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A B S T R A C T

This paper shows that text-only Language Models (LM) can learn to ground spatial relations like left of or below
if they are provided with explicit location information of objects and they are properly trained to leverage
those locations. We perform experiments on a verbalized version of the Visual Spatial Reasoning (VSR) dataset,
where images are coupled with textual statements which contain real or fake spatial relations between two
objects of the image. We verbalize the images using an off-the-shelf object detector, adding location tokens to
every object label to represent their bounding boxes in textual form. Given the small size of VSR, we do not
observe any improvement when using locations, but pretraining the LM over a synthetic dataset automatically
derived by us improves results significantly when using location tokens. We thus show that locations allow
LMs to ground spatial relations, with our text-only LMs outperforming Vision-and-Language Models and setting
the new state-of-the-art for the VSR dataset. Our analysis show that our text-only LMs can generalize beyond
the relations seen in the synthetic dataset to some extent, learning also more useful information than that
encoded in the spatial rules we used to create the synthetic dataset itself.
1. Introduction

Spatial relations like left of or on top of can be naturally grounded
to images. Thus, Vision-and-Language Models (VLM) seem the most
suitable option to ground the textual form to real world concept usage.
However, general-purpose VLMs such as CLIP (Radford et al., 2021),
VisualBERT (Li, Yatskar, Yin, Hsieh, & Chang, 2019), LXMERT (Tan &
Bansal, 2019) or ViLT (Kim, Son, & Kim, 2021) have been shown to
struggle to ground spatial relations properly (Liu, Emerson, & Collier,
2022; Liu, Yin, Feng, & Zhao, 2022). The situation is even worse for
text-only LMs, which lag behind VLMs for spatial grounding (Liu, Yin,
et al., 2022).

Spatial grounding and reasoning are very interesting for text-only
tasks, as shown by various works (Liu, Yin, et al., 2022; Mirzaee,
Faghihi, Ning, & Kordjamshidi, 2021; Mirzaee & Kordjamshidi, 2022).
One alternative to solve those text-only tasks would be using VLMs and
feed them only with textual inputs. However, some researchers already
identified that the language used to train those VLMs is not as rich and
varied as the language used for text-only tasks (Tan & Bansal, 2020),
which hinders the potential of VLMs for text-only tasks.

In this paper, we explore another avenue and we focus on spatial
grounding for text-only LMs. Following the current trend of translating
visual information into textual information (Liu, Eisenschlos, et al.,
2022; Wang et al., 2022; Yang et al., 2022; Zeng et al., 2022), we
propose to use textual tokens in a novel way to represent real-world
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scenes and leverage pretrained LMs. More concretely, we propose to use
location tokens to represent the positions and spatial extent of objects
in a scene. Our hypothesis is that those location tokens offer a way to
ground spatial relations in the LM.

To validate that hypothesis, we run experiments on a verbalized
version of the multimodal Visual Spatial Reasoning (VSR) dataset (Liu,
Emerson, & Collier, 2022). The dataset contains image-caption pairs,
where the caption mentions a spatial relation between two objects of
the image, plus a true/false label, depending if the caption is true for
the image. To approach this task with a text-only LM, we use an off-the-
shelf object detector, which returns object labels and their bounding
boxes (BB). We convert the BB coordinates to four location tokens. We
prepend the location tokens to the corresponding object label (e.g. cat),
and build a textual scene description that represents the contents
and locations in a given scene (Fig. 1). Then, we only concatenate
the provided caption with the aforementioned textual scene description
and train a LM for binary classification (Fig. 1). This way, we can test
the spatial grounding capabilities of a text-only LM.

As a result of our experiments we show that:

1. Location tokens are effective to ground spatial relations, as
shown by the positive results of our model.

2. The training set of VSR is too small for learning how to ground
spatial relations to locations, but an automatically produced
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Fig. 1. Given an image and a caption with a spatial relation, the task in VSR is to output whether the caption is true for the image. We propose a text-only alternative of the
dataset, where an off-the-shelf object detector returns the labels and locations (derived from the bounding boxes), which are used as the textual description of the scene depicted
in the image. The description and caption are input to a LM, to test its spatial grounding capabilities.
synthetic dataset of spatial relations allows to do so, while a LM
without locations fails.

