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A B S T R A C T   

The development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative 
diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical 
synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro 
biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and 
(4) Docking studies. This strategy is illustrated with a case study. Firstly, a series of 4-substituted Riluzole de
rivatives 1–3 were synthetized through a strategy that involves the construction of the 4-bromoriluzole frame
work and its further functionalization via palladium catalysis or organolithium chemistry. Next, a FRET 
biosensor for monitoring Ca2+-dependent CaM-ligands interactions has been developed and used for the in vitro 
assay of Riluzole derivatives. In particular, the best inhibition (80%) was observed for 4-methoxyphenylriluzole 
2b. Besides, we trained and validated a new Networks Invariant, Information Fusion, Perturbation Theory, and 
Machine Learning (NIFPTML) model for predicting probability profiles of in vivo biological activity parameters in 
different regions of the brain. Next, we used this model to predict the in vivo activity of the compounds exper
imentally studied in vitro. Last, docking study conducted on Riluzole and its derivatives has provided valuable 
insights into their binding conformations with the target protein, involving calmodulin and the SK4 channel. This 
new combined strategy may be useful to reduce assay costs (animals, materials, time, and human resources) in 
the drug discovery process of calmodulin inhibitors.   

1. Introduction 

Calmodulin (CaM) is an acidic and thermostable low-molecular- 
weight protein, present in all eukaryotic cell types. As a prototype cal
cium sensor, CaM is involved in various cellular signaling processes [1, 

2] as a mediator, such as the plasticity and synaptic transmission, 
regulation of enzymatic activities, modulation of ionic channels activ
ities and regulation of gene expression. Changes in the concentration of 
calcium ions in the internal environment of the cell regulate CaM in 
three different ways: at a cellular level, directing its subcellular 
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distribution; at a molecular level, promoting different binding modes to 
target proteins; and, lastly, correcting the conformational states of CaM 
that achieve specific target activation [3]. 

Among the diseases associated with CaM, the most notable are car
diopathies, calmodulinopathies and neurodegenerative diseases. Car
diovascular diseases encompass a range of conditions affecting the heart 
and blood vessels, with disruptions in cellular signaling pathways. 
Ca2+-CaM dependent protein kinase II (CaMKII) has emerged as a po
tential indicator of cardiomyopathy, with increased activity linked to 
arrhythmias and mechanical dysfunction, suggesting the possibility of 
using myocardial CaMKII inhibition as a strategy to reduce cardiac 
dysfunction [4,5]. Additionally, calmodulinopathies, caused by muta
tions in CaM genes, pose life-threatening arrhythmia risks, especially 
among young individuals [6]. Shifting to neurodegenerative diseases, 
Alzheimer’s disease is characterized by beta-amyloid plaques and 
neurofibrillary tangles, and the CaM hypothesis has revealed CaM 
binding domains in key amyloid-related proteins [7,8]. Furthermore, 
beta-secretase (BACE1) and amyloid precursor protein (AβPP) regula
tion by CaM have been demonstrated. In Parkinson’s disease, height
ened αCaMKII autophosphorylation levels and increased interaction 
with NMDA receptor subunits NR2A-NR2B have been observed [8,9]. 
Finally, in Amyotrophic Lateral Sclerosis (ALS), calcium dysregulation 
serves as a convergence point for major dysfunctional pathways and 
critical proteins, shedding light on environmental factors that influence 
the aetiology and pathology mechanisms or ALS [10]. 

SK channels regulate cell volume, modulate the immune response 
[11,12], and mediate the intrinsic excitability of neurons [13], 
contributing to the hyperpolarization of the action potential. These 
channels are activated by Ca2+ acting via CaM, with four CaM molecules 
interacting with each of the four subunits that conform the tetrameric 
channel. Cryo-EM images of the SK4 channel/CaM complex solved in 
presence and absence of Ca2+ show that under both conditions the CaM 
C-Lobe remains intimately bound to hA, an intracellular alpha helix that 
follows the S6 transmembrane domain (the S6 bundle crossing towards 
the intracellular side of the membrane constitutes a gate that control ion 
flow). In contrast, the N-lobe exhibits large positional variations. 
Remarkably, the N-lobe was captured bound to the linker between 
transmembrane domains 4 and 5 (S4S5) when loaded with Ca2+, sug
gesting that it was pulling down the domain equivalent to the voltage 
sensor of other potassium channels, leading to widening of the S6 bundle 
crossing, allowing K+ flow through the now opened channel [14]. Ex
amination of this structure reveals the existence of a pocket between the 
N-lobe and the S4S5 linker, where Riluzole can dock. Remarkably, this 
putative binding pocket in similar to that found in complexes between 
an isolated portion of the SK2 C-terminus, CaM and Riluzole [15] 
(structures that are unlikely to be adopted by the full channel [14]). This 
similarity suggest that Riluzole may affect SK channel function. Indeed, 
Riluzole increases Ca2+ sensitivity of SK2 channels, reducing the con
centration of Ca2+ required to cause 50% of the maximal activation from 
~0.7 to ~0.4 µM [15]. 

There are currently various treatments available to treat the diseases 
caused by the loss of calcium regulation. Riluzole remains to be the only 
drug currently approved by the U.S. Food and Drug Administration 
(FDA) for the treatment of ALS, which is also related with CaM. Riluzole 
is associated with a low rate of serum aminotransferase elevations 
during therapy and has been linked to rare cases of clinically apparent 
acute liver injury [16,17]. Additionally, Riluzole shows anti-glutamate 
agent activity with anticonvulsant and neuroprotective properties in 
animal models of neurodegenerative disease. However, neuroprotective 
mechanism of Riluzole is still not well-defined, limiting the ability to 
design new medicines for ALS. Furthermore, Riluzole is also effective in 
animal models of Parkinson’s disease, Huntington’s disease and cerebral 
and retinal ischemia [18]. It also exhibits strong anticonvulsant, neu
roprotective and antidepressant effects, as well as sedative properties 
[19]. 

Presently, the prevalence of these diseases commented above [20] 

are increasing due, among other factors, to the extension of life expec
tancy. For these reasons, the creation of new and more effective thera
peutic strategies has become an urgent goal for medicine. In fact, a large 
part of the international scientific community has focused its research on 
the discovery of efficient drugs [21–24] for their treatment. In any case, 
the heterogeneity of the possible structures to be explored as potential 
hits is very high, which makes the discovery of new compounds by trial 
and error very expensive and slow. For instance, ChEMBL, https://www. 
ebi.ac.uk/chembldb, is one of the biggest databases [25] of chemical 
compounds with biological activity with more than 11,420,000 activity 
data for >1295,500 compounds, and 9844 targets. All this information 
comes from very heterogeneous preclinical assays. Specifically, in the 
case of pre-clinical assays of compounds for neurodegenerative diseases, 
ChEMBL [26–28] contains more than >10000 outcomes. Moreover, 
ChEMBL datasets of neuroprotective compounds cover multiple bio
logical activity parameters [29–31] (Potency, IC50, Ki, Km, etc.), different 
cell lines, organisms of the protein target, organism of assay, etc. 
Nevertheless, working with these large volumes of information (Big 
Data) is a very complex task. 

This picture, together with some disappointing results in clinical 
trials, makes the prediction of drug candidates with computational 
techniques interesting. One possibility is the use of NIFPTML (Network 
Invariants, Information Fusion, Perturbation Theory, Machine Learning) 
models to solve this kind of problems in drug discovery. In fact, 
NIFPTML models have been reported applied to organic synthesis, me
dicinal chemistry, biotechnology, nanotechnology, biomedical engi
neering, chemistry of materials or biomolecular systems, among others 
[32–35]. Nonetheless, there are no reports of general purpose NIFPTML 
models for the prediction of neuroprotective compounds considering 
compound structure, target protein, Protein Interaction Networks (PINs) 
from different brain regions, expression of target proteins in specific 
brain regions associated with degenerative neurological diseases and 
assay conditions. 

