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ABSTRACT: The Flaviviridae family consists of single-stranded
positive-sense RNA viruses, which contains the genera Flavivirus,
Hepacivirus, Pegivirus, and Pestivirus. Currently, there is an outbreak
of viral diseases caused by this family affecting millions of people
worldwide, leading to significant morbidity and mortality rates.
Advances in computational chemistry have greatly facilitated the
discovery of novel drugs and treatments for diseases associated
with this family. Chemoinformatic techniques, such as the
perturbation theory machine learning method, have played a
crucial role in developing new approaches based on ML models
that can effectively aid drug discovery. The IFPTML models have
shown its capability to handle, classify, and process large data sets
with high specificity. The results obtained from different models indicates that this methodology is proficient in processing the data,
resulting in a reduction of the false positive rate by 4.25%, along with an accuracy of 83% and reliability of 92%. These values suggest
that the model can serve as a computational tool in assisting drug discovery efforts and the development of new treatments against
Flaviviridae family diseases.

1. INTRODUCTION
Arboviruses (ARthropod-BOrne VIRUSes) are organisms
transmitted by hematophagous arthropods.1 Within this
group, we find the Chikungunya virus (CHIKV), West Nile
Virus (WNV), dengue virus (DENV), yellow fever virus
(YFV), and Zika virus (ZIKV), transmitted by mosquitoes of
the Aedes spp. genus “Aedes Aegypti”.2 Generally, members of
this genus, especially those who are transmitted by the same
vector, share a similar symptomatology but approximately 80%
of infections are asymptomatic.3 Although there are variations,
such as in Zika that present a unique illness (Guillain−Barre ́
syndrome and Microcephaly in neonates).4

Taxonomic analyses have classified DENV, CHIKV, YFV,
and ZIKV as members of the Flaviviridae family, Flavivirus
genus.5−7 This genus is characterized by a positive-sense RNA
of approximately 11 kb.8,9 It has been reported that the
proteins encoded by RNA are conserved in members of the
Flavivirus genus, for example, DENV serotype 4 shows high
similarity to its counterparts in the genus transmitted by
mosquitoes.10,11

Currently, the development of vaccines and drugs against
certain members of the Flavivirus genus (YFV, DENV, WNV,
Japanese Encephalitis Virus�JEV, etc.) is more widespread
than against ZIKV.12 Due to the highly conserved genome
among them and ZIKV, the same treatments and medications
have been used to treat this disease hopping that they will have
the same success among the other members of their
family.12−14 However, the development of these medications

has not managed to surpass the second phase of drug
development.15,16

In order to manage the dilemma, the development of
computational chemistry has favored the discovery and design
of novel drugs.17−20 Currently, the identification and
optimization of chemical compounds as potential candidates
for pharmaceutical targets of interest have been investigated.21

The development of computational models based on machine
learning (ML) is a widely used technique in computer-aided
drug design.22 These models use the structural information on
compounds and established assay conditions to elucidate new
compounds that can interact with the desired targets.23,24

With the rise of Big Data and the advent of the digital era, a
large amount of structural information about proteins and
small molecules has been obtained.25 This information could
provide researchers and experimental developers with new
pharmacological targets to be tested, opening a range of
possibilities and opportunities for these methods to be used for
drug discovery based on learning techniques.26 The amount of
data that can be obtained from these new methods and
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techniques can provide insights into the intrinsic relationships
that could enable the generation of prediction models to
encode chemical structures. These new techniques are based
on experimental and computational information; therefore, can
be used to predict the activity of new compounds of
pharmaceutical interest.
By developing ML models, new systems can be created with

the ability to learn and improve without undergoing any
previous programming.27−29 The accuracy and effectiveness of
these models must meet criteria of responsibility, such as
systematic identification and search for regularities to
guarantee the prediction and ensure that the analysis was
carried out correctly.30

These kinds of methods have been used in other scientific
fields such as robotics, data mining, chemistry, and
biotechnology, etc.31−33 However, one of the limitations of
these conventional methods arises from the fact that they don’t
cover large data sets that appear in trials. Using the clinical data
available as an example, there is useful data such as cells,
proteins, and organisms that were used in the trials, and these
extra data can be used to enrich these models.34

Perturbation Theory Machine Learning (PTML) models
were developed to solve this problem, taking perturbation
theories (PT) combined with ML models to obtain PTML
models.24 They are based on a reference property f(vij)ref.

35

Perturbation operators PT are added to this property to
measure the deviations that can occur with respect to this
reference property; in this way, it can predict the properties of
an unknown system but similar to the original system that was
used as a refs 36−38.

It has been shown that PTML models are applicable to
various correlation problems. However, most applications of
these methods have focused on classification problems. PTML
methods present the calculated function and show it relating it
to the membership of a system to different classes.35 These
systems can have different values of vij = biological activity in
an nth system under multiple cj = test conditions. This can be
extended to multiple parameters within vij that have been
measured in various cj assays. These parameters can be
optimized.21 As mentioned earlier, the model takes f(vij)ref =
p(vij/cj)ref as input data, which represents the probability that
other similar systems take favorable values f(vij)obs 1 in clinical
trials that usually have the same conditions cj.

