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Abstract 

 

We employ MIDAS (Mixed Data Sampling) to study the risk-expected return trade-off 

in several European stock indices. Using MIDAS, we report that, in most indices, there 

is a significant and positive relationship between risk and expected return. This strongly 

contrasts with the result we obtain when we employ both symmetric and asymmetric 

GARCH models for conditional variance. We also find that asymmetric specifications 

of the variance process within the MIDAS framework improve the relationship between 

risk and expected return. Finally, we introduce bivariate MIDAS and find some 

evidence of significant pricing of the hedging component for the intertemporal risk-

return trade-off. 
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1. Introduction 

Numerous papers have investigated the relationship between expected excess return and 

conditional variance of aggregate wealth. Of course, this comes as no surprise given that 

this fundamental trade-off is the basic foundation of financial economics.  Merton 

(1973) shows that when the investment opportunity set is constant or, alternatively, 

rates of returns are independent and identically distributed there is a positive 

relationship between expected excess return and conditional variance: 
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where (.)J  is the indirect utility function with sub-indices indicating partial derivatives, 

tW  is aggregate wealth, )R(E 1Wtt +  is the conditional expected excess return of 

aggregate wealth between time t and t+1, )R(Var 1Wtt +  is the conditional variance of 

aggregate wealth, and [ ]WWW JWJ−  is a measure of relative risk aversion which we 

denote as γ .  Given risk aversion among investors, we of course expect a positive 

relationship between expected return and risk. 

 

On the other hand, Merton (1973) shows that when the investment opportunity set is 

stochastic and returns are not independent and identically distributed the dynamic 

relationship between expected return and risk includes additional terms to recognize the 

hedging behavior of investors regarding unfavorable movements in the opportunity set. 

In this case, assuming that the opportunity set is completely characterized by one state 

variable, we write the model as: 
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where tZ  is the state variable that describes the stochastic behavior of the investment 

opportunity set and motivates the hedging behavior of investors. 
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Surprisingly, given the importance of the topic, it has proved difficult from an empirical 

perspective to find a positive relationship between expected return and risk. French, 

Schwert and Stambaugh (1987), Campbell and Hentschel (1992) and Guo and Whitelaw 

(2003) find a positive but non-significant relationship. On the other hand, a number of 

authors find a negative and significant relationship. Among them, we should mention 

Campbell (1987), Nelson (1991), Glosten, Jagannatham and Runkle (1993) and Lettau 

and Ludvigson (2003). In related papers, Harvey (2001) argues that the sign of the 

empirical evidence depends on the exogenous predictors employed in conditional asset 

pricing models tested, and Brandt and Kang (2004) find different results depending 

upon whether unconditional or conditional correlations are used. All these papers 

employ US data. Evidence from other countries is rare and inconclusive. Guo (2004) 

uses daily price indices obtained from Morgan Stanley Capital International to construct 

realized volatility for 18 individual stock markets, including the US, and the world 

market portfolio. He finds that volatility does not forecast excess returns in most 

countries, but it becomes a significant predictor when combined with the US 

consumption-wealth ratio proposed by Lettau and Ludvigson (2001). Finally, Alonso 

and Restoy (1995) find a positive and non-significant relationship for the Spanish Stock 

Exchange, and make the interesting point that the magnitude of the relationship depends 

on the relative value of equity holdings by Spanish investors.  

 

There are two approaches in the relevant literature that seek to explain this disturbing 

and intriguing empirical evidence. To understand the first approach is must be noted 

that all the key papers mentioned above analyze the risk-return relationship in the 

context of expression (1), without recognizing the potential stochastic behavior of the 

opportunity set as described by state variables other than aggregate wealth. On pointing 

out this potential deficiency which characterizes this line of research, Scruggs (1998) 

reports some striking results on the decomposition of the expected excess market return 

into risk and hedge components. Assuming that long-term government bond returns are 

the hedging instrument for covering unfavorable movements in the opportunity set as 

described by short-term interest rates, he estimates equation (2) using a bivariate 

exponential GARCH model and finds that the coefficient of relative risk aversion is 

positive and statistically significant. The coefficient changes from an insignificant 0.86 

under expression (1) to a highly significant 10.6 when estimating the intertemporal 
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model represented by (2)1.  Scruggs argues convincingly that the simple risk-return 

trade-off obtained from conditional single-factor models may be biased downward due 

to the omission of relevant state variables from the conditional market risk premium 

equation given by (2). This suggests that the first potential explanation of the weak risk-

return trade-off found in literature is due to the misspecification of the asset pricing 

model. 

 

The second explanation is related to the fact that the conditional variance of the market 

is not observable and must be filtered from past returns. Therefore, we should introduce 

flexible techniques able to adequately predict future realized variance. Ghysels, Santa-

Clara and Valkanov (2003, 2004a) (GSV hereafter) introduce Mixed Data Sampling 

(henceforth MIDAS) under which the variance estimator forecasts the monthly variance 

with an optimal and flexible weighted average of lagged daily squared returns. In other 

words, this estimator involves data sampled at different frequencies as well as the 

possibility of introducing various past data window lengths, where the weights of past 

observations are parameterized by a flexible function. Under the perspective of equation 

(1), and for US data, GSV (2004a) find a significant coefficient of relative risk aversion 

of 2.6 between 1928 and 2000. Hence, the second potential explanation of the above 

finding regarding the relationship between risk and return is associated with the 

problem of estimating the dynamics of the conditional variance. 