3. The LMs trained on the synthetic dataset can generalize to some
extent to spatial relations that have not been observed in the
synthetic data. Specially interesting is to see the performance
boost for relations that require depth information.

4. Our text-only LMs outperform baseline VLMs for VSR, obtaining
the best results for the VSR task to date.

5. Our text-only LMs clearly outperform a rule-based baseline,
showing that the LMs learn more information than that encoded
in the manually defined spatial rules.

Our code, models and datasets are freely available.1

2. Related work

Some authors suggest that grounding is one of the key elements
to bring human-like language understanding (Bender & Koller, 2020).
However, grounding covers a great diversity of techniques, modalities
and concepts (Laflaquière, O’Regan, Gas, & Terekhov, 2018; van der
Velde, 2015). Thus, this paper is focused on spatial relations and their
grounding. In that sense, there are two major domains related to this
paper: how spatial grounding can be evaluated (Section 2.1), and how
spatial information is represented in current deep learning models,
covering VLMs – which are the current paradigms of how to ground
text on visual data – and text-only LMs (Section 2.2).

2.1. Datasets for spatial grounding

The spatial commonsense knowledge of current LMs and VLMs
is evaluated from different angles. For example, (Bagherinezhad,
Hajishirzi, Choi, & Farhadi, 2016; Elazar, Mahabal, Ramachandran,
Bedrax-Weiss, & Roth, 2019) focus on the acquired commonsense
knowledge of models about object scales, e.g. do they know that a
person is bigger than an ant? In that sense, they do not provide
a specific scene context, but rather ask about generic object scale
relations, so the dataset they provide is not useful for our work.

Some other authors, (Collell, Van Gool, & Moens, 2018; Elu et al.,
2021) propose datasets and methods to generate bounding boxes from
textual descriptions. Although the evaluation approach is suitable to
test spatial grounding, they focus on implicit spatial relations, whereas

1 https://github.com/gazkune/SpatialLM
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our focus is on explicit relations. Thus, the proposed datasets are not
suitable for our analysis.

With the objective of evaluating both object scales and spatial
relations, a recent work provides new unified datasets (Liu, Yin, et al.,
2022). As the objective of such work is to evaluate whether VLMs learn
more spatial commonsense than LMs, the datasets are purely textual, so
they do not provide any means to ground spatial relations (they assume
the grounding occurs in a previous training process) and hence, they are
not useful for our work. Interestingly, authors find that VLMs, and more
concretely text-to-image systems, perform much better than text-only
LMs.

There are other ways to test the spatial inference and reasoning ca-
pabilities of models, though. CLEVR was one of the pioneering works on
testing compositional language and elementary visual reasoning (John-
son et al., 2017). Using 3D rendered images of simple objects such as
spheres, cones and cubes, different questions are generated automati-
cally. A model has to process the image and the question to provide an
answer. Although CLEVR can be used to test spatial grounding, it has
two major drawbacks for the work presented in this paper: (i) questions
not only cover spatial grounding but some other concepts such as
compositional language and attribute identification, and (ii) spatial
relations are limited to four, i.e. left, right, behind and in front. The
natural extension of CLEVR is GQA (Hudson & Manning, 2019), which
shares similar ideas but it is built on natural images. Although spatial
grounding is very important for this task, compositional language is
also evaluated. As both dimensions appear together, we believe this
dataset is not the best option for our purposes.

In the text-only scenario, SpartQA provides another synthetic
question-answering dataset (there is also a subset annotated by hu-
mans). Given a textual story (a spatial description of a scene using
explicit relations), a model has to answer some spatial questions
about that scene. The task is specially focused on spatial reasoning
capabilities, such as transitivity, and it does not provide any means to
ground spatial relations, as its target is the reasoning process. Recently,
similar datasets haven been proposed as an extension and improvement
of SpartQA (Mirzaee & Kordjamshidi, 2022).