35

Currently, there is an outbreak of new viral diseases, and also
new variants emerging from previously reported disease.
Flaviviruses, in particular, have been a major problem since
the last century and continue to be one of the leading causes of
death in South America.39 Although compounds that can
prevent the replication of these viruses have been synthesized,
the variability of this family makes them a challenge for
researchers and public health. Nowadays, the DENV has four
different serotypes. In 2016, the ZIKV was classified as a severe
disease due to of its effects on newborns.10,40 Most viruses in
this family have similar structures; however, there is no specific
drug to treat any of them.9,41 Therefore, it is necessary to
accelerate the methods of drug discovery and development.
The traditional approach involves synthesizing compounds and
testing them, which is a trial-and-error process.42,43 The use of
chemoinformatic techniques, such as the PTML method, can
accelerate the discovery of potential drug candidates that can
inhibit the development of this type of virus.

Figure 1. General workflow.
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The general flowchart showing the interconnections
between the different parts of this work: (1) chemoinformatic
study, (2) statistical analysis and (3) biological assays
probability, is depicted in Figure 1.

2. MATERIALS AND METHODS
2.1. Data Preparation and Processing. 2.1.1. Data Set

Generation. The generation of the data set or sample to be
analyzed consist on the search and compilation of compounds
tested in certified databases. First, it is necessary to determine
the target or underlying disease to create the model. The
members of the Flaviviridae family transmitted by the tropical
vector “Aedes aegypti” were considered for the development of
the data set. The ZIKV was selected as the base due to
previous studies conducted with this virus, which provided a
curated database. However, because it is a disease in
developing countries, the existing data is not very significant
in terms of quantity. The data required to train a model is
much larger than the available; therefore, this database was
expanded to include other members of the family with the
genetic similarity (>90%) that are transmitted by mosquitoes.
Using the ChEMBL database,44 a search was made based on
compounds that previously reported activity against selected
targets (ZIKV, DENV, DENV2, DENV3, DENV4, HepC,
WNV, YFV, etc.). The large data set obtained should report
the biological activity of the assays as data. Subsequently, this
data set was sorted using Office360. The resulting data set
included 47,405 compounds with biological activity. The
reported activity is detailed in different measurement forms
such as IC50 (nM), Ki (nM), inhibition (%), potency (nM),
activity (%), etc. (see Supporting Information file DATA-
SETS.xlsx for details of assay conditions).
A preparation of the collected data must be carried out

within the PTML-based model. Molecular descriptors are used
as part of its equation, with the most used ones in this type of
classification models being D1: MW, D2: ALogP, and D3:
TPSA. These values are easy to calculate and are present in the
literature, providing reliable information. As for the assay
conditions, they are obtained during the generation of the
database because they represent the conditions under which
the assays were performed. The assay conditions include C1:
target name, C2: target organism, C3: assay organism, C4: assay
tissue name, C5: assay cell type, and C6: subcellular assay.
Primarily, these conditions can be modified, or additional
conditions can be added to improve the model or consider
specific conditions desired in an assay. In this study, three
molecular descriptors and six assay conditions were used in the
model development. Subsequently, this selection was expanded
to include thirty-two descriptors under the six reported assay
conditions. The descriptors were obtained using the Dragon
software, which is widely used and user-friendly according to
the literature. It is necessary to calculate the molecular
descriptors of these compounds using the DRAGON
software.45 Thus, the descriptors were obtained to complete
the necessary information for the model to analyze.
2.1.2. Post Processing. The processing of data is a crucial

step in PTML models. It utilizes molecular descriptors Dk, as
well as their deviation against the expected value of the
reference system. The reference value of a system is measured
as the average descriptor value for each assay found in the
database under conditions ⟨Dk (cj)⟩. The model itself takes
into account the descriptor values and the assay conditions in
which they were performed (where and how?). The problem

that arises from using all this information lies not in the
numerical values but in the nominal variables that may be
encountered. Therefore, it is necessary to include a new
variable that can accept these nominal variables and interpret
them numerically. The homogenization of moving average
(MA) as a statistical tool is used to analyze ordered sets,
thereby eliminating the randomness present in the data. Within
this tool, the chosen conditions directly influence the MAs. An
equation is proposed that considers a variety of conditions
simultaneously, resulting in a multiple MA. Under this premise,
the eq 1 was utilized.