 

The objective of this work is to study the relationship between risk and expected 

returns, using European data as an alternative to the well known behavior of US data, to 

understand which of the two potential explanations discussed above better explains the 

basic risk-return trade-off. In other words, we want to analyze whether the weak 

relationship found previously in literature is related to the misspecification of the 

theoretical model, to the imposing of the wrong dynamics for the conditional variance 

or to both.  

 

The rest of this paper is structured as follows. Section 2 describes the data set employed 

in the research. Section 3 discusses the evidence under the GARCH framework, while 

Section 4 presents MIDAS and reports results with symmetric shocks. Section 5 extends 

                                                 
1 See also the quite convincing recent evidence reported by Brennan, Wang and Xia (2004) in favor of the 
intertemporal asset pricing model in explaining the cross-sectional variation of expected returns. 
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the results to asymmetric shocks, and Section 6 explores the intertemporal asset pricing 

model under bivariate MIDAS. Section 7 concludes. 

 

 

2. Data 

We have daily stock exchange indices from Eurostoxx50, CAC (France), DAX 

(Germany), Ibex-35 (Spain) and FTSE100 (United Kingdom) from January 1988 to 

December 2003. These data allow us to calculate daily and monthly returns for the same 

period. We also have daily total indices of long-term government bond indices for 

France, Germany and the United Kingdom spanning the same sample period. From 

1988 to December 1993 these indices were provided by the DataStream Benchmark 

bond indices. They consist of the most liquid government bond indices and follow the 

methods of the European Federation of Financial Analysts2. From January 1994 

onwards, the bond indices are from Morgan Stanley Capital International. The Spanish 

long-term government bond index is the total index constructed daily since 1988 by the 

Bank of Spain3. As with equity data, we use these indices to calculate both daily and 

monthly total returns for government bonds4. In order to have overall European bond 

returns, we merely calculate the equally weighted bond portfolio returns from the four 

available European countries. The short-term risk-free monthly interest rates are 

provided by International Financial Statistics (IFS). For the United Kingdom and France 

we have the monthly yield on 3-month Treasury bills, while for Germany and Spain we 

use the money market rate5. As before, the overall European short-term rate is the 

equally-weighted average of the previous rates. The daily risk-free rate is constructed by 

assuming that the Treasury bill and money market rates remain constant within the 

month and suitably compounding them. Finally, equity and bond excess returns are 

calculated by the differences between equity or bond returns and the short-term risk-free 

rate. From now on, it should be understood that we employ excess returns. 

 

 

 

 
                                                 
2 These data were kindly provided by Kevin Sheppard from the University of California at San Diego. 
3 We thank Juan Ayuso from the Bank of Spain for his help in obtaining this index. 
4 These are total returns in the sense that they reflect both changing prices and interest payments. 
5 We thank Hui Guo from the Federal Reserve Bank of St. Louis for providing us with these data. 
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3. The Risk-Return Trade-off under GARCH Specifications 

All previous models mentioned in the introduction have employed some form of 

conditional variance from the GARCH family. This is the most common approach used 

to study the risk-return relationship.  

 

The mean equation to be estimated is given by expression (1) which may be written in 

the usual way as: 

 

                                         ( ) ( )1mtt1mtt RVar RE ++ += γµ                                             (3) 

 

where 1mtR +  is the excess return on the market portfolio and µ  a constant which 

should not be different from zero under a risk-free asset. 

 

The simplest model we estimate is the GARCH-in-mean (1,1) whose variance equation 

is given by: 

 

                                       garch
1t

2
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garch
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where garch
1tmtmt Var R −−−= γµε , and βαωγµ ,,,,  are parameters to be estimated. 

 

Given the well known asymmetric response of the conditional variance to positive and 

negative shocks, we also estimate the EGARCH-in-mean (1,1) model: 

 

                      [ ]tt
egarch

1t
egarch
t c2   VarlnVarln ηπηαβω −−++= −                       (5)                    

 

where c is the parameter that captures the effects that asymmetric positive and negative 

shocks mtε  have on conditional variance, and t1tmt V ηε −=  where tη  is distributed as 

a normal random variable with zero mean and unit variance.  

 

The results of estimating models (4) and (5) with monthly data from January 1989 to 

December 2003 for our five equity indices are reported in Table 1. In particular, this 

table contains the relative risk aversion coefficients for the GARCH(1,1) and 
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EGARCH(1,1) models as well as the asymmetric response coefficient of the 

exponential model.  

 

As expected given the previous empirical evidence, the results are very disappointing. 

When estimating the GARCH(1,1) the risk aversion coefficient is positive but not 

significantly different from zero in four of our five indices. The fifth coefficient is 

negative but statistically insignificant. When the EGARCH(1,1) is considered the 

results are, if anything, worse. Four out five risk aversion parameters are estimated to be 

negative, although not significantly different from zero. As usual, the relationship 

between risk and return seems to be very weak. The only reasonable coefficient is 

associated with Eurostoxx50. Also note that the asymmetric response coefficient 

reported in the last column of Table 1 is always negative and is statistically significant 

in four cases. Interestingly, this coefficient is not significantly different from zero for 

Eurostoxx50, where a very slight evidence of a positive risk-return trade-off is reported. 