As stated above, Riluzole is an FDA-approved drug for ALS, with 
limited liver side effects. Its neuroprotective mechanism is still unclear, 
but it shows promising results towards treating various neurodegener
ative diseases and has diverse therapeutic properties, including anti
convulsant and antidepressant effects. Various Riluzole derivatives and 
analogues have been also described and tested. The effect of the sub
stitution on C-6, changing the trifluoromethoxy group, and on the 
endocyclic nitrogen atom N-3 has been extensively studied [36]. The 
substitution on the C-2 amino group has also been reported in the 
context of brain diseases [37]. More recently, this type of Riluzole an
alogues have shown improved use-dependent inhibition of skeletal 
muscle sodium channels [38]. However, the effect of the substitution on 
C-4 has not been studied so far, beyond the introduction of the tri
fluoromethoxy group [36]. In order to find novel Calmodulin inhibitors 
with neuroprotective activity, we decided to modify the benzothiazole 
scaffold with different functional groups at the C-4 position. We 
reasoned that the introduction of substituted aromatic rings at C-4, as 
well as other functional groups, may affect the binding mode in the 
CaM-SK4 binding pocket. Herein we report the synthesis and in vitro 
assays of 4-substituted Riluzole derivatives 1–3 (Fig. 1) using a new 
Förster Resonance Energy Transfer (FRET) biosensor for monitoring 
Ca2+-dependent calmodulin-ligands interactions. Docking analysis has 
been carried out to elucidate how the introduction of substituents at the 
C-4 position could affect the binding mode with the target protein. In 
addition, we have developed the first general-purpose NIFPTML model 
for the prediction of neuroprotective compounds that considers the 
above mentioned aspects with regard to CaM related diseases. 

2. Results and discussion 

2.1. Synthesis of new Riluzole derivatives 

Riluzole or 6-(trifluoromethoxy)benzothiazol-2-amine is a derivative 
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of benzothiazole. The synthesis of their analogues 1–3 was carried out as 
shown in Scheme 1. First, the 4-bromo derivative 1 was prepared, as the 
presence of a bromine atom offers an excellent platform to access more 
complex structures via transition-metal catalyzed cross-coupling re
actions. The construction of the benzo [d]thiazol-2-amine framework 
was achieved following a procedure similar to that reported for the 
preparation of Riluzole [36]. Thus, the one-pot reaction of commercially 
available 2-bromo-4-(trifluoromethoxy)aniline with thiocyanogen, 
generated in situ from potassium thiocyanate and bromine in acetic acid, 
provided 1 in moderate yield. Then, we continued with the functional
ization of the benzothiazole ring via Suzuki-Miyaura reaction [39]. Pd 
(0)-mediated C-4 arylation of 1 was carried out with different boronic 
acids using Pd(PPh3)4 as catalyst in the presence of sodium carbonate as 
a base to afford 4-aryl Riluzole derivatives 2a-c in excellent yields. 
Finally, a metalation-electrophilsequence allowed the introduction of a 
carbaldehyde at the C-4 position. Lithiation of 1 via halogen-metal ex
change reaction (n-BuLi, THF, − 78ºC), followed by reaction with N, 
N-dimethylformamide provided aldehyde 3 (Scheme 1). 

2.2. Biological assay of Riluzole derivatives 

The preparation and use of a biosensor for monitoring Ca2+-depen
dent interactions between CaM and peptide targets is described in this 
section. It involves the fusion of CaM with a target peptide and the 
incorporation of fluorescent proteins as part of the biosensor. FRET was 
used to monitor Ca2+-dependent CaM interactions with peptide targets. 
The assay allows investigating the binding of CaM to the target peptide 
in response to changes in calcium ion concentration. FRET index for the 
original YC-Nano15 varied from 2.7 ± 0.1 with no Ca2+ added, to 27.0 
± 0.1 in the presence of 24 nM free Ca2+, with an EC50 of 2.1 ± 0.1 nM. 
The effect of Riluzole (and related compounds at a final concentration of 
100 µM) was negligible on Ca2+ sensitivity or FRET amplitude with the 
exception of compound 2a which produces an inhibition of the ampli
tude of 17% (Supplementary Materials Table S1). In contrast, the 
response to Ca2+ for the SK4 biosensor, whose FRET index increased 
from 2.0 ± 0.5–8.7 ± 0.1, changed in presence of Riluzole. The response 
to Ca2+ presented two resolvable phases: Phase I at low Ca2+ concen
trations (0–150 nM) and Phase II at higher concentrations (Fig. 2). 

Riluzole clearly affected Phase II, which presented an EC50 of 302.4 ±
22.3 nM and 221.3 ± 31.1 nM in the absence and presence of this drug. 
This response resembles the effect of this compound on SK2 channel 
function [15] (Supplementary Materials Figure S6B), suggesting that it 
may be a useful tool for screening CaM acting compounds. 

We next performed Ca2+ titrations using the SK4 biosensor in the 
presence of Riluzole analogs. We focused on the effect on Phase II, since 
the reduced signal to noise ratio of this portion of the response 
compromised the assessment of effects on Phase I. Contrary to Riluzole, 
none of the compounds investigated caused a clear change in Ca2+

sensitivity on Phase I, however in Phase II, there was a clear reduction 
(see Table 1). The largest reduction (80%) was observed for compound 
2b. 

2.3. NIFPTML model development and application 

Predictive NIFPTML methods are used in drug discovery for different 
diseases. They handle vast datasets like ChEMBL, extracting patterns 
from diverse compound structures. They streamline drug discovery, 
reducing time and costs compared to trial-and-error approaches. In this 
project, these methods were used to predict potential drug candidates 
considering compound structure, target proteins, Protein Interaction 
Networks (PINs), protein expression in specific brain regions, and assay 
conditions. These models can be personalized, matching drugs to pa
tients based on genetic profiles and specific disease characteristics. In 
essence, NIFPTML offers a data-driven computational solution to expe
dite the discovery of neuroprotective compounds, potentially improving 
treatments for CaM-related neurodegenerative diseases. 

Eq. 1 shows the proposed NIFPTML-LDA model. As reported by Hill 
and Lewicki [40] the forward-stepwise strategy of variable selection was 
applied to detect the more important perturbations on different condi
tions. The model presented high values of specificity (Sp= 80.52%), 
sensitivity (Sn = 80.83%), and overall accuracy (Ac = 80.55%), in 
training series. In addition, the model displayed similar values of Sn, Sp, 
and Ac in external validation series. Table 2 summarizes these param
eters. The value of Chi-square is χ2 = 146346.05with a p-level < 0.05 
indicating that the classifier performs a statistically significant separa
tion of both classes f(vij)obs= 0 vs. f(vij)obs= 1. It is important to mention 

Fig. 1. Structures of Riluzole and its derivatives.  

Scheme 1. Synthesis of 4-substituted Riluzole derivatives 1–3.  
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that the obtained values are in the range considered useful for classifi
cation models with application in Medicinal Chemistry. 

f (vij)calc = − 3.880183+ 15.366209 ∗ f
(
vij
)

ref − 17.196505

∗ Sh2(Drugi)+ 1.287039 ∗ Sh1
(
Proty

)
− 2.784924

∗ Sh2
(
Proty

)
− 2.140295 ∗ Sh4

(
Proty

)
− 8.984754

∗ Sh5
(
Proty

)
+ 48.607304 ∗ Sh0(PIN)+ 22.6191659

∗ ΔSh2
(
Drugi, cj

)
− 2.320339 ∗ ΔSh1

(
Proty, cj

)
− 21.381213

∗ ΔSh0
(
PIN, cj

)
(1)  

n = 794108χ2 = 146346.05p < 0, 05 

The first value that appears in the equation of this IFPTML-LDA 
classification model is the intercept, in addition, the equation contains 
the reference function, and the Perturbation Theory Operators (PTO) 
that are added depending on the boundary conditions (ΔShk, cj), as well 
as the structural descriptors (Shk) with the corresponding predicted 
coefficients. A detailed explanation about all the input variables 
analyzed is shown in Table 3. 