In this paper, we use the recent Visual Spatial Reasoning (VSR)
dataset (Liu, Emerson, & Collier, 2022) to evaluate the spatial ground-
ing capabilities of text-only LMs. VSR has been designed to test spatial
grounding capabilities, covering 65 different spatial relations over nat-
ural images collected from COCO (Lin et al., 2014). Given an image,
they provide a caption which describes a spatial relation between two
of the objects that appear in the image. That relation can be real or

https://github.com/gazkune/SpatialLM
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Fig. 2. Two examples extracted from the VSR dataset.
fake, and that is precisely what the model has to infer, i.e. whether
the caption is correct respect to the given image. The dataset is fully
annotated by humans. Given its features, we believe VSR is a good
candidate to evaluate spatial grounding in LMs and thus, we use it
in our experiments. However, as text-only LMs cannot process images,
we propose a way to verbalize those images and run meaningful
experiments.

2.2. Encoding spatial information

The most successful VLMs today are based on multimodal trans-
formers (Kim et al., 2021; Tan & Bansal, 2019). Although architectures
may vary, the basic idea is to input the models with textual tokens and
visual features. As transformers are feed-forward networks, they do not
consider the order of the inputs, and thus, positional encodings are used
to represent, for example, word order (Vaswani et al., 2017). A similar
idea is used also for visual features. LXMERT (Tan & Bansal, 2019),
for instance, uses the 𝑥0, 𝑦0, 𝑥1, 𝑥2,𝑊 ,𝐻 coordinates of a bounding box
for a given visual feature, projects them linearly and sums it to the
visual feature itself before inputting it to the transformer. Alternatively,
ViLT (Kim et al., 2021) does not use any object detector, but works
directly on image patches. They use positional embeddings to represent
the order of those patches in the image, very similar to the positional
embeddings of textual tokens.

Regarding text-only LMs, to the best of our knowledge, (Patel &
Pavlick, 2022) is the only work where scenes are represented with
textual tokens on which spatial grounding and reasoning can be per-
formed. More concretely, they propose to create grid-like structures
with textual tokens inside the vocabulary of the LM. Their proposal
is interesting, but it is limited to toy experiments, since they can only
represent small scenes and six spatial relations: left, right, up, down, top
and bottom. In contrast, with our approach we cover complex scenes
depicted in natural images and 23 spatial relations (Table 1).

3. The VSR dataset

The VSR dataset contains natural image–text pairs to test the spatial
grounding capabilities of machine learning models. As can be seen in
Fig. 2, a textual description of an image is provided, where the spatial
relation of two objects is explicitly described. The spatial relation can
be true or false. To solve the task properly, models have to be able
to ground around 65 different spatial relations, which are grouped in
7 categories: adjacency, directional, orientation, projective, proximity,
topological and unallocated.

The dataset has two splits: the random split and the zero-shot split.
The later is designed such that train/dev/test sets have no overlapping
concepts and force models to learn concepts and the relations in a
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compositional way instead of memorizing co-occurrence statistics of the
two. However, it is smaller than the random split, which has a total of
10,119 examples. The zero-shot split has 6430 image–text pairs in total.

According to the experiments performed in the VSR dataset by
authors (Liu, Emerson, & Collier, 2022), the best VLMs are far from
human performance. While humans obtain an accuracy of 95.4 for
both splits, the best model for the random split, i.e LXMERT (Tan &
Bansal, 2019), is around 70.1 and it performs worse in the zero-shot
split (63.0). This performance gap between humans and VLMs shows
that there is still much work to do to better ground spatial relations.

4. Learning to ground spatial relations in text-only LMs

In this paper, we propose to ground spatial relations in LMs in-
troducing the concept of location tokens. These location tokens use
numbers that are already in the vocabulary of the LM. Thus, we
can represent any scene, using four location tokens to represent the
position and the spatial extension of an object and combining them with
the object name (and any other object attribute). This textual scene
representation allows LMs to relate spatial relations like left of with
specific arrangement of location tokens, providing a way to ground
those relations.