This disturbing evidence might just reflect that GARCH in-mean models lack the power 

to find statistical significance for the risk aversion coefficient. This possibility is 

analyzed in the following section. 

 

 

4. The Risk-Return Trade-off under Symmetric MIDAS  

4.1 The MIDAS Specification 

The general idea behind MIDAS is to employ mixed-frequency regressions. Suppose 

that a variable )h(
1mtR +  is available once between t and t+1 (say monthly) where this 

variable represents the excess return on an equity index over a horizon h where h is 

measured in trading days. In the case of monthly data, h = 22, but of course it may be 

one week (h = 5), two weeks (h = 10) or any other horizon of interest for the researcher. 

In our application below )h(
1mtR +  is the monthly market excess return. We now consider 

the MIDAS regression proposed by GSV (2003): 
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where ( )2)h(
dtr −  is the lagged daily squared market excess returns associated with the 

predicting horizon of 22 trading days (the following month) which is assumed to be a 

measure of variance. The weight function is parameterized as: 
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where typically d is measured in time elapsed as a lag operator (days in our application). 

This is called “exponential Almon lag” because of the Almon lags from the distributed 

lag models6. This function turns out to be quite flexible and, as discussed in our 

empirical application below, can take various shapes with only a few parameters. In the 

application of GSV (2004a) estimating the relationship between risk and return, in GSV 

(2004b) when predicting volatility against a family of competing models and in 

Ghysels, Santa-Clara, Sinko and Valkanov (2004) when extending the study of the risk-

return trade-off to various specifications of lag structures to parameterize regressions 

parsimoniously, the functional form (7) is characterized by only two parameters 1k  and 

2k . In should be noted that expression (7) guarantees that the weights are positive, 

which ensures that the conditional variance is also positive, and add up to one7. 

 

As pointed out by GSV (2004b), regression (6) has three important features when 

compared to other models relating conditional variance and expected return, or to 

alternative models of predicting conditional variance. First, the return measure on the 

left-hand side, )h(
1mtR + , and the variables on the right-hand side, ( )2)h(

dtr − , can be sampled 

at different frequencies. Second, the polynomial lag parameters, ( )k;dω , are 

parameterized to be a function of k, thereby allowing for a longer history without 

augmenting the number of parameters. Note that the available applications only employ 

two parameters producing all potential shapes of interests in the weighting schemes. 

                                                 
6 See Judge, Griffith, Hill, Lutkepohl and Lee (1985), and the discussion in GSV (2003), GSV (2004b) 
and Ghysels, Santa-Clara, Sinko and Valkanov (2004). 
7 GSV (2004b) also employ the Beta function characterized by only two parameters as the weight 
function. The flexibility of the Beta function is well known and it has similar properties to the exponential 
Almon lag. 
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Third, MIDAS regressions do not exploit an autoregressive scheme, so that ( )2)h(
dtr −  is 

not necessarily related to lags of the left-hand side variable. 

 

There have been two relevant applications of MIDAS regression to financial data. GSV 

(2004a) shows a significantly positive relation between risk and return in the US stock 

market at monthly frequencies. They show that their finding is robust in sub-samples 

and to asymmetric specifications of the variance dynamics. They employ lagged daily 

squared returns as a measure of variance. In a second empirical exercise, GSV (2004b) 

consider several MIDAS regression models to predict stock market volatility. The 

models differ in the specifications of regressors as measures of variances. In particular, 

they consider squared returns, absolute returns, realized volatility, realized power (the 

sum of high frequency absolute returns), and return ranges. Moreover, the models differ 

in the use of daily or intra-daily (five minute) data, and in the length of the past history 

included in the forecasts. Interestingly, they find that the daily realized power (with 5-

minute absolute returns) is the best predictor of future volatility. Ghysels, Santa-Clara, 

Sinko and Valkanov (2004) make use of this evidence and find that the relationship 

between conditional mean and conditional variance is positive and significant even at 

horizons of one, two, and three weeks. Although the proxy of expected returns is known 

to be noisy at shorter horizons, forecasts of conditional variance are more accurate at 

shorter horizons. This may explain their positive results. Also, the positive trade-off 

between risk and return is present using all predictors of variance, and they find very 

little difference regardless of whether they use squared returns, absolute returns, ranges, 

or realized power all at daily frequencies. As they point out, this latter result and the 

evidence reported in their predicting volatility paper taken together suggest that these 

variables forecast a component of variance that does not receive compensation in 

expected returns. In any case, it seems that the MIDAS framework is extremely useful 

for studying the relationship between expected return and risk. In this sense, our paper 

extends their evidence to alternative equity indices to provide a test of robusteness. 

 

4.2 The Risk-Return Trade-off in Europe under a Symmetric MIDAS Specification  

In this sub-section, our empirical exercise with five European equity indices test the 

simple relationship between expected market excess return and conditional variance at 
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monthly frequencies as given by expression (3). In this context the mean equation in the 

MIDAS regression framework can be written as: 

 

                                   ( ) 1mt1mt
midas

t1mt RVar R +++ ++= εγµ                                    (8) 

 

The MIDAS estimator of the conditional variance of monthly excess 

returns, ( )1mtt RVar + , is based on past daily squared excess return data: 
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where ( )21 k,k;dω  is the weight given to the squared excess return of day t-d, and is 

given by: 
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As above, we use the lower case to denote daily returns and the upper case to denote 

monthly returns. Hence, dtr −  are the daily excess return d days before date t. The factor 

22 enables variance to be expressed in monthly units assuming that there are typically 

22 trading days in a month. The relationship between expected return and risk is tested 

by estimating equations (8) and (9) simultaneously. 

