguments, by means of congruences preserved by cell excision in diagrams, Ivanov proved that if $\left[X^{p n}, Y^{p n}\right]^{n} \neq 1$, then this word is conjugate to either B_{2} or B_{2}^{-1}, not to a proper power of them. Still applying the same ideas, but with more complicate congruences, he also proved that $\left[\left[X^{p n}, Y^{p n}\right]^{n}, Y^{p n}\right]$ must be a conjugate of exactly one of the words B_{3}, \ldots, B_{10}. We refer to the last part of

Lemma 3 in [43] for the explicit computations. This is sufficient to conclude that the only non-identical value of the word must be z.

A further interesting remark is that, as it is written in the acknowledgements of [43], the anonymous referee claimed that, using Adian's arguments of [6], the word $w_{A}=\left[x^{r}, y^{r}\right]^{n}$ takes exactly two values in a central extension (with cyclic center) of the free Burnside group $B(2, n)$ for odd $n=3 r \geq 1005$. This claim has not been proved, but it would provide the first example of a word that is concise (in this case $\left[x^{r}, y^{r}\right]$, see [22], or Theorem 2.13) but such that its power is not concise. Notice that if such a claim was true, using that each inverse of a w_{A}-value is still a w_{A}-value, the word w_{A} would have to take at least three values (the identity, a non-trivial element of infinite order and its inverse). Even with this correction, this remains only a claim and the proof is not a straightforward adaptation of Ivanov's methods.

In view of Conjectures 1.17 and 1.20 , it is natural to ask whether the counterexample obtained by Ivanov provides a negative answer to these questions too. However, it is well known that the group I is not residually finite, thus cannot be used to obtain a counterexample to the aforementioned conjectures in a straightforward way. We now provide a proof of this fact.

Lemma 3.11. Let G be a residually finite group and let N be the marginal subgroup of a word $w\left(x_{1}, \ldots, x_{n}\right)$. Then G / N is residually finite.

Proof. Let $g \in G$ such that $g \notin N$, in particular there exists an index $i \in$ $\{1, \ldots, n\}$ and some elements $h_{1}, \ldots, h_{n} \in G$ such that

$$
t=w\left(h_{1}, \ldots, h_{i} g, \ldots, h_{n}\right) w\left(h_{1}, \ldots, h_{i}, \ldots, h_{n}\right)^{-1} \neq 1
$$

By residually finiteness there exists a normal subgroup M of finite index in G such that $t \notin M$. We claim that $g \notin M N$. If it was, let $m \in M, n \in N$ such that $g=m n$. As N is marginal for w, we would have that

$$
\begin{aligned}
t= & w\left(h_{1}, \ldots, h_{i} m n, \ldots, h_{n}\right) w\left(h_{1}, \ldots, h_{i}, \ldots, h_{n}\right)^{-1}= \\
& w\left(h_{1}, \ldots, h_{i} m, \ldots, h_{n}\right) w\left(h_{1}, \ldots, h_{i}, \ldots, h_{n}\right)^{-1}
\end{aligned}
$$

but this would imply that $t \equiv 1(\bmod M)$, contradicting our choice of M. This proves that for every $g \notin N$ there exists a finite index subgroup $M N$ such that $g \notin M N$, as desired.

Corollary 3.12. Any finitely generated group which is central-by-(infinite group of finite exponent) cannot be residually finite. In particular, Ivanov's group I is not residually finite.

Proof. By Lemma 3.11 if I was residually finite, using that the center is the marginal subgroup for the commutator word, then also the quotient $I / Z(I)$ would be residually finite. By Zelmanov's solution of the Restricted Burnside problem (see [86], [87]), finitely generated residually finite groups of finite exponent are finite, obtaining a contradiction with the fact that $I / Z(I)$ is infinite.

3.3 OlSHANSKII'S COUNTEREXAMPLE

In his article [65], and subsequently in his book [66], Olshanskii studied the words

$$
v_{O}(x, y)=\left[\left[x^{d}, y^{d}\right]^{d},\left[y^{d}, x^{-d}\right]^{d}\right]
$$

and

$$
\begin{equation*}
w_{O}(x, y)=[x, y] v_{O}(x, y)^{n}[x, y]^{\varepsilon_{1}} v_{O}(x, y)^{n+1} \cdots[x, y]^{\varepsilon_{h-1}} v_{O}(x, y)^{n+h-1} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{gathered}
\varepsilon_{10 k+1}=\varepsilon_{10 k+2}=\varepsilon_{10 k+3}=\varepsilon_{10 k+5}=\varepsilon_{10 k+6}=1 \\
\varepsilon_{10 k+4}=\varepsilon_{10 k+7}=\varepsilon_{10 k+8}=\varepsilon_{10 k+9}=\varepsilon_{10 k+10}=-1
\end{gathered}
$$

for $k=0,1, \ldots,(h-1) / 10 ; n>10^{10}$ odd and $h \equiv 1 \bmod 10, h>50000, d$ and n are integers "big enough". The minimal bounds for d and n are not immediate to get but can be recovered from the article [65] or from Chapters 29 and 30 of [66].

The choice of the ε_{i} is due to the need of a tuple of numbers that is not equal to its opposite, mirror image or cyclic shift. In the construction of $w_{O}(x, y)$, the word $v_{O}(x, y)$ takes the role of a "disturbing noise", in the sense that w_{O} is substantially different from a commutator word, but when we remove the disturbance, $w_{O}(x, y)=[x, y]$. This immediate fact that can be directly observed from the definition of w_{O}.

Lemma 3.13. In every group where $v_{O}(x, y)$ is a law, and in particular in metabelian groups, the values of the word $w_{O}(x, y)$ coincide exactly with the values of the commutator word $[x, y]$.

By using that every finite non-abelian group contains a non-abelian metabelian group (Corollary 6.1 of [66]), we can recover this straightforward result.

Theorem 3.14 (Lemma 29.1 of [66]). Every finite group where w_{O} is a law is abelian.

Proof. Consider a non-abelian metabelian subgroup H of a group G with $w_{O}(G)=$ 1. As H is metabelian, $v_{O}(H)=1$, and in that case, by Lemma 3.13, $1=w_{O}(H)=$ H^{\prime}, contradicting that H is not abelian.

In Theorem 30.1 of the same book, Olshanskii proved that there are non-abelian infinite groups in the variety generated by w_{O}, like the relatively free group in two generators $G_{O}(\infty)$. This was used to prove that the variety generated by w_{O} cannot be generated by finite groups, as otherwise it would be a sub-variety of the abelian one. This provides a negative answer to a classical question of H . Neumann in [58], who asked whether any variety can be generated by its finite elements. However, our main interest lies in a different result appearing in the same book, precisely Theorem 39.7 of [66].

Theorem 3.15 (Theorem 39.7 of [66]). There is a group O where w_{O} takes a single value, but $w_{O}(G)$ is infinite.

The main idea of the proof of Olshanskii is similar to the proof of Ivanov, but he makes use of some results that he proved in the construction of the infinite non-abelian group in the variety generated by w_{O}, which is actually the aforementioned relatively free group $G_{O}(\infty)$ on a set of two generators $S=\{a, b\}$. The main difference between Ivanov's and Olshanskii's proofs is that in the former the quotient $I / Z(I)$ is torsion, and the torsion is used in the "funneling" of the values, whereas in the latter the quotient $O / Z(O) \cong G_{O}(\infty)$ is torsionfree.

The group $G_{O}(\infty)$ will be obtained with a graded presentation like (3.1), but relators will be values of the word w_{O} rather than power words. This is another difference compared to Ivanov's constructions of $G_{I}(\infty)$, as in that case the relators \mathcal{R}_{i} were powers words $C_{i}^{n_{i}}$, that are not values of v_{I}. In order to obtain this, he partitioned the set of pairs $(X, Y) \in S^{*} \times S^{*}$, with each equivalence class represented by a pair (\bar{X}, \bar{Y}). We will call these representatives O-pairs. For each of these pairs, he added a single appropriately chosen relation $\mathcal{R}(\bar{X}, \bar{Y})$, which is a value of the word w_{O} (in the book, the role of O-pairs is taken by the so-called "generalized (A, j)-triples"). It must be noted that he used again an inductive construction, in the sense that the final presentation of $G_{O}(\infty)$ will be graded like in (3.1), and the equivalence class of a certain O-pair $\left(\bar{X}_{i}, \bar{Y}_{i}\right)$ is chosen depending on periods in $G_{O}(i-1)=\left\langle S \mid \bigcup_{j=1}^{i-1} \mathcal{R}_{j}\right\rangle$. The set \mathcal{R}_{i} will consist of the relation $\mathcal{R}(\bar{X}, \bar{Y})$ associated to this O-pair.

If $G_{O}(\infty)=\langle S \mid \mathcal{R}\rangle$, we can define again the maximal central extension \bar{O} as

$$
\bar{O}=F_{2} /\left\langle[R, T] \mid R \in \mathcal{R}, T \in F_{2}\right\rangle^{F_{2}}
$$

where $F_{2}=F(a, b)$ is the free group generated by S. As usual, we use capital letters X, Y to denote elements of S^{*}, that can be therefore considered as elements both of F_{2} or of some appropriate quotients.

As w_{O} is a law in $G_{O}(\infty)$, the values of w_{O} in \bar{O} are contained in the center and by construction $\bar{O} / Z(\bar{O}) \cong G_{O}(\infty)$. In Lemma 39.11 of $[66]$, the author proved that if $\left[X_{1}, Y_{1}\right]=\left[X_{2}, Y_{2}\right]$ in $G_{O}(\infty)$, then $\left[X_{1}, Y_{1}\right]=\left[X_{2}, Y_{2}\right]$ in \bar{O}. Subsequently, he proved that every couple (X, Y) is conjugate in $G_{O}(\infty)$ to an O-pair, and hence it suffices to study $w_{O}(X, Y)$ when (X, Y) runs over the set of O-pairs used in the construction of $G_{O}(\infty)$. By Theorem 3.9, this set of w_{O}-values generates $w_{O}(\bar{O})=Z(\bar{O})$, and each O-pair gives rise to a different w_{O}-value because the sets \mathcal{R}_{i} of relators were independent. Thus $Z(\bar{O}) \cong \mathbb{Z}^{\mathbb{N}}$. The group $O=\bar{O} / N$ is obtained by quotienting out \bar{O} by the normal subgroup N generated by all but one of the generators of $Z(\bar{O}) \cong \mathbb{Z}^{\mathbb{N}}$.

Both in Ivanov's and Olshanskii's examples, the way to pass from \bar{I} to I and from \bar{O} to O was by quotienting out a subgroup of the center, but there are several ways to choose such subgroup. In [43], the author wondered whether it was possible to construct an analogous counterexample, but in a relatively free group in a variety. This question has been answered by Storozhev, providing a third counterexample to Hall's conjecture. He proved in [77] that taking

$$
v_{S}(x, y)=\left[\left(x^{d} y^{d}\right)^{d} x^{d}, x^{d}\right]
$$

and w_{S} defined as 3.3 with v_{S} in place of v_{O}, there exists a relatively free group S where w_{S} takes only one non-trivial value. In Olshanskii's example, we could determine the value of $w_{O}(X, Y)$ from the behaviour of $[X, Y]$ in the quotient $G_{O}(\infty)$. In this case, we can obtain some information on $w_{S}(X, Y)$ by looking at the words X, Y in the quotient F_{2} / F_{2}^{\prime} instead.

We can define a central extension \bar{S} of a torsion group exactly as we did for \bar{O}, but with w_{S} taking the role of w_{O}. Storozhev then defined the subgroup $V \leq F_{2}$ generated by $w(X, Y)$ for all couples (X, Y) such that X, Y do not form a basis of F_{2} / F_{2}^{\prime} and by all $w\left(X_{1}, Y_{1}\right) w\left(X_{2}, Y_{2}\right)^{-1}$ for all couples $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)$ that are both a basis of F_{2} / F_{2}^{\prime}. He then proved that if two different w_{S}-values $w_{S}\left(X_{1}, Y_{1}\right)$ and $w_{S}\left(X_{2}, Y_{2}\right)$ are equal in \bar{S}, then $X_{1} \equiv X_{2}\left(\bmod F_{2}^{\prime}\right)$ and $Y_{1} \equiv Y_{2}\left(\bmod F_{2}^{\prime}\right)$. This implies that the subgroup V is fully invariant and hence, by Theorem 1.7, it is a verbal subgroup of F_{2}. If $\bar{S}=F_{2} / N$ (noticing that it is the 2 -generated relatively free group in the variety corresponding to the word $\left[w_{S}, z\right]$), the group $S=F_{2} / N V$ is relatively free and by definition of $V, w_{S}\{S\}=\{1, z\}$ with $z=w_{S}(X, Y)$ for a pair $(X, Y) \in S^{*}$ that is a basis of the abelian quotient F_{2} / F_{2}^{\prime}.

As the quotients $O / Z(O)$ and $S / Z(S)$ are torsionfree, we cannot conclude that O and S are not residually finite as we did with Ivanov's group I. We will obtain the non-residually finiteness of O as a consequence of w_{O} being concise in residually finite groups in the next section, but it is currently unknown whether S is residually finite.

We finish this section by summarizing the main differences of the three counterexamples we discussed.

	Ivanov	Olshanskii	Storozhev
Is $G / Z(G)$ torsion?	Yes	No	No
How to funnel the values?	Using different orders in $I / Z(I)$	Using O-pairs, through $O / Z(O)$	Using bases (X, Y) of F_{2} / F_{2}^{\prime}
Is the group residually finite?	No (3.12)	No (3.16)	Unknown

3.4 OLSHANSKII's WORD IN PROFINITE GROUPS

First of all, we prove that the word w_{O} defined by Olshanskii is boundedly concise in residually finite groups. We recall that Theorem 1.15 cannot be used in this setting, as it is currently unknown whether words that are concise in the class of residually finite groups are also boundedly concise within that class.

Theorem 3.16. The word w_{O} is boundedly concise in residually finite groups.
Proof. Let m be a positive integer and G a residually finite group in which w_{O} takes m values. In view of Lemma 1.12 there is a number $f_{1}(m)$ depending only on m such that $\left|w_{O}(G)^{\prime}\right| \leq f_{1}(m)$. If Q is a finite homomorphic image of G, observe that the quotient $Q / w_{O}(Q)$ is abelian by Theorem 3.14. Hence $Q / w_{O}(Q)^{\prime}$ is metabelian, so Lemma 3.13 implies that $Q / w_{O}(Q)^{\prime}$ has at most m commutators. Note that the commutator word is boundedly concise (see for example [74] for an explicit bound), so $\left|w_{O}\left(Q / w_{O}(Q)^{\prime}\right)\right| \leq f_{2}(m)$, for an integer $f_{2}(m)$ depending only on m. Hence $\left|w_{O}(Q)\right| \leq f_{1}(m) f_{2}(m)$. This holds for every finite homomorphic image Q of G so we deduce that $\left|w_{O}(G)\right| \leq f_{1}(m) f_{2}(m)$ too.

It is immediate that the group O in Theorem 3.15 is not residually finite.
We will now prove that the word w_{O} is strongly concise in profinite groups, but we will first need a classical result on conjugacy classes.

Lemma 3.17 (24 Lemma 2.2). Let G be a profinite group and $g \in G$ be an element whose conjugacy class g^{G} contains less than $2^{\aleph_{0}}$ elements. Then g^{G} is finite.

In order to prove the general result, we first have to consider two cases: first we will assume that G is a cartesian product of finite simple groups and then we will study the problem when G is prosolvable.

Lemma 3.18. Let G be a profinite group topologically isomorphic to a Cartesian product of finite non-abelian simple groups. If the word w_{O} takes less than $2^{\aleph_{0}}$ values in G, then G is finite.

Proof. Write $G=\prod_{i \in I} S_{i}$, where the factors S_{i} are finite non-abelian simple groups. By Theorem 3.14, $w\left(S_{i}\right)$ is nontrivial for every $i \in I$. Now we only need to show that the index set I is finite.

Assume by contradiction that I is infinite and choose a nontrivial w_{O}-value $c_{i} \in S_{i}$ for each $i \in I$. Observe that for each subset $J \subseteq I$ the product $c_{J}=\prod_{i \in J} c_{i}$ is a w_{O}-value. If $J_{1} \neq J_{2}$, then $c_{J_{1}} \neq c_{J_{2}}$ and therefore G contains at least $2^{\aleph_{0}}$ distinct w_{O}-values, a contradiction.

Lemma 3.19. Let G be a prosolvable group. If the word w_{O} takes less than $2^{\aleph_{0}}$ values in G, then the commutator subgroup G^{\prime} is finite.

Proof. By Lemma 3.13, $w_{O}\left(G / G^{\prime \prime}\right)=G^{\prime} / G^{\prime \prime}$. Moreover, as the commutator word is strongly concise in profinite groups (see Theorem 1.1 in [24]), $G^{\prime} / G^{\prime \prime}$ is finite and therefore there exists a finite set T of w_{O}-values such that $G^{\prime}=\langle T\rangle G^{\prime \prime}$. Note that by Lemma 3.17 each element of T has finitely many conjugates in G. So we can choose T in such a way that the subgroup $\langle T\rangle$ is normal in G. Set $\bar{G}=G /\langle T\rangle$. Observe that \bar{G} is a prosolvable group with the property that $\bar{G}^{\prime}=\bar{G}^{\prime \prime}$. It follows that \bar{G} is abelian and so $G^{\prime}=\langle T\rangle$.
Now by Lemma 3.17, for each $t \in T$ we have that $\left[\langle T\rangle: C_{G}(t)\right]<\infty$, whence $[\langle T\rangle: Z(\langle T\rangle)]<\infty$. By Schur's Theorem, the commutator subgroup $\langle T\rangle^{\prime}$ is finite. This implies that G is finite-by-metabelian. Factoring out $G^{\prime \prime}$ we can assume that G is metabelian and apply again Lemma 3.13. Since the commutator word is strongly concise, we conclude that G^{\prime} is finite and generated by finitely many w_{O}-values, as required.

By Hall-Higman theory, if K is a finite group, then there exists a series

$$
\begin{equation*}
1=K_{0} \leq K_{1} \leq \cdots \leq K_{2 h+1}=K \tag{3.4}
\end{equation*}
$$

of normal subgroups of K such that K_{i+1} / K_{i} is either solvable (possibly trivial) if i is odd, or a cartesian product of non-abelian simple groups if i is even. The number of non-solvable factors in this series is called the insoluble length $\lambda(K)$ of K. Theorem 1.4 of [46] implies that if the Sylow 2-subgroup of K is solvable with derived length l, then $\lambda(K)$ is bounded in terms of l only. We are now ready to complete the proof that the word w_{O} is strongly concise in profinite groups.

Theorem 3.20. Let G be a profinite group in which the word w_{O} takes less than $2^{\aleph_{0}}$ values. Then the verbal subgroup $w_{O}(G)$ is finite.

Proof. Choose a 2-Sylow subgroup P of G. In view of Lemma 3.19 observe that P is solvable, say of derived length l. It follows that if Q is any finite homomorphic image of G, the insoluble length $\lambda(Q)$ is bounded in terms of l only. Let \mathcal{C} be the class of finite groups with a series as in (3.4) of fixed length. Lemma 2 of [83] states that any pro-C group has a series of normal subgroups

$$
\begin{equation*}
1=G_{0} \leq G_{1} \leq \cdots \leq G_{2 h+1}=G \tag{3.5}
\end{equation*}
$$

of the same length such that G_{i+1} / G_{i} is prosolvable (possibly trivial) if i odd, or an inverse limit of (finite direct products of non-abelian simple groups) if i is even. Lemma 3 of [83] assures that, in the second case, such a profinite group is a cartesian product of finite non-abelian simple groups.

As $\lambda(Q)$ is l-bounded for each finite quotient Q of G, we obtain that G has a normal series like (3.5) of l-bounded length.

Lemma 3.18 shows that the non-prosolvable factors of this series are finite. Moreover, as in each simple group w_{O} is non-trivial, we have that $w_{O}\left(G_{i+1} / G_{i}\right)=$ G_{i+1} whenever i is even. In this case, we can obtain a finite normal set $T_{i} \subset w_{O}\{G\}$ such that $\left\langle T_{i}\right\rangle G_{i}=G_{i+1}$. On the other hand, if i is odd, by Lemma 3.19 there exists a finite normal set $T_{i} \subseteq w_{O}\{G\}$ such that $G_{i+1} /\left\langle T_{i}\right\rangle G_{i}$ is abelian. Let $\bar{T}=\bigcup_{i=1}^{2 h+1} T_{i}$. Overall, $G /\langle\bar{T}\rangle$ is a prosolvable group, and applying again Lemma 3.19, we conclude that it is finite-by-abelian, with derived subgroup generated by a finite normal set \widetilde{T} of w_{O}-values.

Let $T=\bar{T} \cup \widetilde{T}$. As we did in Lemma 3.19, we can obtain that the center of $\langle T\rangle$ has finite index and by Schur's Theorem T is finite-by-abelian. In particular G is finite-by-metabelian and applying again Lemma 3.19, we conclude that G is finite-by-abelian. As $w_{O}(G) \leq G^{\prime}, w$ is strongly concise in profinite groups.

3.5 On generation of verbal subgroups

In [24], the authors proved strong conciseness of several classes of group words, like words implying virtual nilpotency or weakly rational words, under the additional assumption that, if the verbal subgroup $w(G)$ is finitely generated, then it can be generated by finitely many w-values. If $w(G)$ is a pro- p group, then by looking at the quotient $w(G) / \Phi(w(G))$ and using Burnside basis theorem, it is immediate to see that $w(G)$ is finitely generated if and only if it is generated by finitely many w-values. The authors asked whether this is always true.

Conjecture 3.21. Let G be a profinite group and w be a word. If $w(G)$ is topologically finitely generated, it can be generated by finitely many word values.

We will now show that this question has a negative answer for lower central words $w=\gamma_{k}$.

Theorem 3.22. There is a profinite group G such that the subgroup $\gamma_{k}(G)$ is procyclic for every k, but it cannot be generated by finitely many γ_{k}-values.

Clearly the group G in our construction cannot be finitely generated otherwise, as Nikolov and Segal proved in [59] [60], all the abstract subgroups of the lower central series would be closed. In that case, whenever a verbal subgroup $w(G)$ is finitely generated, it is also generated by finitely many w-values: since it coincides with an abstract subgroup that is finitely generated, each generator is a finite word in the alphabet $w\{G\}$, so the subgroup itself is also generated by finitely many w-values.

A special case of the question we are interested in is when the derived subgroup is procyclic. Under this more restrictive hypothesis, is it true that it is generated by a single commutator? This question was studied, in the setting of abstract groups and cyclic subgroups, by Macdonald in [56]. He proved the following result.

Theorem 3.23 (Macdonald). Let G be an abstract group and assume G^{\prime} is cyclic. If either G is nilpotent or G^{\prime} is infinite, then G^{\prime} is generated by a suitable commutator. In general, for any given positive integer k, there is a finite group M_{k} such that M_{k}^{\prime} is cyclic but it cannot be generated by less than k commutators.

The main tool in our proof is the group M_{k} in the second part of the proposition, so we will give an idea of its structure. Fixed k, set $m=2^{2 k}-1$ and pick a set of different odd primes p_{1}, \ldots, p_{m}, chosen arbitrarily. The group M_{k} will be a semidirect product $C \rtimes C_{2}^{2 k}$, where $C_{2}^{2 k}=\left\langle a_{1}, \ldots, a_{2 k}\right\rangle$ is the direct product of
$2 k$ copies of the cyclic group of order 2 and $C=\langle c\rangle$ is a cyclic group of order $p_{1} p_{2} \cdots p_{m}$.

Assume $\left[c, a_{i}\right]=c^{\alpha_{i}}$ for some integer α_{i}. Macdonald proved, with the use of some accurately chosen congruences, that it is possible to select the integers α_{i} in the construction of M_{k} in such a way that the derived subgroup is the whole C and that for any set of $k-1$ commutators g_{1}, \ldots, g_{k-1} there is a prime $p_{j} \in\left\{p_{1}, \ldots, p_{m}\right\}$ such that

$$
\left\langle g_{1}, \ldots, g_{k-1}\right\rangle=\left\langle c^{p_{j}}\right\rangle
$$

In 45], Kappe observed that $\gamma_{2}\left\{M_{k}\right\}=\gamma_{j}\left\{M_{k}\right\}$ for all $j \geq 2$, hence the following result is a direct consequence of Macdonald's theorem.

Corollary 3.24 (Kappe). For any given positive integer k and any $j \geq 2$, there is a finite group M_{k} such that $\gamma_{j}\left(M_{k}\right)$ is cyclic but it cannot be generated by less than k commutators.
Proof of Theorem 3.2\%. We will prove the result for the commutator subgroup. The same construction works for all lower central words by Corollary 3.24.

For every k, let M_{k} be the group constructed by Macdonald in Theorem 3.23. In the choices of the group M_{k}, we had to choose some odd primes $p_{1}^{k}, \ldots, p_{2^{2 k}-1}^{k}$, we can require all of them to be different both pairwise and from all primes p_{l}^{j} for $1<j<k$ and $1<l<2^{2 j}-1$.

Define $B_{i}=\prod_{k=1}^{i} M_{k}$. By construction, B_{i}^{\prime} is a direct product of cyclic subgroups of coprime order, so it is cyclic too. As M_{i}^{\prime} cannot be generated by less than i commutators, the same is true for B_{i}^{\prime}. Moreover, by construction the groups B_{i}, for $i \in \mathbb{N}$, form an inverse system of finite groups, so we can define the profinite group $G=\lim _{i} B_{i}$.

Clearly $\widetilde{G^{\prime}}$ is procyclic as it is the inverse limit of B_{i}^{\prime}. It cannot be generated by a finite set X of commutators, say of cardinality n, because otherwise the images of X in the quotient B_{n+1} would generate B_{n+1}^{\prime} too, contradicting the previous paragraph.

In the way the authors use this property in [24], it is still relevant to ask whether the same phenomena can happen under the assumption that $|w\{G\}|<2^{\aleph_{0}}$. Of course, in view of Conjecture 1.20, it is possible that no word can take countably many values in a group unless it takes finitely many, so this could be considered as an intermediate step towards the proof of the strong conciseness conjecture.

Conjecture 3.25. Let G be a profinite group and w be a word. If $w(G)$ is topologically finitely generated and $|w\{G\}|<2^{\aleph_{0}}$, then $w(G)$ can be generated by finitely many word values.

Clearly the example in Theorem 3.22 cannot be used in order to contradict this conjecture because lower central words are strongly concise (see [24]).

4

Coprime commutators

In this chapter we prove strong conciseness of coprime commutators γ_{k}^{*} and δ_{k}^{*}, following the article [39] by de las Heras, Shumyatsky and the author.

We will first define coprime commutators and give an overview of their history. Coprime commutators are not word maps, but behave in a similar way, and they constitute a good generating set of the pronilpotent residual (for $\gamma_{k}^{*}, k \geq 2$) or of the k-th pronilpotent residual (for $\delta_{k}^{*}, k \geq 1$).

In the second section we will discuss some basic lemmas that are necessary to develop our results. Some of them were already present in the literature and others are original.

In the third section we will outline the structure of the proofs, with a description of an interesting set of pronilpotent subgroups that is present in prosolvable groups.

We will then prove the main theorems, of strong conciseness of coprime commutators, both in the meta-pronilpotent case for γ_{k}^{*} in Section 4, and in the (prosolvable of Fitting heigth $k+1$) case for δ_{k}^{*} in Section 5. The general statements will be then proved jointly in Section 6.

4.1 History of coprime commutators

Higher order coprime commutators were introduced by Pavel Shumyatsky in [75] as a way to obtain a smaller natural set of generators for some classical subgroups.

Given a profinite group G and an element $x \in G$, we denote by $|G|$ (respectively $|x|)$ the order of G (respectively x) as a supernatural number and $\pi(G)$ (respectively $\pi(x)$) will stand for the set of prime numbers dividing $|G|$ (respectively $|x|)$. We will say that an element $g \in G$ is a simple coprime commutator if and only if it can be written as $g=\left[g_{1}, g_{2}\right]$ for $g_{1}, g_{2} \in G$ with $\left(\left|g_{1}\right|,\left|g_{2}\right|\right)=1$.

It was already well-known that the set of simple coprime commutators in a finite group G generates the nilpotent residual $\gamma_{\infty}(G)$, that is, the smallest normal subgroup N such that G / N is nilpotent (see Theorem 2.1 of [75]). Of course, in profinite groups the pronilpotent residual $\gamma_{\infty}(G)=\bigcap_{i} \gamma_{i}(G)$ is the intersection of the terms of the lower central series of G.

Coprime commutators of higher order were defined in [75] for finite groups, but the definition naturally extends to the profinite case.

Definition 4.1 (Higher order coprime commutators). Let

$$
\gamma_{1}^{*}\{G\}=\delta_{0}^{*}\{G\}=G
$$

and, for every positive integer i define inductively the sets

$$
\begin{gathered}
\gamma_{i}^{*}\{G\}=\left\{\left[x^{\lambda}, g\right] \mid x \in \gamma_{i-1}^{*}\{G\}, \lambda \in \widehat{\mathbb{Z}}, g \in G,\left(\left|x^{\lambda}\right|,|g|\right)=1\right\} \\
\delta_{i}^{*}\{G\}=\left\{\left[x^{\lambda_{1}}, y^{\lambda_{2}}\right] \mid x, y \in \delta_{i-1}^{*}\{G\}, \lambda_{1}, \lambda_{2} \in \widehat{\mathbb{Z}},\left(\left|x^{\lambda_{1}}\right|,\left|y^{\lambda_{2}}\right|\right)=1\right\} .
\end{gathered}
$$

Moreover, for the generated subgroups we will write $\gamma_{i}^{*}(G)=\left\langle\gamma_{i}^{*}\{G\}\right\rangle$ and $\delta_{i}^{*}(G)=\left\langle\delta_{i}^{*}\{G\}\right\rangle$.

Even if coprime commutators are not word maps, the analogy with classical word maps is clear. Indeed, $\gamma_{i}^{*}(G)$ and $\delta_{i}^{*}(G)$ are fully invariant subgroups because the order of $f(x)$ always divides the order of x for every homomorphism f and every $x \in G$. For this reason, it is interesting to describe the subgroups generated by coprime commutators, and the main results of the article [75] completely solve this natural question.

Theorem 4.2 (75] Theorems 2.1, 2.7). Let G be a profinite group.
If $k \geq 2$, the subgroup $\gamma_{k}^{*}(G)$ is trivial if and only if G is pronilpotent.
The subgroup $\delta_{k}^{*}(G)$ is trivial if and only if G is prosolvable of Fitting height at most k.