The specific molecular descriptor of the drug included in the model is 
the min-max scaled Shannon’s entropy used to measure polar surface 

area features of the drug. In addition, the model included 4 variables 
related to the descriptors of the target protein sequences and a variable 
associated with the PIN molecular descriptor. All these variables were 
described in terms of Shannon’s entropy and were determined as 
explained in the materials and methods section. In addition, the model 
included the PTOs corresponding to the description of the drug, the 
target protein, and the PIN. The output of the model f(vij)calc is a scoring 
function of the value vij of biological activity of the ith drug that interacts 
with a protein expressed in one of the regions of the cerebral cortex 
associated with degenerative neurological diseases in the different 
combinations of conditions of assay cj. For a Linear Discriminant Anal
ysis (LDA) model f(vij)calc does not take values of 0–1 and it does not 
count as probability. Nevertheless, for a given value of f(vij)calc the LDA 
algorithm can analyzes the respective values of posterior probabilities p 
(f(vij)pred= 1). The LDA algorithm uses the Mahalanobis’s distance 
metric to calculate these probabilities [41,42]. By calculating p(f 
(vij)pred= 1), whether the compound is active with f(vij)pred= 1 (when p(f 
(vij)pred= 1) > 0.5) or not can be observed. By counting the number of 
cases with f(vij)pred= 1= f(vij)obs= 1 or − 1 (correct classifications) vs. f 
(vij)pred ≠ f(vij)obs (incorrect classification), the specificity and sensi
tivity of the model was determined [43]. 

The model could be used to predict the activity of a new compound. 
This is why it is essential to apply PT operators that are sensitive to 
fluctuations in several conditions at the same time. Those refer to the 
expected probability, p(f(vij, cj)expt= 1, and the average values 〈Dk(cj)〉
for multiple combinations of conditions at the same time. It should be 
noted that these values change for different activities, like Zone of In
hibition, MIC50, LD50, Activity (%), etc. As a consequence, the model has 
the ability to predict several activity parameters for a given compound. 

2.3.1. Comparison with other models 
Several cheminformatics models have been reported in the literature 

for the discovery of compounds that present biological activity against 
neurodegenerative diseases. Table 4 reports a comparison between the 

Fig. 2. Ca2+ titration in the presence (red) and absence (black) of compound 2b. A two binding site equation was fitted to the data.  

Table 1 
Relative amplitude in the presence of the indicated compounds at 100 µM. Mean 
± standard error of the mean (SEM) (n ≥ 3). Total inhibition is the relative 
reduction of the combined Phase I and Phase II amplitudes.  

Compound Total inhibition Phase I Inhibition Phase II inhibition 

Riluzole 7.9 ± 2.3 - 2.3 ± 2.3 10.7 ± 3.3 
1 24.1 ± 4.6 -2.1 ± 2.6 31.2 ± 5.6 
2a 34.5 ± 1.6 12.1 ± 7.0 40. 6 ± 1.2 
2b 62.5 ± 2.8 -5.3 ± 3.9 80.9 ± 2.6 
2c 33.1 ± 1.3 23.7 ± 3.1 35.6 ± 1.5 
3 25.2 ± 1.1 3.3 ± 4.7 31.2 ± 1.6  

Table 2 
Classification matrix. Statistical parameters to characterize the built IFPTML-LDA model.  

Data Set Observed Classification Stat. Param.a Pred. Stats. Predicted Classification 

nj f(vij)pred= 0 f(vij)pred= 1 

Train f(vij)obs= 0 Sp (%)  80.52  443348  432035  104548 
f(vij)obs= 1 Sn (%)  80.83  152234  11313  47686 
Total Ac (%)  80.55  595582     

Val. f(vij)obs= 0 Sp (%)  80.67  148018  144268  34576 
f(vij)obs= 1 Sn (%)  80.95  50508  3750  15932 
Total Ac (%)  80.69  198526      

a Statistical parameters of the model: Sp: Specificity; Sn: Sensitivity; Ac: Accuracy; n: the number of cases used to train the model. 
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present model and some of them. In this comparative study, we included 
14 models, most of which (64%) are based on heterogeneous series of 
compounds (models 2 and 3, models 5–11). However, two models were 
based on heterocycles (models 12 and 13), another specifically in 
β-amyloid aggregation-inhibiting heterocycles (model 4), and another 
one on structurally diverse succinimides (model 14). Regarding the 
number of cases, eight models can be found that include hundreds of 
cases, which represent 57%, two of the models include less than one 
hundred and fifty cases, while the rest (21%) include much larger 
amounts. It should be noted that the model reported in this paper fits a 
very complex and notably larger data set of cases compared to the other 
models (n> 794100). Regarding the complexity of the models, most of 

them include less than 10 variables, such as models 1, 5, 7 and 10; while 
other models, such as 2, 4, 11 and 13, include between 10 and 13 var
iables. There is a great variety of techniques constructing the reported 
models. Some of the most repeated techniques are the LDA, used in 
models 2, 9 and 10; the ANNs used in models 5, 7 and 11; and the SVM 
that is reported in models 1, 12, 13. Regarding the validation tech
niques, in most cases cross validation is used (8 models, 57%), only three 
models employ external validation (21%) and three other models use 
both validation techniques (21%). The reported models have been built 
to find compounds with biological activity that can be used in the 
treatment of various neurodegenerative diseases. Most of them are 
focused on the search for drugs for the treatment of Alzheimer’s (5 
models), for example, models 2, 3, 4, 7 and 9; although there are models 
that search for compounds against other diseases such as Parkinson’s 
(model 10), amyotrophic lateral sclerosis (model 8) and Huntington’s 
disease (model 1). There are also some described models that pursue 
active compounds against various diseases, such as models 5, 6, 11, 12, 
13, like the model reported here. On the other hand, only 3 models 
found in the literature are multi output. In fact, the model reported in 
this study is multi output; that is, it can predict more than one type of 
biological activity (MIC, IC50, MBC, etc.). On the other hand, a distinc
tive characteristic of our model is that it considers the PIN, and, there
fore, the brain region in which the target proteins of the compounds are 
expressed, which is not considered by any of the reported models. 
Finally, most of the reported models are multi-target models, like the 
model presented in this study. 

2.3.2. IFPTML prediction of new Riluzole derivatives vs. calmodulin 
The prediction was carried out successfully and 6 different biological 

activities were calculated for the 6 compounds. The 1692 assays were 
composed by combining the following assay components: 14 different 
proteins, 1 tested cell, 6 brain regions, and 5 organism types. Moreover, 
the assays types consisted of ADMET (A), Functional (F) and Binding (B) 
assays. The different results for Δf(vij;vCaMj)calc (%) are displayed on  
Fig. 3 as a visual representation. Binding assays against CaM were 
selected for this results’ diagram, because those are the assays carried 
out on the experimental section (Supplementary Materials Table S5). 
Additionally, results can be seen depending on the different brain re
gions, including: Superior Frontal Gyrus represented in yellow color, 
Prefrontal Cortex represented in navy blue, Middle Temporal Gyrus 
represented in green, Hippocampus represented in orange color, Ento
rhinal Cortex represented in pink and Visual Cortex represented in light 
blue. Furthermore, Riluzole’s f(vij;vyj)calc values are represented with a 
circle, whereas the f(vij;vyj)calc values of the proposed derivatives are 
represented with a square. The combining outcomes were characterized 
in two different ways. On the one hand, when the circle is inside the 
square, it means that the derivative resulted in an equal or better 
response than Riluzole. On the other hand, when the circle is outside the 
square, it means that the derivative resulted in a worse response than the 
Riluzole. The searched outcome consist in the compound has the same or 
better response than Riluzole. This is because the proteins included in 
this prediction are composed of CaM and its kinases, so the aim is to 
observe if the derivative has better binding capacity than Riluzole. 
Taking that into account, the green and red colors were chosen 
depending on the response sought, with green being the satisfactory 
result. 

These results showed that compounds 1 and 2c resulted on equal or 
better response than Riluzole on the next brain regions: Superior Frontal 
Gyrus, Prefrontal Cortex, Middle Temporal Gyrus, Hippocampus and 
Entorhinal Cortex and Visual Cortex. These compounds were predicted 
to have equal or better capacity than the Riluzole to bind to CaM. 

2.3.3. IFPTML prediction of new Riluzole derivatives vs. human brain 
proteome 

The prediction was carried out successfully. In total 369 different 
biological activities were calculated for the 6 compounds. The 78120 

Table 3 
Input variables in the best model found.  