  

It is important to note that the weights given by (10) are not only positive, which makes 

the conditional variance necessarily positive as desired, but also add up to one. 

Moreover, this functional form may produce a wide and useful variety of shapes 

assigned to past daily squared returns depending upon the values of the two parameters. 

In order to analyze the potential shapes we introduce the quadratic function 

( ) 2
21 dkdkdf +=  with derivatives given by dk2kf 21 +=′  and 2k2f =′′ . Equating 

the first derivative to zero, we have that 21 k2k*d −=  will be either the maximum or 

minimum of the function depending on the sign of the second derivative. Moreover, 
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( ) 00f = , and we define d  as ( ) 2121 kkd  0dkkd −=⇒=+ . We analyze four cases 

represented in Figure 1. In the first case 0k1 <  and 0k2 > , which implies that 

*dd ,0*d >>  and 0f >′′  so that the quadratic function reaches a minimum at d* as 

shown in the first graph on the left-hand side of case 1. The functional form assumed for 

the weights is exponential, and therefore the weight function is ( ) ( )∑=
d

)d(f ded ωω  

which has the ascending form to the right of d*. From an economic point of view, this 

case does not make much sense. It is not reasonable to think that remote days should 

receive larger weights when forecasting variances, and this is exactly what happens 

when 0k1 <  and 0k2 > . In the second case, 0k1 >  and 0k2 < , which implies that 

*dd ,0*d >>  and 0f <′′  so that the quadratic function reaches a maximum at d* as 

shown in the first graph at the left-hand side of case 2. The exponential weight function 

now has a hump-shaped pattern with relatively fast increasing weights and gradually 

declining weights as we move far away from the beginning of the forecasting date. This 

case seems to be plausible from an economic point of view. The third case, in which 

0k1 <  and 0k2 < , implies that *dd ,0*d <<  and 0f <′′  reaching a maximum at a 

negative d*. This is probably the most reasonable case for which we obtain a slowly 

declining function of the lag length.  Finally, the fourth case with 0k1 >  and 0k2 > , 

implies that *dd ,0*d <<  and 0f <′′  reaching a minimum at a negative d* is not 

economically relevant. This analysis suggests that the second parameter, 2k , associated 

with the quadratic variable in the weight function, plays a key role in the weighting 

scheme since a declining weight is guaranteed as long as 0k2 ≤ . It is also important to 

note that the rate of decline determines how many lags are included in MIDAS 

regression. Since the parameters are estimated from the data, once the functional form 

of ( )21 k,k;dω  is specified, the lag length selection is purely data driven. 

 

This analysis implies that the weights of the MIDAS estimator are well constructed to 

capture the dynamics of the conditional variance. The more weight is assigned to the 

distant past, the more persistence is reflected in the variance process. At the same time, 

the weighting scheme also controls for the amount of data needed to estimate 

conditional variance. Of course, if the weight function decays slowly, a large number of 

observations will be employed and the measurement error of the estimation will be low. 
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As pointed out by GSV (2004a) this suggests some tension between proper 

incorporation of the dynamics of variance and the minimizing of measurement errors. 

 

GSV (2003) consider a class of estimators which maximizes an objective function that 

depends on the data and sample size, and includes maximum likelihood, nonlinear least 

squares and generalized method of moments. They show that the three estimators are 

consistent and asymptotically normal under suitable regularity conditions well 

established in the relevant literature. In our empirical application, we employ the 

variance estimator (9) with the weight function (10) in the risk-return relationship given 

by (8). We jointly estimate the parameters µ ,k ,k 21  and γ  by nonlinear least squares 

and the corresponding standard errors are obtained as described by Judge, Griffith, Hill, 

Lutkepohl and Lee (1985) and Greene (1998). 

 

Table 2 contains the results for the five European stock indices between 1988 and 2003. 

Depending upon the country, we employ data between 248 and 253 days as the 

maximum lag length, which means that the actual test of the risk-return trade-off with 

monthly data goes from January 1989 to December 20038.  The estimated risk aversion 

coefficient γ  is between a positive and significant 4.81 for Eurostoxx50 and a positive 

but not significant 1.53 for the United Kingdom. The rest of the risk aversion 

coefficients are positive and slightly higher than two but only marginally significant. In 

any case, there is a clear improvement from the weak and even negative relationship 

found under the GARCH specification9.  

 

The estimates of 1k  and 2k  are reported although they have no economic interpretation. 