D c D D c(system , ) ( (system ) ( ) )k i j k i k jnew= (1)

Being ⟨Dk (cj)⟩ the average of the values presents in the
variables D1,D2...Dn, where D represents the molecular
descriptors. The assay conditions are represented by ⟨cj⟩
where j = 1,...,n. Finally, Dk(systemi)new represents the Dk
values of the compounds found in the database. With the data
mentioned in the equation ⟨MA⟩, it seeks to measure how
much the descriptors of an assay deviate from the average
under specific conditions cj.
The expected outcome of this model is for it to be capable of

predicting the experimental value of vi jk
for the compounds in

the database. Similarly, the model will be able to determine the
activity value of unknown compounds vi jk

. In this way, the

variable vi jk
is defined as a value measured from the reported

biological activity, which takes into account the assay
conditions directly associated with the target diseases.
Due to the variability of the units present in the databases, it

is not possible to consider them immediately. This is why a
transformation of these values must be performed in order to
classify them. A new parameter d(c0) was established, which
decides whether a value is desirable or undesirable. If d(c0) = 1,
indicates that an increase in the analyzed parameter will be
desirable, while d(c0) = −1 indicates that a decrease in the
parameter will be undesirable. The observed function must
establish a limit or cutoff point to define whether a unit is
desirable or not. Concentrations are set as −1, percentages and
activities = 1, and effectiveness and speed = 1. In cases where
the cutoff points are not defined, vij > 1000 is established. If
these conditions are not met, the average activity ⟨vij⟩ is used.
In order to calculate the average value ⟨vij⟩ of compounds

that have the same activity measure, values must be established
based on whether they are favorable or not. This determination
depends on whether their values were above or below the
mean value of the data, classifying them into a binary system
(active = 1 and inactive = 0). The value of the function f
(vijk)obs is defined in this study as an experimental value
because its result will be the output variable, based on whether
a compound in the database is active or not, providing an idea
of their activity. With the previous calculations, the conditions
are established as follows.

• If d(c0) = 1 and (vijk)obs > cutof f and/or above the
established mean value, f (vijk)obs = 1. Otherwise, f(vijk)obs
= 0

Likewise:

• If d(c0) = 1 and (vijk)obs < cutof f and/or below the
established mean value, f (vijk)obs = 1. Otherwise, f(vijk)obs
= 0.
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The function f (vijk)obs will apply the cut-offs as control
points, enabling it to predict the activity of a compound based
on the condition of (c0). The accuracy of the f (vijk)obs will be
defined by the specificity of the classification cutoff, making it
crucial to define this limit for the model’s integrity. Finally, it is
necessary to define a reference variable with known values that
have been previously reported to be active in experimental
assays. This function uses probabilities and represents the
likelihood of compounds being reported as active under the
established condition (c0) and for each sublevel j, see eqs 2 and
3.

f v p f v c( ) ( ( 1), )ij ijref 0= = (2)

f v n f v n( ) ( ( ) 1)/ij ij jref obs= = (3)

2.2. Computational Methods. 2.2.1. PTML Model
Development. The PTML model uses the previously
calculated variables in the methodology as input variables.
The function f(vij)ref, the Δ(Dk), and Dx are employed. The
output variable f (vij)exp, obtained from this model, enables the
binary classification (1 and 0). Linear discriminant analysis
(LDA) is employed to find a linear combination of these
variables, allowing the model to effectively separate the two
types of values within a single statistical process.
For data processing, the Statistica 10.046 software was used.

Out of the total data, 75% was allocated for training, and the
remaining 25% was used for method validation. The resulting
statistical parameters (specificity and sensitivity) of the
equation obtained should fall between 75 and 95%. A
prediction capability below 70% would be insufficient,
rendering the model unacceptable. Following the LDA
statistical test, the model yields an output variable f(vij)calc,
where the values from this function correspond to the actual
values of predicted activity based on probability. The
coefficients of the PTML equation are also obtained from
this analysis. Finally, Mahalanobis distances are employed to
transform the dimensionless results of the equation into
preprobability functions. This enables binary classification and
facilitates future predictions for the development or discovery
of new compounds.

f v a a f v a D c( ) ( ) ( )ij ij
k

k

k k jcalc 0 1 ref
1

max

= + · + ·
= (4)

2.2.2. ROC Validation Method. A receiver operating
characteristic (ROC)47 curve was used as a graphical
representation to evaluate the screening method. The graph
used explains the success and error of the model, the true
positive values are placed on the Y-axis and the apparent
positive values on the X-axis. This arrangement allows the
analysis of the accuracy of the model. The ROC curve
represents the proportion of values that were correctly
predicted versus those that were incorrect. This way, by
calculating the area under the curve it is possible to get this
proportion value, that should be the highest possible value that
can be obtained.
2.2.3. Classification ML Models through Python. For the

development of ML classification models Python programming
language was used together with NumPy, Scikit-learn and
PyCaret libraries.
The data set for the training and validation of the model was

IFPTML-Flaviviridae Dk30. To compare the performances of
the previously created model with LDA and the python model,

the training and validation subsets remained unchanged.
Different models were compared by using the PyCaret
classification function “compare_models”. This function trains
the algorithms that are available in the library and orders the
best models based on their accuracy metric by default. All the
performance metrics that are listed in this function are the
accuracy, AUCROC, precision, recall, f1-score, Cohen kappa
score and Matthews correlation coefficient. The optimization
of the model which showed the best overall performance was
done using the function “tune_model” to find the optimal
hyperparameters. The evaluation of the final model was done
with the “evaluate_model” function. This shows a variety of
results including the hyperparameters, AUCROC curve,
confusion matrix and feature importance, among others.
Accuracy is the rate of the correctly classified cases.