Label (cj) Operator Formula Operator Information 

Biological 
activity (c0) 

f
(
vij
)

ref = n(f
(
vij
)
= 1, c0)/nc0 ,a A priori probability 

that a compound that 
interacts with a protein 
expressed in one of the 
brain regions of 
interest is active, for 
the specific condition 
c0. 

Drug’s 
Chemical 
structure 

Sh2
(
Drugi

)
= −

p
(
D02

(
Drugi

) )
⋅log

[
p
(
D02

(
Drugi

) ) ]
It accounts for 
variability of chemical 
structure information 
of the drugs in terms of 
lipophilicity expressed 
as TPSA surface area. 

Protein 
Sequence 

Shk
(
Proty

)
= −

p
(
Dk

(
Proty

) )
⋅log

[
p
(
Dk

(
Proty

) ) ]
It accounts for 
variability of the 
sequence of the target 
protein. The 
information has been 
quantified to the 
neighboring aa of the 
sequence at a distance 
of X amino acids. (X=
1, 2, 4 or 5). 

PIN Shk(PIN) = −
∑y=ymax

y=1 pk
(
Proty

)
⋅log

[
pk
(
Proty

) ]
It accounts for 
variability on the 
structure of the PIN of 
the brain cortex 
region. 

PTO of the 
molecular 
descriptor 
PSA (cj) 

ΔSh02
(
Drugi, cj

)
= Sh02(Drugi) −

〈
Sh02(cj)

〉
It is a PTO and by itself 
calculates how much 
the value of the 
descriptor Sh02(Drugi) 
of a compound 
deviates from the 
average of said value 
in the database, for the 
conditions cj. 

PTO of protein 
sequences 
expressed in 
the brain (cj) 

ΔSh01
(
Proty, cj

)
= Sh01(Proty) −

〈
Sh01(cj)

〉
It is a PTO and by itself 
calculates how much 
the value of the 
descriptor Sh01(Proty) 
of a compound 
deviates from the 
average of said value 
in the database, for the 
conditions cj. 

PTO of PIN (cj) ΔSh00
(
PIN, cj

)
= Sh00(PIN) −

〈
Sh00(cj)

〉
It is a PTO and by itself 
calculates how much 
the value of the 
descriptor Sh00(PINt) 
of a compound 
deviates from the 
average of said value 
in the database, for the 
conditions cj. 

cj = (c0, c1, c2, c3), c0 = biological activity (Property (unit) measured to quantify 
the biological activity of each compound), c1 = cell line, c2 = brain region, c3 =

organism of assay. 
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assays were by composed combining the following assay components: 
124 different genes, 134 different proteins, 70 tested cells, 6 brain re
gions and 28 organism types. Moreover, the assays types consisted of 
ADMET (A), Functional (F), Binding (B) and Unclassified (U) for those 

assays with no specified type. The different results for Δf(vij;vCaMj)calc 
(%) are shown on Fig. 4 as a visual representation. Binding assay types 
were selected for this results’ diagram, because those are the assays 
carried out on the experimental section (Supplementary Materials 

Table 4 
Comparison to other Chemoinformatic models of neuroprotective compounds.  

ma CTa nb Var.b Tech.c Val.d NDe MOf Net.g MTh Acc.i Ref.  

0 HS 794108 10 LDA i MD Yes Yes Yes 80.6 here  
1 HS (TCM) - 8 MLR 

SVM 
i, ii HD No No Yes - [44]  

2 HS 1432 12 LDA i AD No No No 88.3 [45]  
3 HS 18741 - NB 

RP 
i, ii AD No No Yes  [46]  

4 HBAAI 252 13 PLS i, ii AD No No No  [47]  
5 HS 121 5 ANN 

AMT 
i AD 

P 
No No No  [48]  

6 HS 134 - PRKDEM ii MD Yes No Yes  [49]  
7 HS 213 4 BMLR 

ANN 
ii AD No No Yes  [50]  

8 HS 946 - PM-HDE ii ALS No No No  [51]  
9 HS 3381 5 LDA i AD Yes No Yes  [52]  
10 HS 230 6 LDA, QDA MLP ii P No No Yes  [53]  
11 HS 550 10 ANN ii P 

AD 
No No No  [54]  

12 HC 449 - SVM ii MD No No No  [55]  
13 HC 413 10 SVM-RFE ii MD No No Yes  [56]  
14 SDS 327 - MNN ii E Yes No Yes  [57]  

a CT = Compound Type, P = Peptide, HS = Heterogeneous Series of compounds, HS (TCM) = Heterogeneous series of compounds present is Traditional Chinese 
Medicine database, HBAAI = Heterocyclic β-Amyloid Aggregation Inhibitors, HC = Heterocycles, SDS = Structurally Diverse Succinimides. 

b Total number of cases in training and/or validation series and Vars. = Variables in the model. 
c Technique: LDA = Linear Discriminant Analysis, ANN = Artificial Neural Network, MLR = Multiple Linear Regression, SVM = Support Vector Machine, NB = Naive 

Bayesian, RP = Recursive Partitioning, PLS = Partial Least Squares regression technique, AMT = Advanced Multilinear Techniques, PRKDEM = Parzen–Rosenblatt 
kernel Density Estimation Method, QDA = Quadratic Linear Discriminant Analysis, MLP = Multi-Layer Perceptron, SVM-RFE = SVM-based Recursive Feature 
Elimination, MNN = Modular Neural Network. 

d Validation methods: i) external predicting series, ii) cross-validation, 
e ND = Neurodegenerative Disease, MD = Multiple Diseases (five or more), HD = Huntington’s Disease, AD = Alzheimer’s Disease, P = Parkinson’s, ALS =

Amyotrophic Lateral Sclerosis, E = Epilepsy, 
f MO = Multi Output: multi-output models are those able to predict more than one type of biological activity (MIC, IC50, MBC, etc.). 
g Net. = PINs: Models that consider the PIN. 
h MT = MultiTarget models, 
i Acc. = Accuracy of the model in training series. 

Fig. 3. Prediction results of Riluzole derivatives vs. CaM protein.  
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Table S10). Additionally, results can be seen depending on the different 
brain regions (the color code indicated in Fig. 3 has also been used). 
Furthermore, Riluzole’s f(vRiluzolej;vyj)calc values are represented with a 
circle, whereas the f(vij;vyj)calc values of the derivatives are represented 
with a square. The combining outcomes were characterized in two 
different ways: on the one hand, when the circle is inside the square, it 
means that the derivative resulted in an equal or worse response than 
the Riluzole; and, on the other hand, when the circle is outside the 
square, that means that the derivative resulted in a better response than 
the Riluzole. The searched outcome consists in the compound having an 
equal or worse response than Riluzole. This is because the proteins 
included in this prediction are composed of proteins that are not related 
to CaM, and, thus, there is not point on searching the binding result 
among these proteins and the drug. Taking that into account, the green 
and red colors were chosen depending on the searched response, being 
the green one the satisfactory result. 

There results showed that compounds 1–3 resulted on equal or worse 
response than Riluzole on the next brain regions: Superior Frontal 
Gyrus, Prefrontal Cortex, Middle Temporal Gyrus, Hippocampus and 
Entorhinal Cortex. Nevertheless, on the Visual Cortex, only 1 and 2c 
showed equal or worse response than Riluzole. These compounds were 
predicted to have less capacity than the Riluzole to bind to those 
proteins. 