However, they determine the shape of the polynomial lags ( )21 k,k;dω  which are of 

clear significant economic interest. For example, it should be noticed that 2k  is 

negative in all five cases. We report what fraction of the polynomial lags is placed on 

the first five daily lag, daily lags 6 to 30, and lags beyond the first thirty days. As 

mentioned above, weights are available as fractions because they have been normalized 

                                                 
8 Daily data for 1988 is employed to forecast the market variance for the first monthly intervals. There are 
between 248 and 253 trading days for our European indices during 1988. These are maintained for the 
corresponding country throughout the estimation period. 
9 It is interesting to point out the recent evidence reported by Santa-Clara and Yan (2004) that the average 
risk premium that compensates investors for the risks implicit in option prices is about twice the premium 
required to compensate the realized volatility. 
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to add up to one. In Figure 2, we plot the estimated weights of the conditional variance 

on the lagged daily squared returns for the full sample. The weights present quite 

different shapes depending on the country. The slowly declining weight of Eurostoxx50 

is similar to that reported by GSV (2004a) for the US market. It takes almost 200 days 

to accurately forecast the variance of this index. This suggests a strong persistence in 

variance. A similar result is observed for Germany. However, France, Spain and 

especially the United Kingdom are characterized by very pronounced hump-shaped 

weights, and little persistence in variance. They have a maximum close to the 

forecasting date and a relatively quick declining shape afterwards. For these equity 

indices, between two and three months of daily returns are sufficient to reliably estimate 

the variance.  These shapes are reflected in the percentage reported in Table 2.  

Eurostoxx50 and Germany have 65.1 and 72.3 percent of the weights allocated to days 

beyond 30 trading days respectively. A very different picture emerges for France, Spain 

and, of course, for the United Kingdom.  

 

It seems clear that the success of MIDAS compared to GARCH lies in the additional 

statistical power that mixed-data frequency regressions get from the use of daily data in 

estimating conditional variance. In the variance equation, MIDAS estimates two 

parameters rather than three as GARCH does and employs many more observations to 

forecast market variance. At the same time, the shape of the weight function in the 

GARCH family depends exclusively on β , while MIDAS has a much more flexible 

functional form for the weights on past squared returns. When directly comparing 

GARCH and MIDAS weights, GARCH weights always decay much faster than MIDAS 

weights. This is a very important point. The persistence of the estimated GARCH 

variance process is lower than that of MIDAS10. 

 

 

5. The Risk-Return Trade-off under Asymmetric MIDAS  

It is well known that variance is not only persistent, but also increases more after 

negative than positive shocks. Recognizing this asymmetric behavior does not help to 

explain the risk-return relationship under the GARCH framework. In this section, we 

extend our previous analysis to test the risk-return trade-off under the asymmetric 
                                                 
10 See GSV (2004) for details and also for a comparison with the rolling window approach to forecasting 
variance. 
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MIDAS proposed by GSV (2004a). This estimator which incorporates the differential 

effect of positive and negative shocks in conditional variance is given by: 
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where +−−
121 k,k,k,θ  and +

2k  are parameters to be estimated jointly with µ  and γ  in the 

mean equation, −
−dt1  is an indicator function for { }0r dt <− , +

−dt1  denotes the indicator 

function for { }0r dt ≥−  and θ  is in the interval (0, 2) and controls the total weight of 

negative shocks on the conditional variance11. 

 

Table 3 reports the estimated coefficients of the relationship between market excess 

return and risk of equation (8) with the conditional variance estimators based on 

expression (11). The estimated risk aversion coefficients are always positive and 

significant except in the case of the United Kingdom where we observe a positive but 

insignificant coefficient. The significant risk aversion estimates for all other four equity 

indices ranges from 6.55 for Eurostoxx50 to 2.98 for Germany. In contrast to the 

GARCH findings, recognizing the differential impact of negative and positive shocks 

does not change the sign of the risk-return trade-off. This confirms the results reported 

by GSV (2004a) for the US market, and increases confidence in the result that 

asymmetries are consistent with a positive risk aversion coefficient. This is a very 

comforting result. We may conclude that overall there is a positive relationship between 

expected market excess return and conditional variance12. 

 

The results regarding the weight function are also interesting. Table 3 contains the 

percentages of weights for different day intervals for both negative and positive 

weights, and Figure 3 plots the weight profiles. In the case of Eurostoxx50 the impact of 

negative and positive shocks seems to be similar, and the weights are practically the 

                                                 
11 As explained by GSV (2004a), a coefficient θ between zero and two guarantees that the total weights 
add up to one, since the indicator functions are mutually exclusive and, therefore, each of the negative 
and positive weights adds up to one. When θ = 1, equal weight is placed on positive and negative shocks. 
12 As suggested by Scruggs (1998), market imperfections such as taxes, transaction costs or preferred 
habitats might explain the significance of some of the constant terms in the risk-return relationship. 
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same. Surprisingly, the persistence of variance is much lower when asymmetric shocks 

are incorporated than in the previous case. For France negative shocks have a strong 

impact on conditional variance but the impact is transitory. On the other hand, positive 

shocks have a smaller effect, but their impact persists for much longer. This profile is 

similar to the one found for the US market by GSV (2004a). However, once again there 

are clear differences between equity indices. Germany and Spain have positive shocks 

with an immediate effect on conditional variance, but it is the negative shock which is 

more persistent. The United Kingdom has hump-shaped weights for both negative and 

positive shocks. The weighting coefficient,θ , is always less than one which implies that 

positive shocks have a greater overall effect on conditional variances for European 

equity indices than negative shocks do.  