Precision measures the fraction of true positives among all
the predicted positives. Recall (sensitivity) is the rate of true
positives. F1 score is the harmonic mean of recall and
precision.48 AUCROC is a metric that assesses the ability of
the model to discriminate between classes. A perfect model
would have an AUCROC value of 1, indicating a perfect
classification, while a value of 0.5 suggests random perform-
ance, equivalent to chance.49 MCC correlates the real and
predicted scores in binary classifications considering all the
true and false instances.50 Cohen’s Kappa is typically used in
binary classification problems to assess the agreement between
two classifiers using the traditional 2 × 2 confusion matrix.51

(see Table 1).

3. RESULTS AND DISCUSSION
3.1. IFPTML-Flaviviridae Model. The construction of a

model capable of predicting the probability of a compound
being biologically active against a disease, would be a tool that
helps reduce costs and time in drug discovery. This method
must be reliable and reproducible. The goal of this
investigation was to build a classification model based on the
Flaviviridae family that has the best statistical parameters and
includes variables of interest.
The first result to achieve was proper data cleansing, which

is the first checkpoint to get a functional model. This step is
essential for the development and correct functioning of the

Table 1. Formulas of Accuracy, Precision, Recall, F1, MCC
and Cohen’s Kappa Performance Metricsa

performance
metric formula

accuracy
TP TN

TP FN FP TN
+

+ + +

precision
TP

TP FP+

recall
TP

TP FN+

F1
2 TP

2 TP FP FN
•

• + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
× ×

+ + + +

Cohen’s kappa
2 (TP TN FP FN)

(TP FP) (FP TN) (TP FN) (FN TN)
• • •

+ • + + + • +
aTP = true positive, TN = true negative, FP = false positive, FN =
false negative.
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model. The filtering of the 47,382 assays had to be done in a
way that allows its use in the construction of the model
without causing erroneous results or generating undesired false
positives.
The 46,518 resulting assays after cleansing should be ready

for analysis. Of these, 10,910 are members of the Flavivirus
genus, and the rest are members of the Flaviviridae Family. It is
expected that the clean data will not affect the calculations that
will be performed, as the model learns, trains, and improves
with each treatment it receives.
Due to the wide variety of units and measurements found in

the databases, these must be standardized to a common
measure or unit. As mentioned in the Methods Section,
calculations were performed to homogenize the data, resulting
in MA values for every c0. From these results, experimental
values and reference values were calculated, as shown in the
annexes.
The obtained experimental values f(vij)obs and the reference

values f(vij)ref, together with the LDA using Statistica 10.0
software, allowed the construction of several models,
considering statistical parameters such as specificity (Sp (%)
= 0), sensitivity (Sn (%) = 1), and accuracy (Ac (%) =
percentage of correct predictions within the analyzed data). To
determine whether a parameter is good or not within the
constructs, it is established that the minimum values for
consideration should be those with specificity, sensitivity, and
accuracy values above 75% in both, the training and validation
series.
The PTML models start with the input variables f(vij)obs,

f(vij)ref, and ΔDk(cj), to which the effects of the perturbators
will be added according to the established parameters and
selected variables. The resulting equation takes into account
the corresponding operators for all possible cases of Dk =
MW,ALogP, and TPSA, and their respective (cj). The
expectation is to obtain an equation that covers the greatest
number of possible scenarios. Equation 5 presents a PTML-
LDA model considering the simple and simplified variables. A
Chi-square test was also performed as a classifier between the
classes ( f(vij)obs = 0 vs f(vij)ref = 1).

f v
f v D c

D c
D c D c

D c
D c D c

D c

n p

( ) 4.148277915 6.54191072
( ) 0.00139111 ( )

0.055988681 ( ) 0.000138105
( ) 0.000300427 ( )

0.000377903 ( ) 0.000423529
( ) 0.001371082 ( )

0.002736297 ( )

46518 2 17510.55 0.05

ij

ij

calc

ref 1 1

2 1

3 1 3 2

3 3

3 4 3 5

3 6

= +
· + ·

+

= = < (5)