2.4. Molecular docking 

Among the computational techniques currently used in modern drug 
development pipelines, docking is one of the most prominent and useful 
ones. Docking algorithms are able to determine the binding mode of a 
ligand in a receptor by finding the orientation of the ligand that opti
mizes a scoring function, which in the context of docking, represents the 
affinity between receptor and ligand. The main power of docking lies in 
its efficiency, as it allows to evaluate large libraries of candidate drugs in 
a fraction of the time and cost that an experimental screening would 
require. However, in combination with high quality 3-dimensional 
structures of the receptor protein, it can also be used to elucidate the 
way in which the ligand interacts with its receptor at an atomic reso
lution, and thus provides vital information for rational drug design. In 
this study we report the Docking analysis of the present series of 

compounds. 
The best conformation for Riluzole obtained from Glide docking 

calculations is shown in Fig. 5. The bound conformation is highly similar 
to the structure previously reported in [15], characterized by Riluzole’s 
-OCF3 group buried in the hydrophobic pocket formed between CaM and 
the SK4 channel, and the amino group forming a hydrogen bond with 
residue E54 at the opening of the pocket. However, unlike the SK2 
structure, where the border of the binding pocket is formed by amino 
acids Q470, N474 and L480 from the SK2 C-terminus, in the SK4 
structure, this border is instead formed by amino acids A184 and L185 of 
the S45A helix. 

The binding conformations of derivatives 2a-c (Fig. 5E) are very 
similar to each other, and also share many similarities with Riluzole. The 
-OCF3 of these derivatives lies buried in the binding pocket similar to 
Riluzole, in contact with CaM’s hydrophobic residues such as F19, I27, 
L32, I63 and F68. However, in the case of these derivatives, the amino 
group at the head of the benzothiazole core points towards SK4 residues 
A184 and L185, and the opening of the border is instead occupied by the 
different substituents added to these derivatives. 

Similarly, the conformations of the 1 and 3 (Fig. 5D) derivatives also 
show high similarity with one another. Instead of forming a hydrogen 
bond with residue E54 like Riluzole, the amino group in these ligands 
interacts with the E83 residue of the CaM C-lobe directly in front of the 
binding pocket opening. As a result, the positioning of these ligands in 
the hydrophobic core is not as deep as Riluzole and the other derivatives 
studied in this work. 

To validate the conformations obtained from this docking study, 
BPMD simulations were run for every ligand and frames from the last 
2 ns of each metadynamics simulation were collected. The stability of 
the docked conformations was measured in terms of the "CompScore" 
[58]. This score is computed from two contributions: the "PoseScore", 
which is computed from the RMSD between the ligand heavy atoms in 
each frame of the simulation and the reference docked configuration 
after aligning the protein Cα atoms, and the "ContactScore", which 
computes the ratio of native non-covalent interactions that are pre
served during the simulation. The final CompScore decreases as the 
average RMSD becomes smaller and as the ratio of conserved contacts 
increases, so smaller numbers are indicative of more stable conforma
tions. The precise score is computed as follows: 

Fig. 4. Prediction results of Riluzole derivatives vs. full human brain proteome (excluding CaM).  
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CompScore = PoseScore − 5xContactScore (2) 

The CompScore obtained by averaging over the last 2 ns from each of 
the 10 simulations for Riluzole and its derivatives is given in Fig. 6. 
Based on the computed metrics, all ligands display behavior of stable 
conformations, with average RMSD below the 2 Å threshold that is often 
used to differentiate stable and unstable poses [58,59], and high ratios 
of conserved native interactions. Overall, CompScores measured for all 
ligands are low enough to classify all analyzed conformations as stable. 

2.5. Overall result’s summary 

Table 5 presents a comprehensive summary of the findings derived 
from the current research, denoted by a ✓ symbol when demonstrating 
results deemed acceptable or comparable to those of Riluzole, and 
marked as ⨯ otherwise. This table encompasses the overarching out
comes of the synthesis of Riluzole derivatives, the results of the 
biosensor assay employing CaM, the predictive model’s findings, and the 
docking results. Concerning the synthesis aspect, all synthesized mole
cules were successfully produced. Furthermore, in the context of the 
biological assay methods, derivatives 1 and 2b emerged as the most 
promising when compared to Riluzole. In the NIFPTML study, it was 
predicted that derivatives 1 and 1c exhibited activity scores similar to 
Riluzole within critical brain regions associated with neurodegenerative 
diseases, such as the Frontal and Temporal regions. Additionally, the 
NIFPTML model predicted a relatively high degree of selectivity for 

CaM, as evidenced by the model’s projection of low average affinity 
scores for 134 other proteins across various brain regions, as determined 
through binding assays. Furthermore, the results gleaned from the 
docking study indicated that all synthesized molecules exhibited 
favorable binding conformations with the CaM protein. 

3. Conclusions 

In conclusion, this research represents a significant step towards the 
development of new general purpose strategy for the screening of lead 
compounds towards the treatment of CaM-related diseases, particularly 
neurodegenerative conditions. The strategy involves four main stages: 
(1) chemical synthesis, (2) FRET biosensor development and in vitro 
biological assay of new compounds, (3) Cheminformatics model devel
opment and prediction of in vivo assays compounds, and (4) Docking 
studies of drug-target binding. Riluzole was used as the bechmark 
compound for the case of study presented, even when the methodology 
is of general use. In this case, palladium and lithium-mediated reactions 
were succesfully used for the synthesis of the series of five new Riluzole 
derivatives. Additionally, the in vitro evaluation of these derivatives 
against the CaM protein revealed promising results. Notably, compound 
2b demonstrated the highest inhibition, reducing CaM activity by 80%. 
Furthermore, the implementation of the NIFPTML algorithm has proven 
to be a powerful tool for predicting various biological activity parame
ters, not only against CaM proteins but also related kinases and other 

Fig. 5. Docking of Riluzole derivatives: (A) Localization of the binding site in the SK4 structure, which lies in the interface between CaM and the S45A helix. (B) 
Schematic representation of the interactions between Riluzole and the amino acids in its environment. (C) Best binding pose of Riluzole determined through docking, 
characterized by a -OCF3 group buried in the hydrophobic pocket of the binding site, and a hydrogen bond formed between its amino group and amino acid E54. (D) 
Best binding poses of derivatives 1 and 3, which share similar optimal poses, with a hydrogen bond between their amino group and amino acid E83. (E) Best binding 
poses of derivatives 2a, 2b and 2c, which also share similar optimal binding poses. 
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proteins. It marks the first instance where a comprehensive approach 
integrates vital elements such as drug structure, protein sequence, and 
PINs in various brain regions, test conditions, and the specific expression 
profiles of these proteins in brain regions linked to degenerative 
neurological diseases. This innovative model, boasting high specificity 
and sensitivity values, offers the potential to significantly streamline the 
drug discovery process, reducing both time and resource costs. Lastly, 
the docking study of Riluzole and its derivatives with the CaM-SK4 
channel complex has provided valuable insights into their binding 
conformations, shedding light on potential modes of interaction. De
rivatives 1–3 exhibit distinctive binding conformations related to Rilu
zole. These findings collectively contribute to the advancement of 
therapeutic strategies targeting CaM-related diseases and underscore the 
potential of innovative computational and machine learning approaches 
in drug discovery. 

4. Experimental section 

4.1. General synthesis of Riluzole derivatives 1–3 

All commercial chemicals were reagent grade and were used without 
further purification unless otherwise specified. Palladium catalysts were 
commercially available, and were used without further purification: Pd 
(PPh3)4: 99% purity. All solvents used in reactions were anhydrous and 
purified according to standard procedures. All air- or moisture-sensitive 
reactions were performed under argon; the glassware was dried (130 ̊C) 
and purged with argon. TLC was carried out with 0.2 mm-thick silica gel 
Merck F254 plates. Visualization was accomplished by UV light (λ =
254 nm and 360 nm). Flash column chromatographic separations and 
purifications were performed on silica Flash P60 (Silicycle), 230–400 
mesh ASTM. Final compounds were purified to ≥95% purity as assessed 
by 1H NMR spectra and analytical liquid chromatography. Melting 
points were measured in a Büchi B-540 apparatus in unsealed capillary 
tubes. IR spectra were obtained using Attenuated Total Reflection (ATR) 
in a JASCO FT/IR 4100 in the interval between 4000 and 400 cm− 1 with 
a 4 cm− 1 resolution. Only characteristic bands are given in each case. 1H 
and 13C NMR spectra were recorded at 20–25 ̊C on either a Bruker AC- 
300 spectrometer (300 MHz for 1H and 75.5 MHz for 13C) and on a 
Bruker AC-500 spectrometer (500 MHz for 1H and 125.7 MHz for 13C). 
Chemical shifts are reported in parts per million (ppm) relative to an 
internal solvent reference. Recorded peaks are listed in the order mul
tiplicity (s, singlet; d, doublet; dd, doublet of doublets; m, multiplet), 
coupling constants, and number of protons. Assignments of individual 
13C and 1H resonances are supported by DEPT experiments and 2D 
correlation experiments (COSY, HSQCed or HMBC) when necessary. 
High resolution mass spectra (HRMS) were performed by the Mass 
Spectrometry General Service at the University of the Basque Country 
using an ultra-performance liquid chromatograph (Acquity UPLC, Wa
ters Chromatography.), in tandem with a QTOF mass spectrometer 
(SYNAPT G2 HDMS, Waters Chromatography), with an electrospray 
ionization source in a positive mode. 