It is interesting to point out that a consequence of Theorem 4.2 is that there exists no word $w \in F\left(X_{\infty}\right)$ such that $w(G)=\gamma_{i}^{*}(G)(i=2,3, \ldots)$ or $w(G)=$ $\delta_{i}^{*}(G)$ (i positive integer) for every profinite group G because nilpotent groups of unbounded class do not form a variety of groups.

Several problems, that were classical for usual commutators, were then adapted to coprime commutators. An example is Ore's Conjecture, which stated that every element of a finite simple group is a commutator, and was solved in [53]. In [75], the author conjectured that every element of a finite simple group can be realized as a coprime commutator and proved the conjecture for the class of alternating groups. The same conjecture was later settled for $\mathrm{PSL}_{2}(q)$ for every prime power q in [67] and for Suzuki groups ${ }^{2} B_{2}(q)$ for every odd q in [88].

Another natural consequence of the analogy between coprime commutators and usual commutators was the study of conciseness problems for them. Of course we will say that $\gamma_{i}^{*}\left(\operatorname{resp} \delta_{i}^{*}\right)$ is concise if $\gamma_{i}^{*}(G)\left(\operatorname{resp} . \delta_{i}^{*}(G)\right)$ is finite whenever $\gamma_{i}^{*}\{G\}$ (resp. $\delta_{i}^{*}\{G\}$) is finite.

In [5] the authors proved that, if there exists a positive integer m such that the word γ_{i}^{*} or δ_{i}^{*} takes at most m values in a finite group G, then the generated subgroup has m-bounded order. The bound does not depend on i, so that coprime commutators are uniformly concise in the class of finite groups. A straightforward consequence is that coprime commutators of higher order are concise in residually finite groups.

In the article [24], that began the investigation in strong conciseness, the authors noticed that the concept of strong conciseness can be applied in a wider context. Suppose \mathcal{C} is a class of profinite groups and $\phi\{G\}$ is a subset of G for every $G \in \mathcal{C}$. Is the subgroup generated by $\phi\{G\}$ finite whenever $|\phi\{G\}|<2^{\aleph_{0}}$? Such map ϕ is said to be strongly concise in the class \mathcal{C} if the answer is positive. This question is interesting whenever $\phi\{G\}$ is defined in some natural way and/or properties of the subgroup $\langle\phi\{G\}\rangle$ have strong impact on the structure of G. For this reason, in [28] the authors examined strong conciseness for coprime commutators and managed to set that the map γ_{2}^{*} is strongly concise in profinite groups. In this chapter, which roughly follows the article [39], we will prove strong conciseness of γ_{i}^{*} and δ_{i}^{*} for every positive integer i.

Theorem 4.3. A profinite group G is finite-by-pronilpotent if and only if there is k such that the set of γ_{k}^{*}-values in G has cardinality smaller than $2^{\aleph_{0}}$.

Theorem 4.4. A profinite group G is finite-by-(prosolvable of Fitting height at most k) if and only if the set of δ_{k}^{*}-values in G has cardinality smaller than $2^{\aleph_{0}}$.

Of course there are results of strong conciseness because by Theorem 4.2 the values of the words γ_{k}^{*} and δ_{k}^{*} generate the finite subgroups of Theorems 4.3 and 4.4.

4.2 Preliminaries

We will first list some results that were present in the literature, or some small variations of them, that will be useful in the proofs of Theorems 4.3 and 4.4.

The first one is a fundamental result in the study of strong conciseness. A direct application of this result is that conjugacy classes in profinite groups are either finite or of cardinality at least $2^{\aleph_{0}}$ (see Lemma 3.17).

Proposition 4.5 (24] Lemma 2.1). Let $\varphi: X \rightarrow Y$ be a continuous map between two non-empty profinite spaces that is nowhere locally constant (i.e. there is no non-empty open subset $U \subseteq_{o} X$ where $\left.\varphi\right|_{U}$ is constant). Then $|\varphi(X)| \geq 2^{\aleph_{0}}$.

A classical result in the theory of coprime automorphisms is the following.
Lemma 4.6 ([42], Lemma 4.29). Let A be a group of automorphisms of a finite group G with $(|A|,|G|)=1$. Then, $[G, A]=[G, A, A]$.

The following lemma is a stronger version of this result for the case where G is a pronilpotent group.

Lemma 4.7 (47] Lemma 4.6). Let φ be an automorphism of a pronilpotent group G with $(|\varphi|,|G|)=1$. Define the set the set $S=\{[g, \varphi] \mid g \in G\}$. Then the map $\theta: S \rightarrow S$ defined as

$$
\theta: x \rightarrow[x, \varphi]
$$

is bijective.
The following is a profinite version of Lemma 2.4 in [75].
Lemma 4.8. Let G be a profinite group and let g_{1}, \ldots, g_{k} be δ_{k-1}^{*}-values in G. Suppose that $g_{1}, \ldots, g_{k} \in N_{G}(H)$ for a subgroup $H \leq G$ with $\left(|H|,\left|g_{i}\right|\right)=1$ for every $i \in\{1, \ldots, k\}$. Then, for every $h \in H$, the element $\left[h, g_{1}, \ldots, g_{k}\right]$ is a δ_{k}^{*}-value.

Using the previous two lemmas together, we will be able to guarantee that some special types of long commutators are also values of δ_{k}^{*}.

Lemma 4.9. Let G_{1}, \ldots, G_{k} be pronilpotent subgroups of a profinite group G such that $G_{j} \leq N_{G}\left(G_{i}\right)$ for all $j \leq i$. Let $x_{i} \in G_{i}$ for every i and assume that $\left(\left|x_{i}\right|,\left|x_{i+1}\right|\right)=1$ for all $i=1, \ldots, k$. Then the element $g=\left[x_{1}, \ldots, x_{k}\right]$ is in $\delta_{k-1}^{*}\{G\}$ and $\pi(g) \subseteq \pi\left(x_{k}\right)$.

Proof. We will prove by induction on i that $g_{i}:=\left[x_{1}, \ldots, x_{i}\right] \in \delta_{i-1}^{*}\{G\}$ for every $i \in\{1, \ldots, k\}$ and that $\pi\left(g_{i}\right) \subseteq \pi\left(x_{i}\right)$. The statement of the lemma corresponds to the case $i=k$. If $i=1$ the result is obvious, so assume $i>1$ and that g_{i-1} is a δ_{i-2}^{*}-value with $\pi\left(g_{i-1}\right) \subseteq \pi\left(x_{i-1}\right)$, so in particular $\left(\left|g_{i-1}\right|,\left|x_{i}\right|\right)=1$. If H is the minimal Hall subgroup of the pronilpotent group G_{i} containing x_{i}, then g_{i-1} acts as a coprime automorphism of H. By Lemma 4.7, there exists $y_{i} \in H$ such that

$$
\left[x_{i}, g_{i-1}\right]=\left[y_{i}, g_{i-1}, \stackrel{i-1}{.}, g_{i-1}\right]
$$

and Lemma 4.8 shows that $g_{i}=\left[x_{i}, g_{i-1}\right]$ is a δ_{i-1}^{*}-value, as desired. As $g_{i} \in H$, we immediately have that $\pi\left(g_{i}\right) \subseteq \pi\left(x_{i}\right)$.

The next result is a profinite version of Lemma 2.4 in [5]. We recall that by "meta-pronilpotent" group we mean a profinite group G having a normal pronilpotent subgroup N such that G / N is pronilpotent.

Lemma 4.10. Let G be a meta-pronilpotent group. Then $\gamma_{\infty}(G)=\prod_{p}\left[K_{p}, H_{p^{\prime}}\right]$, where K_{p} is a Sylow p-subgroup of $\gamma_{\infty}(G)$ and $H_{p^{\prime}}$ is a Hall p^{\prime}-subgroup of G.

For a general group word w, the set $w\{G\}$ of w-values of a profinite group G is always closed in G. We will show that the same is true for the sets of γ_{k}^{*} and δ_{k}^{*}-values.

Proposition 4.11. Let S_{1}, \ldots, S_{k} be closed subsets of a profinite group G. Then the set

$$
C=\left\{\left(g_{1}, \ldots, g_{k}\right) \in S_{1} \times \cdots \times S_{k} \mid\left(\left|g_{i}\right|,\left|g_{i+1}\right|\right)=1 \text { for all } i=1, \ldots, k-1\right\}
$$

is closed in $S_{1} \times \cdots \times S_{k}$. Furthermore, the sets $\gamma_{k}^{*}\{G\}$ and $\delta_{k}^{*}\{G\}$ are closed in G.

Proof. Let \mathcal{P} be the set of all primes and $p \in \mathcal{P}$. First notice that for every closed subset S of G the set

$$
S_{p^{\prime}}=\{g \in S \mid p \notin \pi(g)\}
$$

is closed. Indeed $S_{p^{\prime}}=\bigcap_{N \unlhd_{o} G} S_{p^{\prime}} N$ because $p \in \pi(g)$ if and only if there is a normal subgroup N such that $g N$ has order divided by p in G / N. Also, the set
$S^{\widehat{\mathbb{Z}}}=\left\{g^{\lambda} \mid g \in S, \lambda \in \widehat{\mathbb{Z}}\right\}$ is the image under the continuous map $f(g, \lambda)=g^{\lambda}$ of the compact set $S \times \widehat{\mathbb{Z}}$, so it is closed too.

Let now A, B be subsets of G. We claim that the set

$$
\begin{equation*}
R_{A, B}=\bigcap_{p \in \mathcal{P}}\left(\left(A \times B_{p^{\prime}}\right) \cup\left(A_{p^{\prime}} \times B\right)\right) \tag{4.1}
\end{equation*}
$$

is exactly the set of elements $(a, b) \in A \times B$ with $|a|$ and $|b|$ coprime. On the one hand, if $|a|$ and $|b|$ are coprime then $(a, b) \in\left(A \times B_{p^{\prime}}\right) \cup\left(A_{p^{\prime}} \times B\right)$ for every $p \in \mathcal{P}$, because, if $b \in B \backslash B_{p^{\prime}}$, then $a \in A_{p^{\prime}}$ necessarily. On the other hand, if $(a, b) \in R_{A, B}$ and a prime p divides $|a|$, then $(a, b) \in A \times B_{p^{\prime}}$ so p does not divide $|b|$, and the claim follows. Notice now that if A and B are closed, the set $R_{A, B}$ is an intersection of closed subsets of $G \times G$ so it is closed too.

It is now easy to prove by induction on k that the sets $\gamma_{k}^{*}\{G\}, \delta_{k}^{*}\{G\}$ are closed: just note that $\gamma_{k}^{*}\{G\}$ is exactly the set $R_{A, B}$ in (4.1) with $A=\left(\gamma_{k-1}^{*}\{G\}\right)^{\widehat{\mathbb{Z}}}, B=G$, whereas $\delta_{k}^{*}\{G\}$ is the set $R_{A, B}$ in (4.1) with $A=B=\left(\delta_{k-1}^{*}\{G\}\right)^{\widehat{\mathbb{Z}}}$.

To prove that the set C is closed in $S_{1} \times \cdots \times S_{k}$, it suffices to notice that by the above arguments the set

$$
C_{i}=S_{1} \times \cdots \times S_{i-1} \times R_{S_{i}, S_{i+1}} \times S_{i+2} \times \cdots \times S_{k}
$$

is closed for every $i \in\{1, \ldots, k-1\}$ and $C=\bigcap_{i=1}^{k-1} C_{i}$.
As we showed in Lemma 1.12, whenever a group word w takes finitely many values in a group G, the subgroup $w(G)$ is finite if and only if $w(G) / w(G)^{\prime}$ is finite. If w takes less than $2^{\aleph_{0}}$ values in G we cannot obtain the same conclusion in general, but with some slightly stronger hypothesis we can anyway obtain a similar result.

Lemma 4.12. Let ϕ be a map that associates to every group G a normal subset $\phi\{G\} \subseteq G$. Let G be a profinite group with $|\phi\{G\}|<2^{\aleph_{0}}$ and let K be a pronilpotent subgroup of $\langle\phi\{G\}\rangle$ generated by a subset of $\phi(G)$. If K / K^{\prime} is finite, then K is finite.

Proof. Since K is pronilpotent, we have $K^{\prime} \leq \Phi(K)$, where $\Phi(K)$ stands for the Frattini subgroup of K. Thus $K / \Phi(K)$ is finite, and hence we can find a finite subset S of $\phi\{G\}$ generating K. Since $\phi(G)$ is a normal subset of G, by Lemma 3.17 each of these generators has finitely many conjugates in G, so in particular $\left|G: C_{G}(s)\right|<\infty$ for every $s \in S$. Since $C_{G}(K)=\bigcap_{s \in S} C_{G}(s)$, this implies that $Z(K)=K \cap C_{G}(K)$ has finite index in K, and by Schur's theorem K^{\prime} is finite.

We will use Lemma 4.12 for $\phi=\gamma_{k}^{*}$ or $\phi=\delta_{k}^{*}$, but it could be applied to other cases, such as any group word map or uniform (anti-coprime) commutators (see [28] or [29]).

4.3 Introduction to the proofs

In order to fully understand the proofs of Theorems 4.3 and 4.4, we have to begin from the proof of Detomi, Morigi and Shumyatsky in [28] that settled the analogous result for γ_{2}^{*}.

In the aforementioned article, the authors first proved that γ_{2}^{*} is strongly concise in meta-pronilpotent groups and then used this partial result to settle the general case. We will similarly split our proof: first we will prove strong conciseness of γ_{k}^{*} in meta-pronilpotent groups (Proposition 4.20 in Section 4.4), then we will settle the problem for δ_{k}^{*} in prosolvable groups of Fitting height $k+1$ (Proposition 4.33 in Section 4.5) and we will use these partial results in the proof of Theorems 4.3 and 4.4, that will be proved jointly in Section 4.6 .

The proof of Proposition 4.20 consists of extending the reasoning that was used in [28] for γ_{2}^{*}, with a focal use of Lemma 4.7. The proof of the general case also partially follows [28], with some complications in the arguments.

The case of δ_{k}^{*} in prosolvable groups of Fitting height $k+1$, however, involved a lot of technical problems and is surely the more complex part of this chapter. For this reason, in this case we give a deeper analysis and motivation of the ideas involved.

An essential tool of the proof is the following collection of subgroups.
Definition 4.13 (Sylow basis). A Sylow basis of a profinite group G is a family $\left\{P_{i}\right\}$ of Sylow subgroups of G, one for each prime in $\pi(G)$, such that $P_{i} P_{j}=P_{j} P_{i}$ for every i, j. The normalizer of a Sylow basis is $T=\bigcap_{i} N_{G}\left(P_{i}\right)$.

Basic properties of Sylow bases for finite groups can be found in Section 9.2 of [73] and they extend naturally to profinite groups.

Lemma 4.14. Any prosolvable group admits a Sulow basis and any two Sylow bases are conjugate. In this case, the Sylow basis normalizer T is pronilpotent and $G=T \gamma_{\infty}(G)$. Moreover, if G is meta-pronilpotent, $\gamma_{\infty}(G)=\left[T, \gamma_{\infty}(G)\right]$.
Proof. The first statement is a classical result, see for example Proposition 2.3.9 of [72], whereas the fact that $G=T \gamma_{\infty}(G)$ is Lemma 5.6 of [69]. If G is metapronilpotent, we have that

$$
\gamma_{\infty}(G)=\left[G, \gamma_{\infty}(G)\right]=\left[T \gamma_{\infty}(G), \gamma_{\infty}(G)\right]=\left[T, \gamma_{\infty}(G)\right]
$$

where the last equality follows from $\gamma_{\infty}(G)^{\prime} \leq \Phi\left(\gamma_{\infty}(G)\right)$.
As a consequence of Theorem 4.2, in every profinite group G the subgroup $\delta_{k}^{*}(G)$ coincides with the k-th nilpotent residual $\gamma_{\infty}{ }^{k}{ }^{k} \gamma_{\infty}(G)$ (i.e. with γ_{∞} repeated k times) and therefore $\delta_{k}^{*}(G)=\gamma_{\infty}\left(\delta_{k-1}^{*}(G)\right)$. Let $\left\{P_{i}\right\}$ be a Sylow basis of G and observe that $\left\{P_{i} \cap \delta_{j}^{*}(G)\right\}$ is a Sylow basis of $\delta_{j}^{*}(G)$ for every $j \geq 1$. Let T_{j} be the normalizer in $\delta_{j}^{*}(G)$ of the Sylow basis $\left\{P_{i} \cap \delta_{j}^{*}(G)\right\}$, so that $G=T_{0} T_{1} \cdots T_{k} \delta_{k+1}(G)$ for every $k \geq 0$. We then have $T_{j} \leq N_{G}\left(T_{i}\right)$ for every $j \leq i$ because, for every $P \in\left\{P_{i}\right\}$, every $t \in T_{j}$ normalizes both $P \cap \delta_{j}^{*}(G)$ and $\delta_{j}^{*}(G)$, so n^{t} normalizes $P \cap \delta_{i}^{*}(G)$ for all $n \in T_{i}$. In particular, if G is a prosolvable group of Fitting height $k+1$, then $\delta_{k+1}^{*}(G)=1$, and therefore $G=T_{0} \cdots T_{k}$. We want to refine this series to a similar one with some additional properties.

Proposition 4.15. Let G be a prosolvable group of Fitting height $k+1$. There exist pronilpotent subgroups U_{0}, \ldots, U_{k} satisfying the following properties, where we denote by $P_{i}(p)$ and $H_{i}\left(p^{\prime}\right)$ the Sylow p-subgroup and Hall p^{\prime}-subgroup of U_{i} respectively.

- $U_{j} \leq N_{G}\left(U_{i}\right)$ for every $j \leq i$;
- $G=U_{0} \cdots U_{j} \delta_{j+1}^{*}(G)$ for every $j \in\{0, \ldots, k\}$;
- $U_{k}=\delta_{k}^{*}(G)$;
- $P_{j}(p)=\left[P_{j}(p), H_{j-1}\left(p^{\prime}\right)\right]$ for every $j \in\{0, \ldots, k\}, p \in \pi(G)$.

Proof. Let $U_{0}=T_{0}$; for $j \geq 1$ we construct inductively the subgroups $U_{j} \leq T_{j}$ in the following way. Let $H_{j-1}\left(p^{\prime}\right)$ and $Q_{j}(p)$ be, respectively, the Hall p^{\prime}-subgroup of U_{j-1} and the Sylow p-subgroup of T_{j}, and define

$$
U_{j}=\prod_{p \in \pi(G)}\left[H_{j-1}\left(p^{\prime}\right), Q_{j}(p)\right]
$$

Notice that we can write the direct product because by induction $U_{j-1} \leq$ $T_{j-1} \leq N_{G}\left(T_{j}\right)$ and by pronilpotency $U_{j-1} \leq N_{G}\left(Q_{j}(p)\right)$ too. This is sufficient to notice that $\left[H_{j-1}\left(p^{\prime}\right), Q_{j}(p)\right] \leq Q_{j}(p)$. As $T_{j} \leq N_{G}\left(T_{i}\right)$ for every $j \leq i$, we also have by pronilpotency that $U_{j} \leq N_{G}\left(U_{i}\right)$ for every $j \leq i$. Denote by $P_{j}(p)=\left[H_{j-1}\left(p^{\prime}\right), Q_{j}(p)\right]$ the Sylow p-subgroup of U_{j}.

We claim that $Q_{j}(p) \equiv P_{j}(p)\left(\bmod \delta_{j+1}^{*}(G)\right)$ for every $p \in \pi(G)$ and every $j \in\{0, \ldots, k\}$, and therefore $T_{j} \equiv U_{j}\left(\bmod \delta_{j+1}^{*}(G)\right)$. Notice that this shows that $U_{k}=T_{k}=\delta_{k}^{*}(G)$ and that $G=U_{0} \cdots U_{j} \delta_{j+1}^{*}(G)$ for every $j \in\{0, \ldots, k\}$.

The case $j=0$ follows trivially, so let $j \geqq 1$ and assume by induction that the congruences hold for $j-1$. Denote by $\widehat{H_{j}\left(p^{\prime}\right)}$ the Hall p^{\prime}-subgroup of T_{j} and consider $K_{j-1}\left(p^{\prime}\right)=\widetilde{H_{j-1}\left(p^{\prime}\right)} \widetilde{H_{j}\left(p^{\prime}\right)}$, which is a Hall p^{\prime}-subgroup of $T_{j-1} T_{j}$. Since $\gamma_{\infty}\left(T_{j-1} T_{j}\right)=T_{j}\left(\bmod \delta_{j+1}^{*}(G)\right)$, Lemma 4.10 yields

$$
Q_{j}(p) \equiv\left[K_{j-1}\left(p^{\prime}\right), Q_{j}(p)\right] \equiv\left[H_{j-1}\left(p^{\prime}\right), Q_{j}(p)\right]=P_{j}(p) \quad\left(\bmod \delta_{j+1}^{*}(G)\right),
$$

The second congruence holds because $T_{j-1} T_{j} \equiv U_{j-1} T_{j}\left(\bmod \delta_{j+1}^{*}(G)\right)$ by induction, and hence $K_{j-1}\left(p^{\prime}\right) \equiv H_{j-1}\left(p^{\prime}\right) \widetilde{H_{j}\left(p^{\prime}\right)}\left(\bmod \delta_{j+1}^{*}(G)\right)$. Of course we have $\left[\widetilde{H_{j}\left(p^{\prime}\right)}, Q_{j}(p)\right]=1$ because U_{j} is pronilpotent.

Furthermore, as $\left(\left|Q_{j}(p)\right|,\left|H_{j-1}\left(p^{\prime}\right)\right|\right)=1$, by Lemma 4.6 we have

$$
\begin{equation*}
P_{j}(p)=\left[Q_{j}(p), H_{j-1}\left(p^{\prime}\right)\right]=\left[Q_{j}(p), H_{j-1}\left(p^{\prime}\right), H_{j-1}\left(p^{\prime}\right)\right]=\left[P_{j}(p), H_{j-1}\left(p^{\prime}\right)\right] . \tag{4.2}
\end{equation*}
$$

In view of the series of subgroups of Proposition 4.15, we will often work with subgroups G_{1}, \ldots, G_{t}, for a positive integer t, of a profinite group G such that $G_{j} \leq N_{G}\left(G_{i}\right)$ for every $j \leq i$. We will obtain some results on coprime commutators of length t for an arbitrary positive integer t, and in the end of Section 4.5 we will apply these lemmas to the case $t=k+1$, with the series U_{0}, \ldots, U_{k} mentioned above. In this setting, we will write

$$
\begin{array}{rlc}
\varphi: G_{1} \times \cdots \times G_{t} & \longrightarrow & G_{t} \\
\left(g_{1}, \ldots, g_{t}\right) & \longmapsto\left[g_{1}, \ldots, g_{t}\right]
\end{array}
$$

where $\varphi\left(G_{1}, \ldots, G_{k}\right) \subseteq G_{k}$ because $G_{j} \leq N_{G}\left(G_{i}\right)$ for every $j \leq i$. Consider the sequences of coprime elements

$$
\begin{equation*}
\mathcal{C}=\left\{\left(g_{1}, \ldots, g_{t}\right) \in G_{1} \times \cdots \times G_{t} \mid\left(\left|g_{i}\right|,\left|g_{i+1}\right|\right)=1\right\} \tag{4.3}
\end{equation*}
$$

for $S_{i} \subseteq G_{i}, i \in\{1, \ldots, t\}$, we define the set

$$
\varphi^{*}\left(S_{1}, \ldots, S_{t}\right)=\varphi\left(\left(S_{1} \times \cdots \times S_{t}\right) \cap \mathcal{C}\right)
$$

It is important to point out that in general $\varphi^{*}\left(S_{1}, \ldots, S_{k}\right)$ is different from the set $\gamma_{k}^{*}\left\{S_{1}, \ldots, S_{k}\right\}$ of coprime commutators with variables restricted in $\left(S_{1}, \ldots, S_{k}\right)$. Indeed, the former requires that two subsequent entries have coprime orders,
whereas the latter requires the i-th entry to be coprime with a power of a value of $\gamma_{i-1}^{*}\left\{S_{1}, \ldots, S_{i-1}\right\}$.

We will also often need to consider the maps φ or φ^{*}, but with entries chosen in two different tuples of sets. For this reason we introduce this compact notation, which is consistent with the one already present in the literature for usual outer commutator maps (see for example [24]).

For $i \in\{1, \ldots, t\}$, let $X_{i}, Y_{i} \subseteq G_{i}$. For $J \subseteq\{1, \ldots, t\}$ we can define the set

$$
\varphi_{J}\left(X_{i} ; Y_{i}\right)=\varphi\left(Z_{1}, \ldots, Z_{t}\right) \quad \text { with } \quad Z_{i}=\left\{\begin{array}{cc}
X_{i} & \text { if } i \in J \\
Y_{i} & \text { if } i \notin J
\end{array}\right.
$$

Notice that in order for φ_{J} to be well-defined, we just need the subsets X_{i} where $i \in J$ and the subsets Y_{i} where $i \notin J$, so we will often use the same notation when X_{i} are defined only for $i \in J$ and Y_{i} only for $i \notin J$. In a similar way, define the set

$$
\varphi_{J}^{*}\left(X_{i} ; Y_{i}\right)=\varphi\left(\left(Z_{1} \times \cdots \times Z_{t}\right) \cap \mathcal{C}\right)
$$

If $J=\{1, \ldots, t\}$, in accordance to the initial definitions of φ and φ^{*}, we will just write $\varphi_{J}\left(X_{i} ; Y_{i}\right)=\varphi\left(X_{i}\right)$ and $\varphi_{J}^{*}\left(X_{i} ; Y_{i}\right)=\varphi^{*}\left(X_{i}\right)$.

Remark 4.16. Notice that whenever we have subgroups G_{1}, \ldots, G_{ℓ} of a profinite group G with $G_{j} \leq N_{G}\left(G_{i}\right)$ for every $j \leq i$, and we take an open subgroup $U \unlhd_{o} G_{\ell}$, there exists an open normal subgroup $V \unlhd_{o} G$ such that $V \cap G_{\ell} \leq U$. This implies that $V \cap G_{\ell} \unlhd G_{1} \cdots G_{\ell}$ and $V \cap G_{\ell} \unlhd_{o} G_{\ell}$.

We are now ready to explain the main ideas of the proof of Proposition 4.33. Let G be a prosolvable group of Fitting height k and consider a tuple $\left(U_{0}, \ldots, U_{k}\right)$ of subgroups as in Proposition 4.15. We will prove Proposition 4.33 by funnelling all values of $\varphi^{*}\left(U_{0}, \ldots, U_{k}\right)$ into a finite normal subgroup. Using Lemma 4.10 it will be possible to prove that these values generate $\delta_{k}^{*}(G)$.

Denote by $P_{i}(p)$ the p-Sylow of U_{i} for any prime p. A further simplification, through Lemma 4.22, will allow us to prove that we can recover the whole $\varphi^{*}\left(U_{i}\right)$ just from studying the sets $\left\{\varphi^{*}\left(P_{i}\left(p_{i}\right)\right) \mid p_{i} \in \mathcal{P}\right\}$. We want to reduce our study to values of this type because they are either trivial (if $p_{j}=p_{j+1}$ for a certain j) or they coincide with the usual commutators $\gamma_{k}\left\{P_{i}\left(p_{i}\right)\right\}$, for which classical properties of standard commutators apply.

If $\left|\pi\left(U_{j}\right)\right|<\infty$ for every $j=1, \ldots, k$, we can simply study finitely many sets of the form $\varphi\left\{P_{i}\left(p_{i}\right)\right\}$, but if there exists at least an index j such that $\left|\pi\left(U_{j}\right)\right|=\infty$,
we would have to study infinitely many of these sets. For this reason the proof of Proposition 4.33 will be by induction on the number of factors U_{j} with $\left|\pi\left(U_{j}\right)\right|=$ ∞. This reduction will be done in Lemma 4.30 using some subgroups N_{σ} defined in 4.27, and all the first part of Section 4.5 will be devoted to obtaining results that will be mainly used in the proof of this lemma.

Some themes used in the proof of Lemma 4.30 can be retraced to the article of Detomi, Klopsch and Shumyatsky that outer commutator words are strongly concise. However, our case has some complications. First of all, in [24] the authors consider commutator words where each entry could be chosen in the whole group G, whereas we allow the i-th entry of γ_{t} to be only in U_{i-1}. Moreover, when we work with the map φ^{*}, we must be careful to preserve coprimality in the factors. As an example, one tool that was often used in [24] was reducing, under suitable hypothesis, a coset identity of the type $\varphi\left(x_{i} U_{i}\right)=1$ to a coset/subgroup identity $\varphi_{J}\left(U_{i}, x_{i} U_{i}\right)=1$ for $J \subsetneq\{1 \ldots, k\}$. If we are considering coprime maps φ^{*}, we must be extremely cautious when we remove a coset representative from a coset identity. For example, if $t=2$ and we pick two coset representatives x_{1}, x_{2} of $U \leq G$ that are not coprime it could happen that $\varphi^{*}\left(x_{1} U, x_{2} U\right)=\varnothing$, but $\varphi^{*}\left(x_{1} U, U\right)$ is non-empty, as it would contain at least the trivial element. The statements of the first lemmas in Section 4.5 require several specific hypotheses in order to account for similar issues in preserving coprimality.

4.4 The meta-Pronilpotent case for γ_{k}^{*}

In this section we will prove Theorem 4.3 in the case when the profinite group G is meta-pronilpotent.

We first require some results that are present in 28].
Lemma 4.17 ([28] Lemma 2.4). Let H, Q be subgroups of a group G with Q normal in $Q H$ and such that $Q=[Q, H]$. Any normal subgroup $N \unlhd Q$ such that $[N, H]=1$ is contained in the center $Z(Q H)$.
Lemma 4.18 (28] Lemma 2.6). Let G be a finite group, where $H, Q \leq G$. Suppose that Q is a normal nilpotent subgroup of $Q H$ such that $(|Q|,|H|)=1$ and $\left|Q: C_{Q}(h)\right| \leq m$ for all $h \in H$. Then the order of $[Q, H]$ is m-bounded.