The resulting equation was selected after comparing it to
several models constructed, using the same input variables but
with different effects during the LDA. For a model to be
considered optimal, it must contemplate the greatest possible
number of conditions in its equation. In statistical analysis, the
model can be programmed to figure in all possible effects or to
choose the best effects with highest influence. Among the
various constructs obtained, there were several that, despite
considering all Dk, did not reflect the effect of all conditions cj.
These were discarded because they could present undesired

results, such as false positives, this occurs when the model is
tested with new data and none of the desired conditions are
found within the cj of the equation. In consequence the model
will not consider them, resulting in the loss of information or
incomplete results.
The constructs that were obtained must consider the

influence of Dk, while leaving out the certain conditions cj.
Likewise, constructs that reflect the influence of the conditions
cj while leaving out the Dk, were also obtained. The changes in
these constructs are based on correctly establishing the input
variables and ensuring that the data is properly homogenized
and filtered. The Incorrect settings of the cutoffs can cause an
alteration of the final result, leading to more frequent false
positives. One of these changes was very significant in an
obtained construct, allowing to corroborate the influence of
these limits and how their variations can favor or hinder the
selection of the model. Many times, it is not possible to obtain
an equation that considers all the input variables because there
may be cj conditions or Dk that cannot be related, so they will
be excluded. In these cases, is possible to obtain a viable
equation that provides favorable results through a proper data
handling. The more specific information obtained, the more
accurate the cutoffs are, the more related the data is, and the
model can be improved. The selected model as the final result
takes into account all these critical points of selection,
encompassing the greatest number of cj conditions and the
Dk in its equation (see eq 5). Table 2 summarizes the results
obtained.

During the development of this method, several constructs
were created in order to reach the final model. Twenty analyses
were performed for each model using this method. The goal
was to find the best model-based on three statistics parameters
to satisfy. Since the models must have statistical values higher
than 75%,36 a balance between specificity, sensitivity, and
accuracy was sought. In consequence, the model will be able to
correctly predict compounds that have high probabilities of
being active and differentiate between active and inactive
compounds. It is also mentioned that the training and
validation values should be similar to each other, see Table 3
(see Supporting Information file DATASETS.xlsx for details of

Table 2. Results of the IFPTML-Flaviviridae-LDA Model
Where the Values of Sp, Sn and Ac of the Best Model
Obtained are Presented

sets param. scope of test p(1) = 0.85

expected stat.
predicted
values nj f(vij)pred = 0 f(vij)pred = 1

Training Series
f(vij)obs = 0 Sp

(%)
75.95 19,388 14,726 4662

f(vij)obs = 1 Sn
(%)

78.88 15,500 3273 12,227

total Ac
(%)

77.25 34,888

Validation Series
f(vij)obs = 0 Sp

(%)
75.5 6457 4875 1582

f(vij)obs = 1 Sn
(%)

79.29 5172 1071 5683

total Ac
(%)

77.19 11,629
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the data set used and detailed results of the model for each
case).

The tables result present an equitable distribution according
to the established parameters. The chi-square test allows us to
confirm that the classification groups are divided, and the p-
value is under or equal to 0.05 (eqs 5).
Among the various constructs created to determine the best

model, several of them included both desirable characteristics
(conditions cj and Dk). However, their statistical parameters
were poor, leading their classification as incomplete due to the
characteristics they exhibited. The model that presented the
best statistical parameters, as well as meeting the criteria cj and
Dk, obtained a precision value of 77%. When comparing the
results of the models, it was corroborated that an IFPTML-
LDA model was found, and both (its equation and its statistical
parameters) met the desired characteristics. In the final part of
this results segment, the ROC validation method was
employed to verify the model.

3.2. A Comparison with Genus Flavivirus and
Flaviviridae IFPTML Method. During the development of
the final IFPTML model, several test models were created.
One of them used only the data from members of the
Flavivirus genus that are transmitted by hematophagous
arthropods. These data were processed according to the
procedure described in the experimental development, with Dk
= 3 and cj = 6. The data used for the IFPTML-Flavivirus model
represented 24% of the total data used in the main model. The
statistical parameters showed favorable values in general, but
the classification matrix failed as it classified false positives with
high significance (see Table 4).
The IFPTML-Flavivirus-database consists only of members

of the Flavivirus genus; as mentioned in the introduction, the
members are closely related to each other and present
conserved regions in their genomes.10 One of the most
studied Flaviviruses is the DENV, and its drugs are used as
models to treat other members of this species.10,12,41

Therefore, several studies have reported similarities in their
compound conditions or characteristics. However, these
studies vary in reported activity because of the 10% difference,
which makes each of these members unique in their own
way.9,16,40 Taking this into consideration, the unique character-
istics of these variables should be expanded to make them
more specific. The false identification of an element can be due
to its similarity to others that fit the model (true positives).52,53

Therefore, a new model was proposed to encompass these new
characteristics with the aim of classifying the data more
effectively and reducing the presence of false positives.