 

The key finding in the asymmetric MIDAS specification is that the persistence of 

negative and positive shocks may be quite different. This is clearly observed when data 

for several equity indices are used as in Table 3 and Figure 3. Models such as those in 

the GARCH family, which by construction do not allow for differences in the 

persistence of positive and negative shocks may not be able to adequately capture the 

dynamics of conditional variance, and therefore may easily fail to obtain a positive risk-

return trade-off13.   

 

To further understand the importance of asymmetric effects, the (in-sample) forecasted 

annualized volatilities for symmetric and asymmetric MIDAS respectively displayed 

against the realized annualized volatility are plotted in Figures 4 and 5. Although the 

performance of both MIDAS specifications is quite impressive, it seems clear that 

asymmetric MIDAS is more successful at capturing periods of extreme volatility. From 

visual inspection of the conditional volatility process, asymmetric MIDAS produces the 

best forecasts of realized volatility. 

 

 

 

 

 

                                                 
13 Recall that under GARCH positive and negative shocks decay at the same rate given by β. 
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6. The Risk-Return Trade-off under Bivariate Symmetric MIDAS  

As discussed in the introduction, when the investment opportunity set changes over 

time, the intertemporal asset pricing model can be written as in equation (2) assuming 

that a state variable tZ  describes the time-varying behavior of available investments. If 

changing interest rates captures the opportunity set, then long-term government bond 

returns are a natural instrument for hedging against adverse shifts in the investment set. 

In this section, we employ excess returns on long-term government bonds from our four 

countries, and the corresponding equally-weighted bond portfolio return constructed 

with the same countries as the second variable in a two-factor asset pricing model14. The 

bivariate MIDAS can be written as: 
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14 GSV (2004a) add some exogenous variables to the simple MIDAS equation to test the risk-return trade-
off with additional predictive variables but they do not test the two-factor asset pricing model in a 
bivariate MIDAS framework.  
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where 1btR +  is the excess return of the long-term government bond portfolio, mbρ  is 

the correlation coefficient between the equity index excess return and the bond portfolio 

excess return, and the parameter set to be estimated is 

{ }mb2121bm ,,,k,k,,,, ρφφλγµµΘ = . As in the case of the univariate MIDAS, the 

bivariate model is estimated by nonlinear least squares. 

 

Table 4 contains the results which are somewhat contradictory. The risk aversion 

coefficient remains positive but significantly different from zero only for two indices, 

namely Eurostoxx50 and the German DAX index. Overall across countries, there is 

weak evidence of a positive partial relationship between risk and return. This suggests 

that the explanatory power of the forecasted variance for returns is not orthogonal to the 

additional covariance between equity returns and a hedging instrument represented by 

bond excess returns. At the same time, we may interpret the λ  coefficient in the mean 

equation as significantly different from zero for four out of five indices suggesting that 

more than one state variable is necessary to fully explain the relationship between risk 

and return along the lines argued by Scruggs (1998). Interpreting these results in terms 

of our objective of distinguishing between the wrong specification of the model and the 

wrong dynamics for conditional variances, we may conclude that both factors are 

important in explaining the failure in previous literature to find a positive risk-return 

trade-off.  

 

However, a closer interpretation of the reported evidence casts doubts on the validity of 

bond returns as a hedging instrument once the process of conditional variance is 

determined by the MIDAS variance equations. The coefficient associated with the 

covariance term in the mean equation has the same sign as the correlation coefficient 

between equity returns and bond returns. This is disturbing and may suggest that bond 

returns do not play the hedging instrument role assumed by the model. In principle, we 

should expect a positive elasticity of marginal utility of wealth with respect to bond 

returns. Given that marginal utility of wealth and expected returns are inversely related, 

investors should require a lower market return when the correlation between bonds and 

equity returns is positive and high. However, in the case of Germany the sign of the 

estimate of λ  indicates that the elasticity of marginal utility of wealth with respect to 

bond returns is negative to be consistent with the negative correlation between equity 
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and bond returns. The opposite argument applies to Eurostoxx50, France and the United 

Kingdom.  

 

One potential source of estimating biases may be the assumption of constant correlation 

between equity and bond returns imposed by the bivariate MIDAS estimation. The 

evidence reported by Cappiello, Engle and Sheppard (2004) show that both bonds and 

equities exhibit asymmetry in conditional correlation. Moreover, once the assumption of 

constant conditional correlation between market returns and bond returns is relaxed, 

Scruggs and Glabadanidis (2003) fail to replicate the earlier results reported by Scruggs 

(1998) on the risk-return relationship under a two-factor asset pricing model. Our results 

open a new debate on the risk-return trade-off with multiple state variables when the 

conditional variance dynamics is represented by MIDAS. 

 

 

7. Conclusions 

By using flexible weighting schemes that allow an optimal choice of estimation of the 

weights on lagged squared returns that produces the necessary persistence in conditional 

variance and by employing a differential impact on and persistence of negative and 

positive shocks, this paper finds a positive and significant relationship between 

expected market excess return and conditional variance on European equity indices. 

These results take advantage of the MIDAS regression framework proposed by GSV 

(2003, 2004a) and extend their key evidence on US data to European data. The MIDAS 

estimator is also characterized by using data sampled at various frequencies. In this 

sense, our results confirm that the use of daily data and the flexibility of the MIDAS 

estimator provide the statistical power necessary to find a significant risk-return trade-

off. 