The next lemma is a modification of Lemma 3.1 of [28].
Lemma 4.19. Let G be a profinite group that is the product of a subgroup H and a normal pronilpotent subgroup Q with $(|H|,|Q|)=1$. Suppose that

$$
|\{[h, q] \mid h \in H, q \in Q\}|<2^{\aleph_{0}} .
$$

Then $[H, Q]$ is finite.
Proof. Lemma 4.6 implies that $[Q, H, H]=[Q, H]$, so replacing Q with $[Q, H]$ we can assume that $Q=[Q, H]$ and we can write G as a product $G=[Q, H] H$. For every $h \in H$ the set of cosets of $C_{Q}(h)$ in Q is a profinite space in bijection with h^{Q}, so in bijection with $\{[h, q] \mid q \in Q\}$ too. By hypothesis this space has less than $2^{\aleph_{0}}$ elements, hence it must be finite (we can follow the proof of Proposition 2.3.1 of [72] for a profinite set of cosets rather than a profinite group). This implies that $\left|h^{Q}\right|$ is finite for every $h \in H$. For each integer $j \in \mathbb{N}$ we can consider the sets

$$
C_{j}=\left\{h \in H| | h^{Q} \mid \leq j\right\},
$$

that are closed by Lemma 5 of [52]. As their union is H, we can apply Baire category theorem and hence there exists an integer ℓ such that C_{ℓ} has non-empty interior (in the subspace topology of H). In particular there exist $h \in H, U \unlhd_{o} H$ with $\left|(h u)^{Q}\right| \leq \ell$ for every $u \in U$.

For every $u \in U, q \in Q$ we can write $u^{q}=\left(h^{-1}\right)^{q}(h u)^{q}$, but we chose h and U so that $\left|\left(h^{-1}\right)^{Q}\right|,\left|(h u)^{Q}\right| \leq \ell$. This proves that $\left|u^{Q}\right| \leq \ell^{2}$, so by Lemma 4.18 the subgroup $[Q, U]$ is finite.

We can then factor out $[Q, U]$ and replace Q with $Q /[Q, U]$. Now $U \leq C_{G}(Q)$, so we can factor out U too and assume that $H=H / U$ is finite. As $C_{Q}(H)=$ $\bigcap_{h \in H} C_{Q}(h)$ and H is finite, $\left|Q: C_{Q}(H)\right|$ is finite too. Consider now the normal core N of $C_{Q}(H)$ in G, which has still finite index, both in Q and in G. By Lemma 4.17 N is an open subgroup contained in the center of G, so by Schur's Theorem G^{\prime} is finite.

We are now ready to prove the strong conciseness of γ_{k}^{*} in meta-pronilpotent groups.
Proposition 4.20. Let G be a meta-pronilpotent group with $\left|\gamma_{k}^{*}\{G\}\right|<2^{\aleph_{0}}$. Then $\gamma_{\infty}(G)$ is finite.

Proof. Let $g \in G$ and $h \in \gamma_{\infty}(G)$ such that $(|g|,|h|)=1$, and let H be the minimal Hall subgroup of $\gamma_{\infty}(G)$ containing h. Since H is pronilpotent, Lemma 4.7 shows that there exists $h^{\prime} \in H$ such that $[h, g]=\left[h^{\prime}, g, \stackrel{k-1}{.}, g\right]$, and therefore $[h, g] \in \gamma_{k}^{*}(G)\{G\}$. Hence, we have

$$
\left|\left\{[g, h] \mid g \in G, h \in \gamma_{\infty}(G),(|g|,|h|)=1\right\}\right|<2^{\aleph_{0}}
$$

We first prove that for every $p \in \pi\left(\gamma_{\infty}(G)\right)$, the p-Sylow P of $\gamma_{\infty}(G)$ is finite. Denote by $H\left(p^{\prime}\right)$ a p^{\prime}-Hall subgroup of G; by Lemma 4.10, $P=\left[P, H\left(p^{\prime}\right)\right]$ and by Lemma 4.19 it is finite.

In order to conclude, we now have to prove that $\pi\left(\gamma_{\infty}(G)\right)$ is finite. By contradiction, let $\pi\left(\gamma_{\infty}(G)\right)=\left\{p_{i} \mid i \in I\right\}$ be an infinite set and denote by P_{i} the p_{i}-Sylow of $\gamma_{\infty}(G)$ for every $i \in I$. Let T be the normalizer of a Sylow basis of G, so that $G=T \gamma_{\infty}(G)$ with both T and $\gamma_{\infty}(G)$ pronilpotent. By Lemma 4.10 $P_{i}=\left[P_{i}, A_{i}\right]$ for A_{i} the group of automorphisms induced by the p_{i}^{\prime}-Hall subgroup of T on P_{i}; let $\sigma_{i}=\pi\left(A_{i}\right)$. As we have proved that all P_{i} are finite, σ_{i} is finite too.

Let Q be a q-Sylow of T for $q \in \pi(T)$; applying Lemma 4.19 we have that $\left[Q, O_{q^{\prime}}\left(\gamma_{\infty}(G)\right)\right]$ is finite. In particular, q acts non-trivially on finitely many P_{i}, so it is in finitely many of the sets σ_{i}. Define $\tau_{i}=\sigma_{i} \cup\left\{p_{i}\right\}$, by the previous discussion, for every fixed index $i \in I$ there are only finitely many indices $j \in I$ such that $\tau_{i} \cup \tau_{j} \neq \emptyset$. We can iteratively construct a set $J \subseteq I$ such that $\tau_{i} \cup \tau_{j}=\emptyset$ for every $i, j \in J, i \neq j$. Let Q_{i} a q_{i}-Sylow subgroup of T for any $q_{i} \in \sigma_{i}$. By construction $\left[P_{i}, Q_{i}\right] \neq 1$ and $\left[P_{i}, Q_{j}\right]=1$ whenever $i \neq j$, so for every $i \in J$ there exist two elements $g_{i} \in P_{i}$ and $h_{i} \in Q_{i}$ such that $\left[h_{i}, q_{i}\right] \neq 1$, and in particular it is a coprime commutator. By Lemma 4.7 the element $c_{i}=\left[h_{i}, q_{i}, .,-1, q_{i}\right]$ is also a non-trivial γ_{k}^{*}-value. As all the sets τ_{i} are disjoint and every Q_{j} acts trivially on P_{i} whenever $j \neq i$, the element

$$
c_{J^{\prime}}=\prod_{i \in J^{\prime}} c_{i}=\left[\prod_{i \in J^{\prime}} h_{i}, \prod_{i \in J^{\prime}} q_{i}, \stackrel{k-1}{\cdots}, \prod_{i \in J^{\prime}} q_{i}\right]
$$

is a nontrivial γ_{k}^{*}-value for every $J^{\prime} \subseteq J$. As all these elements are different for every subset $J^{\prime} \subseteq J$, we would have at least $2^{\aleph_{0}}$ different γ_{k}^{*}-values, contradicting the hypothesis. This proves that $\pi\left(\gamma_{\infty}(G)\right)$ is finite and the proposition follows.

4.5 The poly-pronilpotent case for δ_{k}^{*}

The next two lemmas are useful applications of basic commutator calculus. The first one follows the ideas of Lemma 2.8 of [40] while Lemma 4.22 is an application of Lemma 4.21 to coprime commutators.
Lemma 4.21. Let G_{1}, \ldots, G_{t} be subgroups of a group G such that $G_{j} \leq N_{G}\left(G_{i}\right)$ for every $j \leq i$. For every $i \in\{1, \ldots, t\}$ let $g_{i} \in G_{i}$, and for a fixed $\ell \in\{1, \ldots, t\}$, let $g_{\ell}^{\prime} \in G_{\ell}$. Then

$$
\varphi_{\{\ell\}}\left(g_{\ell}^{\prime} g_{\ell} ; g_{i}\right)=\left[g_{1}, \ldots, g_{\ell-1}, g_{\ell}^{\prime}, g_{\ell+1}^{h_{\ell}}, \ldots, g_{t}^{h_{t-1}}\right]^{h_{t}} \varphi\left(g_{i}\right)
$$

where $h_{i} \in G_{\ell} \cdots G_{i}$ for $i \in\{\ell, \ldots, t\}$. In particular $g_{i+1}^{h_{i}} \in G_{i+1}$ for all $i \in$ $\{\ell, \ldots, t-1\}$

Proof. Assume first that $\ell \neq 1$, and proceed by induction on $t-\ell$. If $t-\ell=0$, then

$$
\left[g_{1}, \ldots, g_{t-1}, g_{t}^{\prime} g_{t}\right]=\left[g_{1}, \ldots, g_{t}^{\prime}\right]^{g_{t}\left[g_{1}, \ldots, g_{t}\right]^{-1}}\left[g_{1}, \ldots, g_{t}\right]
$$

and the result follows. Assume $t-\ell>0$, and we write, for the sake of brevity, $y=\left[g_{1}, \ldots, g_{\ell-1}\right]$. By induction, we have

$$
\left[y, g_{\ell}^{\prime} g_{\ell}, g_{\ell+1}, \ldots, g_{t}\right]=\left[\left[y, g_{\ell}^{\prime}, g_{\ell+1}^{h_{\ell}}, \ldots, g_{t-1}^{h_{t-2}}\right]^{h_{t-1}}\left[g_{1}, \ldots, g_{t-1}\right], g_{t}\right]
$$

with $h_{i} \in G_{\ell} \cdots G_{i}$ for $i \in\{\ell, \ldots, t-1\}$. Now,

$$
\begin{aligned}
& {\left[\left[y, g_{\ell}^{\prime}, g_{\ell+1}^{h_{\ell}}, \ldots, g_{t-1}^{h_{t-2}}\right]^{h_{t-1}}\left[g_{1}, \ldots, g_{t-1}\right], g_{t}\right] } \\
&=\left[\left[y, g_{\ell}^{\prime}, g_{\ell+1}^{h_{\ell}}, \ldots, g_{t-1}^{h_{t-2}}\right]^{h_{t-1}}, g_{t}\right]^{\left[g_{1}, \ldots, g_{t-1}\right]}\left[g_{1}, \ldots, g_{t}\right] \\
&=\left[y, g_{\ell}^{\prime}, g_{\ell+1}^{h_{\ell}}, \ldots, g_{t-1}^{h_{t-2}}, g_{t}^{\left(h_{t-1}\right)^{-1}}\right]^{h_{t-1}\left[g_{1}, \ldots, g_{t-1}\right]}\left[g_{1}, \ldots, g_{t}\right]
\end{aligned}
$$

and the lemma follows. If $\ell=1$, a similar argument applies.
Lemma 4.22. Let G_{1}, \ldots, G_{t} be subgroups of a profinite group G such that $G_{j} \leq N_{G}\left(G_{i}\right)$ for every $j \leq i$. Let $\ell \in\{1, \ldots, t\}$ and $Y_{1}, Y_{2} \subseteq G_{\ell}$ be such that $\pi\left(y_{1}\right), \pi\left(y_{2}\right) \subseteq \pi\left(y_{1} y_{2}\right)$ for every $y_{1} \in Y_{1}, y_{2} \in Y_{2}$. Let $X_{i} \subseteq G_{i}$ for $i \in\{1, \ldots, \ell-1\}$, and for $i \in\{\ell+1, \ldots, t\}$ denote $X_{i}=G_{i}$. Then:

1. If $\varphi_{\{\ell\}}^{*}\left(Y_{1} ; X_{i}\right)=\varphi_{\{\ell\}}^{*}\left(Y_{2} ; X_{i}\right)=1$, then $\varphi_{\{\ell\}}^{*}\left(Y_{1} Y_{2} ; X_{i}\right)=1$.
2. If $\varphi_{\{\ell\}}^{*}\left(Y_{j} ; X_{i}\right)=\varnothing$ for some $j \in\{1,2\}$, then $\varphi_{\{\ell\}}^{*}\left(Y_{1} Y_{2} ; X_{i}\right)=\varnothing$.

Proof. Since $\pi\left(y_{1}\right), \pi\left(y_{2}\right) \subseteq \pi\left(y_{1} y_{2}\right)$ for every $y_{1} \in Y_{1}, y_{2} \in Y_{2}$, the second statement is straightforward. Moreover, if $\varphi_{\{\ell\}}\left(y_{1} y_{2} ; g_{i}\right) \in \varphi_{\{\ell\}}^{*}\left(Y_{1} Y_{2} ; X_{i}\right)$, then for $j \in\{1,2\}$ we have $\varphi_{\{\ell\}}\left(y_{j} ; g_{i}\right) \in \varphi_{\{\ell\}}^{*}\left(Y_{j} ; X_{i}\right)$. The result follows now directly from Lemma 4.21.

In view of the preceding lemma, we now introduce a convenient way to choose coset representatives of normal subgroups. These will play an important role throughout the chapter.

Definition 4.23 (Good representatives). Let G be a profinite group and $U \unlhd G$. An element $g \in G$ is a good representative of the coset $g U$ if $\pi(g), \pi(u) \subseteq \pi(g u)$ for every $u \in U$.

Lemma 4.24. Let U be an open normal subgroup of a pronilpotent group G. Let g be a representative of the coset $g U$ and write $g=\prod_{p \in \pi(G)} g_{p}$ with g_{p} a p-element of G. Then the following are equivalent:
(i) g is a good representative of the coset $g U$;
(ii) $g_{p}=1$ whenever $g_{p} \in U$ for $p \in \pi(G)$;
(iii) $\pi(g)$ is minimal among all representatives of the coset $g U$.

In this case, if $\sigma=\pi(G / U)$, then $\pi(g) \subseteq \sigma$.
Proof. We first prove $(\mathrm{i}) \Rightarrow(\mathrm{ii})$. Assume g is a good representative and suppose that $g_{p} \in U$. If $g_{p} \neq 1$, then $\pi\left(g \cdot g_{p}^{-1}\right)$ does not contain p, contradicting that $\pi(g) \subseteq \pi(g u)$ for all $u \in U$.
(ii) \Rightarrow (i). Write $u=\prod_{p \in \pi(G)} u_{p}$ for a certain $u \in U$ and suppose $g_{p}=1$ whenever $g_{p} \in U$. Then, if either $g_{p} \neq 1$ or $u_{p} \neq 1$, then $g_{p} u_{p} \neq 1$, that is exactly the condition of being a good representative.
(ii) $\Leftrightarrow($ iii) is immediate, and the last remark follows from (ii).

The following lemma is an application of Proposition 4.5 to a special type of coprime commutators.

Lemma 4.25. Let G_{1}, \ldots, G_{t} be pronilpotent subgroups of a profinite group G such that $G_{j} \leq N_{G}\left(G_{i}\right)$ for all $j \leq i$, and $\left|\delta_{t-1}^{*}\{G\}\right|<2^{\aleph_{0}}$. For every $i \in\{1, \ldots, t\}$, let S_{i} be a closed subset of G_{i}. If $\varphi^{*}\left(S_{i}\right) \neq \varnothing$, then, there exist elements $x_{i} \in G_{i}$ and open subgroups $U_{i} \unlhd_{o} G_{i}$ such that $\left|\varphi^{*}\left(x_{i} U_{i} \cap S_{i}\right)\right|=1$.

Proof. Let

$$
\mathcal{C}=\left\{\left(x_{1}, \ldots, x_{t}\right) \in S_{1} \times \cdots \times S_{t} \mid\left(\left|x_{i}\right|,\left|x_{i+1}\right|\right)=1 \text { for all } i=1, \ldots, t\right\} .
$$

As $\varphi(\mathcal{C})=\varphi^{*}\left(S_{i}\right)$, we have $\mathcal{C} \neq \varnothing$. Note that \mathcal{C} is closed in $G_{1} \times \cdots \times G_{t}$ by Lemma 4.11.

Fix $\left(x_{1}, \ldots, x_{t}\right) \in \mathcal{C}$. By Lemma 4.9 the element $g_{k}:=\left[x_{1}, \ldots, x_{t}\right]$ is in $\delta_{t-1}^{*}\{G\}$. Hence, $|\operatorname{Imm}(\varphi)|<2^{\aleph_{0}}$, and by Proposition 4.5, it follows that there exist elements $x_{i} \in G_{i}$ and open normal subgroups $U_{i} \unlhd G_{i}$ such that

$$
\mathcal{C} \cap\left(x_{1} U_{1} \times \cdots \times x_{t} U_{t}\right) \neq \varnothing
$$

and $\left|\varphi^{*}\left(x_{i} U_{i} \cap S_{i}\right)\right|=1$.
Lemma 4.25 will often provide some cosets of open subgroups of G in which coprime commutators are trivial. Lemmas 4.26 and 4.29 below will allow us to relate coprime commutators of these cosets with coprime commutators of the open subgroups themselves.

Lemma 4.26. Let G_{1}, \ldots, G_{t} be subgroups of a profinite group G such that $G_{j} \leq$ $N_{G}\left(G_{i}\right)$ for every $j \leq i$, and for every $i \in\{1, \ldots, t\}$, let $x_{i} \in G_{i}$ and $U_{i} \unlhd G_{i}$. Assume also that $G_{j} \leq N_{G}\left(U_{i}\right)$ for every $j \leq i$. Fix $j \in\{1, \ldots, t\}$ and write $J=\{1, \ldots, j-1\}$, then:
(i) If $\varphi\left(x_{i} U_{i}\right)=1$ then $\varphi_{J}\left(x_{i} U_{i} ; U_{i}\right)=1$.
(ii) If $\varphi_{J}\left(x_{i} U_{i} ; U_{i}\right)=1$ then

$$
\varphi_{J \cup\{j\}}\left(x_{i} U_{i} ; U_{i}\right)=\varphi\left(x_{1} U_{1}, \ldots, x_{j-1} U_{j-1}, x_{j}, U_{j+1}, \ldots, U_{t}\right) .
$$

Proof. (i) We will proceed by reverse induction on $j \in\{1, \ldots, t+1\}$, where the base case $j=t+1$ translates to $\varphi\left(x_{i} U_{i}\right)=1$, which is true by hypothesis. Let thus $j<t+1$ and assume that $\varphi_{J \cup\{j\}}\left(x_{i} U_{i} ; U_{i}\right)=1$.

Let $C_{t}=1$ and for every $i \in\{j+1, \ldots, t-1\}$ define $C_{i}=C_{U_{i}}\left(U_{i+1} / C_{i+1}\right)$. Note that C_{i} is well-defined, since using that for every ℓ the subgroup U_{ℓ} is normal in $G_{1} \cdots G_{\ell}$, one can easily show by induction that $C_{\ell} \unlhd G_{1} \cdots G_{\ell}$.

If $j \geq 2$, let

$$
Y=\left\{\left[x_{1} u_{1}, \ldots, x_{j-1} u_{j-1}\right] \mid u_{i} \in U_{i}, i=1, \ldots, j-1\right\} .
$$

Then, we can rewrite $\varphi_{J \cup\{j\}}\left(x_{i} U_{i} ; U_{i}\right)=1$ as

$$
\left[Y, x_{j} U_{j}\right] \subseteq C_{G_{j}}\left(U_{j+1} / C_{j+1}\right)
$$

For every $i \in\{1, \ldots, j\}$, fix $u_{i} \in U_{i}$ and shorten $y=\left[x_{1} u_{1}, \ldots, x_{j-1} u_{j-1}\right]$. Then we have $\left[y, x_{j} u_{j}\right]=\left[y, u_{j}\right]\left[y, x_{j}\right]^{u_{j}}$, and since $C_{G_{j}}\left(U_{j+1} / C_{j+1}\right)$ is a normal subgroup of G_{j} containing $\left[y, x_{j} u_{j}\right]$ and $\left[y, x_{j}\right]$, it follows that $\left[y, u_{j}\right] \in C_{G_{j}}\left(U_{j+1} / C_{j+1}\right)$. This shows that $\varphi\left(x_{1} U_{1}, \ldots, x_{j-1} U_{j-1}, U_{j}, U_{j+1}, \ldots, U_{t}\right)=1$, as we wanted.

For the case $j=1$, note that both x_{1} and $x_{1} U_{1}$ lay in $C_{G_{1}}\left(U_{2} / C_{2}\right)$, so that $U_{1} \leq C_{G_{1}}\left(U_{2} / C_{2}\right)$.
(ii) For every $i \in\{j+1, \ldots, t\}$ we define C_{i} as in (i). For $i \in\{1, \ldots, t\}$, let $u_{i} \in U_{i}$ and shorten $y=\left[x_{1} u_{1}, \ldots, x_{j-1} u_{j-1}\right]$. Then,

$$
\left[y, x_{j} u_{j}\right]=\left[y, u^{\prime} x_{j}\right]=\left[y, x_{j}\right]\left[y, u^{\prime}\right]^{x_{j}}=\left[y, u^{\prime}\right]^{x_{i}\left[x_{j}, y\right]}\left[y, x_{j}\right]
$$

for some $u^{\prime} \in U_{j}$, and note that $z:=\left[y, u^{\prime}\right]^{x_{j}\left[x_{j}, y\right]} \in C_{G_{j}}\left(U_{j+1} / C_{j+1}\right)$. Then $\left[z, u_{j+1}^{\prime}, \ldots, u_{t}^{\prime}\right]=1$ for every $u_{i}^{\prime} \in U_{i}, i \in\{j+1, \ldots, t\}$, so that

$$
\left[y, x_{j} u_{j}, u_{j+1}, \ldots, u_{t}\right]=\left[z\left[y, x_{j}\right], u_{j+1}, \ldots, u_{t}\right]=\left[y, x_{j}, u_{j+1}, \ldots, u_{t}\right]
$$

where the last equality follows from Lemma 4.21. The lemma follows.

Definition 4.27 (Subgroup N_{σ}). Let G_{1}, \ldots, G_{t} be pronilpotent subgroups of a profinite group G such that $G_{j} \leq N_{G}\left(G_{i}\right)$ for all $j \leq i$. Let σ be a finite set of primes. We define the normal subgroup

$$
\left.N_{\sigma}=\left\langle\varphi_{\{j\}}^{*}\left(H_{i} ; G_{i}\right)\right| j \text { is such that }\left|\pi\left(G_{j}\right)\right|=\infty\right\rangle^{G}
$$

where H_{i} is the Hall σ-subgroup of G_{i} for every i. If $\left|\pi\left(G_{i}\right)\right|<\infty$ for all i, then $N_{\sigma}=\langle\varnothing\rangle^{G}=1$ for every σ.

The subgroups G_{1}, \ldots, G_{t} of G for which the definition of N_{σ} applies will be clear from the context. Notice that for any finite sets of primes σ_{1} and σ_{2} such that $\sigma_{1} \subseteq \sigma_{2}$ we have

$$
\begin{equation*}
N_{\sigma_{1}} \leq N_{\sigma_{2}} \tag{4.4}
\end{equation*}
$$

Lemma 4.28. Let G_{1}, \ldots, G_{t} be pronilpotent subgroups of a profinite group G such that $G_{j} \leq N_{G}\left(G_{i}\right)$ for all $j \leq i$. Fix $\ell \in\{1, \ldots, t\}$ and $x_{\ell} \in G_{\ell}$. For $i \in\{1, \ldots, \ell-1\}$, let $X_{i} \subseteq G_{i}$, and for $i \in\{\ell, \ldots, t\}$ let $U_{i} \unlhd_{o} G_{i}$ be such that $G_{j} \leq N_{G}\left(U_{i}\right)$ for $j \leq i$. Suppose that $\left(\left|x_{\ell}\right|,\left|x_{\ell-1}\right|\right)=\left(\left|x_{\ell}\right|,\left|U_{\ell+1}\right|\right)=1$ for every $x_{\ell-1} \in X_{\ell-1}$. If $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, x_{\ell} U_{\ell}, U_{\ell+1}, \ldots, U_{t}\right)=1$, then we have $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, U_{\ell}, \ldots, U_{t}\right)=1$.

Proof. First of all, observe that since $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, x_{\ell} U_{\ell}, U_{\ell+1}, \ldots, U_{t}\right) \neq \varnothing$, there are $y_{1}, \ldots, y_{\ell-1}$ such that $y_{i} \in X_{i}$ and

$$
\begin{equation*}
\left(\left|y_{j}\right|,\left|y_{j+1}\right|\right)=1 \tag{4.5}
\end{equation*}
$$

for all $j \in\{1, \ldots, \ell-2\}$. Note that the tuple $\left(y_{1}, \ldots, y_{\ell-1}, 1, \ldots, 1\right)$ is in \mathcal{C} and then $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, U_{\ell}, \ldots, U_{t}\right) \neq \varnothing$.

Fix then a tuple $\left(x_{1}, \ldots, x_{\ell-1}, u_{\ell}, \ldots, u_{t}\right) \in \mathcal{C}$ with $x_{j} \in X_{j}$ and $u_{j} \in U_{j}$. In order to conclude we want to prove that $\varphi^{*}\left(x_{1}, \ldots, x_{\ell-1}, u_{\ell}, \ldots, u_{t}\right)=1$. For $i \in\{\ell, \ldots, t\}$, let H_{i} be the minimal Hall subgroup of U_{i} containing u_{i}, and notice that we have

$$
\begin{equation*}
\left(\left|x_{\ell-1}\right|,\left|H_{\ell}\right|\right)=\left(\left|H_{j}\right|,\left|H_{j+1}\right|\right)=1 \tag{4.6}
\end{equation*}
$$

for all $j \in\{\ell, \ldots, t-1\}$. Since G_{ℓ} is pronilpotent, we have $\pi\left(x_{\ell} h\right) \subseteq \pi\left(x_{\ell}\right) \cup$ $\pi(h)$ for all $h \in H_{\ell}$, and hence, as $\left(\left|x_{\ell}\right|,\left|x_{\ell-1}\right|\right)=\left(\left|x_{\ell}\right|,\left|U_{\ell+1}\right|\right)=1$, we have $\varphi\left(x_{1}, \ldots, x_{\ell-1}, x_{\ell} H_{\ell}, H_{\ell+1}, \ldots, H_{t}\right) \subseteq \varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, x_{\ell} U_{\ell}, U_{\ell+1}, \ldots, U_{t}\right)$, and it is then equal to the trivial subgroup.

Lemma 4.26(i) now gives $\varphi\left(x_{1}, \ldots, x_{\ell-1}, H_{\ell}, \ldots, H_{t}\right)=1$, and therefore we have $\varphi^{*}\left(x_{1}, \ldots, x_{\ell-1}, u_{\ell}, \ldots, u_{t}\right)=1$.
Lemma 4.29. Let $G_{i}, \ell, X_{i}, U_{i}$ be as in Lemma 4.28.
(i) For $i \in\{\ell, \ldots, t\}$, suppose that either $\left|\pi\left(G_{i}\right)\right|=\infty$, in which case we write $Y_{i}=G_{i}$, or $\left|\pi\left(G_{i}\right)\right|=1$, in which case we write $Y_{i}=U_{i}$. Assume moreover that if $\pi\left(G_{i}\right)=\{p\}$ consists of a single prime, then $p \notin \pi\left(G_{i-1}\right) \cup \pi\left(G_{i+1}\right)$.
Suppose we also have that $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, x_{\ell} U_{\ell}, \ldots, x_{t} U_{t}\right)=1$ for some $x_{\ell} \in G_{\ell}$ such that $\left(\left|x_{\ell}\right|,\left|x_{\ell-1}\right|\right)=1$ for every $x_{\ell-1} \in X_{\ell-1}$. Then, there exists a finite set of primes σ such that $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, Y_{\ell}, \ldots, Y_{t}\right) \subseteq N_{\sigma}$ (cf. Definition 4.2才).
(ii) Suppose that we fix $x_{i} \in G_{i}, i=\ell, \ldots, t$, such that $\left(\left|x_{i}\right|,\left|x_{i+1}\right|\right)=1$ for all $i \in\{\ell, \ldots, t-1\}$ and $\left(\left|x_{\ell}\right|,\left|x_{\ell-1}\right|\right)=1$ for all $x_{\ell-1} \in X_{\ell-1}$. If the set $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, x_{\ell} U_{\ell}, \ldots, x_{t} U_{t}\right)$ is empty, then we also have that $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, G_{\ell}, \ldots, G_{t}\right)=\varnothing$.

Proof. (i) Write $L=\{\ell, \ldots, t\}$, and for $i \in L$, define

$$
\sigma_{i}= \begin{cases}\pi\left(G_{i} / U_{i}\right) & \text { if }\left|\pi\left(G_{i}\right)\right|=\infty \\ \pi\left(G_{i}\right) & \text { if }\left|\pi\left(G_{i}\right)\right|=1\end{cases}
$$

Let $\sigma=\sigma_{\ell} \cup \cdots \cup \sigma_{t}$. Up to changing the representative, we can assume that every x_{i} is a good representative of $x_{i} U_{i}$, and in particular that they are all σ-elements by Lemma 4.24. Furthermore, since $\varphi_{L}^{*}\left(x_{i} U_{i} ; X_{i}\right) \neq \varnothing$ and $\pi\left(x_{j}\right) \subseteq \pi\left(x_{j} u_{j}\right)$ for every $u_{j} \in U_{j}$, it follows that $\left(\left|x_{i}\right|,\left|x_{i+1}\right|\right)=1$ for all $i \in\{\ell, \ldots, t-1\}$.
For $i \in L$ with $\left|\pi\left(G_{i}\right)\right|=\infty$, let V_{i} be the Hall σ^{\prime}-subgroup of G_{i}, and for $i \in L$ with $|\pi(G)|=1$, set $V_{i}=U_{i}$ (notice that $V_{i} \leq U_{i}$ if $\left|\pi\left(G_{i}\right)\right|=\infty$). We want to apply Lemma $4.28 t-\ell+1$ times, first to the index t, then decreasing until we reach the index ℓ, with the V_{i} taking the role of the U_{i}. Say we are applying it to the index $\ell \leq j \leq t$ and let us check that the two coprimality conditions of Lemma 4.28 are satisfied. We first check the hypothesis $\left(\left|x_{j}\right|,\left|V_{j+1}\right|\right)=1$. If $\left|\pi\left(G_{j+1}\right)\right|=\infty$, then $\pi\left(V_{j}\right) \subseteq \sigma^{\prime}$ and the hypothesis is satisfied. If $\pi\left(G_{j+1}\right)=\{p\}$, then $p \notin \pi\left(G_{j}\right)$ and in particular $p \notin \pi\left(x_{j}\right)$. As for the other condition, if $j=\ell$, it is simply one of the hypotheses of the lemma. If $\ell+1 \leq j \leq t$, we have that $\left(\left|x_{j}\right|,\left|x_{j-1}\right|\right)=1$ and $\left(\left|x_{j}\right|,\left|v_{j-1}\right|\right)=1$ for all $v_{j-1} \in V_{j-1}$, either because V_{j-1} is a σ^{\prime}-subgroup if $\left|\pi\left(G_{j-1}\right)\right|=\infty$ or by hypothesis if $\left|\pi\left(G_{j-1}\right)\right|=1$.
At the end of this process we obtain $\varphi_{L}^{*}\left(V_{i} ; X_{i}\right)=1$. Now, if $\left|\pi\left(G_{i}\right)\right|=1$, then $Y_{i}=U_{i}=V_{i}$. If $\left|\pi\left(G_{i}\right)\right|=\infty$, writing H_{j} for the Hall σ-subgroup of
G_{j}, then $\varphi^{*}\left(X_{1}, \ldots X_{\ell}, G_{\ell+1}, \ldots, G_{j-1}, H_{j}, G_{j+1}, \ldots, G_{t}\right) \subseteq N_{\sigma}$ by definition and by Lemma 4.22(i) we obtain that $\varphi_{L}^{*}\left(Y_{i} ; X_{i}\right) \subseteq N_{\sigma}$.
(ii) If $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, x_{\ell} U_{\ell}, \ldots, x_{t} U_{t}\right)=\varnothing$ then in particular we have that $\varphi^{*}\left(X_{1}, \ldots, X_{\ell-1}, x_{\ell}, \ldots, x_{t}\right)=\varnothing$. The only way for this to happen is that there exists an index $j \in\{1, \ldots, l-2\}$ such that $\left(\left|x_{j}\right|,\left|x_{j+1}\right|\right) \neq 1$ for all $x_{j} \in X_{j}, x_{j+1} \in X_{j+1}$, and the lemma follows.