To improve the IFPTML-Flaviviridae model, the Dk was
expanded from 3 to 30 for every cj = 6. The increase in Dk
provides new unique characteristics of the compounds that can
be used to compare the data in a better way and reduce false
positives that may arise due to similarities. The number of
combinations nn allows for a more comprehensive discrim-
ination of the information and, therefore, a more specific
classification by having more parameters to evaluate, which
helps determine the influence of each descriptor in the system.
The new model uses the 46,518 assays from the IFPTML-

Flaviviridae model as the data set. After the LDA analysis,
favorable statistical results were obtained for Sp (%), Sn (%),
and Ac (%) in training and validation sets. When comparing
the IFPTML-Flaviviridae model with the IFPTML-Flaviviridae
Dk30 model, an increase in the statistical parameters of the
Dk30 model was observed, with an accuracy Ac (%) increasing
from 77 to 79%, Sp (%) from 75.95 to 78.58%, and Sn (%)
from 78.88 to 80.06%.
By including the Flavivirus genus model, it can be observed

that the Sp (%) value in the Flavivirus model is higher than
that in its counterparts (Flaviviridae models). Thereby, the
selection of negative values is done correctly as shown in its
classification matrix. When comparing Sn (%), it is evident that
the Flaviviridae Dk30 model shows better values, indicating
that it classifies true values more accurately. This is reflected in
the classification matrix results, where the false positives
reported in the IFPTML-Flaviviridae Dk30 model compared
with the IFPTML-Flavivirus model are in a smaller proportion,
indicating that there is an improving data classification. The
accuracy of the IFPTML-Flaviviridae Dk30 model improves by
2 points compared with IFPTML-Flaviviridae model. Although
the IFPTML-Flavivirus model has an accuracy Ac (%) of 82%,
the IFPTML-Flaviviridae Dk30 model shows better overall
results in terms of statistical parameters and classification
matrix. Finally, the IFPTML-Flaviviridae Dk30 model was
selected as the final model (see Table 5).

3.3. ROC Validation IFPTML-Flaviviridae-LDA Meth-
od. The validation method that was used is a AUCROC
curve.47 This method verifies the reliability of the models by
using sensitivity Sn (%) vs precision (1 − Sp (%)), obtaining a
AUCROC curve based on this input data. Subsequently, the
area under the curve is calculated. The sensitivity and precision
values of the training and validation models were used to

Table 3. Results of PTML-LDA Models, the Comparison of
Their Values of Sp, Sn and Ac

PTML-LDA models 16 and 24
PTML-LDA model

proposed

training
model
no. 16

validation
series no.
16

training
model
no. 24

validation
series no.
24

training
model no.
proposed

validation
series no.
proposed

Sp =
77.63

Sp =
76.88

Sp =
77.42

Sp =
76.71

Sp = 75.95 Sp = 75.50

Sn =
75.88

Sn =
75.97

Sn =
76.06

Sn =
76.18

Sn = 78.88 Sn = 79.29

Ac =
76.85

Ac =
76.47

Ac =
76.81

Ac =
76.47

Ac = 77.25 Ac = 77.19

Table 4. Results of the IFPTML-Flaviviruses-LDA Model,
Statistical Parameters Sp, Sn and Ac for Training and
Validation

sets param. scope of test p(1) =

expected stat.
predicted
values nj f(vij)pred = 0 f(vij)pred = 1

Training Series
f(vij)obs = 0 Sp

(%)
82.61 6551 5412 1139

f(vij)obs = 1 Sn
(%)

79.66 1632 332 1300

total Ac
(%)

82.02 8183

Validation Series
f(vij)obs = 0 Sp

(%)
80.40 2168 1743 425

f(vij)obs = 1 Sn
(%)

75.85 559 135 424

total Ac
(%)

79.46 2727
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represent the curve with a layout that changes with the prior
probability. In the graph, it can be observed how the values of
Sn (%) and (1 − Sp (%)) degrade uniformly as the prior
probability changes (see Figure 2).
Within the AUCROC curve graph, the diagonal line

represents random probability, where p(vij = 1) = 0.5. The
area under the curve (AUROC) for a random classification
model is 0.5. The AUROC value obtained by the IFPTML
model is 0.862, indicating that the discrimination is accurately
86.2% and not a random pattern. This type of validation test
uses probability based on Bayes’ theorem.54,55 Throughout the
study, prior probability values were used before applying the
theory, allowing the study of the change of Sn (%) and (1 − Sp
(%)) over time to obtain an optimal value.
The technique itself is based on the area under the curve, so

by performing this ROC curve, the predictive power of the
model is obtained. The R value of 86.2% indicates that this
model allows for deciding which elements are related or not
with a high degree of classification.

3.4. Comparison of Classification ML Models through
Python. Currently, several ML algorithms are used for
classification and prediction tasks, each of them with its own
and unique characteristics. LDA, random forest (RF), and
gradient boosting (GB) are among the most popular
methods.55−57

The IFPTML-LDA models use the LDA-supervised learning
algorithm for classification. This method assumes that the
input data follows a Gaussian distribution, and the classes have
an equal covariance matrix.58 The algorithm finds linear
combinations of features that maximize the separation between
classes. This methodology is useful when the classes are well-
separated.59 On the other hand, models based on Random
Forest are ensemble learning methods that combine multiple
decision trees to make predictions,60 They create a collection
of decision trees, where each tree is trained on a random subset
of data and features.61 This learning method can handle both
classification and regression tasks. It is known for its ability to
handle complex relationships and interactions in data.62