 

At the same time, there is also some evidence in favor of the two-factor intertemporal 

capital asset pricing model. Although the results are clearly inconclusive in this respect, 

it seems that both a wrong specification of the asset pricing model and the wrong 

dynamics imposed on conditional variance explain the disturbing historical evidence on 

the relationship between risk and return.   
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Further research would clearly be welcomed. Asymmetric effects under bivariate 

MIDAS, the use of alternative hedging instruments in multi-factor asset pricing models 

under MIDAS dynamics, asymmetric and time-varying correlation effects between 

equity and bond returns, and counter-cyclical risk aversion coefficients under 

preferences with habit persistence are candidates for an exciting future research agenda.   
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Table 1 
The Risk-Return Trade-off in Europe under GARCH Specifications 

The table shows estimates of the risk-return trade-off (3) with the GARCH and EGARCH estimators of 
conditional variance given by expressions (4) and (5). The coefficients and corresponding t-statistics (in 
parentheses) are shown for the entire sample monthly from 1989:01 to 2003:12. The t-statistics are 
computed using Bollerslev-Wooldridge standard errors.  

Risk Aversion Coefficients Asymmetric 
Coefficients 

 
European Indices 

GARCH EGARCH EGARCH 
Eurostoxx50 4.930 

(1.434) 
4.966 

(1.292) 
-0.078 

(-0.781) 
 

France 
 

1.559 
(0.512) 

 
-1.202 

(-0.848) 

 
-0.207 

(-2.674) 
 

Germany 
 

-1.274 
(-0.503) 

 
-2.790 

(-0.932) 

 
-0.225 

(-3.281) 
 

Spain 
 

2.436 
(0.459) 

 
-1.195 

(-0.345) 

 
-0.202 

(-1.833) 
 

United Kingdom 
 

 
1.543 

(0.233) 

 
-1.394 

(-0.420) 

 
-0.301 

(-4.111) 
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Table 2 
The Risk-Return Trade-off in Europe under Symmetric MIDAS Specification 

The table shows estimates of the risk-return trade-off (3) with the symmetric MIDAS estimator of 
conditional variance given by expressions (9) and (10). Daily returns are used in the construction of the 
conditional variance estimator, and monthly returns in the estimation of the risk-return trade-off 
parameter (the coefficient of relative risk aversion γ). The coefficients and corresponding t-statistics (in 
parentheses) are shown for the entire mixed sample of daily and monthly returns from 1988:01 to 
2003:12. The t-statistics are computed using the asymptotic standard errors of nonlinear least square 
estimators, and the R-square quantifies the explanatory power of the symmetric MIDAS variance 
estimator in predictive regressions for returns. 

Estimates under Symmetric Midas 
Parameters Eurostoxx50 France Germany Spain United 

Kingdom 
µ -0.00201 

(-0.261) 
-0.01133 
(-1.571) 

-0.01174 
(-1.429) 

-0.00937 
(-1.254) 

-0.00517 
(-1.080) 

 
γ 

 
4.813 

(3.191) 

 
2.568 

(1.915) 

 
2.217 

(1.687) 

 
2.188 

(1.539) 

 
1.533 

(1.130) 
 

k1 

 
0.00284 

 

 
0.01249 

 

  
0.00857 

 

 
0.04641 

 

 
0.21056 

 
 

k2 

 
-0.00014 

 

 
-0.00117 

 

 
-0.00009 

 

 
-0.00193 

 

 
-0.00723 

 
 

% weights 
days 1-5 

 
% weights 
days 6-30 

 
% weights 
days > 30 

 
 

R2 

 
5.9 

 
 
 

29.0 
 
 
 

65.1 
 
 

0.165 

 
15.5 

 
 
 

64.6 
 
 
 

19.9 
 
 

0.027 

 
4.3 

 
 
 

23.4 
 
 
 

72.3 
 
 

0.021 

 
13.0 

 
 
 

69.3 
 
 
 

17.7 
 
 

0.017 

 
8.1 

 
 
 

88.2 
 
 
 

3.7 
 
 

0.009 
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Table 3 
The Risk-Return Trade-off in Europe under Asymmetric MIDAS Specification 

The table shows estimates of the risk-return trade-off (3) with the asymmetric MIDAS estimator of 
conditional variance given by expression (11). Daily returns are used in the construction of the 
conditional variance estimator, and monthly returns in the estimation of the risk-return trade-off 
parameter (the coefficient of relative risk aversion γ). The coefficients and corresponding t-statistics (in 
parentheses) are shown for the entire mixed sample of daily and monthly returns from 1988:01 to 
2003:12. The t-statistics are computed using the asymptotic standard errors of nonlinear least square 
estimators, and the R-square quantifies the explanatory power of the asymmetric MIDAS variance 
estimator in predictive regressions for returns. 