The following lemma is the focal point of the proof of Proposition 4.33, as it will allow us to funnel some values of certain coprime commutators into an accurately chosen subgroup.

Lemma 4.30. Let G_{1}, \ldots, G_{t} be pronilpotent subgroups of a profinite group G such that $G_{j} \leq N_{G}\left(G_{i}\right)$ for all $j \leq i$, and $\left|\delta_{t-1}^{*}\{G\}\right|<2^{\aleph_{0}}$. Then, there exist a finite set $W \subseteq \varphi^{*}\left(G_{i}\right)$ and a finite set σ of primes such that $\varphi^{*}\left(G_{i}\right) \subseteq N_{\sigma}\langle W\rangle^{G}$.

As this is the most technical proof, we will first give an example of the procedure for a specific case to clarify the main ideas.

Example 4.31. We restrict to the case $t=2$, so we are studying $\varphi^{*}\left(G_{1}, G_{2}\right)$, in the specific case when $\left|\pi\left(G_{1}\right)\right|=1,\left|\pi\left(G_{2}\right)\right|=\infty$ and $\pi\left(G_{1}\right) \cap \pi\left(G_{2}\right)=\varnothing$. Notice that for $t=2$ some easier reasoning could lead to an analogous result, but we will follow the algorithm beneath the proof of Lemma 4.30 in order to illustrate it.

By Lemma 4.25, for $i \in\{1,2\}$, we obtain $U_{i} \unlhd_{o} G_{i}$ and $x_{i} \in G_{i}$ such that $\varphi^{*}\left(x_{1} U_{1}, x_{2} U_{2}\right)=\{w\}$ consists of a single value. Set $W=\{w\}$, we will work in $G /\langle W\rangle^{G}$ and assume $w=1$. We recall that by Remark 4.16, we can always refine an open normal subgroup $U_{2} \unlhd G_{2}$ with another normal open subgroup which is normalized by G_{1} too, so we will always assume that $G_{1} \leq N_{G}\left(U_{2}\right)$.

Lemma 4.29 (with $\ell=1$) gives a set $\sigma(\varnothing)$ of primes such that $\varphi^{*}\left(U_{1}, G_{2}\right) \subseteq$ $N_{\sigma(\varnothing)}$. We can factor out this subgroup and assume $\varphi^{*}\left(U_{1}, G_{2}\right)=1$. Fix now a set $S=\left\{s_{1}=1, \ldots, s_{m}\right\}$ of coset representatives of U_{1} in G_{1}. As $1 \in S$ and $\pi\left(G_{1}\right)=1$, every element of S is a good representative for U_{1}.

Set now $V_{0}=G_{2}$. For every $\ell \in\{1, \ldots, m\}$, if $\varphi^{*}\left(s_{\ell}, V_{\ell-1}\right)=\varnothing$, then set $V_{\ell}=V_{\ell-1}$, otherwise Lemma 4.25 gives a coset $V_{\ell} \subseteq V_{\ell-1}$, such that $\varphi^{*}\left(s_{\ell}, V_{\ell}\right)=1$. Notice that each V_{ℓ} is a coset of an open subgroup of G_{2}. Repeating this procedure m times we get $V_{m}=g V$ for $V \unlhd_{o} G_{2}, g \in G_{2}$ such that $\varphi^{*}\left(s_{\ell}, g V\right)$ is either empty or consists of the trivial element for every $\ell=1, \ldots, m$. Notice that, being $1 \in S$, the set $\varphi^{*}(S, g V)$ is non-empty.

Applying now Lemma 4.29, this time with $\ell=2$, we can obtain a finite set of primes σ satisfying $\varphi^{*}\left(S, G_{2}\right) \subseteq N_{\sigma}$. Now, if we work in G / N_{σ}, we can apply Lemma 4.22 and obtain that $\varphi^{*}\left(s_{\ell} U_{1}, G_{2}\right)$ is either empty or trivial for every $\ell \in\{1, \ldots, m\}$. As S was a set of coset representatives of U_{1} in G_{1}, we have that $\varphi^{*}\left(G_{1}, G_{2}\right)=1$. Since the beginning of the proof, we have factored out the normal subgroups $\langle W\rangle^{G}$ and $N_{\sigma(\varnothing) \cup \sigma}$, settling Lemma 4.30 in our case.

Overall with several subgroups $G_{1}, \ldots G_{t}$ some additional steps might be necessary, but this case exemplifies the main ideas of the proof.

Proof of Lemma 4.30. Let

$$
\mathcal{I}=\left\{i \in\{1, \ldots, t\}| | \pi\left(G_{i}\right) \mid=\infty\right\}
$$

It suffices to prove the theorem in the case when $\left|\pi\left(G_{i}\right)\right|=1$ for all G_{i} with $i \notin \mathcal{I}$. The general case, where each $G_{i}, i \notin \mathcal{I}$, is the product of its Sylow subgroups follows by applying Lemma 4.22.

For $i \notin \mathcal{I}$, let p_{i} be a prime such that $\pi\left(G_{i}\right)=\left\{p_{i}\right\}$. Then we have

$$
\varphi^{*}\left(G_{i}\right)=\varphi^{*}\left(G_{1}, \ldots, G_{i-2}, H_{i-1}, G_{i}, H_{i+1}, G_{i+2}, \ldots, G_{t}\right)
$$

where H_{i-1} and H_{i+1} are the Hall p_{i}^{\prime}-subgroups of G_{i-1} and G_{i+1}, respectively. We can therefore assume, again by Lemma 4.22(i), that for all $i \notin \mathcal{I}$ we have

$$
\begin{equation*}
p_{i} \notin \pi\left(G_{i-1}\right) \cup \pi\left(G_{i+1}\right) \tag{4.7}
\end{equation*}
$$

We claim that that for every $J \subseteq\{1, \ldots, t\} \backslash \mathcal{I}$ there exist a finite set $W_{J} \subseteq$ $\varphi^{*}\left(G_{i}\right)$, a finite set of primes $\sigma(J)$ and subgroups $U_{i}^{J} \unlhd_{o} G_{i}$ with $i \notin \mathcal{I} \cup J$ such that $\varphi_{\text {IU } \cup J}^{*}\left(G_{i} ; U_{i}^{J}\right) \subseteq N_{\sigma(J)}\left\langle W_{J}\right\rangle^{G}$.

We proceed by induction on $|J|$. Assume first $J=\varnothing$. By Lemma 4.25, for every $i \in\{1, \ldots, t\}$ there exist elements $x_{i} \in G_{i}$ and subgroups $U_{i}^{\varnothing} \triangleleft_{\emptyset} G_{i}$ such that $\varphi^{*}\left(x_{i} U_{i}^{\varnothing}\right)=\left\{w_{\varnothing}\right\}$ for a suitable $w_{\varnothing} \in G$. Moreover, by Remark 4.16, we may assume that $G_{j} \leq N_{G}\left(U_{i}^{\varnothing}\right)$ for every $j \leq i$. Hence, Lemma 4.29 produces a finite set $\sigma(\varnothing)$ of primes such that $\varphi_{\mathcal{I}}^{*}\left(G_{i} ; U_{i}^{\varnothing}\right) \subseteq N_{\sigma(\varnothing)}\left\langle w_{\varnothing}\right\rangle^{G}$, so the claim follows for $|J|=0$.

Assume now that $|J| \geq 1$ and that for every $J^{-} \subsetneq J$ there exist a finite set $W_{J^{-}} \subseteq \varphi^{*}\left(G_{i}\right)$, a finite set of primes $\sigma\left(J^{-}\right)$and subgroups $U_{i}^{J^{-}} \unlhd_{o} G_{i}, i \notin$ $\mathcal{I} \cup J^{-}$, such that $\varphi_{\mathcal{I} \cup J^{-}}^{*}\left(G_{i} ; U_{i}^{J^{-}}\right) \subseteq N_{\sigma\left(J^{-}\right)}\left\langle W_{J^{-}}\right\rangle^{G}$. For convenience, we also set $U_{i}^{J^{-}}=G_{i}$ if $i \in J^{-}$, so that $U_{i}^{J^{-}}$is defined for all $i \notin \mathcal{I}$. Let $W_{J}=\bigcup_{J^{-}} W_{J^{-}}$, $\rho=\bigcup_{J^{-}} \sigma\left(J^{-}\right)$and $V_{i}=\bigcap_{J^{-}} U_{i}^{J^{-}}$for all $i \notin \mathcal{I}$, so that, by (4.4), we have
$\varphi_{\text {IUJ- }}^{*}\left(G_{i} ; V_{i}\right) \subseteq N_{\rho}\left\langle W_{J}\right\rangle^{G}$ for every $J^{-} \subsetneq J$. Furthermore, by factoring out $N_{\rho}\left\langle W_{J}\right\rangle^{G}$, we may assume that

$$
\begin{equation*}
\varphi_{\mathcal{I} \cup J^{-}}^{*}\left(G_{i} ; V_{i}\right)=1 \tag{4.8}
\end{equation*}
$$

for every $J^{-} \subsetneq J$. Moreover, taking into account Remark 4.16 we may further assume that V_{i} is invariant under the conjugacy action of G_{j} for every $j \leq i$.

Write $J=\left\{j_{1}, \ldots, j_{n}\right\}$ with $j_{1}<\cdots<j_{n}$, and for every $i \in J$, fix a set S_{i} of coset representatives for V_{i} in G_{i} containing the identity. Write

$$
S_{j_{1}} \times \cdots \times S_{j_{n}}=\left\{\mathbf{s}_{1}, \ldots, \mathbf{s}_{m}\right\}
$$

with $\mathbf{s}_{\ell}=\left(s_{\ell, j_{1}}, \ldots, s_{\ell, j_{n}}\right)$ for $\ell \in\{1, \ldots, m\}$. Denote $V_{i}=G_{i}$ for $i \in \mathcal{I}$. Since $1 \in S_{i}$ for every i, we have $\varphi_{J}^{*}\left(S_{i} ; V_{i}\right) \neq \varnothing$, so applying Lemma 4.25 we obtain elements $x_{i} \in V_{i}$ and subgroups $U_{i} \unlhd_{o} V_{i}$ such that $\varphi_{J}^{*}\left(S_{i} ; x_{i} U_{i}\right)$ takes a single value. Actually, since $1=\varphi_{J}^{*}\left(1 ; x_{i} U_{i}\right) \subseteq \varphi_{J}^{*}\left(S_{i} ; x_{i} U_{i}\right)$, we have $\varphi_{J}^{*}\left(S_{i} ; x_{i} U_{i}\right)=1$. Thus, for every $\ell \in\{1, \ldots, m\}$, we either have

$$
\begin{equation*}
\varphi_{J}^{*}\left(s_{\ell, i} ; x_{i} U_{i}\right)=\varnothing \quad \text { or } \quad \varphi_{J}^{*}\left(s_{\ell, i} ; x_{i} U_{i}\right)=1 \tag{4.9}
\end{equation*}
$$

We may assume x_{i} to be a good representative of the coset $x_{i} U_{i}$ and therefore, if J does not contain neither i nor $i+1$, then $\left(\left|x_{i}\right|,\left|x_{i+1}\right|\right)=1$. Also, by Remark 4.16 we may further assume that U_{i} is invariant under the conjugacy action of G_{j} for every $j \leq i$.

Let $J_{0}=\varnothing$, and for $r \in\{1, \ldots, n\}$, let $J_{r}=\left\{j_{1}, \ldots, j_{r}\right\}$. We also write $j_{0}=0$ for convenience. We will show that for every $r \in\{0, \ldots, n\}$, there exists a finite set of primes $\tau(r)$ such that $\varphi_{J_{r}}^{*}\left(s_{\ell, i} ; Y_{i}^{(r)}\right) \subseteq N_{\tau(r)}$ for every $\ell \in\{1, \ldots, m\}$, where

$$
Y_{i}^{(r)}= \begin{cases}G_{i} & \text { if } i \geq j_{r}, i \in \mathcal{I} \cup J \\ U_{i} & \text { if } i>j_{r}, i \notin \mathcal{I} \cup J \\ x_{i} U_{i} & \text { if } i<j_{r}\end{cases}
$$

Notice that right now we are not using $Y_{j_{r}}^{(r)}$, but it will be convenient to have it defined for later. We argue by reverse induction on $r \in\{0, \ldots, n\}$; assume first $r=n$. Since $j_{r} \notin \mathcal{I}$, we deduce from (4.7) that $\left(\left|s_{\ell \ell_{j}}\right|,\left|G_{j_{r}-1}\right|\right)=\left(\left|s_{\ell \ell_{j}}\right|,\left|x_{j_{r}+1}\right|\right)=$ 1. Thus, for all $\ell \in\{1, \ldots, m\}$, we obtain from (4.9) and Lemma 4.29 a finite set
of primes $\tau(r, \ell)$ such that $\varphi_{J_{r}}^{*}\left(s_{\ell, i} ; Y_{i}^{(r)}\right) \subseteq N_{\tau(r, \ell)}$. Defining $\tau(r)=\bigcup_{\ell=1}^{m} \tau(r, \ell)$, we obtain $\varphi_{J_{r}}^{*}\left(s_{\ell, i} ; Y_{i}^{(r)}\right) \subseteq N_{\tau(r)}$ for every $\ell \in\{1, \ldots, m\}$.

Hence, we assume $r \leq n-1$. By induction, we know that there exists a finite set of primes $\tau(r+1)$ such that

$$
\begin{equation*}
\varphi_{J_{r+1}}^{*}\left(s_{\ell, i} ; Y_{i}^{(r+1)}\right) \subseteq N_{\tau(r+1)} \tag{4.10}
\end{equation*}
$$

for every $\ell \in\{1, \ldots, m\}$.
The inductive step will be divided in two phases. We will first show that $\varphi_{J_{r}}^{*}\left(s_{\ell, i} ; Y_{i}^{(r+1)}\right) \subseteq N_{\tau(r+1)}$ (meaning that the only difference from (4.10) is position $\left.j_{r+1}\right)$. In order to obtain this, we have to substitute in the j_{r+1}-th position first $s_{\ell, j_{r+1}}$, and then $s_{\ell, j_{r+1}} U_{j_{r+1}}$ for all $\ell \in\{1, \ldots, m\}$. We will then conclude the inductive step by proving that there exists a finite set $\tau(r)$ of primes such that $\varphi_{J_{r}}^{*}\left(s_{\ell, i} ; Y_{i}^{(r)}\right) \subseteq N_{\tau(r)}$ for every $\ell \in\{1, \ldots, m\}$.

We begin by noting that $Y_{i}^{(r+1)} \leq V_{i}$ for every $i \notin \mathcal{I} \cup J$ and that $U_{j_{r+1}} \leq V_{j_{r+1}}$, so (4.8) yields

$$
\begin{equation*}
\varphi_{J_{r}}^{*}\left(s_{\ell, i} ; \widetilde{Y}_{i}\right) \subseteq N_{\tau(r+1)} \tag{4.11}
\end{equation*}
$$

where $\widetilde{Y}_{i}=Y_{i}^{(r+1)}$ if $i \neq j_{r+1}$ and $\widetilde{Y}_{j_{r+1}}=U_{j_{r+1}}$. As we chose the sets of representatives S_{j} in such a way that the identity is contained in them, for every $\ell \in\{1, \ldots, m\}$, either $s_{\ell, j_{r+1}}$ is trivial or $\left|\pi\left(s_{\ell j_{+1}}\right)\right|=1$, so in particular $s_{\ell, j_{r},}$ is a good representative. Thus, by (4.10) and (4.11), we deduce from Lemma 4.22 that $\varphi_{J_{r}}^{*}\left(s_{\ell, i} ; \bar{Y}_{i}\right) \subseteq N_{\tau(r+1)}$, where $\bar{Y}_{i}=Y_{i}^{(r+1)}$ if $i \neq j_{r+1}$ and $\bar{Y}_{j_{r+1}}=s_{\ell, j_{r+1}} U_{j_{r+1}}$. Since this holds for every $\ell \in\{1, \ldots, m\}$, and since $G_{j_{r+1}}=\bigcup_{s \in S_{j_{r+1}}} s U_{j_{r+1}}$, we obtain $\varphi_{J_{r}}^{*}\left(s_{\ell, i} ; Y_{\dot{c}}^{(r+1)}\right) \subseteq N_{\tau(r+1)}$, as we wanted.

Now using (4.7) and Lemma 4.29, we conclude exactly as in the case $r=n$ that there exists a finite set $\tau(r)$ of primes such that $\varphi_{J_{r}}^{*}\left(s_{\ell, i} ; Y_{i}^{(r)}\right) \subseteq N_{\tau(r)}$ for every $\ell \in\{1, \ldots, m\}$.

This completes the reverse induction on r. In particular, for $r=0$, it follows that $\varphi_{J}^{*}\left(G_{i} ; U_{i}\right) \subseteq N_{\tau(0)}$, so this, in turn, concludes the inductive step on $|J|$, and the claim is proved.

Finally, taking J in such a way that $\mathcal{I} \cup J=\{1, \ldots, t\}$, we obtain a finite set of primes $\sigma(J)$ and a finite set $W \subseteq \varphi^{*}\left(G_{i}\right)$ such that $\varphi^{*}\left(G_{1}, \ldots, G_{t}\right) \subseteq N_{\sigma(J)}\langle W\rangle^{G}$, as desired.

Recall that if G is a prosolvable group of Fitting height $k+1$, there exist some pronilpotent subgroups U_{0}, \ldots, U_{k} satisfying Proposition 4.15.

We remark that φ and φ^{*} were defined with variables $\left\{x_{i} \mid i=1, \ldots, t\right\}$ for a generic positive integer t. Since we now want to apply the previous results to
the subgroups U_{0}, \ldots, U_{k}, we will set $t=k+1$ and we will write $\varphi\left(U_{i-1}\right)$ for $\varphi\left(U_{0}, \ldots, U_{k}\right)$ and $\varphi^{*}\left(U_{i-1}\right)$ for $\varphi\left(\left(U_{0} \times \cdots \times U_{k}\right) \cap \mathcal{C}\right)$, where \mathcal{C} is defined as in (4.3).

Lemma 4.32. Let $G=U_{0} \cdots U_{k}$ be as in Proposition 4.15 with $U_{k}=\delta_{k}^{*}(G)$ abelian, and assume $\left|\delta_{k}^{*}\{G\}\right|<2^{\aleph_{0}}$. Let $g \in \varphi^{*}\left(U_{i-1}\right)$. Then, there exists a finite normal subgroup $N \unlhd G$ such that $g \in N$.

Proof. Write $g=\left[x_{0}, \ldots, x_{k}\right]$, where $x_{j} \in U_{j}$ for all j and $\left(\left|x_{\ell}\right|,\left|x_{\ell+1}\right|\right)=1$ for all $\ell \in\{0, \ldots, k-1\}$. By Lemma 4.9, $\left[x_{0}, \ldots, x_{j}\right]$ is a δ_{j}^{*}-value for every $j \in\{0, \ldots, k\}$.

In particular $x:=\left[x_{0}, \ldots, x_{k-1}\right]$ is a δ_{k-1}^{*}-value. Let H be the minimal Hall subgroup of $\delta_{k}^{*}(G)$ containing x_{k}, so that $(|x|,|H|)=1$, again by Lemma 4.9. Since, again, $[x, h]$ is a δ_{k}^{*}-value for every $h \in H$, the set $K:=\{[x, h] \mid h \in H\}$ has less than $2^{\aleph_{0}}$ values, and, since H is abelian and normal in G, it follows that K is actually a closed subgroup of G. In particular, K is finite, so every element of K has finite order. Thus, we deduce from Lemma 3.17 that the set $S:=\bigcup\left\{k^{G} \mid k \in K\right\}$ is finite, and therefore $N=\langle S\rangle$ is finite by Dietzmann's Lemma (see Lemma 14.5.7 of [73]).

We are now ready to prove the strong conciseness of δ_{k}^{*} in prosoluble groups of Fitting height $k+1$.

Proposition 4.33. Let G be a prosoluble group of Fitting height $k+1$. Assume that $\left|\delta_{k}^{*}\{G\}\right|<2^{\aleph_{0}}$. Then $\delta_{k}^{*}(G)$ is finite.

Proof. In view of Lemma 4.12, we may assume that $\delta_{k}^{*}(G)$ is abelian. Thus, we can take $U_{0}, \ldots, U_{k} \leq G$ as in Proposition 4.15, so that $G=U_{0} \cdots U_{k}$ with $U_{k}=\delta_{k}^{*}(G)$ abelian.

We claim that for every family of subgroups $G_{i-1} \leq U_{i-1}$ with $i \in\{1, \ldots, k+1\}$ such that $G_{j} \leq N_{G}\left(G_{i}\right)$ for $j \leq i$, we have $\left|\varphi^{*}\left(G_{i-1}\right)\right|<\infty$. We argue by induction on $|\mathcal{I}|$, where

$$
\mathcal{I}=\left\{i \in\{1, \ldots, k+1\}| | \pi\left(G_{i-1}\right) \mid=\infty\right\} .
$$

If $|\mathcal{I}|=0$, then Lemma 4.30 gives the result since for every finite set $W \subseteq$ $\varphi^{*}\left(G_{i-1}\right)$, the normal subgroup $\langle W\rangle^{G}$ is finite by Lemma 4.32, and since, by definition, $N_{\sigma}=1$ for every finite set of primes σ. Suppose thus $|\mathcal{I}| \geq 1$. Then, Lemma 4.30 produces a finite set of primes σ and a finite set $W \subseteq \varphi^{*}\left(G_{i-1}\right)$ such that $\varphi^{*}\left(G_{i-1}\right) \subseteq N_{\sigma}\langle W\rangle^{G}$. Observe that by induction, for every $j \in \mathcal{I}$, we have $\left|\varphi_{\{j\}}^{*}\left(H_{i-1} ; G_{i-1}\right)\right|<\infty$, where H_{i-1} is the Hall σ-subgroup of G_{i-1}, and therefore N_{σ} is finite by Lemma 4.32. Again by Lemma 4.32, $\langle W\rangle^{G}$ is also finite, and the claim follows.

In particular, we have shown that $\left|\varphi^{*}\left(U_{i-1}\right)\right|<\infty$.
Denote by $P_{i}(p)$ the Sylow p-subgroup of U_{i} for every $p \in \pi(G), i \in\{0, \ldots, k\}$. As each U_{i} is a pronilpotent subgroup, for every $j \in\{1, \ldots, k\}$ and every $p \in \pi(G)$ Proposition 4.15 yields

$$
P_{j}(p)=\prod_{\substack{q \in \pi(G) \\ q \neq p}}\left[P_{j-1}(q), P_{j}(p)\right] .
$$

Therefore, for every $q_{k} \in \pi(G)$,

$$
P_{k}\left(q_{k}\right)=\prod_{\left(q_{0}, \ldots, q_{k-1}\right) \in S_{q_{k}}}\left[P_{0}\left(q_{0}\right), \ldots, P_{k}\left(q_{k}\right)\right],
$$

where

$$
S_{q_{k}}=\left\{\left(q_{0}, \ldots, q_{k-1}\right) \in \pi(G)^{k} \mid q_{j} \neq q_{j+1} \text { for every } j=0, \ldots, k-1\right\}
$$

By Lemma 4.21, this implies that $P_{k}\left(q_{k}\right) \leq\left\langle\varphi^{*}\left(U_{i-1}\right)\right\rangle$ for every $q_{k} \in \pi(G)$, and so

$$
\delta_{k}(G)=U_{k}=\prod_{p \in \pi(G)} P_{k}(p) \leq\left\langle\varphi^{*}\left(U_{i-1}\right)\right\rangle .
$$

The proposition follows from Lemma 4.32, as we already proved that $\left|\varphi^{*}\left(U_{i-1}\right)\right|<$ ∞.

4.6 Strong conciseness of coprime commutators

We recall that a minimal simple group is a finite non-abelian simple group all of whose proper subgroups are soluble. These groups have been classified by Thompson in [79]. By applying induction on the order of the group, it is immediate to see that every finite simple group has a section that is a minimal simple group.

Lemma 4.34. In every minimal simple group there exist an involution e and an element h of odd order such that $h^{e}=h^{-1}$. Moreover, for every positive integer k, the element

$$
g_{k}=[h, e, \stackrel{k-1}{\cdots}, e]
$$

is both a non-trivial γ_{k}^{*}-value and a non-trivial δ_{k-1}^{*}-value.

Proof. The first claim follows from Theorem 2.13 of [42] and the fact that nonabelian simple groups are of even order. Notice that $g_{k}=h^{(-2)^{k-1}}$, so $g_{k} \neq 1$ for every positive integer k. Clearly g_{i} and e are coprime for every $i \in\{1, \ldots, k-1\}$, so g_{k} is a γ_{k}^{*}-value. Thus, it suffices to prove that the same is true for δ_{k-1}^{*}. By Proposition 25 of [11], every involution of a minimal simple group is a δ_{ℓ}^{*}-value for every $\ell \in \mathbb{N}$. Hence, we can use Lemma 4.8 with $g_{1}=\cdots=g_{k-1}=e$ and $H=\langle h\rangle$ and conclude the proof.

We are now ready to prove our main results. As in [28], we start showing that the Fitting subgroup of any infinite profinite group G with $\left|\gamma_{k}^{*}\{G\}\right|<2^{\aleph_{0}}$ or $\left|\delta_{k}^{*}\{G\}\right|<2^{\aleph_{0}}$ is infinite.

Proposition 4.35. Let G be an infinite profinite group and let $w^{*}=\delta_{k}^{*}$ or $w^{*}=\gamma_{k}^{*}$. Suppose that $1 \neq\left|w^{*}\{G\}\right|<2^{\aleph_{0}}$. Then the Fitting subgroup F of G is infinite.

Proof. We first show that F is non-trivial. Assume by contradiction that $F=1$. For every non-trivial w^{*}-value x of G, the normal closure $\left\langle x^{G}\right\rangle$ is finite. Indeed, by Lemma 3.17, x^{G} is finite, so in particular $\left|G: C_{G}\left(\left\langle x^{G}\right\rangle\right)\right|<\infty$. As a consequence, the index $\left|\left\langle x^{G}\right\rangle: Z\left(\left\langle x^{G}\right\rangle\right)\right|$ is also finite, but $Z\left(\left\langle x^{G}\right\rangle\right)$ is contained in $F=1$. This implies that G possesses finite minimal normal subgroups, so let N be the product of all of the subgroups obtained in this way from the set of w^{*}-values.

If N is finite, then there exists a normal open subgroup $K \unlhd_{o} G$ such that $K \cap N=1$. Such a subgroup cannot contain any non-trivial w^{*}-value since otherwise, repeating the same argument as before, we would obtain a minimal normal subgroup of G contained in K, contradicting that $K \cap N=1$. If $w^{*}(K)=$ 1, then by Theorem $4.2 K$ is either pronilpotent (if $w^{*}=\gamma_{k}^{*}$) or prosoluble of Fitting height k (if $w^{*}=\delta_{k}^{*}$), and this contradicts the fact that $F \cap K=1$. This proves that N is an infinite subgroup of G.

None of the infinitely many minimal normal subgroups of G contained in N is abelian because $F=1$, so each of these minimal normal subgroups contains a section isomorphic to a minimal simple group. For each minimal normal subgroup N_{i}, with $i \in I$, choose a section isomorphic to a minimal simple group S_{i}. We remark that by the previous discussion I is an infinite set and so the Cartesian product of S_{i} is a section of G. By Lemma 4.34 in each of these groups S_{i} there exist an involution $e_{i} \in S_{i}$ and an element $h_{i} \in S_{i}$ of odd order with $h_{i}^{e_{i}}=h_{i}^{-1}$ such that $g_{i}:=\left[h_{i}, e_{i}, \stackrel{k-1}{-1}, e_{i}\right]$ is a non-trivial w^{*}-value. Now, using the structure of Cartesian product, for each subset $J \subseteq I$ the element $c_{J}=\prod_{j \in J} g_{j}$ can be written as

$$
c_{J}=\left[\prod_{j \in J} h_{j}, \prod_{j \in J} e_{j}, \ldots, \prod_{j \in J} e_{j}\right] .
$$

Clearly $\prod_{j \in J} e_{j}$ is an involution normalizing the cyclic subgroup generated by the element of odd order $\prod_{j \in J} h_{j}$, and hence it is a w^{*}-value (if $w^{*}=\delta_{k}^{*}$ we also need to use Lemma 4.8). However, there exist at least $2^{\aleph_{0}}$ distinct subsets $J \subseteq I$ that give rise to different c_{J}, against the assumption that $\left|w^{*}\{G\}\right|<2^{\aleph_{0}}$, so $F \neq 1$.

If we assume by contradiction that the Fitting subgroup F is finite, then there would be a subgroup $K \unlhd_{o} G$ with $K \cap F=1$, so that K has trivial Fitting subgroup. By the previous argument, this can happen only if $w^{*}(K)=1$, so K is either pronilpotent or prosoluble of Fitting height k, contradicting that $K \cap F=1$ and proving the proposition.

Proofs of Theorems 4.3 and 4.4. In view of Theorem 4.2 it is sufficient to show that if $\left|w^{*}\{G\}\right|<2^{\aleph_{0}}$, then G is finite-by-pronilpotent in the case $w^{*}=\gamma_{k}^{*}$ or finite-by-(prosoluble of Fitting height at most k) if $w^{*}=\delta_{k}^{*}$. We can assume G to be infinite, otherwise the theorem is trivially true.