Fig. 6. Mean and standard deviation of the PoseScore, ContactScore and CompScore measured for the last 2 ns of the metadynamics simulations, for Riluzole and all 
its derivatives. 

Table 5 
Overall summary of all results.  

Compound Synthesis 
Results 

Biological 
Assay (In 
vitro) 

Predictive Study (In 
vivo) 

Docking 
and MD 
Study (In 
vitro) CaM 

A.R. 
O.P. 
VCX 

O. 
P. 
O. 
R. 

Riluzole ✓ ✓ ✓ ✓ ✓ ✓ 
1 ✓ ✓ ✓ ✓ ✓ ✓ 
2a ✓ ⨯ ⨯ ✓ ✓ ✓ 
2b ✓ ✓ ⨯ ✓ ✓ ✓ 
2c ✓ ⨯ ✓ ✓ ✓ ✓ 
3 ✓ ⨯ ⨯ ✓ ✓ ✓ 

aA.R. = All Brain Regions, O.P. = Other 134 proteins without including CaM, O. 
R. = Other Brain Regions, without including VCX. 
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4.1.1. Synthesis of 4-bromo-6-(trifluoromethoxy)benzo[d]thiazol-2-amine 
(1) 

KSCN (1.27 g, 13.07 mmol) and a solution of Br2 (0.17 mL, 
3.27 mmol) in HAcO (2 mL) were added to a solution of 2-bromo-4-(tri
fluoromethoxy)aniline (0.84 g, 3.27 mmol) in HAcO (7 mL) at room 
temperature and the mixture was stirred for 16 h. The reaction was 
quenched with saturated NaHCO3 (150 mL) and the aqueous phase 
extracted with AcOEt (2 ×50 mL). The combined organic extracts were 
washed with saturated NaCl (2 ×50 mL), dried over anhydrous Na2SO4 
and concentrated in vacuo. Purification by column chromatography 
(silica gel, petroleum ether/AcOEt 7:3) afforded 1 as a pale yellow solid 
(368.2 mg, 36%): mp. (petroleum ether/ AcOEt): 196–199 ºC. IR (ATR): 
3434, 3060, 1633, 1531, 1443 cm− 1. 1H NMR (300 MHz, DMSO-d6): δ 
7.46 (s, 1 H), 7.82 (s, 1 H), 8.04 (br s, 2 H). 3C{1H} NMR (75.5 MHz, 
DMSO-d6): δ 109.9, 114.5, 120.6 (q, J = 256.1 Hz), 122.5, 132.3, 142.0 
(q, J = 2.2 Hz), 150.7, 168.7. MS (ESI) m/z (rel intensity): 315 (MH+ +

2, 100), 313 (MH+, 97). HRMS (ESI-TOF): calcd for C8H5BrF3N2OS 
[MH+]: 312.9258; found, 312.9265. 

4.1.2. Suzuki-Miyaura reaction. Synthesis of 4-aryl-6-(trifluoromethoxy) 
benzo[d]thiazol-2-amines 2a-c General procedure 

To a solution of 4-bromo-6-(trifluoromethoxy)benzo [d]thiazol-2- 
amine (1) (1 mmol) in dry dioxane, the adequate boronic acid 
(1.2 mmol), a solution of Na2CO3 2 M (6 mmol), and Pd(PPh3)4 
(0.1 mmol) were sequentially added. The reaction mixture was stirred 
under reflux for 24 h and, then, the solvent was removed and the 
resulting mixture was dissolved in AcOEt (10 mL). The organic phase 
washed with water (2 ×10 mL), dried over anhydrous Na2SO4, filtered 
and concentrated under vacuum. Purification by column chromatog
raphy (silica gel, petroleum ether/AcOEt 7:3) afforded the correspond
ing 4-arylbenzothiazol-2-amines 2a-c. 

4.1.3. 4-(4-nitrophenyl)-6-(trifluoromethoxy)benzo[d]thiazol-2-amine 
(2a) 

According to General Procedure, 4-bromo-6-(trifluoromethoxy) 
benzo [d]thiazol-2-amine (1) (80.1 mg, 0.26 mmol) in dry dioxane 
(10 mL) was treated with (4-nitrophenyl)boronic acid (51.3 mg, 
0.31 mmol), a solution of Na2CO3 2 M (0.8 mL, 1.56 mmol), and Pd 
(PPh3)4 (29.6 mg, 0.025 mmol). After work-up, purification by column 
chromatography provided 2a (71.6 mg, 79%) as a pale yellow solid: m. 
p. (petroleum ether/ AcOEt): 246–248ºC. IR (ATR): 3398, 3282, 3147, 
2920, 1537, 1347 cm− 1. 1H NMR (300 MHz, DMSO-d6): δ 7.42 (d, J =
1.8 Hz, 1 H), 7.88–7.91 (m, 3 H), 8.10 (d, J = 8.2 Hz, 2 H), 8.30 (d, J =
8.2 Hz, 2 H). 13C{1H} NMR (75.5 MHz, DMSO-d6): δ 115.4, 119.6, 120.8 
(q, J = 255.9 Hz), 123.6, 128.3, 130.9, 133.8, 142.6 (q, J = 2.2 Hz), 
145.1, 146.9, 149.9, 168.8. MS (ESI) m/z (rel intensity): 356 (MH+, 76). 
HRMS (ESI-TOF): calcd for C14H9F3N3O3S [MH+]: 356.031; found, 
356.0326. 

4.1.4. 4-(4-methoxyphenyl)-6-(trifluoromethoxy)benzo[d]thiazol-2-amine 
(2b) 

According to General Procedure 4-bromo-6-(trifluoromethoxy)benzo 
[d]thiazol-2-amine (1) (72.4 mg, 0.23 mmol) in dry dioxane (10 mL) 
was treated with (4-methoxyphenyl)boronic acid (42.2 mg, 0.28 mmol), 
a solution of Na2CO3 2 M (0.7 mL, 1.38 mmol), and Pd(PPh3)4 (26.7 mg, 
0.023 mmol). After work-up, purification by column chromatography 
provided 2b (66.9 mg, 85%) as a pale yellow solid: m. p. (petroleum 
ether/ AcOEt): 194–195 ºC. IR (ATR): 3416, 3289, 3108, 2924, 1606, 
1510, 1442 cm− 1. 1H NMR (300 MHz, DMSO-d6): δ 3.81 (s, 3 H), 
6.98–7.03 (m, 2 H), 7.23–7.24 (m, 1 H), 7.71–7.79 (m, 5 H). 13C{1H} 
NMR (75.5 MHz, DMSO-d6): δ 55.6, 113.2, 114.0, 118.8, 120.8 (q, J =
255.3 Hz), 130.7, 130.8, 130.9, 133.3, 142.8 (q, J = 2.2 Hz), 149.5, 
159.2, 167.7. MS (ESI) m/z (rel intensity): 341 (MH+, 100), 318 (13). 
HRMS (ESI-TOF): calcd for C15H12F3N2O2S [MH+]: 341.0572; found, 
341.0574. 