Finally, Gradient Boosting combines multiple weak learners
(usually decision trees) to create a strong learner. It builds a
model in an iterative manner, where each new model focuses
on correcting the mistakes made by previous models.63 Also, it
is known for its high predictive accuracy and ability to handle
complex data sets, and it works well for both classification and
regression tasks.64

The different learning methods used to compare the ML
techniques have pros and cons, as mentioned earlier in this
section. The LDA methodology is more suitable for well-
separated classes and dimensionality reduction. RF is effective
in handling complex relationships and providing important
feature measures. GB is known for its high predictive accuracy
and ability to handle complex data sets. The complete ML
methods used are presented bellow (See Table 6).
The model was tuned with 5- and 10-folds. Although the

values are quite similar, the base model shows the best
performances, thus, it was selected as the best model (see
Table 7).

Table 5. Results of the IFPTML-Flaviviridae Dk30-LDA
Model, Statistical Parameters Sp, Sn and Ac for Training
and Validation

sets param. scope of test p(1) =

expected stat.
predicted
values nj f(vij)pred = 0 f(vij)pred = 1

Training Series
f(vij)obs = 0 Sp

(%)
78.58 19,338 15,236 4152

f(vij)obs = 1 Sn
(%)

80.06 15,500 3091 12,409

total Ac
(%)

79.23 34,888

Validation Series
f(vij)obs = 0 Sp

(%)
78.35 6457 5059 1398

f(vij)obs = 1 Sn
(%)

80.41 5172 1013 4159

total Ac
(%)

79.27 11,629

Figure 2. AUCROC curve graph, the diagonal line represents random probability is 0.5, In the graph, it can be observed how the values of
probability changes, orange represents the validation set and blue the training set.
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The IFPTML-Flaviviridae Dk30 model was evaluated using
the validation set, and the LightGBM model showed the best
overall performance metrics (see Table 8). Therefore, the
optimization step was performed using this model.

The classification report is used as an evaluation method to
measure the performance of the classification model. This
report provides information on the performance of the model
for each class in terms of accuracy, recall, F1, etc.65 The LGBM
model presents a precision value of 0.82. This value measures
the proportion of correctly predicted positive instances out of
all instances predicted as positive. This indicates the reliability
of the model’s positive predictions; a higher value means fewer
false positives. The recall value of 0.79 represents the
sensitivity, or true positive rate. This shows the proportion
of correctly predicted positive instances out of all actual
positive instances, indicating how well the model identifies
positive instances. A higher value means fewer false
negatives.66 The F1 value of 0.80 is a harmonic mean between
precision and recall, providing a single metric that balances
both. Figure 3 shows the classification report of the IFPTML-
Flaviviridae Dk30�LGBM model.
The reliability curve was used to assess the calibration of the

classification model. This type of calibration plot helps
determine whether the predicted probabilities are well-
calibrated and provides reliable estimates of true probabilities.

Figure 4 presents the calibration plot using LGBM model. The
curve closely follows the diagonal line, suggesting good
calibration of the model. No overconfidence or under
confidence was identified in the curve.
The calibration plots provide information on the agreement

between the probabilities predicted by the model and the
actual probabilities. An accuracy value of 0.83 means that if the
model predicts probabilities for a given class, the actual
probability of that class should be close to that value.24,25

As mentioned in the previous method analysis, the variation
between the members of the Flaviviridae family and the limited
amount of available data for the assays can result in the
presence of false positives. During the expansion of Dk in the
IFPTML-LDA models, a reduction in the number of false
positives was achieved. Using the same data set in the LGBM
model, another reduction in false positives was achieved,
resulting in an improvement in the reliability of the model,
with the number of false positives decreasing from 1398 to 904
(0:1) (see Figure 5). A comparison between the Dk30-LDA
and Dk30-LGBM models showed a reduction of 4.25% in false
positives.
The feature importance plot is a graphical representation of

the importance of each feature in a ML model. This helps
identify the features that have the most significant impact on
the model’s predictions. Figure 6 presents a feature importance
plot where the most influential features are ranked. Each
feature is assigned a score that represents its importance. The
higher the score, the more influential the feature is in making
predictions.36 In tree-based models such as gradient boosting
models, the importance is calculated based on the number of
times a feature is used to split the data across all trees.
However, its importance is not a definitive measure of