We will denote the Fitting subgroup of G by F, and for $i \geq 2$, let F_{i} be the i-th Fitting subgroup of G. By Proposition 4.35, F is infinite (and hence the same is true for all F_{b}). Let $n=2$ if $w^{*}=\gamma_{k}^{*}$ and $n=k+1$ if $w^{*}=\delta_{k}^{*}$. By Propositions 4.20 and 4.33, $w^{*}\left(F_{n}\right)$ is finite. Therefore there exists an open normal subgroup $R \unlhd_{o} F_{n}$ with $R \cap w^{*}\left(F_{n}\right)=1$. Theorem 4.2 implies that the Fitting height of R is at most $n-1$, and hence R is contained in F_{n-1}. However, since F_{n} / F_{n-1} is the Fitting subgroup of G / F_{n-1}, it follows that G / F_{n-1} has finite Fitting subgroup, and by Proposition 4.35 this can only happen if G / F_{n-1} is finite.

Thus, we will prove the result by induction on $\left|G: F_{n-1}(G)\right|$, with the base case $G=F_{n-1}(G)$ being trivial by Theorem 4.2. Assume then that $\left|G: F_{n-1}(G)\right|>1$ and suppose first that G / F_{n-1} has a nontrivial proper normal subgroup N. The inductive hypothesis yields $\left|w^{*}(N)\right|<\infty$, and working in $G / w^{*}(N)$, we obtain by Theorem 4.2 that $N / w^{*}(N)$ is prosoluble of Fitting height at most $n-1$. This implies that $N / w^{*}(N)$ is contained in the $(n-1)$-th Fitting subgroup of $G / w^{*}(N)$ and by inductive hypothesis $w^{*}\left(G / w^{*}(N)\right)$ must be finite, so $w^{*}(G)$ is finite too.

We can hence assume that G / F_{n-1} is a simple group. Notice that if G / F_{n-1} is abelian, then we can conclude simply by applying Proposition 4.20 or Proposition 4.33. Thus, the only case left is when G / F_{n-1} is a finite non-abelian simple group. By Theorem4.2 we have $w^{*}\left(G / F_{n-1}\right)=G / F_{n-1}$, so there is a finite set S consisting of w^{*}-values such that $G=\langle S\rangle F_{n-1}$. By Lemma 3.17 the set $T:=\bigcup\left\{s^{G} \mid s \in S\right\}$ is finite, so the index $\left|G: C_{G}(T)\right|$ is also finite. This implies that the center of $\langle T\rangle$ has finite index in $\langle T\rangle$, so by Schur's theorem $\langle T\rangle^{\prime}$ is finite too. Note that $\langle T\rangle^{\prime}$ is normal in G. Factoring out $\langle T\rangle^{\prime}$, we can assume G / F_{n-1} to be abelian, and we conclude the proof as before.

Profinite right-angled Artin groups

In this chapter we will begin developing the theory of pro-C right-angled Artin groups. This chapter and the next are part of a preprint, which is currently in preparation, joint with M. Casals Ruiz and P. Zalesskii.

The first section is devoted to describing the profinite version of Bass-Serre theory developed mainly by Melnikov, Ribes and Zalesskii. This theory aims at understanding the structure of groups by their action on a profinite tree. One of the main reasons to use this approach is that the action of a profinite group on a profinite tree naturally gives a description of the structure of its subgroups, that can be directly obtained by looking at the action of the subgroup on the tree.

In the second section we define profinite right-angled Artin groups and we develop their basic properties. These groups are defined by a finite graph, choosing vertices as generators and setting as relations that two adjacent vertices commute. We then obtain some results on standard subgroups, which are the subgroups generated by a subset of the canonical generators of a profinite RAAG, and we show that all these groups are torsionfree.
In Section 3 we prove that a profinite RAAG splits as a direct product if and only if its underlying graph is a join. We then obtain a description of centralisers of elements analogous to the one of abstract RAAGs obtained by Baudisch in [12], proving that they split as a direct product of a standard subgroup and of some projective groups. We will then use this characterization to conclude that,
in pro- p RAAGs, centralisers are retracts.
In the last section, we conclude by proving that a pro-C RAAG either contains free pro- \mathcal{C} groups or it is solvable, and then give a description of two-generated subgroup of pro- p RAAGs.

5.1 Profinite groups acting on profinite trees

In this section, we describe the analogue results of Bass-Serre theory for profinite groups acting on profinite trees. A deeper description can be found in [70] or, for pro- p groups, in [72] and [71].

In the current and next chapter, we assume \mathcal{C} to be a class of finite groups closed under taking subgroups, homomorphic images, direct product and extensions with abelian kernel. The primes involved in \mathcal{C} is the set of primes that divide the order of a group $G \in \mathcal{C}$ and will be denoted as $\pi(\mathcal{C})$. As usual, if π is a set of primes, a pro- π group is an inverse limit of finite groups of π-order.

Definition 5.1 (Profinite graph). A profinite graph is a profinite space Γ with a distinguished non-empty closed subset $V(\Gamma)$ and two continuous maps (called incidence maps) $d_{0}, d_{1}: \Gamma \rightarrow V(\Gamma)$ which restrict to the identity on $V(\Gamma)$.

The elements of $V(\Gamma)$ are the vertices of the profinite graph, whereas the elements of $E(\Gamma):=\Gamma \backslash V(\Gamma)$ are the edges. A morphism $\alpha: \Gamma \rightarrow \Delta$ is a map of profinite spaces respecting incidence maps, so $\alpha d_{i}=d_{i} \alpha$ for $i \in\{0,1\}$. A profinite graph is the inverse limit of its finite quotients graphs (see Proposition 1.5 of [71]) and we say that Γ is connected if all of these finite quotient graphs are connected (as abstract finite graphs).
For each profinite graph Γ, we define $\left(E^{*}(\Gamma), *\right)=(\Gamma / V(\Gamma), *)$ the pointed profinite quotient space, where the distinguished point is the representative of $V(\Gamma)$. For every prime p, we have a complex of free profinite \mathbb{F}_{p}-modules

$$
\begin{equation*}
0 \longrightarrow \mathbb{F}_{p}\left[\left[E^{*}(\Gamma), *\right]\right] \stackrel{\delta}{\rightarrow} \mathbb{F}_{p}[[V(\Gamma)]] \stackrel{\epsilon}{\rightarrow} \mathbb{F}_{p} \longrightarrow 0 \tag{5.1}
\end{equation*}
$$

where the maps are defined as $\delta(e)=d_{1}(e)-d_{0}(e)$ for every $e \in E^{*}(\Gamma)$ and $\epsilon(v)=1$ for every $v \in V(\Gamma)$.

Definition 5.2 (Profinite tree). A profinite graph Γ is a pro-p tree if the associated chain complex (5.1) is an exact sequence. A profinite graph is a pro-C tree if the associated chain complex (5.1) is an exact sequence for each prime $p \in \pi(\mathcal{C})$.

In particular, a pro-C tree is a pro- π tree with $\pi=\pi(\mathcal{C})$ (see Proposition 2.4.2 of [70]). As every pro- \mathcal{C} group is a pro- $\pi(\mathcal{C})$ group, we can often reduce the study of pro- \mathcal{C} groups acting on pro- \mathcal{C} trees to the study of pro- π groups acting on pro- π trees. For this reason, many theorems we refer to are originally stated in the pro- π version in the sources we cite but they are still valid for pro-C groups and trees, and we state them in this form.

All the subtrees of a pro- \mathcal{C} tree Γ are partially ordered by inclusion and the minimal subtree containing two vertices $v, w \in V(\Gamma)$, which we denote as $[v, w]$, is called a geodesic.

Some results that are valid for abstract trees are true for pro- \mathcal{C} trees too. For example, we will make use of Helly's Theorem for pro- \mathcal{C} trees.

Lemma 5.3. Let $S=\left\{T_{i}, i \in I\right\}$ be an arbitrary family of non-empty pro-C subtrees of a pro-C tree T and suppose $T_{i} \cap T_{j} \neq \varnothing$ for every $i, j \in I$. Then $\bigcap_{i \in I} T_{i} \neq \varnothing$.

Proof. As the pro- \mathcal{C} tree T is compact, it suffices to prove that every finite subset of S has a non-empty intersection, so we prove the result for $S_{k}=\left\{T_{i}, i=1, \ldots, k\right\}$ by induction on k.

If $k=1$ or $k=2$, the statement holds trivially from the assumption that the trees pairwise intersect. We treat the case $k=3$ separately as it is going to be used in the inductive step. Let $v_{12}, v_{13} \in V(T)$ be vertices in $T_{1} \cap T_{2}$ and $T_{1} \cap T_{3}$ respectively. The geodesic $\left[v_{12}, v_{13}\right]$ is contained in T_{1}, and by Lemma 2.8 of [71] we have that $\left[v_{12}, v_{13}\right] \cap T_{2} \cap T_{3} \neq \varnothing$, hence $T_{1} \cap T_{2} \cap T_{3} \neq \varnothing$.

Suppose by induction that the result holds for every set with less than k trees and consider the set $S_{k}=\left\{T_{i} \mid i=1, \ldots, k\right\}$. Define $\bar{T}=T_{k-1} \cap T_{k}$. Notice that by Proposition 2.4.9 of [70], the intersection of any family of pro- \mathcal{C} subtrees is still a pro- \mathcal{C} subtree (possibly empty) and so \bar{T} is a pro- \mathcal{C} tree. By induction (using the case $k=3$) we have that $\bar{T} \cap T_{i} \neq \varnothing$ for all $i \in\{1, \ldots, k-2\}$, hence we can apply the inductive hypothesis to the family $\bar{S}_{k}=\left\{\bar{T}, T_{1}, \ldots, T_{k-2}\right\}$, which has by definition the same intersection as the family S_{k} and the result follows.

A pro- \mathcal{C} group G acts on a pro- \mathcal{C} tree Γ if it respects the incident maps, i.e. $g d_{i}=d_{i} g$ for $i \in\{0,1\}, g \in G$, and the action is continuous. If an element $g \in G$ fixes at least a point of Γ we say that g is elliptic, on the other hand, if g does not fix any point, then g is a hyperbolic element. We moreover say that a subgroup $H \leq G$ is elliptic if the whole subgroup fixes a point of Γ.
Whenever an element $g \in G$ (or a subgroup $H \leq G$) is elliptic, we can consider the set of fixed points T^{g} (respectively T^{H}), that is a pro-C tree by Theorem 4.1.5 of [70].

When studying actions of groups on trees, we often need to restrict to minimal invariant subtrees, whose existence is guaranteed by the following lemma, which is Proposition 2.4.12 of [70].

Lemma 5.4. If G is a pro-C group acting on a pro- \mathcal{C} tree Γ, then there exists a minimal G-invariant pro-C subtree Δ of Γ. If Δ contains more than one vertex, then it is unique.

The action of G on a pro- \mathcal{C} tree Γ is irreducible if Γ has no proper G-invariant subtrees. From now on, for every subset S of a group G acting on a pro-C tree T, we denote by T_{S} the minimal pro-C subtree on which $\langle S\rangle \leq G$ acts. Similarly to the abstract case, when elements commute we can obtain some additional information on their action.

Lemma 5.5. Let G be a pro-C group acting faithfully on a pro-C tree T.

1. Let $g, h \in G$ be such that h normalises $\langle g\rangle$, then h leaves T_{g} invariant and in particular, if $[g, h]=1$ then $T_{g}=T_{h}$.
2. Let $S=\left\{g_{1}, \ldots, g_{k}\right\}$ be a set of elements such that the action of each g_{i}, $i \in\{1, \ldots, k\}$, is elliptic. If $\left[g_{i}, g_{j}\right]=1$ for every $i, j \in\{1, \ldots, k\}$, then there exists a vertex of T fixed by the whole set S.

Proof. Part (1) follows immediately by observing that $h \cdot\left(T_{g}\right)=T_{h g h^{-1}} \subseteq T_{g}$. We first prove part (2) for two elements $g_{1}, g_{2} \in G$. If both g_{1} and g_{2} are elliptic, consider the subtrees $T^{g_{1}}$ and $T^{g_{2}}$ fixed by g_{1} and g_{2} respectively; by (1) we have that $T^{g_{1}}$ is a non-empty pro- \mathcal{C} subtree invariant under the action of g_{2}. By Corollary 4.1.9 of [70], g_{1} fixes a vertex of $T^{g_{2}}$, hence $T^{g_{2}} \cap T^{g_{1}}$ is not trivial.
Applying the case $k=2$ to each pair, we have that $T^{g_{i}} \cap T^{g_{j}} \neq \varnothing$ and g_{i} and g_{j} fix pointwise the intersection for every $i, j \in\{1, \ldots, k\}$ so we can apply Lemma 5.3 to the set $\left\{T^{g_{1}}, \ldots, T^{g_{k}}\right\}$ and conclude that $\bigcap_{i \in I} T_{i} \neq \varnothing$ and each g_{i} fixes this intersection, thus (2) follows.

Let $\Delta=(V(\Delta), E(\Delta))$ be a graph. We set $m \in \Delta$ if $m \in V(\Delta)$ or $m \in E(\Delta)$. A finite graph of pro-C groups (\mathcal{G}, Δ) over a finite abstract graph Δ is a collection of pro- \mathcal{C} groups $\mathcal{G}(m)$ for each $m \in \Delta$, and continuous monomorphisms ∂_{i} : $\mathcal{G}(e) \longrightarrow \mathcal{G}\left(d_{i}(e)\right)$ for each edge $e \in E(\Delta), i \in\{0,1\}$. We only work with finite graphs of pro- \mathcal{C} groups, in the sense that the graph Δ is finite, but it is possible to define an analogous concept for graphs of pro-C groups over profinite graphs Δ (see Chapter 6 of [70]). A graph of groups is reduced if edge groups corresponding to edges that are not loops are properly contained in adjacent vertex groups.

Definition 5.6 (Pro- \mathcal{C} fundamental group). Given a finite graph of pro- \mathcal{C} groups (\mathcal{G}, Δ), we define its pro-C fundamental group $G=\Pi_{1}(\mathcal{G}, \Delta)$ as follows. Fix a maximal subtree D of Δ; then G is a pro- \mathcal{C} group, together with a collection of continuous homomorphisms

$$
\nu_{m}: \mathcal{G}(m) \longrightarrow G \quad(m \in \Delta)
$$

and a continuous map $E(\Delta) \longrightarrow G$, denoted $e \mapsto t_{e}(e \in E(\Delta))$, such that $t_{e}=1$ if $e \in E(D)$, and such that

$$
\left(\nu_{d_{0}(e)} \partial_{0}\right)(x)=t_{e}\left(\nu_{d_{1}(e)} \partial_{1}\right)(x) t_{e}^{-1} \quad \forall x \in \mathcal{G}(e), e \in E(\Delta)
$$

that satisfies the following universal property:
whenever we have

- a pro-C group H,
- a collection of continuous homomorphisms $\beta_{m}: \mathcal{G}(m) \longrightarrow H,(m \in \Delta)$,
- a map $e \mapsto s_{e}(e \in E(\Delta))$ with $s_{e}=1$ if $e \in E(D)$, and
- $\left(\beta_{d_{0}(e)} \partial_{0}\right)(x)=s_{e}\left(\beta_{d_{1}(e)} \partial_{1}\right)(x) s_{e}^{-1} \quad \forall x \in \mathcal{G}(e), e \in E(\Delta)$,
then there exists a unique continuous homomorphism $\delta: G \longrightarrow H$ with $\delta\left(t_{e}\right)=s_{e}$ $(e \in E(\Delta))$ such that for each $m \in \Delta$ the diagram

commutes.
It was proven in [84] that this definition does not depend on the choice of the maximal subtree D, moreover the existence and uniqueness of this group is proven in Proposition 6.2.1 and Theorem 6.2.4 of [70].

One can construct the fundamental group of a graph of pro-C groups by iterating two operations, namely pro- \mathcal{C} amalgamated products and pro-C HNN extensions, denoted by $G_{1} \amalg_{H} G_{2}$ and $\operatorname{HNN}\left(G_{1}, H, f\right)$ respectively, and where G_{1} and G_{2} are pro-C groups, $H \leq G_{1}$, and $f: H \rightarrow H^{\prime} \leq G_{1}$ is an isomorphism. Both of these
constructions are defined by means of a universal property and can be obtained as a certain pro-C completion of the abstract amalgamated product and HNN extension of the corresponding groups. We refer to Sections 9.2 and 9.4 of [72] for the precise definitions and basic properties.
It is important to remark that, contrary to the abstract case, the factors G_{1} and G_{2} (resp. the base group G_{1}) do not necessarily embed into $G_{1} \amalg_{H} G_{2}$ (resp. $\left.H N N\left(G_{1}, H, f\right)\right)$. Whenever they embed, the amalgamated product (resp. HNN extension) is said to be proper. Some necessary and sufficient conditions for pro\mathcal{C} amalgamated products and HNN extensions to be proper were described in Theorem 9.2.4 and Proposition 9.4.3 of [72]. We remark that properness is assured if if the amalgamated subgroup H is a virtual retract of G_{1} and G_{2} (as G_{1} and G_{2} would induce the full pro-C topology on H and the hypothesis of Thm 9.2.4 in [72] hold in this case).
Abstract Bass-Serre theory relates fundamental groups of graphs of groups with groups acting on trees. Such a relation is true for the pro-C case assuming that the action on a pro- \mathcal{C} tree is cofinite and not true in general. Namely given a fundamental group of a graph of pro-C groups (\mathcal{G}, Δ), there is a natural pro- \mathcal{C} tree T on which it acts. The construction of this tree, called the standard pro-C tree, is described in Chapter 6 of [70]. The converse is true only for the cofinite action.

If the fundamental group of the graph of pro- \mathcal{C} groups is a pro- \mathcal{C} amalgamated product $G=G_{1} \amalg_{H} G_{2}$ or a pro-C HNN extension $G=H N N\left(G_{1}, H, f\right)$, then each vertex stabiliser G_{v} of a vertex v is a conjugate of G_{1} or G_{2} (or of G_{1} if $\left.G=H N N\left(G_{1}, H, f\right)\right)$ and each edge stabiliser G_{e} is a conjugate of H.

Abstract Bass-Serre theory is extremely useful for studying the structure of subgroups of fundamental groups of graphs of groups. The same is true for the pro-C version of Bass-Serre theory, and the main tool is Theorem 7.1.7 of [70]. We state the applications of these results to the case when the group acting on the pro- \mathcal{C} tree is a pro- \mathcal{C} amalgamated product or HNN extension. As usual, we denote by $\widehat{\mathbb{Z}}_{\mathcal{C}}=\prod_{p \in \pi(\mathcal{C})} \mathbb{Z}_{p}$ the pro- \mathcal{C} completion of \mathbb{Z} for any set of primes $\pi(\mathcal{C})$.

Theorem 5.7. Let K be a subgroup of a proper free amalgamated pro-C product $G=G_{1} \amalg_{H} G_{2}$ of pro-C groups. Then one of the following holds:

1. $K \leq g G_{i} g^{-1}$ for $g \in G$ and $i \in\{1,2\}$;
2. K has a non-abelian free pro-p subgroup P for a certain $p \in \pi(\mathcal{C})$ such that $P \cap g G_{i} g^{-1}=1$ for all $g \in G$ and $i \in\{1,2\}$;
3. there exists a subgroup $H_{0} \unlhd K$ (which is the kernel of the action of K on $\left.T_{K}\right)$ that is contained in a conjugate of H and such that K / H_{0} is solvable
and isomorphic to a projective group $\mathbb{Z}_{\sigma} \rtimes \mathbb{Z}_{\rho}(\sigma, \rho \subseteq \pi(\mathcal{C})$ with $\sigma \cap \rho=\varnothing)$ or $\mathbb{Z}_{\sigma} \rtimes C_{n}$ (with $\sigma \subseteq \pi(\mathcal{C})$ and C_{n} a finite cyclic group). In the last case, it can be a profinite Frobenius group or, if $C_{n}=C_{2}$ and $2 \in \sigma$, an infinite dihedral pro- σ group.

Theorem 5.8. Let K be a subgroup of a proper pro-C $H N N$ extension $G=$ $H N N\left(G_{1}, H, f\right)$. Then one of the following holds:

1. $K \leq g G_{1} g^{-1}$ for $g \in G$;
2. K has a non-abelian free pro-p subgroup P for $p \in \pi(\mathcal{C})$ such that $P \cap$ $g G_{1} g^{-1}=1$ for all $g \in G$;
3. there exists a subgroup $H_{0} \unlhd K$ (which is the kernel of the action of K on T_{K}) that is contained in a conjugate of H and such that K / H_{0} is solvable and isomorphic to a projective group $\mathbb{Z}_{\sigma} \rtimes \mathbb{Z}_{\rho}(\sigma, \rho \subseteq \pi(\mathcal{C})$ with $\sigma \cap \rho=\varnothing)$ or $\mathbb{Z}_{\sigma} \rtimes C_{n}$ (with $\sigma \subseteq \pi(\mathcal{C})$ and C_{n} a finite cyclic group). In the last case, it can be a profinite Frobenius group or, if $C_{n}=C_{2}$ and $2 \in \sigma$, an infinite dihedral pro- σ group.

A useful remark is that, in the third case of the previous theorems, H / H_{0} is torsionfree if and only if it is isomorphic to $\mathbb{Z}_{\sigma} \rtimes \mathbb{Z}_{\rho}$. In this case, as this is a projective group, we have that $H \cong H_{0} \rtimes\left(\mathbb{Z}_{\sigma} \rtimes \mathbb{Z}_{\rho}\right)$.

Finally, we record the following observation.
Lemma 5.9. Let $G=G_{1} \amalg_{H} G_{2}$ be a proper amalgamated pro-C product of two pro-C groups G_{1} and G_{2} and let T be the standard pro-C tree associated with this splitting. Let g_{1}, \ldots, g_{k} be a sequence of elliptic elements such that $\left[g_{i}, g_{i+1}\right]=1$ for all $i \in\{1, \ldots, k-1\}$. Then there are some vertices $v_{1}, \ldots, v_{k} \in V(T)$ (not necessarily distinct) such that $g_{1} \in G_{v_{1}}$ and $g_{i} \in G_{t_{i}}$ for each $t_{i} \in\left[v_{i-1}, v_{i}\right]$.

Proof. By Lemma 5.5 there exists a vertex v_{i} stabilized by every pair of commuting elements g_{i}, g_{i+1} for every $i \in\{1, \ldots, k-1\}$. Define v_{k} to be any vertex stabilized by g_{k}. In this setting, g_{i} stabilizes both v_{i-1} and v_{i}, hence it stabilizes the whole subtree $\left[v_{i-1}, v_{i}\right]$ by Corollary 4.1.6 of [70].

5.2 Basics on pro- RAAGs

The aim of this section is to describe basic properties pro-C RAAGs. The abstract version of the definitions and results that we discuss can be found, for example, in 18].

Let $\Gamma=(V(\Gamma), E(\Gamma))$ be an undirected finite graph without double edges or loops, where $V(\Gamma)$ and $E(\Gamma)$ are the set of vertices and edges respectively. A subgraph $\Delta<\Gamma$ is called full if for all $e \in \Gamma$ with $d_{0}(e), d_{1}(e) \in \Delta$ we have that $e \in \Delta$. Notice that full subgraphs are uniquely determined by the subset of vertices $V(\Delta)$ of $V(\Gamma)$.

Definition 5.10 (Right-angled Artin pro-C groups). The right-angled Artin pro-C grouppro-C $R A A G$ (pro- \mathcal{C} RAAG for short) G_{Γ} is the pro- \mathcal{C} group given by the pro-C presentation

$$
\left.G_{\Gamma}=\langle V(\Gamma)|[u, v]=1 \text { if and only if } u \text { and } v \text { are adjacent in } \Gamma\right\rangle .
$$

We recall some standard terminology.
Definition 5.11 (Canonical Generators). The generators associated with the vertices of Γ are called canonical generators and, abusing the notation, we denote them with the same letter as the corresponding vertex.

Definition 5.12 (Standard subgroups). A subgroup of G_{Γ} is called a standard subgroup if it is the subgroup generated by a subset $V^{\prime} \subseteq V(\Gamma)$. If $\Gamma=\varnothing$, by convention we set G_{Γ} to be the trivial subgroup.

Abusing the notation, if $S \subseteq V(\Gamma)$, we denote by G_{S} the standard subgroup generated by the full subgraph generated by S. We begin by stating some properties of standard subgroups.

Lemma 5.13. Let G_{Γ} be a pro-C $R A A G$. Then:

1. G_{Γ} is the pro-C completion of the abstract $R A A G G(\Gamma)$;
2. the standard subgroup generated by a subset of vertices $V^{\prime} \subseteq V(\Gamma)$ is the pro-C $R A A G G_{\Delta}$ generated by the full subgraph $\Delta \subseteq \Gamma$ determined by V^{\prime};
3. the standard subgroups of G_{Γ} are retracts;
4. the intersection of standard subgroups is a (possibly trivial) standard subgroup.
Proof. For every group G, we denote by \widehat{G} its pro- \mathcal{C} completion.
5. Follows from the pro-C presentation (see Definition 5.10).
6. In the abstract case, the subgroup of $G(\Gamma)$ generated by V^{\prime} is exactly $G(\Delta)$, see for example Corollary 2.11 of [50]. As this subgroup is a retract of $G(\Gamma)$, the pro- \mathcal{C} topology of $G(\Gamma)$ induces on it the full pro- \mathcal{C} topology, so the pro- \mathcal{C} subgroup $\left\langle V^{\prime}\right\rangle \leq G_{\Gamma}$ is $\widehat{G(\Delta)}$, that by (1) coincides with G_{Δ}.
7. The map $\operatorname{pr}_{\Delta}: G_{\Gamma} \rightarrow G_{\Delta}$ whose restriction to G_{Δ} is the identity and such that $\operatorname{pr}_{\Delta}(v)=1$ for every $v \in V(\Gamma) \backslash V^{\prime}$ is surjective. Since by (2) G_{Δ} is a subgroup of G_{Γ}, we have that pr_{Δ} is a retraction onto G_{Δ}.
8. Consider two standard subgroups G_{Δ}, G_{Λ} of G_{Γ}. By (3), a non-trivial element g of G_{Γ} is in $G_{\Delta} \cap G_{\Lambda}$ if and only if $\operatorname{pr}_{\Delta}\left(\operatorname{pr}_{\Lambda}(g)\right)=g$, but this composition of maps corresponds exactly to $\operatorname{pr}_{\Delta \cap \Lambda}(g)$, and therefore $G_{\Delta} \cap G_{\Lambda}=$ $G_{\Delta \cap \Lambda}$.

It follows from the pro- \mathcal{C} version of Theorem 9.2.4 of [72] that, if H is a retract of two groups G_{1} and G_{2}, then a pro- $\mathcal{C} G_{1} \amalg_{H} G_{2}$ is a proper pro- \mathcal{C} amalgamated product. Similarly, it follows from Theorem 9.4.3 that pro-C HNN-extension $H N N\left(G_{1}, H, f\right)$ is proper if H is a retract of G_{1}. As standard subgroups of a RAAG are retracts, we deduce the following.

Corollary 5.14. Let G_{Γ} be a pro-C $R A A G$. If G_{Γ} is a pro-C amalgamated product $G_{1} \amalg_{H} G_{2}$ or a pro-C $H N N$ extension $H N N\left(G_{1}, H, f\right)$ with $G_{1}, G_{2}, H, f(H)$ standard subgroups of G_{Γ}, then the free product with amalgamation or HNN extension is proper.

We now want to define the notion of support of an element, but we first begin by proving that this concept is well-defined.

Lemma 5.15. Let G_{Γ} be a pro-C $R A A G$ and let $g \in G_{\Gamma}$. Then there exists a unique minimal standard subgroup containing g. Moreover there exists an element h in the conjugacy class of g whose corresponding minimal standard subgroup is contained in each standard subgroup containing conjugates of g.

Proof. The unique minimal standard subgroup containing g is the intersection of all the standard subgroups containing it, and this intersection is still a standard subgroup by Lemma 5.13. Suppose now that Δ_{1}, Δ_{2} are full subgroups of Γ such that $g \in G_{\Delta_{1}}$ and $g^{t} \in G_{\Delta_{2}}$ for $t \in G_{\Gamma}$. We claim that there exists $s \in G_{\Gamma}$ such that $g^{s} \in G_{\Delta_{1} \cap \Delta_{2}}$. Indeed let $\operatorname{pr}_{\Delta_{1}}$ be the retraction of G_{Γ} to $G_{\Delta_{1}}$ and define $s=\operatorname{pr}_{\Delta_{1}}(t)$. Then $g^{s}=\operatorname{pr}_{\Delta_{1}}\left(g^{t}\right) \in G_{\Delta_{1} \cap \Delta_{2}}$. In order to prove the lemma it suffices to apply this observation to the lattice of full subgraphs of Γ containing a conjugate of g. Notice that if $g=1$ we have that $g \in G_{\varnothing}$ and by convention, the standard subgroup generated by the empty set is the trivial group.

Definition 5.16 (Support of an element). Let g be an element of a (pro-C) RAAG G_{Γ}. The support $\alpha(g)$ of g is the set of canonical generators of the unique minimal standard subgroup of G_{Γ} containing g.

In view of Lemma 5.15, in any conjugacy class there exists an element g such that $\alpha(g) \subseteq \alpha\left(g^{t}\right)$ for every $t \in G$, in this case we say that g^{t} is an element of minimal support among its conjugates.

Definition 5.17 (Links and stars). Let g be an element of a (pro-C) RAAG G_{Γ}. The link $\operatorname{Link}(g)$ of g is the set of vertices of $\Gamma \backslash \alpha(g)$ that are adjacent to each of the vertices in $\alpha(g)$.
If v is a canonical generator, we denote by $\operatorname{Star}(v)$ the full subgraph generated by $\operatorname{Link}(v) \cup v$.

Remark 5.18. If $v \in V(\Gamma)$, we can split G_{Γ} as a pro-C HNN extension as

$$
\begin{equation*}
G_{\Gamma}=H N N\left(G_{\Gamma \backslash\{v\}}, G_{\operatorname{Link}(v)}, i d\right) \tag{5.2}
\end{equation*}
$$

with stable letter v, and by Corollary 5.14 this is a proper pro-C HNN extension. It follows that if g is an element with minimal support among its conjugates and $v \in \alpha(g)$, then Theorem 5.8 guarantees that its action on the standard pro- \mathcal{C} tree T associated with this splitting is hyperbolic.

Abstract right-angled Artin groups are torsion-free, but the pro-C completion of torsion-free groups is not always torsion-free (even the profinite completion as shown in [54], [19]). However, in the case of pro-C RAAGs this is true.