Estimates under Asymmetric Midas 
Parameters Eurostoxx50 France Germany Spain United 

Kingdom 
µ -0.02863 

(-3.680) 
-0.01324 
(-1.727) 

-0.02007 
(-2.754) 

-0.01505 
(-2.082) 

-0.00554 
(-1.136) 

 
γ 

 
6.547 

(5.459) 

 
3.087 

(2.009) 

 
2.979 

(2.952) 

 
3.401 

(2.493) 

 
1.701 

(1.169) 
 

k1(+) 
 

-0.13928 
 

 
0.00336 

 

 
-0.17180 

 

 
-0.10180 

 

 
0.10179 

 
 

k2(+) 
 

-0.00010 
 

 
-0.00100 

 

 
-0.00122 

 

 
-0.00180 

 

 
-0.00678 

 
 

% + weights 
days 1-5 

 
% + weights 

6-30 
 

% + weights 
> 30 

 
k1(-) 

 
50.6 

 
 
 

48.0 
 
 
 

1.4 
 
 

0.01910 
 

 
16.5 

 
 
 

63.7 
 
 
 

19.8 
 
 

0.08842 
 

 
61.1 

 
 
 

38.7 
 
 
 

0.20 
 
 

0.04003 
 

 
48.5 

 
 
 

50.9 
 
 
 

0.60 
 
 

0.02120 
 

 
22.4 

 
 
 

76.9 
 
 
 

0.7 
 
 

0.39744 
 

 
k2(-) 

 
-0.01532 

 

 
-0.01912 

 

 
-0.00212 

 

 
-0.00235 

 

 
-0.01052 

 
 

% - weights 
days 1-5 

 
% - weights 
days 6-30 

 
% - weights 

days >30 
 
 
θ 

 
 

57.0 
 
 
 

 43.0 
 
 
 

0 
 
 

0.122 
 

 
 

52.9 
 
 
 

47.1 
 
 
 

0 
 
 

0.538 
 

 
 

15.5 
 
 
 

71.6 
 
 
 

12.9 
 
 

0.163 
 

 
 

21.1 
 
 
 

72.0 
 
 
 

6.9 
 
 

0.299 
 

 
 

1.6 
 
 
 

92.2 
 
 
 

6.2 
 
 

0.617 
 

 
R2 

 
0.366 

 
0.041 

 
0.085 

 
0.054 

 
0.012 
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Table 4 
The Risk-Return Trade-off in Europe under Symmetric  

Bivariate MIDAS Specification 
The table shows estimates of the risk-return trade-off under the stochastic opportunity set with the 
symmetric bivariate MIDAS estimator of conditional variance given by expressions in (12). Daily returns 
are used in the construction of the conditional variance estimator, and monthly returns in the estimation of 
the risk-return trade-off parameters (the coefficient of relative risk aversion γ, and the hedging parameter 
λ). The coefficients and corresponding t-statistics (in parentheses) are shown for the entire mixed sample 
of daily and monthly returns from 1988:01 to 2003:12. The t-statistics are computed using the asymptotic 
standard errors of nonlinear least square estimators, and the R-square quantifies the explanatory power of 
the MIDAS variance estimator in predictive regressions for returns. 

Estimates under Symmetric Bivariate Midas 
Parameters Eurostoxx50 France Germany Spain United 

Kingdom 
µ -0.01765 

(-1.771) 
-0.01302 
(-1.843) 

-0.01163 
(-1.142) 

-0.01756 
(-1.764) 

-0.01396 
(-1.998) 

 
γ 

 
5.737 

(1.996) 

 
2.378 

(1.214) 

 
5.109 

(2.040) 

 
1.180 

(0.759) 

 
1.406 

(0.651) 
 
λ 

 
18.882 
(2.479) 

 
18.338 
(1.893) 

  
-28.380 
(-2.191) 

 
10.070 
(1.164) 

 
10.111 
(1.686) 

 
ρ(Rmt, Rbt) 

 

 
0.013 

(0.134) 

 
0.207 

(2.478) 

 
-0.023 

(-0.329) 

 
0.224 

(2.605) 

 
0.330 

(3.427) 
 

R2 0.238 0.022 0.028 0.025 0.025 
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Figure 1 
Weighting Shapes 
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Figure 2 
Symmetric MIDAS Weights 

The figure plots the weights that the MIDAS estimator (9) and (10) places on lagged daily squared returns. The 
weights are calculated by substituting the estimated values of 1k  and 2k  of Table 2 into the weight function 
(10). The figure displays the weights for the entire sample from January 1988 to December 2003 
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Figure 3 
Asymmetric MIDAS Weights 

The figure plots the weights that the MIDAS estimator (11) places on lagged daily squared returns conditional on 
the sign of the returns. The weights on the negative shocks are calculated by substituting the estimated values of 
−
1k  and −

2k  of Table 3 into the weight function (11), while the weights on the positive shocks are obtained by 

substituting the estimated values of +
1k  and +

2k  of Table 3 into the weight function (11). The total asymmetric 
weights, plotted using equation (11), take into account the weighted impact of asymmetries on conditional 
variance through the parameter θ. The figure displays the weights for the entire sample from January 1988 to 
December 2003 
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Figure 4 
Symmetric MIDAS Conditional Volatilities 

The figure plots the symmetric annualized conditional MIDAS volatility and the realized volatility. The figure 
displays the volatilities for the entire monthly sample from January 1989 to December 2003 
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Figure 5 

Asymmetric MIDAS Conditional Volatilities 
The figure plots the asymmetric annualized conditional MIDAS volatility and the realized volatility. The figure 
displays the volatilities for the entire monthly sample from January 1989 to December 2003 
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Annualized Volatilities United Kingdom 
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