Table 6. IFPTML-Flaviviridae Dk30 Model Comparation of the Most Used ML Methods in Classification and Regression
Taska

model comparation by 10-fold CV

model accuracy AUC recall prec. F1 kappa MCC TT (s)

lightgbm light gradient boosting machine 0.784 0.891 0.749 0.761 0.749 0.561 0.568 8.812
xgboost extreme gradient boosting 0.783 0.886 0.749 0.759 0.749 0.559 0.565 4.896
ridge ridge classifier 0.783 NA 0.693 0.785 0.729 0.552 0.561 0.736
lda linear discriminant analysis 0.782 0.872 0.697 0.781 0.729 0.551 0.559 2.654
gbc gradient boosting classifier 0.781 0.882 0.713 0.772 0.733 0.550 0.559 57.433
ada ada boost classifier 0.774 0.868 0.691 0.771 0.720 0.534 0.544 11.047
lr logistic regression 0.771 0.855 0.701 0.761 0.724 0.531 0.538 14.002
rf random forest classifier 0.770 0.852 0.724 0.749 0.731 0.531 0.537 16.707
dt decision tree classifier 0.766 0.812 0.716 0.748 0.726 0.523 0.529 3.626
et extra trees classifier 0.765 0.833 0.706 0.749 0.722 0.520 0.526 13.657
knn K neighbors classifier 0.731 0.788 0.706 0.691 0.696 0.455 0.458 4.982
svm SVM�linear kernel 0.628 NA 0.561 0.634 0.553 0.244 0.266 5.079
qda quadratic discriminant analysis 0.612 0.673 0.779 0.547 0.638 0.247 0.272 1.656
nb naive bayes 0.609 0.667 0.609 0.554 0.578 0.216 0.218 0.254
dummy dummy classifier 0.556 0.500 0.000 0.000 0.000 0.000 0.000 1.209

aThe Pycaret library was used to build the ML models and some of the algorithms such as ridge and SVM do not support “predict_proba”. In those
cases, the AUC value is shown as “NA”.

Table 7. Performance Metrics of IFPTML-Flaviviridae Dk30 Model with 5- and 10-Folds

folds accuracy AUC recall prec. F1 kappa MCC

base 10 0.78 0.89 0.75 0.76 0.75 0.56 0.57
tuned 10 0.78 0.89 0.71 0.78 0.73 0.55 0.56

5 0.78 0.88 0.73 0.77 0.74 0.55 0.56

Table 8. Light Gradient Boosting Machine Presents the Best
Results Using the Flaviviridae Dk30data Set

model accuracy AUC recall prec. F1 kappa MCC

light gradient
boosting
machine

0.83 0.92 0.79 0.82 0.80 0.65 0.65
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causality. It only indicates the relative importance of the
features within the context of the model.
A graphical representation of the AUCROC curve illustrates

the performance of the binary classifier system. As shown in
Figure 7, the LGBM classifier presents an AUCROC curve of
the IFPTML-LGBM model, which provides a visual
representation of the trade-off between the true and false
positive rates. A good classifier will have a curve closer to the
top-left corner of the plot.
The AUCROC value of 0.92 can be interpreted as the

probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
instance. A higher AUCROC indicates better performance.47

Comparing the AUCROC of the LDA model vs LGBM model,
it shows an increase of 6%, indicating an upgrade in the
classification model compared with its older version.
Finally, this representation indicates that the data are related

and that the assay conditions can be tested in several assays of

Figure 3. LGBM Classification Report of the IFPTML-Flaviviridae Dk30 model�validation data set.

Figure 4. Calibration plots of the IFPTML-Flaviviridae Dk30�LGBM.

Figure 5. LGBM confusion matrix using the validation data set of
Flaviviridae Dk30.
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these viral diseases. (see Supporting Information DATA-
SET.xlsx for more information).

4. CONCLUSION
The results obtained throughout all the studies present a
model capable of being incorporated into drug development
research against diseases related to the Flaviviridae family. In
summary, the IFPTML models are capable of handling,
classifying, and processing large data sets with high specificity.
The effectiveness of the models, as indicated by the statistical
parameters, corroborates their effectiveness against this type of
data.
The IFPTML-LGBM model presents the most solid results,

with an accuracy of 83% in the validation sets. The model also
achieves a 92% AUCROC value, indicating that it classifies
true positives with high accuracy. Through feature enrichment
with more assay information, the classification system was

improved, upgrading the classification method by 6%
compared to previous versions of the models.
The selection of ML methods for classification should be

based on the type of data and groups of data that the system is
going to use. The model is capable of processing and
identifying new candidate compounds that may have biological
activity against Flaviviridae family diseases.
Finally, these results mark a starting point for the

development of new techniques based on ML models that
can help in the discovery of novel drugs and treatments against
diseases of the Flaviviridae family.

■ ASSOCIATED CONTENT
Data Availability Statement
The data set and code of the model are publicly available under
the MIT license on GitHub in the following link: https://
github.com/Aruize/IF.PTML-Flaviviridae. The Supporting
Information including all the data used in this paper. Not

Figure 6. Feature Importance Plot of the IFPTML-Flaviviridae Dk30-LGBM model.

Figure 7. AUCROC curve for the LGBM classifier of IFPTML-Flaviviridae Dk30 model.
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proprietary data is reported on this work. Materials and
Methods describe all the theory at a level that allows a person
skilled in the art could implement the method.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01796.

ChEMBL data set used to train and validate the model,
compounds codes, SMILE codes, preclinical assay
conditions, observed values, predicted classifications,
probabilities, etc. (File DATASET.xlsx) (XLSX)
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