Theorem 5.19. Pro-C RAAGs are torsion-free profinite groups.
Proof. A pro-C RAAG is the pro-C completion of the corresponding (abstract) RAAG. In [30], the authors proved that abstract RAAGs are residually (finitely generated torsion-free nilpotent), and hence the pro-C completion of a RAAG embeds in a direct product of the pro- \mathcal{C} completions of finitely generated torsionfree nilpotent groups. By Theorem 4.7.10 of [72] the profinite completion \widehat{N} of a finitely generated torsion-free nilpotent group N is torsion-free. But $\widehat{N}=\prod_{p} \widehat{N}_{p}$ is the direct product of the pro- p completions and the pro- \mathcal{C} completion of N is the direct product $\prod_{p \in \pi(\mathcal{C})} N_{p}$. Hence the pro- \mathcal{C} completion of N is torsion-free.

5.3 Direct product decomposition of pro-C RAAGs

Our goal is to show that the direct product decomposition of a pro-C RAAG is determined by the defining graph. More precisely $G_{\Gamma} \simeq A_{1} \times A_{2}$, where A_{1} and A_{2} are non-trivial pro-C groups, if and only if Γ is a join, see Theorem 5.22.

Lemma 5.20. Let G_{Γ} be a pro-C $R A A G$ and let $g \in G_{\Gamma}$ be an element with minimal support among its conjugates. Then, the centraliser of g is contained in the standard subgroup generated by $\operatorname{Link}(g) \cup \alpha(g)$. In particular, if $g=v$ is a standard generator, then $C_{G}(v)=G_{\operatorname{Star}(v)}=\langle v\rangle \times G_{\operatorname{Link}(v)}$.

Proof. Suppose towards contradiction that there is an element h commuting with g whose support is not contained in $\operatorname{Link}(g) \cup \alpha(g)$. Then there exists $v \in \alpha(h)$ such that $v \notin \operatorname{Link}(g) \cup \alpha(g)$. Denoting by $G_{0}=G_{\Gamma \backslash\{v\}}$ and by $A=G_{\operatorname{Link}(v)}$ and using Remark 5.18, we have that the group G_{Γ} splits as a proper HNN extension of the form

$$
G_{\Gamma}=H N N\left(G_{0}, A, i d\right)
$$

where the action by conjugation of v on A is trivial. Notice that from the assumption on h, we have that $h \notin G_{0}$. We next study the action of g and h on the standard pro-C tree T associated with this splitting.

Notice that $g \in G_{0}$ and so g is elliptic. However, g cannot belong to any edge stabiliser. Indeed, otherwise, there would exist an element $t \in G_{\Gamma}$ such that $g^{t} \in A$ and in this case, since g has by assumption minimal support, it would follow from Lemma 5.15 that $\alpha(g) \subseteq \alpha\left(g^{t}\right) \subseteq \operatorname{Link}(v)$ and so $v \in \operatorname{Link}(g)$ contradicting the choice of v. Since g cannot be in any edge stabiliser, we conclude that g only fixes the vertex v stabilised by G_{0}, i.e. $T_{g}=\{v\}$. From Lemma 5.5 (1), h has to leave $T_{g}=\{v\}$ invariant and, in particular, h fixes v. Then h belongs to G_{0}, a contradiction.

Lemma 5.21. Suppose a pro-C $R A A G G=G_{\Gamma}$ decomposes as a direct product $G_{\Gamma}=A_{1} \times A_{2}$ of non-trivial groups. Then for each canonical generator $v \in \Gamma$, at least one factor A_{i} is contained in $G_{\operatorname{Star}(v)}$.
Proof. Let v be a canonical generator. Since $\alpha(v)=\{v\}$, by Lemma 5.20 we have that $C_{G}(v)=G_{\operatorname{Star}(v)}=\langle v\rangle \times G_{\operatorname{Link}(v)}$.

Suppose that $v=a_{1} \cdot a_{2}$ where $a_{i} \in A_{i}, i=1,2$. Since $C_{G}(v)=C_{A_{1}}\left(a_{1}\right) \times C_{A_{2}}\left(a_{2}\right)$ and $a_{i} \in C_{A_{i}}(v)$, from the description of the centraliser $C_{G}(v)$, we deduce that $a_{i}=v^{e_{i}} a_{i}^{\prime}$ for $e_{i} \in \mathbb{Z}_{\pi(\mathcal{C})}$ and $a_{i}^{\prime} \in G_{\operatorname{Link}(v)}$. Since $v=a_{1} \cdot a_{2}$, we have that $e_{i} \neq 0$ for either $i=1$ or $i=2$; without loss of generality assume $e_{1} \neq 0$. Let t be an element such that $t^{-1} a_{1} t$ has minimal support among its conjugates, we can assume $t \in A_{1}$ because $A_{2} \subseteq C_{G}\left(a_{1}\right)$. Applying Lemma 5.20 we have

$$
t A_{2} t^{-1}=A_{2} \subseteq C_{G}\left(a_{1}\right)=t C_{G}\left(t^{-1} a_{1} t\right) t^{-1} \subseteq t\left(G_{\alpha\left(t^{-1} a_{1} t\right)} \times G_{\operatorname{Link}\left(t^{-1} a_{1} t\right)}\right) t^{-1}
$$

Notice that by Lemma $5.15 \alpha\left(t^{-1} a_{1} t\right) \subseteq \alpha\left(a_{1}\right) \subseteq \operatorname{Star}(v)$ and, since $v \in \alpha\left(t^{-1} a_{1} t\right)$, the definition of link implies that $\operatorname{Link}\left(t^{-1} a_{1} t\right) \subseteq \operatorname{Star}(v)$. Overall, we conclude that $A_{2} \subseteq G_{\operatorname{Star}(v)}$.

We are now ready to fully characterize when a pro-C RAAG splits as a direct product. We recall that a graph is a join if and only if there is a non-empty subgraph $\Delta \lesseqgtr \Gamma$ such that for each $v \in \Delta$ and each $w \in \Gamma \backslash \Delta, v, w$ are adjacent.

Theorem 5.22. Let G_{Γ} be a pro-C $R A A G$. Then G_{Γ} has a non-trivial direct product decomposition if and only if Γ is a join. In particular, each factor in a direct product decomposition of G_{Γ} is a standard subgroup.

Proof. The analogous result for abstract RAAGs is classical (see for example Corollary 2.15 in [50]). From the abstract result and Lemma 5.13, it is straightforward that whenever Γ is a join, then G_{Γ} splits as a direct product.

We now want to prove the converse implication. By Lemma 5.21 for each canonical generator v, at least one among A_{1} or A_{2} is contained in $G_{\operatorname{Star}(v)}$.

Let $\Gamma_{1} \subseteq V(\Gamma)$ be the set of canonical generators v such that $A_{1}<\operatorname{Star}(v)$ and $\Gamma_{2}=\Gamma \backslash \Gamma_{1}$. Then, for each canonical generator $v \in \Gamma_{2}$, since by definition of Γ_{2} we have that $A_{1} \nless \operatorname{Star}(v)$, by Lemma 5.21 again we conclude that $A_{2} \leq G_{\operatorname{Star}(v)}$.

For $i=1,2$ define $\Delta_{i} \subseteq \Gamma$ such that $G_{\Delta_{i}}=\bigcap_{v \in \Gamma_{i}} G_{\operatorname{Star}(v)}$; by Lemma 5.13 $G_{\Delta_{i}}$ is a standard subgroup and by definition it contains A_{i} and each $v \in \Gamma_{i}$ is connected to each $w \in \Delta_{i}$. In particular Δ_{i} are non-empty graphs. Notice that if there is a canonical generator $w \in \Delta_{1} \cap \Delta_{2}$, then w is by definition in the star of each vertex in Γ_{i} and so $\Gamma_{1}, \Gamma_{2}<\operatorname{Star}(w)$. Hence such a canonical generator $w \in \Delta_{1} \cap \Delta_{2}$ would be central and Γ would decompose as a join. For this reason we can assume that $G_{\Delta_{1}}$ and $G_{\Delta_{2}}$ are disjoint and since A_{1} and A_{2} generate G, so do $G_{\Delta_{1}}$ and $G_{\Delta_{2}}$.

Hence, we can decompose $V(\Gamma)$ as the disjoint union of the (possibly empty) sets $\Gamma_{2} \cap \Delta_{1}, \Gamma_{1} \cap \Delta_{2}$ and $\Lambda=\left(\Gamma_{1} \cap \Delta_{1}\right) \cup\left(\Gamma_{2} \cap \Delta_{2}\right)$.

Since Δ_{i} is non-empty for $i=1,2$, then either $\Lambda \neq \emptyset$ or $\Gamma_{2} \cap \Delta_{1}$ and $\Gamma_{1} \cap \Delta_{2}$ are non-empty. If at least two of the sets are non-empty, then they define a join, because each vertex in a set is connected to each vertex in the other set, because each element in Γ_{i} is connected to each element in Δ_{i} for $i=1,2$.

We are left to consider the case when only Λ is non-empty, so that $\Lambda=V(\Gamma)$. In this case, each vertex in Γ_{i} is in Δ_{i} too and in particular they are connected to each other. It follows that $\Gamma_{i} \cap \Delta_{i}=\Gamma_{i}=\Delta_{i}$ is a complete graph for $i=1,2$. Since $A_{i} \leq G_{\Delta_{i}}$ and $G_{\Delta_{i}}$ is abelian, so is A_{i}. Hence $G=A_{1} \times A_{2}$ is abelian and Γ is a complete graph and a join.

These results are in line with other properties of pro-C RAAGs that can be recognized from the abstract graph. For example, abstract RAAGs split as a
free product if and only if the underlying graph is disconnected, and Wilkes and Kropholler proved that the same is true for profinite RAAGs in [51]. Similarly, both abstract and pro- p RAAGs are coherent if and only if the underlying graph is chordal, see [76].

5.4 Centralisers and normalisers of elements

In this section, we describe explicitly the structure of centralisers of elements in pro-C RAAGs, obtaining a description similar to the one that Baudisch proved for abstract RAAGs in [12]. In a free pro-p group, centralisers of elements are cyclic. However, in the pro- \mathcal{C} case, the situation is substantially different as the centraliser of an element does not need to be cyclic. Indeed, for example, the projective group $\mathbb{Z}_{3} \rtimes \mathbb{Z}_{2}$, with the generator of \mathbb{Z}_{2}, say a, acting on \mathbb{Z}_{3} by inversion, embeds in a free profinite group, so the centraliser of a^{2} contains this solvable projective group.

Theorem 5.23. Let $G=G_{\Gamma}$ be a pro-C $R A A G$ and let $g_{0} \in G$. Then there is an element g in the conjugacy class of g_{0} such that its centraliser is of the form

$$
C_{G}(g)=H_{1} \times \cdots \times H_{s} \times \overline{\langle\operatorname{Link}(g)\rangle}
$$

where:

1. $\alpha\left(H_{i}\right), \alpha\left(H_{j}\right), \operatorname{Link}(g)$ are all disjoint for $i \neq j$;
2. $G_{\alpha(g)}=G_{\alpha\left(H_{1}\right)} \times \cdots \times G_{\alpha\left(H_{s}\right)}$;
3. H_{i} are projective pro-C groups;
4. if G is pro-p, $H_{i}=\overline{\left\langle h_{i}\right\rangle}$ and $g=h_{1}^{k_{1}} \cdots h_{s}^{k_{s}}$, for some $k_{i} \in \mathbb{Z}_{p}$.

Proof. We begin the proof with some reductions.
If g is trivial, then $V(\Gamma)=\operatorname{Link}(g)$ and the result holds trivially, so we further assume $g \neq 1$.

Among the conjugates of g_{0}, we choose an element g of minimal support among its conjugates, so that by Lemma $5.20 C_{G}(g)$ is contained in the standard subgroup generated by $\operatorname{Link}(g) \cup \alpha(g)$. Hence, we can assume that $V(\Gamma)=\operatorname{Link}(g) \cup \alpha(g)$. In this case, we have from Theorem 5.22 that $G=G_{\alpha(g)} \times G_{\operatorname{Link}(g)}$. Clearly $G_{\text {Link }(g)} \leq C_{G}(g)$, so it suffices studying the centraliser in the standard subgroup $G_{\alpha(g)}$ and then

$$
C_{G}(g)=C_{G_{\alpha(g)}}(g) \times G_{\operatorname{Link}(g)} .
$$

We further assume that $\alpha(g)=V(\Gamma)$. If G is decomposable as a direct product $G_{\Gamma}=G_{1} \times \cdots \times G_{s}$, then $g=g_{1} \times \cdots \times g_{s}$ for $g_{i} \in G_{i}, i \in\{1, \ldots, s\}$, and the
centraliser $C_{G}(g)$ decomposes as $C_{G}(g)=C_{G_{1}}\left(g_{1}\right) \times \cdots \times C_{G_{s}}\left(g_{s}\right)$. Moreover, by Theorem 5.22, each G_{i} is a standard subgroup. As g was chosen to be an element of minimal support among its conjugates, every g_{i} has also minimal support among its conjugates, so we have reduced the problem to studying centralisers when $G=G_{\alpha(g)}$ is directly indecomposable.

Our goal is to show that if $G=G_{\alpha(g)}$ is directly indecomposable, then $C_{G}(g)$ is a projective group. Fix any vertex v of Γ and denote by $G_{0}=G_{\Gamma \backslash\{v\}}$ and by $A=G_{\operatorname{Link}(v)}$. Consider the decomposition as an HNN extension

$$
G=H N N\left(G_{0}, A, i d\right)
$$

as described in Remark 5.18, the action of g on the standard pro- \mathcal{C} tree T associated with this splitting is hyperbolic.
We first claim that no nontrivial element $h \in C_{G}(g)$ is contained in a conjugate of A. Indeed, take any element $h \in C_{G}(g)$ and assume that $t \in G$ is an element such that h^{t} has minimal support among the G-conjugates of h, so that by Lemma 5.15 we have $\alpha\left(h^{t}\right) \subseteq \Gamma \backslash\{v\}$. Then $h^{t} \in C_{G}\left(g^{t}\right)$ and by Lemma 5.20 we have $\alpha\left(g^{t}\right) \subseteq \alpha\left(h^{t}\right) \times \operatorname{Link}\left(h^{t}\right)$. By Lemma 5.15, $V(\Gamma)=\alpha(g) \subseteq \alpha\left(g^{t}\right)$, but then $G=G_{\alpha\left(h^{t}\right)} \times G_{\operatorname{Link}\left(h^{t}\right)}$. As G is directly indecomposable and $\alpha\left(h^{t}\right)$ is a proper subset of $V(G), h$ must be trivial.

Let T_{g} be the minimal g-invariant subtree of g. From the preceding paragraph we deduce that $C_{G}(g)$ acts faithfully on T_{g} and so by Lemma 4.2 .6 of [70] it is projective. In particular, if G is a pro- p group, then $C_{G}(g)$ must be isomorphic to \mathbb{Z}_{p}.

Our next goal is to prove that centralisers of elements are virtual retracts in pro- p groups.

Lemma 5.24. Let G be a pro-p group acting without fixed points on a pro-p tree T. Assume that H is a procyclic subgroup, generated by a hyperbolic element g. Then H is a virtual retract of G.

Proof. For each subgroup K of G, define

$$
\widetilde{K}=\overline{\left\langle K \cap G_{t} \mid t \in V(T)\right\rangle}
$$

to be the subgroup generated by the intersections of K with all vertex stabilisers. Notice that $\widetilde{H}=1$ since H is procyclic generated by a hyperbolic element. As H is closed, it is the intersection of all open subgroups $\left\{U_{i}, i \in I\right\}$ containing it and then also $\bigcap_{i \in I} \widetilde{U}_{i}=\widetilde{H}=1$. This implies that there must be an open $U \unlhd_{o} G$
such that $g \notin \widetilde{U}$. But U / \widetilde{U} is a free pro-p group by Corollary 3.6 of [71] hence by the profinite version of Marshall Hall Theorem (see Theorem 9.1.19 of [72]) the procyclic subgroup $H \widetilde{U} / \widetilde{U}$ of U / \widetilde{U} is a free factor of a finite index subgroup of U / \widetilde{U}. As $H \cap \widetilde{U}$ is trivial, we can lift the retracts to U and we have that $H \cong H \widetilde{U} / \widetilde{U}$ is a virtual retract of U / \widetilde{U}, hence a virtual retract of G too.

Theorem 5.25. Let $G=G_{\Gamma}$ be a pro-p $R A A G$ and let H be the centraliser of an element h. Then H is a virtual retract of G.

Proof. We can assume that h has minimal support among its conjugates. By Theorem 5.23, H is contained in the standard subgroup generated by $\alpha(h) \cup$ $\operatorname{Link}(h)$, which is a retract of G. As a virtual retract of a standard subgroup of G can be lifted to a virtual retract of G, we restrict to the case that $V(\Gamma)=$ $\alpha(h) \cup \operatorname{Link}(h)$. Suppose then that $G=G_{1} \times \cdots \times G_{k} \times G_{\operatorname{Link}(h)}$ is the direct product decomposition of the standard subgroup G. By Theorem 5.23, $H=H_{1} \times$ $\cdots \times H_{k} \times G_{\text {Link }(h)}$, where H_{i} is a procyclic subgroup of G_{i} for every $i \in\{1, \ldots, k\}$. By Lemma 5.24 and Remark 5.18, every H_{i} is a virtual retract of G_{i}, hence the direct product of all of them is a virtual retract of G and the result follows.

5.5 Subgroups of pro-C and pro- p RAAGs

We now aim to describe the structure of some subgroups of pro-C and pro-p RAAGs. We recall that a subgroup $H \leq G$ is isolated (or isolated in G) if whenever $g^{k} \in H$ for a certain $g \in G k \in \mathbb{Z}_{\mathcal{C}}$, then $g \in H$.

Lemma 5.26. Standard subgroups of pro-C $R A A G s$ are isolated.
Proof. Let $G=G_{\Gamma}$. The theorem is equivalent to the statement that for every $g \in G$ and $k \in \mathbb{Z}_{\mathcal{C}}, \alpha(g)=\alpha\left(g^{k}\right)$. Suppose this is not true, so that there exists a vertex $v \in \alpha(g) \backslash \alpha\left(g^{k}\right)$. Then, consider the pro-C tree T associated to the splitting (5.2) and notice that $g^{k} \in G_{\Gamma \backslash\{v\}}$ stabilizes the vertex t of T, which is stabilized by the standard subgroup $G_{\Gamma \backslash\{v\}}$. Suppose first that g acts hyperbolically on T. By Theorem 5.8, there exists a subgroup $H_{e} \unlhd\langle g\rangle$ stabilizing an edge such that $\langle g\rangle \cong H_{e} \rtimes \mathbb{Z}_{\mathcal{C}}$. As g acts hyperbolically, the whole $\langle g\rangle$ is not contained in the edge group, contradicting that g^{k} acts elliptically.

Suppose then that both g and g^{k} act elliptically. In this case, we can argue by induction on the number of generators of G_{Γ} and suppose that standard subgroups of pro-C RAAGs with at most $|V(\Gamma)|-1$ generators are isolated. By induction, and using that isolation is invariant by conjugation, in the pro- \mathcal{C} tree T associated
to the splitting in (5.2), edge stabilizers are isolated in adjacent vertex stabilizers. Denote by f the projection onto the standard subgroup $G_{\Gamma \backslash\{v\}}$, and set $x=f(g)$.

Notice that the set of edges of a standard pro-C tree associated to a splitting is compact by construction, and therefore for any vertex of any of its pro- \mathcal{C} subtrees containing at least an edge, there always exists an edge of the subtree adjacent to it. As now $x^{k}=g^{k}$ fixes both the vertex fixed by g and the vertex t stabilized by $G_{\Gamma \backslash\{v\}}$, there exists a stabilizer of an edge adjacent to t that contains x^{k}. By inductive hypothesis on isolation, such edge contains x too. In particular, this edge is conjugated to the one stabilized by $G_{\operatorname{Link}(v)}$. By applying the conjugation map that fixes t and sends the vertex stabilized by x onto the vertex stabilized by $G_{\text {Link }(v)}$, we obtain an element g^{\prime}, conjugated to g, fixing a vertex different from t, but such that $g^{\prime k}$ fixes t. Then, $f\left(g^{\prime}\right)=y$ is contained in $G_{\operatorname{Link}(v)}$ and $y^{k}=g^{\prime k}$.

Denoting by $\left\langle\langle v\rangle\right.$ the normal closure of v in G_{Γ}, we have that $g^{\prime} \in\langle y\rangle\langle v\rangle$, as standard subgroups are retracts. By Theorem B of [85], using that $\langle v\rangle$ does not intersect any conjugate of $G_{\operatorname{Link}(v)}$, we obtain that $\left.\langle v\rangle\right\rangle$ is a free pro- \mathcal{C} group $F\left(v^{S}\right)$, with basis v^{S}, where S is the image of a continuous section $\sigma:\left(G_{\Gamma \backslash\{v\}} / G_{\operatorname{Link}(v)}\right) \rightarrow$ $G_{\Gamma \backslash\{v\}}$. The element y acts on the set v^{S} by permuting the sections of S and, letting $R=\sigma\left(C_{G}(y) / G_{\operatorname{Link}(v)}\right)$, y fixes v^{r} for all $r \in R$.

Let $S^{*}=(S /\langle y\rangle) \backslash R$ be the quotient of all sections of S modulo the conjugating action of y, excluding the ones of R. We claim that $\langle x\rangle$ acts freely on $F\left(v^{S^{*}}\right)$. As the action on the set $\left\{v^{S}\right\}$ is by permutation, we only have to check that if there is a non-trivial $\bar{y} \in\langle y\rangle$ such that, for a certain $s \in S$ we have $v^{s \cdot \bar{y}}=v^{s}$, then $s \in R$. Indeed, this means that $s \bar{y} s^{-1} \in G_{\operatorname{Link}(v)}$. Now, if f_{v} is the projection onto $G_{\operatorname{Link}(v)}$, we have that $y^{s}=y^{s^{-1} f_{v}(s)}$, or analogously that $s^{-1} f_{v}(s) \in C_{G}(y)$. This implies that $s \in C_{G}(y) f_{v}(s) \subseteq C_{G}(y) G_{\operatorname{Link}(v)}$, and therefore $s \in R$.

Overall, we have proved that that

$$
\langle y\rangle\langle v\rangle=\langle y\rangle F\left(v^{S}\right)=\left(\langle y\rangle \times F\left(v^{R}\right)\right) \coprod F\left(v^{S^{*}}\right)
$$

Now g^{\prime} centralizes $g^{p}=y^{p}$ and y^{p} clearly lies in the factor $\langle y\rangle \times F\left(v^{R}\right)$ of the free product. By Theorem B of [41], the element g must lie in $\langle y\rangle \times F\left(v^{R}\right)$ too. Let $c \in F\left(v^{R}\right)$ be such that $g^{\prime}=y^{\ell} \cdot c$, then $y^{k}=g^{k}=y^{k \ell} \cdot c^{k}$. Using that G is torsion-free by Proposition 5.19, $c=1$ and $\ell=1$. This would imply that $g^{\prime}=y$ and that g^{\prime} fixes the vertex t of the tree T, and this is a contradiction.

The next result proves that the only subgroups of a pro- \mathcal{C} RAAGs that do not contain free pro- p subgroups are metabelian. This can be seen as an analogous of Tits alternative for pro-C RAAGs.

Theorem 5.27. Let H be a subgroup of a pro-C $R A A G G_{\Gamma}$ that does not contain a free non-abelian pro-q subgroup for any prime q. Then H is metabelian and polycyclic. Moreover, if H is pro-p, then H is abelian.

Proof. We use induction on the number of vertices of Γ. If Γ consists of a single vertex, then any subgroup of G_{Γ} is pro- \mathcal{C} cyclic and the result follows. As we observed in Remark 5.18, $G_{\Gamma}=\operatorname{HNN}\left(G_{\Gamma \backslash\{v\}}, G_{\operatorname{Link}(v)}, i d\right)$ for an arbitrarily chosen vertex v. If H is conjugate to a subgroup of $G_{\Gamma \backslash\{v\}}$ then we deduce the result from the induction hypothesis. Otherwise, by Theorem 5.8 there exists a normal subgroup $H_{0} \unlhd H$ contained in some conjugate of $\operatorname{Link}(v)$ such that H / H_{0} is metacyclic. Lemma 5.26 guarantees that $G_{\operatorname{Link}(v)}$ is an isolated subgroup of G_{Γ} and so H_{0} is isolated in H. It follows that the only possibility for H / H_{0} in Theorem 5.8 is the projective group $\mathbb{Z}_{\sigma} \rtimes \mathbb{Z}_{\rho}$, so that $H=H_{0} \rtimes P$, with $P \cong \mathbb{Z}_{\sigma} \rtimes \mathbb{Z}_{\rho}$ and we may assume without loss of generality that $[P, P] \cong \mathbb{Z}_{\sigma}$.

Consider the projection $f: G_{\Gamma} \longrightarrow G_{\Gamma \backslash\{v\}}$ and let K be the kernel of f. The image $f([H, H])$ is abelian and finitely generated by the induction hypothesis. Since $K \cap H$ and H_{0} are normal in H and do not intersect, as $H_{0} \subseteq G_{\operatorname{Link}(v)}$, we have that $(K \cap H) H_{0}=(K \cap H) \times H_{0}$. Then the commutator subgroup $[H, H]=\left[H_{0}, H_{0}\right]\left[H_{0}, P\right][P, P]$, and $\left[H_{0}, H_{0}\right]\left[H_{0}, P\right]$ is abelian and polycyclic because it is in the image of $f([H, H])$. Thus we just need to show that $[P, P]$ centralizes $\left[H_{0}, H_{0}\right]\left[H_{0}, P\right]$. To see this observe that $f([P, P])$ is torsion-free and so $[P, P] \cong(K \cap[P, P]) \times f([P, P])$. Now K centralizes H_{0} and $f([P, P])$ centralizes $f\left(\left[H_{0}, H_{0}\right]\left[H_{0}, P\right]\right)=\left[H_{0}, H_{0}\right]\left[H_{0}, P\right]$ by inductive hypothesis, so we deduce that $[H, H]$ is abelian.

Suppose now H is pro- p. Then $P \cong \mathbb{Z}_{p}$. But the action of P on H_{0} is the same as the action of $f(P)$ on H_{0} which is trivial since $f(H)$ is abelian by the inductive hypothesis. Therefore $H=H_{0} \times P$ is abelian.

The next result describes two-generated subgroups of pro- p RAAGs. The pro\mathcal{C} case is necessarily more complicate, as metabelian pro- \mathcal{C} groups could appear, as we already discussed, but also pro-C groups of the form $\left(\mathbb{Z}_{\sigma_{1}} \amalg \mathbb{Z}_{\tau_{1}}\right) \times \cdots \times$ $\left(\mathbb{Z}_{\sigma_{\ell}} \amalg \mathbb{Z}_{\tau_{\ell}}\right)$ for $\sigma_{i}, \tau_{i} \subseteq \pi(\mathcal{C})$, with σ_{i} pairwise disjoint and τ_{i} pairwise disjoint.

Theorem 5.28. Let H be a two-generated subgroup of a pro-p $R A A G G_{\Gamma}$. Then H is either free pro-p or free abelian.

Proof. We use induction on the number of vertices of Γ. If Γ is a vertex, then G_{Γ} is abelian and so is each subgroup so the statement holds. As we noticed in Remark 5.18, chosen an arbitrary vertex v, we can obtain a decomposition $G_{\Gamma}=\operatorname{HNN}\left(G_{\Gamma \backslash\{v\}}, G_{\operatorname{Link}(v)}, i d\right)$. If H is conjugate to a subgroup of $G_{\Gamma \backslash\{v\}}$
then we deduce the result from the induction hypothesis. Otherwise, H acts non-trivially on the standard pro-p tree associated with HNN extension $G_{\Gamma}=$ $H N N\left(G_{\Gamma \backslash\{v\}}, G_{\operatorname{Link}(v)}, i d\right)$. Considering the projection $f: G_{\Gamma} \longrightarrow G_{\Gamma \backslash\{v\}}$, by induction hypothesis we can deduce that $f(H)$ is either free or abelian. If $f(H)$ is free, then we are done because by the Hopfian property (see Proposition 2.5.2 of [72]) the projection must be an isomorphism.

Suppose suppose now that $f(H)$ is abelian. By the induction hypothesis, we can assume that every stabiliser of a vertex in H is abelian of rank at most two. By Lemmas 5.13 and 5.26, $G_{\operatorname{Link}(v)}$ is an isolated subgroup of G_{Γ} and so every edge stabiliser of H is isolated in the vertex stabiliser of its incident vertex. As the only isolated proper subgroups of an abelian pro- p group of rank two are procyclic, it follows that such are the edge stabilisers. Then by Theorem 6.8 of [20] H is the fundamental group of a finite graph of pro- p groups (\mathcal{H}, Δ) whose vertex and edge groups are isomorphic to vertex and edge stabilisers in H respectively. Assuming without loss of generality that this graph of groups is reduced, we deduce that isolation of edge groups in the incident vertex groups implies that either the edge groups have strictly smaller rank than the incident vertex groups, or they coincide (in the case when Δ contains loops).

As H is two generated and edge groups are isolated, Δ cannot have more than two vertices. For the same reason, if $|V(\Delta)|=2$, as the graph of groups is reduced, the edge group between the two vertices can only be trivial. Another remark is that the stable letter of each HNN extension corresponding to a loop must be one of the two generators of the group.

If at least an edge group is trivial, then H splits as a free pro- p product (see Proposition 2.16 of $[17 \|$) and so, being 2 -generated, it has to be a free pro- p product of torsion-free cyclic groups, hence it is free pro- p. We only have to analyse the case when no edge group is trivial.

If Δ has a single vertex, we have to analyse the case when there are zero, one, or two loops. If there are two loops, as each stable letter of an HNN extension must be one of the two generators, the vertex group must be trivial and H is a free pro- p group. In all of the other cases, the vertex group has either rank one or two.

Let us now consider the case when Δ has a vertex w with a single loop. We are left to consider the case when the vertex group has either rank one or 2.