4.1.5. 4-(4-fluorophenyl)-6-(trifluoromethoxy)benzo[d]thiazol-2-amine 
(2c) 

According to General Procedure, (trifluoromethoxy)benzo [d]thia
zol-2-amine (1) (45.6 mg, 0.15 mmol) in dry dioxane (10 mL) was 
treated with (4-fluorophenyl)boronic acid (24.4 mg, 0.17 mmol), a so
lution of Na2CO3 2 M (0.44 mL, 0.87 mmol), and Pd(PPh3)4 (16.8 mg, 
0.015 mmol). After work-up, purification by column chromatography 
provided 2c (23.9 mg, 50%) as a white solid: IR (ATR): IR (ATR): 3446, 
3285, 2921, 2854, 1640, 1506, 1446 cm− 1. 1H NMR (300 MHz, DMSO- 
d6): δ 7.27–7.28 (m, 2 H), 7.76–7.75 (m, 5 H). 13C{1H} NMR (75.5 MHz, 
DMSO-d6): δ114.0, 115.3 (d, J = 21.1 Hz), 119.2, 120.8 (q, J =
256.7 Hz), 129.9, 131.7 (d, J = 8.3 Hz), 133.4, 134.9 (d, J = 3.0 Hz), 
142.7 (q, J = 2.2 Hz), 149.6, 161.5 (d, J = 245.0 Hz), 168.1. MS (ESI) m/ 
z (rel intensity): 329 (MH+, 100). HRMS (ESI-TOF): calcd for 
C14H9F4N2OS [MH+] 329.0372; found, 329.0379. 

4.1.6. Synthesis of 2-amino-6-(trifluoromethoxy)benzo [d]thiazole-4- 
carbaldehyde (3) 

n-Butyllithium (1.10 mL, 1.81 mmol, 1.6 M solution in hexane) was 
added to a solution of 4-bromo-6-(trifluoromethoxy)benzo [d]thiazol-2- 
amine (1) (195.4 mg, 0.62 mmol) in THF (3 mL) at − 78 ºC, and the 
mixture was stirred at that temperature for 30 min. Then, N,N-dime
thylformamide (0.24 mL, 3.12 mmol) was slowly added at − 78 ºC and 
the mixture was stirred at − 78 ºC for 1 h. The reaction was quenched 
with a saturated aqueous solution of NH4Cl (10 mL). The mixture was 
gradually warmed to room temperature and extracted with AcOEt (2 
×10 mL). The combined organic extracts were washed with brine, dried 
over anhydrous Na2SO4 and concentrated in vacuo. The crude material 
was purified by flash column chromatography (silica gel, petroleum 
ether/AcOEt 1/1) to afford 3 (54.4 mg, 33%) as a yellow solid: IR (ATR): 
3378, 3123, 2970. 2924, 1739, 1680, 1527, 1209 cm− 1. 1H NMR 
(300 MHz, DMSO-d6): δ 7.50 (s, 1 H), 8.13 (s, 1 H), 8.30 (br s, 2 H), 
10.55 (s, 1 H). 13C{1H} NMR (75.5 MHz, DMSO-d6): δ 115.9, 120.7 (q, J 
= 256.0 Hz), 120.8, 124.1, 135.5, 142.1 (q, J = 2.2 Hz), 154.9, 170.9, 
189.9. MS (ESI) m/z (rel intensity): 263 (MH+, 100). HRMS (ESI-TOF): 
calcd for C9H6F3N2O2S [MH+] 263.0102; found, 263.0100. 

4.2. Biological assay of Riluzole derivatives 

Ca2+-dependent CaM interactions with peptide targets can be 
monitored using biosensors that consist of CaM fused to a target peptide, 
flanked by donor and acceptor fluorescent proteins attached to the N- 
and C-termini. The YC-Nano15 biosensor [60], which follows this 
design, was used as template. The M13 sequence was replaced by that of 
the S4S5 linker from the SK4 channel sequence (Fig. 7A), and cloned 
into a pProEX-HTc plasmid (Invitrogen) that introduces a 6xHis tag at 
the N-terminus. The construct was transformed in BL21(DE3) cells 
(Novagen) by electroporation. Cells were grown at 37 ◦C in 1 L of LB 
medium containing ampicillin until an A600 between 0.6 and 0.8 was 
reached. The expression of the fusion proteins was induced using 
0.5 mM IPTG O/N at 20 ◦C. Cells were then harvested by centrifugation 
at 9000 g for 9 min and re-suspended in 40 mL Buffer A (KCl 120 mM, 
K-HEPES 50 mM [pH 7.4], NaCl 5 mM, DTT 500 μM, PMSF 1 mM, 
protease inhibitor EDTA free: Roche, Ref. 04693132001). After lysis by 
sonication (15 s ON, 15 s OFF, 25 cycles, 7.5 μm), the slurry was 
centrifuged at 30,000 g for 30 min, the supernatant was filtered (0.20 
μm) and transferred to a clean tube. The complex was affinity purified 
from the supernatant using a His-Trap-talon column and equilibrated 
with fluorescence buffer (KCl 120 mM, Hepes 50 mM, NaCl 5 mM, 
EGTA 5 mM). Size-exclusion chromatography was performed using 
Superdex 200 pg 26/60 column (GE Healthcare, ref. 28–9893) 
pre-equilibrated with fluorescence buffer. A proper volume of 1 M EGTA 
was added to obtain a final concentration of 100 mM to the fractions 
containing the soluble monomeric protein and dialyzed O/N against 
fluorescence buffer. Subsequently, the soluble fraction was centrifuged 
at 14,000 g for 10 min to remove any aggregate. Drugs were dissolved in 
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DMSO at 10 mM, and for titration, were added at a final concentration of 
100 µM with 1% DMSO. At this concentration, DMSO has negligible 
effects on the spectra emission of the biosensors used in this study. FRET 
measurements were performed in the absence and presence of free Ca2+

concentration (between 0 and 1600 nM). Fura-2 was used to estimate 
free Ca2+ concentration, following the manufacturer’s instructions 
(Invitrogen). 

4.2.1. Förster resonance energy transfer 
FRET changes were monitored using a Fluoromax-3 fluorimeter. The 

emission spectra were collected after excitation at 435 nm (which 
correspond to wavelength for maximal absorbance for the donor CFP) 
from 450 to 570 nm. A FRET index was computed as the emission ratio 
at 475 nm and 525 nm, which corresponds to the wavelength for peak 
emission for the donor (CFP) and acceptor (YFP) fluorescent proteins, 
respectively. 

4.3. NIFPTML methods 

NIFPTML analysis involves four phases: Network Invariants (NI) 
calculation, Information Fusion (IF) process, Perturbation Theory (PT) 
variability quantification, and Artificial Intelligence and/or Machine 
Learning (AI/mL) algorithms training, validation, and use. Firstly, NI- 
Phase involves system conceptualization, definition of subsystems, 
calculation of structural descriptors for each subsystem, etc. In addition, 
IF-Phase involves the steps of data gathering, data curation, and data 
pre-processing. In fact, system conceptualization is conceptual decom
position of the system in different sub-systems easy to study. This in
volves the definition of the objective function to be fitted by the model, 

the outputs variables, and the definition of the input variables used to 
describe the system. In this case, the system can be theoretically divided 
into three subsystems: drug information related to assays, protein data 
referred to assays, and PIN information. In this concept, in data gath
ering process the examination of databases is carried out. On the other 
hand, data curation represents the automatic and/or manual verification 
of all data dealing with missing, contradictory, or duplicated cases. 
Lastly, as final part of IF-phase, in data pre-processing all the trans
formations of the original data and calculation of structural parameters 
useful to codify the structure of each subsystem (drug, proteins, PINs, in 
this example) are carried out. Besides, PT-Phases refers to the calcula
tion of functions of reference and PTOs used to quantify all the pertur
bations/variability on the input variables for all subsystems of the query 
system with respect to conditions or labels for the systems of reference. 
Finally, mL-Phase involves the training and validation of different mL 
models [32–35,41,42,61]. In Fig. 8, we illustrate the general workflow 
used in this Research Article to obtain the NIFPTML model (Supple
mentary Material Section 3). 