Suppose the vertex group has rank one. Since we can assume the edge group not to be trivial, it has to be also abelian of rank 1 and since edge groups are retractions, it follows that the edge group coincides with the vertex group. Since pro-C RAAGs are torsion-free, it follows that H splits as an HNN extension
$H N N(\mathcal{H}(w), \mathcal{H}(w), i d)$, which is a free abelian pro- p group of rank two.
The last case to consider is when $\mathcal{H}(w)$ is free abelian of rank 2 . As the group is two-generated and one generator must be the stable letter t of the HNN extension, the only possibility is that $\mathcal{H}(w)=\left\langle x, x^{t}\right\rangle$ for some $x, t \in G, t$ power of the stable letter. Consider the retraction $f: G_{\Gamma} \rightarrow G_{\Gamma \backslash\{v\}}$. Since $\left\langle x, x^{t}\right\rangle$ is a free abelian group of rank 2, we have that $x=f(x), x^{f(t)}$ also generate an abelian group of rank 2 and so, in particular, $f(t) \in G_{\Gamma \backslash\{v\}}$ is nontrivial. Now, by induction hypothesis, the 2-generated subgroup $\langle x, f(t)\rangle<G_{\Gamma \backslash\{v\}}$ is either free or free abelian. The latter case implies that $x=x^{f(t)}$ contradicting the fact that $\left\langle x, x^{f(t)}\right\rangle$ is of rank 2. If x and $f(t)$ generate a free group, then $\left[x, x^{f}(t)\right] \neq 1$ contradicting that the fact that $\left\langle x, x^{f(t)}\right\rangle$ is abelian. This proves that this case cannot hold.

Since all the alternatives have been considered, the result follows.

6

Abelian splittings of RAAGs

In this section we will study how a pro- \mathcal{C} RAAG can split as an amalgamated product or HNN extension over an abelian subgroup.

In [35], Hull and Groves proved that an abstract RAAG splits over an abelian subgroup if and only if the underlying graph either has a separating complete graph or it is disconnected. This result extends a previous theorem of Clay [21], who proved it in the case of cyclic splittings. In the first section we prove that the same conditions are necessary and sufficient in order to have abelian splittings of pro-C RAAGs. We also point out that, if the underlying graph is connected, a conjugate of a standard subgroup is always contained in the abelian amalgamated subgroup.

Describing all the abelian splittings of a group is in general difficult as some of them are not compatible with each other. In any case, there is a construction, called the JSJ decomposition, that encodes all the "universal" splittings of a group over a chosen class of subgroups. In the second section we give a description of JSJ decompositions in profinite groups, which is obtained following the approach of Guirardel and Levitt in [37]. In particular, we can define \mathcal{A}-JSJ decompositions, meaning that we describe all splittings of a group when the amalgamated subgroups are in the class of groups \mathcal{A}, and then relative $(\mathcal{A}, \mathcal{H})$-JSJ decompositions, in the sense that every subgroup in the class \mathcal{H} is elliptic in the decomposition.

In the third section we obtain a $(\mathcal{A}, \mathcal{H})$-JSJ decomposition of pro- \mathcal{C} RAAGs
in the case that \mathcal{A} is the class of abelian groups and \mathcal{H} is the class of procyclic subgroups generated by a canonical generator. The proof is constructive, in the sense that it inheritely provides an algorithm to obtain the aforementioned decomposition.

In the last section we refine the relative decomposition in order to obtain a general \mathcal{A}-JSJ decomposition. We conclude with an explicit example showing the algorithm beneath the construction of these decompositions.

6.1 Abelian splittings of profinite RAAGs

The main goal of this section is to describe when and how a pro-C RAAGs splits over a pro-C abelian group. We begin with two auxiliary lemmas.

Lemma 6.1. Let $G=G_{\Gamma}$ be a pro-C $R A A G$ associated with a connected graph Γ. Suppose that G acts on a pro-C tree T without a global fixed point, and that all canonical generators are elliptic. Then there exist two canonical generators $v, w \in V(\Gamma)$ such that $(v, w) \notin E(\Gamma)$ and $\langle v, w\rangle$ does not stabilize any vertex of T.

Proof. Let T^{v} be the subtree of fixed points of a canonical generator v. If, by contradiction, $T^{v} \cap T^{w} \neq \varnothing$ for each couple of canonical generators $v, w \in V(\Gamma)$, by Lemma 5.3 there is a point contained in $\bigcap_{v \in V(\Gamma)} T^{v}$ fixed by all the generators and so fixed by G, contradicting the hypothesis. This implies that there are at least two vertices $v, w \in V(\Gamma)$ such that $\langle v, w\rangle$ does not stabilize any vertex of T. Notice that such vertices cannot be adjacent by Lemma 5.5 (2).

Lemma 6.2. Let G_{Γ} be a pro-C $R A A G$ over a connected graph Γ acting on a pro-C tree T with abelian edge stabilisers. Suppose that a canonical generator $v \in G_{\Gamma}$ is hyperbolic, then:

1. $\operatorname{Star}(v)$ is a complete graph;
2. either $V(\Gamma)=\operatorname{Star}(v)$ or the set

$$
S:=\{u \in \operatorname{Link}(v) \mid \operatorname{Star}(u) \text { is not a complete graph }\}
$$

separates $\operatorname{Star}(v) \backslash S$ and $\Gamma \backslash \operatorname{Star}(v)$;
3. the standard subgroup generated by S stabilizes an edge.

Proof. 1. If there exists a single vertex adjacent to v, then the result holds. Suppose then that there exist two distinct vertices $w_{1}, w_{2} \in \operatorname{Link}(v)$.
For each canonical generator w commuting with v we can restrict to the
minimal subtree $T_{\langle v, w\rangle}$ on which the abelian subgroup $\langle v, w\rangle$ acts. By Theorems 5.7 and 5.8 , the group $\langle v, w\rangle$ is a procyclic extension of the kernel of this action and since $\langle v, w\rangle$ is abelian of rank 2 , there exists an element $g=a b$ with $a \in\langle v\rangle \leq G$ and $b \in\langle w\rangle \leq G$ with $b \neq 1$ (as v is hyperbolic) in the kernel of the action, i.e. g fixes pointwise the minimal subtree $T_{\langle v, w\rangle}$. Pick now two elements $g_{i}=a_{i} b_{i}$ with $i \in\{1,2\}$ for $a_{1}, a_{2} \in \overline{\langle v\rangle}, b_{1} \in \overline{\left\langle w_{1}\right\rangle}$, $b_{2} \in \overline{\left\langle w_{2}\right\rangle}$ such that b_{1}, b_{2} are not trivial and such that g_{1}, g_{2} stabilize pointwise T_{v}. By hypothesis g_{1}, g_{2} are contained in the abelian stabilisers of the edges of T_{v}. Let $K=\left\langle g_{1}, g_{2}\right\rangle$ and let f be the retraction of G onto the standard subgroup generated by w_{1}, w_{2}. The image $f(K) \leq G_{\left\{w_{1}, w_{2}\right\}}$ is an abelian subgroup that contains b_{1} and b_{2}. The element b_{1} is in the centraliser of b_{2} and they are both with minimal support among their conjugates, so applying Lemma 5.20 this can happen only if $w_{1} \in \operatorname{Link}\left(b_{2}\right)=\operatorname{Link}\left(w_{2}\right)$, so w_{1}, w_{2} are adjacent and $\operatorname{Star}(v)$ is a complete graph.
2. Suppose $V(\Gamma) \neq \operatorname{Star}(v)$, as Γ is connected we have that

$$
S=\{u \in \operatorname{Link}(v) \mid \operatorname{Star}(u) \text { is not a complete graph }\}
$$

is non-empty. It is immediate to see that S separates the subgraphs generated by $\operatorname{Star}(v) \backslash S$ and $\Gamma \backslash \operatorname{Star}(v)$ because, as $\operatorname{Link}(v)$ is a complete graph by (1), each vertex in $\operatorname{Star}(v) \backslash S$ is connected only to vertices in $\operatorname{Star}(v)$.
3. By Lemma 5.5(1), each vertex of S fixes the subtree T_{v}, which contains at least an edge because v is hyperbolic. By (1), the action on T of any element of S is elliptic, and hence T_{v} is fixed pointwise by S.

We are now ready to prove the main theorem of this section.
Theorem 6.3. Let $G=G_{\Gamma}$ be a pro-C $R A A G$ associated with a connected graph Γ. Then G acts on a pro-C tree with abelian edge stabilisers without a global fixed point if and only if either Γ is a complete graph or Γ has a disconnecting complete graph.
In the second case, there exists a disconnecting complete graph whose standard subgroup is contained in one edge stabiliser of T.

Proof. The case when Γ is a complete graph is clear: indeed, denoting by $\pi=$ $\pi(\mathcal{C})$, the pro-C RAAG G_{Γ} is isomorphic to \mathbb{Z}_{π}^{n}, that splits as an HNN-extension
$H N N\left(\mathbb{Z}_{\pi}^{n-1}, \mathbb{Z}_{\pi}^{n-1}, i d\right)$. Similarly, if there is a complete graph K that disconnects Γ, i.e. $\Gamma \backslash K=\Gamma_{1} \cup \Gamma_{2}$ with Γ_{1}, Γ_{2} disjoint subgraphs, then G splits as

$$
G_{\Gamma}=G_{\Gamma_{1} \cup K} \amalg_{G_{K}} G_{\Gamma_{2} \cup K}
$$

and so G acts on the standard pro- \mathcal{C} tree associated with this splitting.
Suppose now that G acts on a pro- \mathcal{C} tree T with abelian edge stabilisers. If there exists a hyperbolic canonical generator v of G, by Lemma 6.2 we know that either Γ is complete or the set $S:=\{u \in \operatorname{Link}(v) \mid \operatorname{Star}(u)$ is not a complete graph $\}$ is a disconnecting complete graph contained in an edge stabiliser. We are left to the case when each canonical generator of G is elliptic.

By Lemma 6.1 there exist two vertices $v, w \in V(\Gamma)$ such that no vertex of T is stabilized by both v and w. As each canonical generator acts elliptically, let t_{v}, t_{w} be two vertices of T stabilized by v and w respectively. Let $S=\left[t_{v}, t_{w}\right]$ be the geodesic between these two vertices in T.
By Lemma 6.1 S contains at least one edge, and moreover there exists at least one edge of S that is not stabilised either by v or by w, as by collapsing the subtrees $S \cap T_{v}$ and $S \cap T_{w}$ to a point (noticing that we chose v, w such that $T_{v} \cap T_{w}=\varnothing$), we would otherwise have S to be disconnected.Define K as a maximal (by the number of vertices contained) complete subgraph of Γ contained in an edge group of S that is not stabilized by either v or w, say $e \in E(T)$. If K is empty, let e be any edge of S, not stabilized by v or w. It is important to notice that even if S might contain infinitely many edges satisfying the properties, Γ is finite hence K is well defined. We claim that K is a complete graph of Γ that disconnects the vertices v and w.
Suppose by contradiction that it is not, then we could find a finite path $p=$ $\left(v, u_{1}, \ldots, u_{k}, w\right)$ in Γ, such that no vertex of p is contained in K. By Lemma 5.9 there exist some vertices t_{1}, \ldots, t_{k+2} such that v stabilizes t_{1}, u_{i} stabilizes the geodesic $S_{i}=\left[t_{i}, t_{i+1}\right]$ for $i=1, \ldots, k$, and w stabilizes $\left[t_{k+1}, t_{k+2}\right]$. Set $t_{0}=t_{v}$ and $T_{k+3}=t_{w}$. In this setting, v stabilizes $S_{0}=\left[t_{0}, t_{1}\right]$ and w stabilizes $S_{k+1}=\left[t_{k+1}, t_{w}\right]$. Furthermore, the union $S^{\prime}=\bigcup_{i \in\{0, \ldots, k+1\}} S_{i}$ of the S_{i} is a pro- p tree that contains t_{v} and t_{w}, hence it contains the whole $\left[t_{v}, t_{w}\right]$. In particular, S^{\prime} contains e, so $e \in\left[t_{j}, t_{j+1}\right]$ for some $j \in\{0, \ldots, k+3\}$. By the choice of e, it cannot be stabilized by v or w, so there exists a vertex u_{j} such that $u_{j} \in G_{e}$. Now G_{e} is an abelian pro- \mathcal{C} subgroup of G that contains u_{j} and each vertex of K, but by Theorem 5.23 this is only possible if u_{j} is adjacent to every vertex of K. By maximality of $K, u_{j} \in K$, but this contradicts the fact that no element of the path p is contained in K. If we assumed K to be empty, we have anyway proved that there is a vertex u_{j} contained in an edge stabiliser of T contradicting that
$K=\varnothing$.
This proves that the graph K is a disconnecting complete graph contained in an edge stabiliser, as required.

6.2 JSJ DECOMPOSITIONS

Prerequisites

In the previous section, we have characterised when a pro-C RAAGs admits a splitting over an abelian subgroup. Our next goal is to describe all the splittings of these groups over abelian subgroups. In the abstract case, the abelian splittings of a finitely generated group are encoded in a construction called the JSJ decomposition of a group. We develop this theory following the approach of Guirardel and Levitt in [37]. We show that it can be naturally extended to the pro-C world; for additional results and alternative definitions on the theory of JSJ decompositions see the references in [37].

Definition 6.4 (\mathcal{A}-trees). For each class of pro-C groups \mathcal{A} closed for subgroups and conjugation, we define an \mathcal{A}-tree (T, G) as a pro- \mathcal{C} tree T with an action of a pro- \mathcal{C} group G such that each edge stabiliser is a group in the class \mathcal{A}.

We often denote the \mathcal{A}-tree as T rather than (T, G) whenever the pro- \mathcal{C} group G acting on it is clear by the context and we will say that an \mathcal{A}-tree (T, G) is trivial if T consists of a single vertex stabilized by the whole G.

We say that a subgroup H of a pro- \mathcal{C} group G is universally elliptic (for actions over \mathcal{A}-trees) if the action of H is elliptic over any \mathcal{A}-tree (T, G) on which G acts.

Definition 6.5 (JSJ decompositions).

- An \mathcal{A}-tree (T, G) is universally elliptic if its edge stabilisers $G_{e} \leq G$ are universally elliptic for actions on \mathcal{A}-trees.
- An \mathcal{A}-tree (T, G) dominates another \mathcal{A}-tree $\left(T^{\prime}, G\right)$ if the same group G acts on both of them and the action of vertex stabilisers $G_{v}, v \in T$ is elliptic on T^{\prime} too.
- Two \mathcal{A}-trees (T, G) and $\left(T^{\prime}, G\right)$ are equivalent if the same pro- \mathcal{C} group G acts on both of them and they dominate each other. An equivalence class of \mathcal{A}-trees for this relation is said to be a deformation space.
- The deformation space of the \mathcal{A}-trees that are universally elliptic and that dominate any other universally elliptic \mathcal{A}-tree on which G acts is the $J S J$ deformation space and its elements are called the JSJ tree decompositions.

Notice that the deformation space is unique, but there might be many nonisomorphic tree decompositions of a pro- \mathcal{C} group G.

Definition 6.6 (Rigid and flexible vertices). A vertex v of a JSJ-tree is said to be rigid if it is universally elliptic for the action on any \mathcal{A}-tree (even if the tree is not universally elliptic) and flexible otherwise.

Notice that if all vertex groups of an \mathcal{A}-tree are rigid, then the \mathcal{A}-tree is a JSJ tree, but the converse is not true, as the following example shows.

Example 6.7. If $G \cong \mathbb{Z}_{\rho}^{n}$ for $n \geq 2, \rho$ an arbitrary set of primes, the abelian JSJ decomposition is trivial.
We claim that for each element $g \in G$ we can produce an \mathcal{A}-tree (T, G) such that the action of g on T is hyperbolic. Consider a maximal procyclic subgroup C containing $g \in G$. Any generator of a maximal procyclic group can be part of a basis of \mathbb{Z}_{ρ}^{n}, so we can pick a complement $B \cong \mathbb{Z}_{\rho}^{n-1}$ of C in G and write $G=\operatorname{HNN}(B, B, i d)$ with a generator of C as the stable letter. The standard pro-C tree associated with this pro-C HNN extension is a vertex with a single loop and g is hyperbolic by construction. This proves that no edge group can be universally elliptic, hence there exists a single universally elliptic \mathcal{A}-tree (T, G) on which G acts, which is a tree T with a single point. This is the JSJ decomposition of G, which has a single flexible vertex.

Sometimes is convenient to study relative JSJ decompositions, which are defined as follows.

Definition 6.8 (Relative JSJ Decompositions). Let \mathcal{H} be an arbitrary family of subgroups of a pro- \mathcal{C} group G. An \mathcal{A}-tree (T, G) is an $(\mathcal{A}, \mathcal{H})$-tree if all the subgroups in the class \mathcal{H} are elliptic. An $(\mathcal{A}, \mathcal{H})$-tree is an $(\mathcal{A}, \mathcal{H})$-JSJ decomposition if it is universally elliptic for actions on $(\mathcal{A}, \mathcal{H})$-trees and it dominates every other universally elliptic $(\mathcal{A}, \mathcal{H})$-tree.

We now turn our attention to the study of the JSJ-decomposition of a pro-C RAAG over abelian groups. Let $G=G_{\Gamma}$ be a pro-C RAAG over a finite connected graph Γ. From here on, we assume \mathcal{A} to be the class of abelian pro- \mathcal{C} subgroups of G and \mathcal{H} to be the class of procyclic groups generated by canonical generators of G.

We first construct by induction a decomposition of G over abelian subgroups relative to \mathcal{H}, and prove that it is actually an $(\mathcal{A}, \mathcal{H})$-JSJ decomposition. We then refine this decomposition in order to obtain the \mathcal{A}-JSJ decomposition of G.

As we are interested in splittings over standard subgroups of disconnecting complete graphs, we first need some basic properties of splittings of this type.

Lemma 6.9. Let G_{Γ} be a pro-C $R A A G$ over a finite connected graph Γ and $K \leq \Gamma$ be a complete subgraph of Γ.

1. If all cyclic subgroups generated by canonical generators in K are universally elliptic for their action on \mathcal{A}-trees, then the whole standard subgroup G_{K} is universally elliptic for its action on \mathcal{A}-trees.
2. If K is a minimal disconnecting complete graph (in the sense that no proper subset of K is a disconnecting complete graph), then the standard subgroup G_{K} is universally elliptic for its action on \mathcal{A}-trees.
3. If $\operatorname{Star}(v)$ is a complete graph for $v \in V(\Gamma)$, then there exists an \mathcal{A}-tree on which the action of v is hyperbolic.

Proof.

1. Since by assumption Γ is connected, this follows as a consequence of Lemma 5.5 (2).
2. Assume that G acts on an \mathcal{A}-tree (T, G) and suppose that there exists at least one hyperbolic canonical generator $v \in V(K)$. By Lemma 6.2(1), we have that $\operatorname{Star}(v)$ is a complete graph. Since a complete graph does not have any disconnecting subgraphs, it follows that $\Gamma \neq \operatorname{Star}(v)$. From the minimality of the disconnecting complete graph K, we have that the full subgraph Γ^{\prime} generated by $(V(\Gamma) \backslash V(K)) \cup\{v\}$ is connected and v is a disconnecting vertex of Γ^{\prime}. In particular, there are two vertices $w_{1}, w_{2} \in$ $V\left(\Gamma^{\prime}\right)$ that are adjacent to v but lie in different connected components of $\Gamma \backslash K$. This contradicts the fact that $\operatorname{Star}(v)$ is a complete graph. Hence each canonical generator of K must be elliptic and by (1) the whole K is elliptic.
3. It suffices to notice that the standard pro-C tree associated with the splitting (5.2) has abelian edge stabilisers because $\operatorname{Link}(v)$ is a complete graph.

We record the following graph theoretical observation.
Lemma 6.10 (Disconnecting graphs of components). Let Γ be a finite connected simplicial graph. Let K be a disconnecting complete subgraph of Γ and let $\left\{\Gamma^{i} \mid\right.$ $i \in\{1, \ldots, m\}\}$ be the connected components of $\Gamma \backslash K$.

If K^{\prime} is a disconnecting subgraph of $\Gamma^{j} \cup K$ for some $j \in\{1, \ldots, m\}$, then K^{\prime} is also a disconnecting subgraph of Γ.

Proof. Suppose on the contrary that $\Gamma \backslash K^{\prime}$ is connected. Since K is by assumption a disconnecting subgraph of Γ, it follows that K is not contained in K^{\prime} and so $K \backslash K^{\prime}$ is nonempty. Since $\Gamma \backslash K^{\prime}$ is connected and K is disconnecting, for each vertex v in $\left(\Gamma^{j} \cup K\right) \backslash K^{\prime}$ there is a vertex $w(v)$ in $K \backslash K^{\prime}$ such that v and $w(v)$ are connected by a path inside $\left(\Gamma^{j} \cup K\right) \backslash K^{\prime}$. As K is complete, there is an edge between any two vertices in K. It follows that any pair of vertices $v, v^{\prime} \in\left(\Gamma^{j} \cup K\right) \backslash K^{\prime}$ are connected by the path which is the composition of the paths from v to $w(v)$, the edge $\left(w(v), w\left(v^{\prime}\right)\right)$ and the path from $w\left(v^{\prime}\right)$ to v^{\prime}. Since this path is in $\left(\Gamma^{j} \cup K\right) \backslash K^{\prime}$, we have that $\left(\Gamma^{j} \cup K\right) \backslash K^{\prime}$ is connected, deriving a contradiction.

$6.3(\mathcal{A}, \mathcal{H})$-JSJ Decomposition of pro- \mathcal{C} RAAGs

We first construct the (relative) abelian JSJ decomposition of pro-C RAAGs under the assumption that all the subgroups in the class $\mathcal{H}=\{\langle v\rangle \mid v \in V(\Gamma)\}$ of procyclic subgroups generated by canonical generators are elliptic.

Theorem 6.11. Let $G=G_{\Gamma}$ be a pro-C $R A A G$ associated with a connected abstract finite graph Γ.

There is a (possibly trivial) decomposition of G as a fundamental pro-C group of a reduced finite tree of pro-C groups $\left(\mathcal{G}_{\Delta}, \Delta\right)$ with the following properties:

- vertex groups of $\left(\mathcal{G}_{\Delta}, \Delta\right)$ are standard subgroups which are either abelian or their underlying graph does not contain any disconnecting complete subgraph;
- each edge group of $\left(\mathcal{G}_{\Delta}, \Delta\right)$ is a standard subgroup associated with a disconnecting complete subgraph K_{e} of Γ and, moreover, K_{e} is a minimal (with respect to inclusion) disconnecting complete graph of a subgraph Γ^{\prime} of Γ.

Furthermore, the standard pro-C tree associated with this decomposition is an $(\mathcal{A}, \mathcal{H})$-JSJ tree decomposition $\left(T_{\Delta}, G\right)$ of G.

Proof. We prove the statements by induction on the number of generators of the pro-C RAAG.

Assume first that Γ has one vertex, i.e. $G=\mathbb{Z}_{\pi(\mathcal{C})}$. In this case, we consider the decomposition as a fundamental group of a graph of groups to be trivial, so Δ is a point and the associated group is $\mathbb{Z}_{\pi(\mathcal{C})}$. This decomposition satisfies the required conditions. Furthermore, since G is a standard subgroup, by assumption it is elliptic and so the $(\mathcal{A}, \mathcal{H})$-JSJ decomposition of G is trivial and agrees with the decomposition as a fundamental group of a graph of groups.

Assume that we have already established the decomposition of every pro- \mathcal{C} RAAG whose underlying graph has at most $n-1$ vertices as a fundamental group of a graph of groups and that we have proved that the $(\mathcal{A}, \mathcal{H})$-JSJ decomposition of G is determined by the group decomposition as a fundamental group of a graph of pro-C groups satisfying the properties of the theorem.

Let now Γ be a connected graph with n vertices, $n \geq 2$. Suppose first that Γ does not have any disconnecting complete subgraph. In this case, we consider the decomposition as a fundamental group of a graph of groups to be trivial and so Δ has one vertex with corresponding group G. This decomposition satisfies the requirements. If Γ is a complete graph, then $G \simeq \mathbb{Z}_{\pi(\mathcal{C})}^{n}$. Since by assumption, each canonical generator is elliptic, then by Lemma 6.9, the group G stabilizes a point, and hence the $(\mathcal{A}, \mathcal{H})$-JSJ decomposition is trivial and coincides with the decomposition of G as the fundamental group of a graph of groups. If Γ is not complete and does not have any disconnecting complete subgraph, then by Theorem $6.3 G$ cannot act non-trivially on an \mathcal{A}-tree, so the $(\mathcal{A}, \mathcal{H})$-JSJ decomposition is again trivial.

Suppose now that Γ has a disconnecting complete graph. Let K be a disconnecting complete graph such that $|V(K)|$ is minimal among disconnecting complete graphs.

We first construct a splitting of G as an amalgamated free product over the standard subgroup G_{K}. Assume that $\Gamma \backslash K$ has $m \geq 2$ nontrivial connected components Γ^{i}, for $i \in\{1, \ldots, m\}$. In this case, we consider the splitting of G as a pro- \mathcal{C} amalgamated product of the form

$$
G=\coprod_{i=1}^{m}{ }_{G_{K}} G_{K \cup \Gamma^{i}}
$$

By Theorem 6.5.2 of [72], this decomposition corresponds to the pro-C fundamental group of a tree of groups $\left(\overline{\mathcal{G}_{\Delta}}, \bar{\Delta}\right)$ with m vertices $V(\bar{\Delta})=\left\{x_{1}, \ldots, x_{m}\right\}$, whose vertex groups $\left\{G_{K \cup \Gamma^{i}} \mid i \in\{1, \ldots, m\}\right\}$ respectively, and with all edges of $E(\bar{\Delta})$ stabilised by G_{K}. Since K is a complete graph, G_{K} is a pro-C abelian subgroup and hence this decomposition is an \mathcal{A}-decomposition of G. Notice that if $m>2$, the underlying tree $\bar{\Delta}$ is not unique. Indeed any tree with m vertices provides the same fundamental group G since all edge groups coincide. Without loss of generality, we choose the underlying graph $\bar{\Delta}$ to be a path consisting of m points and $m-1$ edges, vertex groups $G_{K \cup \Gamma^{i}}$ and edge groups G_{K} (with the natural embeddings). By construction, the graph of pro-C groups $\left(\overline{\mathcal{G}_{\Delta}}, \bar{\Delta}\right)$ has G as its pro-C fundamental group.

By the induction hypothesis, for each $i \in\{1, \ldots, m\}$ each vertex group $G_{K \cup \Gamma^{i}}$ has a decomposition as a fundamental group of a tree of pro-C groups $\left(\mathcal{G}_{\Delta_{i}}, \Delta_{i}\right)$ as in the statement and this decomposition determines an $(\mathcal{A}, \mathcal{H})$-JSJ tree decomposition.

For each $i \in\{1, \ldots, m\}$, by Lemma 6.9 the action of the group G_{K} is elliptic on any $(\mathcal{A}, \mathcal{H})$-tree $\left(T_{K \cup \Gamma^{i}}, G_{K \cup \Gamma^{i}}\right)$ and so G_{K} is contained in a vertex stabiliser of $T_{K \cup \Gamma^{i}}$. Hence, a conjugate of G_{K} is contained in a vertex group of the graph of groups ($\mathcal{G}_{\Delta_{i}}, \Delta_{i}$), namely $v_{i} \in \Delta_{i}$. By Lemma 5.15, if a conjugate of a canonical generator is contained in a standard subgroup, then the standard subgroup contains the generator. As each vertex group of $\left(\mathcal{G}_{\Delta_{i}}, \Delta_{i}\right)$ is a standard subgroup by induction, G_{K} itself is contained in the vertex group $\mathcal{G}_{\Delta_{i}}\left(v_{i}\right)$.

We construct a tree of groups $\left(\mathcal{G}_{\Delta}, \Delta\right)$ in the following way. Define $V(\Delta)=$ $\bigcup_{i=1}^{m} V\left(\Delta_{i}\right)$ and

$$
E(\Delta)=\left\{E\left(\Delta_{i}\right),\left(v_{j}, v_{\ell}\right) \mid i \in\{1, \ldots, m\},\left(v_{j}, v_{\ell}\right) \in E(\bar{\Delta})\right\}
$$

For each $w \in V(\Delta)$ there is $i \in\{1, \ldots, m\}$ such that $w \in \Delta_{i}$ and we define the group $\mathcal{G}_{\Delta}(w)$ of \mathcal{G}_{Δ} to be $\mathcal{G}_{\Delta}(w)=\mathcal{G}_{\Delta_{i}}(w)$. Similarly, if e is an edge of Γ such that $e \in E\left(\Delta_{i}\right)$, then the corresponding group (and vertex embeddings) are induced from Δ_{i}. If $e=\left(v_{j}, v_{\ell}\right)$, we define $\mathcal{G}_{\Delta}(\delta)=G_{K}$ (with the natural embeddings). This graph of groups is well-defined as each edge group embeds in the adjacent vertex groups and its pro-C fundamental group is exactly G by construction (as the fundamental group of the graphs $\left(\mathcal{G}_{\Delta_{i}}, \Delta_{i}\right)$ are the standard subgroups $\left.G_{K \cup \Gamma_{i}}\right)$.

This graph of groups is reduced. Indeed by induction, edge groups of $\left(\mathcal{G}_{\Delta_{i}}, \Delta_{i}\right)$ do not coincide with the adjacent vertex groups. We next show that G_{K} cannot coincide with any vertex group in $\mathcal{G}_{\Delta}\left(v_{i}\right)$. Indeed, by definition, Γ_{i} is a nontrivial connected component of $\Gamma \backslash K$ and so $G_{K \cup \Gamma^{i}} \neq G_{K}$ and, in particular, if the decomposition of $G_{K \cup \Gamma^{i}}$ is trivial, then the unique vertex group does not coincide with G_{K}. Assume next that $G_{K \cup \Gamma^{i}}$ has a nontrivial decomposition satisfying the conditions of the statement and suppose by contradiction that there is a vertex group of $\left(\mathcal{G}_{\Delta_{i}}, \Delta_{i}\right)$ equal to G_{K}. In particular, since the graph $K \cup \Gamma^{i}$ is connected and edge groups are standard subgroups of complete disconnecting subgraphs of $K \cup \Gamma^{i}$, there would be disconnecting subgraph K^{\prime} of $K \cup \Gamma^{i}$ contained in K. By Lemma 6.10, K^{\prime} would also be a disconnecting complete subgraph of Γ, contradicting the minimality of K. Hence, we have shown that the graph of groups is reduced.

We next show that the decomposition as a fundamental group of a graph of groups satisfies the required properties. Indeed, by the inductive hypothesis on Δ_{i}, we have that each vertex group of \mathcal{G}_{Δ} is a standard subgroup which is either abelian
or the underlying graph does not have disconnecting complete subgraphs; and the edge groups of \mathcal{G}_{Δ} are either G_{K} or, by induction, they are standard subgroups associated with disconnecting complete subgraphs of a certain $K \cup \Gamma^{i}$, which are also disconnecting subgraphs for Γ by Lemma 6.10. In the former case, by our choice G_{K} is the standard subgroup of a minimal complete disconnecting subgraph of Γ. In the latter case, the induction hypothesis assures that the associated disconnecting complete subgraph is minimal for a subgraph of $K \cup \Gamma^{i}$, which is also a subgraph of Γ.

Finally, we are left to check that the standard tree $\left(T_{\Delta}, G\right)$ associated with the decomposition as a fundamental group of a graph of groups given for G is an $(\mathcal{A}, \mathcal{H})$-JSJ tree. The tree $\left(T_{\Delta}, G\right)$ is universally elliptic since each edge stabiliser is either universally elliptic by the induction hypothesis or it is a conjugate of G_{K} and since G_{K} is abelian and generated by universally elliptic elements, by Lemma 6.9 (2), G_{K} acts universally elliptic on any \mathcal{A}, \mathcal{H}-tree.

In order to prove that $\left(T_{\Delta}, G\right)$ dominates any other $(\mathcal{A}, \mathcal{H})$-tree $\left(T^{\prime}, G\right)$, consider a vertex stabiliser $H \leq G$ given by the decomposition of G as a fundamental group of graphs of groups. By construction, H is either a standard subgroup associated with a complete graph, with an elliptic action on any $(\mathcal{A}, \mathcal{H})$-tree by Lemma 6.9 (2), or it is a standard subgroup associated with a graph without disconnecting complete subgraphs, which is also elliptic for the action on any $(\mathcal{A}, \mathcal{H})$-tree by Theorem 6.3.

Therefore, the $(\mathcal{A}, \mathcal{H})$-tree is a JSJ-tree decomposition of G.

6.4 \mathcal{A}-JSJ DECOMPOSITION OF PRO-C RAAGs

In order to obtain the general \mathcal{A}-JSJ decomposition, we must further refine the $(\mathcal{A}, \mathcal{H})$-JSJ decomposition described in Theorem 6.11.

Definition 6.12 (Hanging vertex). We say that a vertex v of Γ is a hanging vertex if $\operatorname{Star}(v)$ is a complete graph and for each $w \in \operatorname{Link}(v), \operatorname{Star}(w)$ is not a complete graph.

Theorem 6.13. Let $G=G_{\Gamma}$ be a pro-C $R A A G$ associated with a connected abstract finite graph Γ.

There is a (possibly trivial) decomposition of G as a fundamental pro-C group of a reduced finite graph of pro-C groups $\left(\mathcal{G}_{\Theta}, \Theta\right)$ with the following properties:

- the underlying graph Θ is either a tree or a tree with loops;
- vertex groups of $\left(\mathcal{G}_{\Theta}, \Theta\right)$ are standard subgroups which are either abelian or their underlying graph does not contain any disconnecting complete graph;
- each edge group of $\left(\mathcal{G}_{\Theta}, \Theta\right)$ is a standard subgroup associated with a disconnecting complete subgraph of Γ;
- hanging vertices do not belong to any vertex group.

Furthermore, the standard pro-C tree associated with this decomposition is an \mathcal{A}-JSJ tree decomposition $\left(T_{\Theta}, G\right)$ of G.

Proof. Suppose first that $|V(\Gamma)|=1$, so $G=\mathbb{Z}_{\pi(\mathcal{C})}$. In this case define a graph Θ consisting of a single vertex with a loop, so that $V(\Theta)=\left\{v_{\Theta}\right\}, E(\Theta)=\left\{e_{\Theta}\right\}$ with $d_{0}\left(e_{\Theta}\right)=d_{1}\left(e_{\Theta}\right)=v_{\Theta}$. Define the corresponding vertex and edge group as $\mathcal{G}_{\Theta}\left(e_{\Theta}\right)=\mathcal{G}_{\Theta}\left(v_{\Theta}\right)=1$ (with the natural embedding). The graph of groups $\left(\mathcal{G}_{\Theta}, \Theta\right)$ satisfies the required properties and the associated pro- \mathcal{C} tree is the \mathcal{A} JSJ decomposition of G because the trivial element is always elliptic.

Assume now that $|V(\Gamma)| \geq 2$. If Γ does not have disconnecting complete graphs, then the trivial decomposition, with Θ consisting of a single vertex with corresponding group G, satisfies the requirements. If Γ is a complete graph, then the associated tree decomposition $\left(T_{\Theta}, G\right)$, which is trivial, is the \mathcal{A}-JSJ decomposition, see discussion in Example 6.7. Similarly, if Γ is not complete and it has no disconnecting complete subgraph, then the \mathcal{A}-JSJ decomposition is trivial by Theorem 6.3.

In the case when Γ has disconnecting complete subgraphs, we first consider the graph of pro-C groups $\left(\mathcal{G}_{\Delta}, \Delta\right)$ as described in Theorem 6.11.

Let $H V(\Gamma) \subset V(\Gamma)$ be the set of hanging vertices of Γ. We claim that, for each $v \in H V(\Gamma)$, the standard subgroup $G_{\operatorname{Star}(v)}$ coincides with an abelian vertex group of $\left(\mathcal{G}_{\Delta}, \Delta\right)$. Since by definition $\operatorname{Star}(v)$ is complete, $G_{\operatorname{Star}(v)}$ is abelian and so by Lemma 6.9 the action of this subgroup on T_{Δ} is elliptic and therefore a conjugate of this subgroup is contained in at least one vertex group of $\left(\mathcal{G}_{\Delta}, \Delta\right)$. As each of these vertex groups is a standard subgroup, by Lemma $5.15 G_{\operatorname{Star}(v)}$ itself is contained in them. Notice that if $\operatorname{Star}(v)$ disconnects a graph, then so does $\operatorname{Link}(v)$, and similarly, if $\operatorname{Star}(v)$ is contained in a complete disconnecting subgraph K, then $K \backslash\{v\}$ is also a disconnecting subgraph. Since edge groups are minimal complete disconnecting subgraphs of a subgraph of Γ, see Theorem 6.11, from the latter observation we have that $G_{\operatorname{Star}(v)}$ cannot be contained in any edge group of the graph of groups $\left(\mathcal{G}_{\Delta}, \Delta\right)$ and so $G_{\operatorname{Star}(v)}$ is contained in a unique vertex group, namely the vertex group $G_{\Gamma^{\prime}}$, which by Theorem 6.11 is a standard subgroup associated with some subgraph $\Gamma^{\prime}<\Gamma$. If $G_{\operatorname{Star}(v)} \lesseqgtr G_{\Gamma^{\prime}}$, then
there is no edge between vertices in $\Gamma^{\prime} \backslash \operatorname{Star}(v) \neq \varnothing$ and v, and so $G_{\Gamma^{\prime}}$ is not abelian and $\operatorname{Link}(v)$ is a disconnecting subgraph of Γ^{\prime}, contradicting the vertex group description of Theorem 6.11. Therefore, we have that $G_{\operatorname{Star}(v)}$ is precisely the vertex group.

Similarly, v cannot be contained in any edge group of $\left(\mathcal{G}_{\Delta}, \Delta\right)$ because such groups are minimal disconnecting complete graphs K, and $K \backslash v$ would also be a disconnecting complete graph. For this reason, for each $v \in H V(\Gamma)$, there exists only a single vertex $d_{v} \in V(\Delta)$ such that $\langle v\rangle \leq \mathcal{G}_{\Delta}\left(d_{v}\right)$. Notice that, as $\mathcal{G}_{\Delta}\left(d_{v}\right)$ is abelian, it is immediate from the definition of hanging vertex that v is the only hanging vertex contained in $\mathcal{G}_{\Delta}\left(d_{v}\right)$, so $d_{v_{1}} \neq d_{v_{2}}$ for each distinct $v_{1}, v_{2} \in H V(\Gamma)$.

We define a graph of groups $\left(\mathcal{G}_{\Delta_{0}}, \Delta_{0}\right)$ in the following way. We define $V\left(\Delta_{0}\right)=$ $V(\Delta)$ and $E\left(\Delta_{0}\right)=E(\Delta) \cup\left\{e_{v} \mid v \in H V(\Gamma)\right\}$, where $d_{0}\left(e_{v}\right)=d_{1}\left(e_{v}\right)=d_{v}$. For $w \in V\left(\Delta_{0}\right)$, if $w=d_{v}$ for some $v \in H V(\Gamma)$, then we set $\mathcal{G}_{\Delta_{0}}\left(d_{v}\right)=\mathcal{G}_{\Delta_{0}}\left(e_{v}\right)=$ $G_{\text {Link }(v)}$ (the embeddings from the edge groups to the vertex groups are the identity) and otherwise, we set $\mathcal{G}_{\Delta_{0}}(w)=\mathcal{G}_{\Delta}(w)$ for $w \in V\left(\Delta_{0}\right), w \neq d_{v}, v$ a handing vertex and $\mathcal{G}_{\Delta_{0}}(e)=\mathcal{G}_{\Delta}(e)$ for $e \in E(\Delta)$. As we observed above, since hanging vertices do not belong to any edge group, the embeddings from edges groups to vertex groups in $\left(\mathcal{G}_{\Delta}, \Delta\right)$ also define embeddings in $\left(\mathcal{G}_{\Delta_{0}}, \Delta_{0}\right)$.

The graph of pro-C groups $\left(\mathcal{G}_{\Delta_{0}}, \Delta_{0}\right)$ may not be reduced, so we define $\left(\mathcal{G}_{\Theta}, \Theta\right)$ as the reduced graph of groups obtained from $\left(\mathcal{G}_{\Delta_{0}}, \Delta_{0}\right)$. By construction, the graph of groups $\left(\mathcal{G}_{\Theta}, \Theta\right)$ is reduced. The underlying graph Θ is obtained from Δ_{0} by collapsing some edges and in turn, the graph Δ_{0} is obtained by adding loops to the tree Δ and therefore Θ is a tree with loops. Vertex and edge groups are either equal to $G_{\operatorname{Link}(v)}$ for some $v \in H V(\Gamma)$ or they inherit the structure of vertex and edge groups of $\left(\mathcal{G}_{\Delta}, \Delta\right)$. No hanging vertex can be contained in any vertex group by construction. As the pro-C fundamental group of each vertex with loop $\left(\mathcal{G}_{\Delta_{0}},\left\{d_{v}, e_{v}\right\}\right)$ is exactly the pro- \mathcal{C} fundamental group of $\left(\mathcal{G}_{\Delta},\left\{d_{v}\right\}\right)$, the pro- \mathcal{C} fundamental group of $\left(\mathcal{G}_{\Theta}, \Theta\right)$ is also G. Therefore, the decomposition of G as a fundamental group of graph of groups satisfies the requirements of the statement.

In order to conclude, we have to check that the standard tree $\left(T_{\Theta}, G\right)$ associated with the decomposition given for G as a fundamental group of a graph of groups is an \mathcal{A}-JSJ tree. Edge stabilisers are either conjugates of a standard subgroup $G_{\text {Link }(v)}$ for some $v \in H V(\Gamma)$, and in this case they act universally elliptic on any \mathcal{A}-trees by Lemma 6.2, or they are conjugates of standard subgroups associated with disconnecting complete graphs of Γ, as in the $(\mathcal{A}, \mathcal{H})$-JSJ decomposition. In this case, there exist some subgraphs Γ^{\prime} of Γ such that our disconnecting subgraphs are minimal among complete subgraphs that disconnect Γ^{\prime}. By Lemma 6.9 (2), edge stabilisers of T_{Θ} act universally elliptic on each \mathcal{A}-tree on which $G_{\Gamma^{\prime}}$ acts,
and in particular over any \mathcal{A}-tree on which G acts. This shows that $\left(T_{\Theta}, G\right)$ is universally elliptic.

In order to prove that $\left(T_{\Theta}, G\right)$ dominates any other (\mathcal{A})-tree $\left(T^{\prime}, G\right)$, we need to prove that the action on T^{\prime} of a vertex stabiliser H of T_{Θ} is elliptic for each $\left(T^{\prime}, G\right)$ universally elliptic \mathcal{A}-tree. Up to conjugation, we can assume that H is a standard subgroup that corresponds to a vertex group of $\left(\mathcal{G}_{\Theta}, \Theta\right)$. If H is non-abelian, then it is a standard subgroup associated with a subgraph without disconnecting complete graphs and its action on T^{\prime} is elliptic by Theorem 6.3. Assume now that H is abelian and suppose that there exists a canonical generator v in H such that its action on T^{\prime} is hyperbolic. We next show that v is a hanging vertex. By Lemma 6.2, $\operatorname{Star}(v)$ must be a complete graph. Let $w \in \operatorname{Link}(v)$ such that w is an element of H. Since H is abelian and $\langle v\rangle \cong \widehat{\mathbb{Z}}_{\mathcal{C}}, H$ can not be virtually procyclic and so by Theorem 7.1.7 of [72] there must be a nontrivial element $g \in\langle v, w\rangle$ contained in an edge stabiliser of T^{\prime}. As $\left(T^{\prime}, G\right)$ is a universally elliptic \mathcal{A}-tree, g must be a universally elliptic element and $w \in \alpha(g)$. By Remark 5.18, the action of g on the standard pro- \mathcal{C} tree of the pro- \mathcal{C} HNN extension

$$
G=H N N\left(G_{\Gamma \backslash\{w\}}, G_{\operatorname{Link}(w)}, i d\right)
$$

is hyperbolic, and since g is universally elliptic on \mathcal{A}-trees, this implies that $G_{\operatorname{Link}(w)}$ is not abelian and so $\operatorname{Star}(w)$ is not abelian either. As this is true for each $w \in \operatorname{Link}(v)$, we conclude that v is a hanging vertex. However, by the construction of the decomposition, hanging vertices are not contained in any vertex stabilisers of T_{Θ} and so we arrived at a contradiction. This proves that the action on T^{\prime} of each canonical generator in H is elliptic and, applying Lemma 6.9 (1), we conclude that H is elliptic for its action on T^{\prime}, as desired.

This proves that $\left(T_{\Theta}, G\right)$ is an \mathcal{A}-JSJ decomposition of G.
We provide an example of an $(\mathcal{A}, \mathcal{H})$-JSJ decomposition and an \mathcal{A}-JSJ decomposition of a pro-C RAAG.

Example 6.14. Consider the pro-C RAAG associated with the graph P_{4}, which is

As the $(\mathcal{A}, \mathcal{H})$ and \mathcal{A}-JSJ decompositions are uniquely determined by the associated graph of groups, we describe only this graph of groups, writing edge and vertex groups next to the corresponding edge and vertex. A minimal disconnecting complete graph in P_{4} is b. The subgroup $\langle a, b\rangle$ is abelian, whereas c is a
disconnecting complete subgraph of the graph generated by b, c, d. The graph of groups decomposition of $G_{P_{4}}$

satisfies the conditions of Theorem 6.11 and so the corresponding tree defines an $(\mathcal{A}, \mathcal{H})$-JSJ decomposition of P_{4}.

The vertex a and d are hanging vertices, because $\operatorname{Star}(a), \operatorname{Star}(d)$ are complete graphs and $\operatorname{Star}(b), \operatorname{Star}(c)$ are not complete. For this reason we substitute each of the vertices corresponding to $\langle a, b\rangle$ and $\langle c, d\rangle$ with a vertex and a loop, both with associated group $G_{\operatorname{Link}(a)}=\langle b\rangle$ and $G_{\operatorname{Link}(d)}=\langle c\rangle$ respectively.

This graph of groups is not reduced. After reducing it,

we obtain a graph of groups decomposition of P_{4} satisfying the conditions of Theorem 6.13 and so the associated tree is a \mathcal{A}-JSJ decomposition of $G_{P_{4}}$.

Bibliography

[1] A. Abdollahi and F. G. Russo. On a problem of P. Hall for Engel words. Arch. Math. (Basel), 97(5):407-412, 2011.
[2] M. Abért. Group laws and free subgroups in topological groups. Bull. London Math. Soc., 37(4):525-534, 2005.
[3] C. Acciarri and P. Shumyatsky. On words that are concise in residually finite groups. J. Pure Appl. Algebra, 218(1):130-134, 2014.
[4] C. Acciarri and P. Shumyatsky. Varieties of groups and the problem on conciseness of words, 2023.
[5] C. Acciarri, P. Shumyatsky, and A. Thillaisundaram. Conciseness of coprime commutators in finite groups. Bull. Aust. Math. Soc., 89(2):252-258, 2014.
[6] S. I. Adian. The Burnside problem and identities in groups, volume 95 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, BerlinNew York, 1979. Translated from the Russian by John Lennox and James Wiegold.
[7] I. S. Ashmanov and A. Y. Olshanskiĭ. Abelian and central extensions of aspherical groups. Izv. Vyssh. Uchebn. Zaved. Mat., 11:48-60, 85, 1985.
[8] J. Azevedo and P. Shumyatsky. On finiteness of some verbal subgroups in profinite groups. J. Algebra, 574:573-583, 2021.
[9] J. Azevedo and P. Shumyatsky. On finiteness of verbal subgroups. J. Pure Appl. Algebra, 226(6):Paper No. 106976, 11, 2022.
[10] R. Baer. Endlichkeitskriterien für Kommutatorgruppen. Math. Ann., 124:161-177, 1952.
[11] R. Bastos and C. Monetta. Coprime commutators in finite groups. Comm. Algebra, 47(10):4137-4147, 2019.
[12] A. Baudisch. Kommutationsgleichungen in semifreien Gruppen. Acta Math. Acad. Sci. Hungar., 29(3-4):235-249, 1977.
[13] S. Brazil, A. Krasilnikov, and P. Shumyatsky. Groups with bounded verbal conjugacy classes. J. Group Theory, 9(1):127-137, 2006.
[14] R. G. Burns and Y. Medvedev. Group laws implying virtual nilpotence. J. Aust. Math. Soc., 74(3):295-312, 2003.
[15] W. Burnside. The collected papers of William Burnside. Vol. 2. Oxford University Press, Oxford, 2004. 1900-1926, Edited by Peter M. Neumann, A. J. S. Mann and Julia C. Tompson, and with a preface by Neumann and Mann.
[16] M. Casals-Ruiz, M. Pintonello, and P. Zalesskii. On profinite RAAGs. In preparation.
[17] I. Castellano and P. Zalesskii. A pro-p version of Sela's accessibility and Poincaré duality pro-p groups, 2022.
[18] R. Charney. An introduction to right-angled Artin groups. Geom. Dedicata, 125:141-158, 2007.
[19] Z. Chatzidakis. Torsion in pro-p completions of torsion-free groups. J. Group Theory, 2(1):65-68, 1999.
[20] Z. Chatzidakis and P. Zalesskii. Pro- p groups acting on trees with finitely many maximal vertex stabilizers up to conjugation. Israel J. Math., 247(2):593-634, 2022.
[21] M. Clay. When does a right-angled Artin group split over \mathbb{Z} ? Internat. J. Algebra Comput., 24(6):815-825, 2014.
[22] C. Delizia, P. Shumyatsky, A. Tortora, and M. Tota. On conciseness of some commutator words. Arch. Math. (Basel), 112(1):27-32, 2019.
[23] E. Detomi. A note on strong conciseness in virtually nilpotent profinite groups. Arch. Math. (Basel), 120(2):115-121, 2023.
[24] E. Detomi, B. Klopsch, and P. Shumyatsky. Strong conciseness in profinite groups. J. Lond. Math. Soc. (2), 102(3):977-993, 2020.
[25] E. Detomi, M. Morigi, and P. Shumyatsky. On conciseness of words in profinite groups. J. Pure Appl. Algebra, 220(8):3010-3015, 2016.
[26] E. Detomi, M. Morigi, and P. Shumyatsky. Words of Engel type are concise in residually finite groups. Bull. Math. Sci., 9(2):1950012, 19, 2019.
[27] E. Detomi, M. Morigi, and P. Shumyatsky. Words of Engel type are concise in residually finite groups. Part II. Groups Geom. Dyn., 14(3):991-1005, 2020.
[28] E. Detomi, M. Morigi, and P. Shumyatsky. Strong conciseness of coprime and anti-coprime commutators. Ann. Mat. Pura Appl. (4), 200(3):945-952, 2021.
[29] E. Detomi, M. Morigi, and P. Shumyatsky. Commutators, centralizers, and strong conciseness in profinite groups, 2022.
[30] G. Duchamp and D. Krob. The lower central series of the free partially commutative group. Semigroup Forum, 45(3):385-394, 1992.
[31] G. A. Fernández-Alcober and M. Morigi. Outer commutator words are uniformly concise. J. Lond. Math. Soc. (2), 82(3):581-595, 2010.
[32] G. A. Fernández-Alcober, M. Morigi, and G. Traustason. A note on conciseness of Engel words. Comm. Algebra, 40(7):2570-2576, 2012.
[33] G. A. Fernández-Alcober and P. Shumyatsky. On bounded conciseness of words in residually finite groups. J. Algebra, 500:19-29, 2018.
[34] G. Fernández-Alcober and M. Pintonello. Conciseness on normal subgroups and new concise words from lower central and derived words. Journal of the Iranian Mathematical Society, 4(2):189-206, 2023.
[35] D. Groves and M. Hull. Abelian splittings of right-angled Artin groups. In Hyperbolic geometry and geometric group theory, volume 73 of Adv. Stud. Pure Math., pages 159-165. Math. Soc. Japan, Tokyo, 2017.
[36] O. Grün. Zusammenhang zwischen Potenzbildung und Kommutatorbildung. J. Reine Angew. Math., 182:158-177, 1940.
[37] V. Guirardel and G. Levitt. JSJ decompositions of groups. Astérisque, 395:vii+165, 2017.
[38] R. Guralnick and P. Shumyatsky. On rational and concise words. J. Algebra, 429:213-217, 2015.
[39] I. de las Heras, M. Pintonello, and P. Shumyatsky. Strong conciseness of coprime commutators in profinite groups. J. Algebra, 633:1-19, 2023.
[40] I. de las Heras and M. Morigi. Lower central words in finite p-groups. Publ. Mat., 65(1):243-269, 2021.
[41] W. Herfort and L. Ribes. Torsion elements and centralizers in free products of profinite groups. J. Reine Angew. Math., 358:155-161, 1985.
[42] M. Isaacs. Finite group theory, volume 92 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
[43] S. V. Ivanov. P. Hall's conjecture on the finiteness of verbal subgroups. Izv. Vyssh. Uchebn. Zaved. Mat., 6:60-70, 1989.
[44] S. V. Ivanov. On the Burnside problem on periodic groups. Bull. Amer. Math. Soc. (N.S.), 27(2):257-260, 1992.
[45] L.-C. Kappe. Groups with a cyclic term in the lower central series. Arch. Math. (Basel), 30(6):561-569, 1978.
[46] E. I. Khukhro and P. Shumyatsky. Nonsoluble and non-p-soluble length of finite groups. Israel J. Math., 207(2):507-525, 2015.
[47] E. I. Khukhro and P. Shumyatsky. Compact groups with countable Engel sinks. Bull. Math. Sci., 11(3):Paper No. 2050015, 28, 2021.
[48] E. I. Khukhro and P. Shumyatsky. Strong conciseness of Engel words in profinite groups. Mathematische Nachrichten, 296(6):2404-2416, 2023.
[49] Y. G. Kleĭman. Some questions of the theory of varieties of groups. Izv. Akad. Nauk SSSR Ser. Mat., 47(1):37-74, 1983.
[50] T. Koberda. Right-angled Artin groups and their subgroups. "https: //users.math.yale.edu/users/koberda/raagcourse.pdf", 2013. [Online; accessed 19-July-2023].
[51] R. Kropholler and G. Wilkes. Profinite properties of RAAGs and special groups. Bull. Lond. Math. Soc., 48(6):1001-1007, 2016.
[52] L. Lévai and L. Pyber. Profinite groups with many commuting pairs or involutions. Arch. Math. (Basel), 75(1):1-7, 2000.
[53] M. W. Liebeck, E. A. O'Brien, A. Shalev, and P. H. Tiep. The Ore conjecture. J. Eur. Math. Soc. (JEMS), 12(4):939-1008, 2010.
[54] A. Lubotzky. Torsion in profinite completions of torsion-free groups. Quart. J. Math. Oxford Ser. (2), 44(175):327-332, 1993.
[55] I. G. Lysënok. Infinite Burnside groups of even period. Izv. Ross. Akad. Nauk Ser. Mat., 60(3):3-224, 1996.
[56] I. D. Macdonald. On cyclic commutator subgroups. J. London Math. Soc., 38:419-422, 1963.
[57] J. I. Merzljakov. Verbal and marginal subgroups of linear groups. Dokl. Akad. Nauk SSSR, 177:1008-1011, 1967.
[58] H. Neumann. Varieties of groups. Springer-Verlag New York, Inc., New York, 1967.
[59] N. Nikolov and D. Segal. On finitely generated profinite groups. I. Strong completeness and uniform bounds. Ann. of Math. (2), 165(1):171-238, 2007.
[60] N. Nikolov and D. Segal. On finitely generated profinite groups. II. Products in quasisimple groups. Ann. of Math. (2), 165(1):239-273, 2007.
[61] P. S. Novikov and S. I. Adjan. Infinite periodic groups. I. Izv. Akad. Nauk SSSR Ser. Mat., 32:212-244, 1968.
[62] P. S. Novikov and S. I. Adjan. Infinite periodic groups. II. Izv. Akad. Nauk SSSR Ser. Mat., 32:251-524, 1968.
[63] P. S. Novikov and S. I. Adjan. Infinite periodic groups. III. Izv. Akad. Nauk SSSR Ser. Mat., 32:709-731, 1968.
[64] A. Y. Olshanskiĭ. The Novikov-Adyan theorem. Mat. Sb. (N.S.), 118(160)(2):203-235, 287, 1982.
[65] A. Y. Olshanskiĭ. Varieties in which all finite groups are abelian. Mat. Sb. (N.S.), 126(168)(1):59-82, 143, 1985.
[66] A. Y. Olshanskiĭ. Geometry of defining relations in groups, volume 70 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the 1989 Russian original by Yu. A. Bakhturin.
[67] M. A. Pellegrini and P. Shumyatsky. Coprime commutators in $\operatorname{PSL}(2, q)$. Arch. Math. (Basel), 99(6):501-507, 2012.
[68] M. Pintonello and P. Shumyatsky. On conciseness of the word in Olshanskii's example, 2023.
[69] C. D. Reid. Local Sylow theory of totally disconnected, locally compact groups. J. Group Theory, 16(4):535-555, 2013.
[70] L. Ribes. Profinite graphs and groups, volume 66 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham, 2017.
[71] L. Ribes and P. Zalesskii. Pro- p trees and applications. In New horizons in pro-p groups, volume 184 of Progr. Math., pages 75-119. Birkhäuser Boston, Boston, MA, 2000.
[72] L. Ribes and P. Zalesskii. Profinite groups, volume 40 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 2010.
[73] D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.
[74] D. Segal and A. Shalev. On groups with bounded conjugacy classes. Quart. J. Math. Oxford Ser. (2), 50(200):505-516, 1999.
[75] P. Shumyatsky. Commutators of elements of coprime orders in finite groups. Forum Math., 27(1):575-583, 2015.
[76] I. Snopce and P. Zalesskii. Right-angled Artin pro-p groups. Bull. Lond. Math. Soc., 54(5):1904-1922, 2022.
[77] A. Storozhev. Infinite cyclic verbal subgroups of relatively free groups. Proc. Amer. Math. Soc., 124(10):2953-2954, 1996.
[78] P. W. Stroud. On a property of verbal and marginal subgroups. Proc. Cambridge Philos. Soc., 61:41-48, 1965.
[79] J. G. Thompson. Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Amer. Math. Soc., 74:383-437, 1968.
[80] R. F. Turner-Smith. Marginal subgroup properties for outer commutator words. Proc. London Math. Soc. (3), 14:321-341, 1964.
[81] R. F. Turner-Smith. Finiteness conditions for verbal subgroups. J. London Math. Soc., 41:166-176, 1966.
[82] J. Wilson. On outer-commutator words. Canadian J. Math., 26:608-620, 1974.
[83] J. S. Wilson. On the structure of compact torsion groups. Monatsh. Math., 96(1):57-66, 1983.
[84] P. A. Zalesskii and O. V. Mel'nikov. Subgroups of profinite groups acting on trees. Mat. Sb. (N.S.), 135(177)(4):419-439, 559, 1988.
[85] P. A. Zalesskiĭ. Normal divisors of free constructions of pro-finite groups, and the congruence kernel in the case of a positive characteristic. Izv. Ross. Akad. Nauk Ser. Mat., 59(3):59-76, 1995.
[86] E. I. Zelmanov. Solution of the restricted Burnside problem for groups of odd exponent. Izv. Akad. Nauk SSSR Ser. Mat., 54(1):42-59, 221, 1990.
[87] E. I. Zelmanov. Solution of the restricted Burnside problem for 2-groups. Mat. Sb., 182(4):568-592, 1991.
[88] G. Zini. Coprime commutators in the Suzuki groups ${ }^{2} B_{2}(q)$. Bull. Aust. Math. Soc., 104(3):448-452, 2021.
[89] A. Zozaya. Conciseness in compact R-analytic groups. J. Algebra, 624:1-16, 2023.

Index

canonical generators, 104
cell, 52
decomposition, 52
concise
boundedly, 20
on normal subgroups, 30
strongly, 22
uniformly boundedly, 23
word, 19
condition $C^{\prime}(\lambda), 55$
coprime commutator
γ_{k}^{*} and $\delta_{k,}^{*} 72$
simple, 72
deformation space, 121
diagram, 53
circular, 53
over a group, 53
reduced, 54
domination of \mathcal{A}-trees, 121
elliptic element, 99
extension of $w(\mathbf{N}), 44$
flexible vertex, 122
full subgraph, 104
geodesic of a pro-C tree, 99
good representative, 84
graph of pro-C groups, 100
fundamental group of, 101
reduced, 100
hanging vertex, 127
hyperbolic element, 99
independent set of relations, 56
irreducible action, 100
isolated subgroup, 111
join graph, 108
JSJ decomposition, 121
$(\mathcal{A}, \mathcal{H})-, 122$
relative, 122
law, 15
link of an element, 106
marginal subgroup, 15
minimal simple group, 94
O-pairs, 63
Outer commutator
extension, 43
outer commutator
height, 44
words, 15
period of rank $i, 56$
piece, 54
pro-C RAAG, 104
profinite graph, 98
connected, 98
right-angled Artin pro-C group, 104
rigid vertex, 122
standard subgroup, 104
star of an element, 106
support of an element, 106
Sylow basis, 77
normalizer, 77
tree
$\mathcal{A}-, 121$
pro- $\mathcal{C}, 98$
pro- $p, 98$
standard pro-C, 102
universally elliptic $\mathcal{A}-121$
universally elliptic subgroup, 121
variety, 15
verbal conciseness, 20
verbal subgroup, 14
N -, 30
visual equality, 52
word
closed set of, 15
disjoint, 31
extended, 42
linearity of a, 33
non-commutator, 19
value, 14