4.3.1. Riluzole, CaM and other proteins: case of study 
As commented in the previous section, the output of the model f(vij; 

vyj)calc is a scoring function of the value vij of biological activity of the ith 

drug that interacts with a yth protein expressed in one of the regions of 
the cerebral cortex associated with degenerative neurological diseases in 
the different combinations of assay conditions, cj. In this context, it was 
decided to use this model to predict the output of different compounds, 
Riluzole and its derivatives 1, 2a-c, and 3, against CaM and its related 
kinases. The goal was to see if Riluzole and these derivatives bonded 
with CaM and not with other proteins, since that protein is the one 

Fig. 7. Schematic representation of the biosensor. (A) Design of the SK4 biosensor (S4S5 target sequence) based on the YC-Nano15 biosensor (M13 target sequence). 
(B) Presumed conformational changes and subsequent emission response. In the absence of Ca2+, the two fluorophores are far apart in space so there is little energy 
transfer from the donor to the acceptor. It is expected that the N-lobe will bind the S4S5 target peptide when it becomes Ca2+ loaded, moving both fluorophores close 
together, increasing the energy transfer. 
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related with neurodegenerative diseases as explained in the introduction 
section. To facilitate these predictions, our data were divided into two 
distinct databases. The first database contained comprehensive infor
mation concerning CaM protein and its related kinases (Supplementary 
Materials Table S4). On the other hand, the second database compiled 
data pertaining to other proteins associated with neurodegenerative 
diseases (Supplementary Materials Table S9). Notably, the data utilized 
for predicting the molecules’ affinities with other proteins were drawn 
from the same preclinical assays employed in developing our predictive 
model. Consequently, we needed only to construct the first database 
from the ground up, given its unique focus on CaM and its associated 
kinases. 

Firstly, the assay’s data was obtained from ChEMBL [25] database. 
Besides, to further prepare the dataset, all assays that were duplicated 
were deleted taking into account the following boundary conditions (cj): 
the tested proteins (c1) and cell lines (c3); the brain region where the 
protein was expressed (c4); and, lastly, the assay type (c7) including the 
organism tested (c8). Then, the drug information was added to the 
database. To do so, the data was duplicated 6 times, one for each pro
posed drug (Supplementary Materials Table S4). The molecular de
scriptors of the 6 molecules, including LogP and PSA, were searched 
using the DRAGON [62] software (Supplementary Materials Table S7 
and Table S12). DRAGON descriptor is generated by the DRAGON from 
the particular substructures of given modules. The detail information 
about the DRAGON descriptors can be obtained at the following website: 
http://www.talete.mi.it/products/dragon_description.htm. The molec
ular descriptors were then converted into Shannon’s entropy [63] 
structural information measures for the chemical compounds 
Shk(Drugi). In addition, the data was also repeated another 6 times to 
take into account each brain region: Superior Frontal Gyrus, Prefrontal 
Cortex, Middle Temporal Gyrus, Hippocampus, Entorhinal Cortex, Vi
sual Cortex. For the PIN information, whether the CaM was expressed or 
not in the 6 brain regions was searched, since that protein was not on the 
list. In this context, we observed that CaM is expressed in specific regions 

of both the human brain, including the Entorhinal Cortex [64], Middle 
Temporal Gyrus [64] and Hippocampus [65], and the mouse brain, 
encompassing the Prefrontal Cortex [66], Superior Frontal Gyrus [66], 
and Visual Cortex [67]. We then made the following determination: if 
CaM was expressed in the human brain, we assigned a probability of p 
(PINt) equal to 1. Conversely, if CaM was expressed in the mouse brain, 
we assigned a probability of p(PINt) equal to 0.75. Additionally, PTOs 
[68] were calculated (Supplementary Materials Table S6 and 
Table S11), and the boundary conditions that were considered to 
accomplish that were the following ones: c0= biological activity; c3=

cell name; c4= brain region; c6= target organism. Once all the data was 
gathered, the output of the model was applied, and, thus, the different 
scoring functions vij of the drugs (1–3) were reached. In Fig. 9, the 
general process of this part is displayed. 

Moreover, to be able to compare with the Riluzole’s results, the 
relative value was calculated for each database. In the first database, 
where the main protein is CaM, Δf(vij;vCaMj)calc (%) was calculated by 
substituting the outputs of the NIFPML model for the derivative f(vij; 
vCaMj)calc and Riluzole f(vRiluzolej; vCaMj)calc into Eq. 3. Whereas on the 
second database, where different proteins about neurological disease 
were collected, Δf(vRiluzolej;vyj)calc (%) was calculated. We calculated it 
by substituting the outputs of the NIFPTML model for the derivative f(vij; 
vyj)calc and Riluzole’s f(vRiluzolej;vyj)calc vs. 134 different proteins in 
different nth assays into Eq. 4. 
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f
(
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)

calc − f
(
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Fig. 8. General workflow used in the development of the predictive model.  
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4.4. Docking Methods 

We make use of docking for the purpose of better understanding the 
mechanism of action of Riluzole, and to assess the validity of the Rilu
zole derivatives proposed in this work as alternatives to Riluzole. In 
particular, the study is in the context of SK ion channels, which are a 
small family of four Ca2+ operated channels, and which contain CaM 
binding sites and are thus of interest in this study. 

The crystal structure of Riluzole bound at the interface between 
CaM’s N-lobe and the C-terminus of the SK2 ion channel was resolved by 
Cho et al. [15] (PDB ID 5v02). However, this crystal structure was 
resolved using only the R396–Q487 fragment of the SK2 channel in 
complex with CaM. More recently, the full structure of the SK4 ion 
channel, which is structurally very similar to the SK2 channel, in com
plex with CaM was resolved through Cryo-EM [69] (PDB ID 6CNN). In 
this new structure, the CaM N-lobe was instead found to recognize the 
S45A helix of the SK4 channel, and the interface between them was 
hypothesized to form the pocket where Riluzole binds. 

Therefore, in this work we perform docking and molecular dynamics 
simulations with Riluzole, to see if binding poses similar to the ones 
reported [15] can be obtained for this new SK4 binding pocket. Then, 
the proposed set of Riluzole derivatives are docked at the same CaM-SK4 
interface to examine whether stable conformations of these derivatives 
can be obtained in this binding pocket and thus investigate the viability 

of these molecules as alternatives to Riluzole. 
Before performing docking calculations, the geometry of the ligands 

was optimized through force field minimization using the OPLS4 [70] 
force field. The ligand and protein preprocessing steps were performed 
with LigPrep [69] and the Protein Preparation Wizard [71], respec
tively. The grid defining the search space of the docking calculation was 
defined as a 15 Å x 15 Å x 15 Å cube centered around the known binding 
site of Riluzole in CaM. Docking was then performed using Glide [72] on 
SP mode. 

To validate the stability of the binding poses predicted by the 
docking calculations, molecular dynamics simulations were performed 
starting from the predicted configurations. Specifically, the binding pose 
metadynamics (BPMD) procedure outlined in [59] was used, in which, 
starting from the predicted bound structure, multiple short metady
namics simulations are run with the root-mean-square deviation 
(RMSD) between the ligand heavy atoms and the reference structure as 
the collective variable. The goal of these simulations is not to fully 
converge the free energy landscape, but instead to observe the extent to 
which the biasing force causes the ligand to fluctuate, with the 
assumption that unstable ligands will tend to fluctuate more than 
sfscheme ones. 

The starting structures for MD simulation were prepared using the 
CHARMM-GUI [73] input generator. The bound structures were sol
vated in a box of TIP3P water molecules and neutralized with K+ and Cl- 

Fig. 9. Workflow of NIFPTML prediction of new Riluzole derivatives.  
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ions. For the parameterization of the protein and the ligands, the FF14SB 
[74] and GAFF2 [75] force fields were used, respectively. The system 
was then minimized and equilibrated for 500 ps in the NVT ensemble, 
using the OpenMM [76] simulation engine. During equilibration, pro
tein and ligand heavy atoms were restrained using a harmonic potential 
with a force constant of 5 kcal/mol. 

The BPMD simulations were run and analyzed using the imple
mentation in [58]. For every ligand, 10 independent simulations were 
run for 10 ns each, all of them in the NVT ensemble with a Langevin 
integrator, a timestep of 4 fs, a temperature of 300 K and a friction co
efficient of 1 ps− 1. For metadynamics, the RMSD collective variable was 
biased through Gaussian potentials with hill height and width of 
0.3 kcal/mol and 0.02 Å, respectively. 
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