To test our hypothesis, we verbalize the VSR dataset and use it for
training and evaluation. As Fig. 1 shows, we approach the problem
stated in VSR in the following way: (i) we obtain textual scene de-
scriptions using an object detector, (ii) we include in that description
the location tokens derived from the object bounding boxes, (iii) we
concatenate the caption and the textual scene description and input it to
the LM, (iv) we fine-tune the LM on that input for binary classification.
We also offer the possibility to previously train the LM in our Synthetic
Spatial Training Dataset.

4.1. Textual scene descriptions

Given that VSR is a visio-linguistic dataset, the scene is defined
by an image. We convert that scene to a textual description using
a state-of-the-art object detector, VinVL (Zhang et al., 2021), which
given an image, produces a list of objects with their name, attributes
and bounding boxes. More concretely, an object detected by VinVL is
represented as 𝑂 = {𝑛𝑎𝑚𝑒, 𝑎𝑡𝑡𝑟1,… , 𝑎𝑡𝑡𝑟𝑛, 𝐵𝐵}, where 𝐵𝐵 ∈ R4 are the
𝑥0, 𝑦0,𝑊 ,𝐻 coordinates of the bounding box.

To convert those BBs to location tokens, we follow this procedure
(Fig. 3): (i) normalize the image’s width and height in the [0, 1] range,
(ii) divide the image in a regular grid of size (𝐺 × 𝐺), and (iii)
find the grid cells for the BB coordinates (𝑥0, 𝑦0, 𝑥1, 𝑦1) which we call
(𝑥̂0, 𝑦̂0, 𝑥̂1, 𝑦̂1), i.e. discrete coordinates. Those discrete coordinates (after
tokenization of the corresponding strings) are the location tokens. As a
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Fig. 3. An illustrative example of how BB coordinates are converted to location tokens. In this case, with a grid size of 4 × 4, the location tokens for cat (red box) are 0 0 3 2.
Table 1
The 23 relations in our Synthetic Spatial Training Dataset organized in three categories.

Category Spatial Relations

Object position in the image top left, bottom left, left, top right,
bottom right, right, top, bottom, center

Object size comparison wider, narrower, taller, shorter, larger, smaller

Two object positional relations surrounding, inside, left of, above, right of,
below, overlapping, separated

result, for every object detected, we get a sequence of four location
tokens or discrete coordinates. Thus, our textual scene description
𝐷𝑒𝑠𝑐𝑟(𝑆) is a sequence of textual objects {𝑂0, 𝑂1,… , 𝑂𝑁}, where each
object is a string of the form: 𝑂𝑖 = {𝑥̂𝑖0, 𝑦̂

𝑖
0, 𝑥̂

𝑖
1, 𝑦̂

𝑖
1, 𝑛𝑎𝑚𝑒𝑖}. Notice that

VinVL also returns a list of attributes for every object. Unless stated
otherwise, we discard those attributes in the textual scene description.

For the VSR task, we produce textual descriptions for all the images,
concatenate them with the captions provided in the dataset and input it
to the LM. Using positional embeddings, the LM can learn to interpret
properly the order of location tokens and their correspondence with
the object names. For example, for the image in Fig. 3, the textual
description of the object cat is: 0 0 3 2 cat. Assuming that our grid
size 𝐺 = 4, this is interpreted as having a cat covering the left part of
the image. We would do similarly for all the objects of the image to
build our textual scene description.

Notice that for VSR, the textual scene descriptions are derived from
images. But in the general case, we could derive them from other
modalities like graphs or text. For instance, given a natural textual
description of a scene (e.g. ‘‘a cat is on top of a table’’), textual scene
descriptions with location tokens could be obtained. However, as we
could not find any suitable dataset for those cases, we leave them out
of the scope of this paper (see Section 7).

4.2. The synthetic spatial training dataset

Multimodal training datasets with images and corresponding textual
descriptions that include explicit spatial relations tend to be small. As
a second ingredient of our approach we automatically construct a syn-
thetic dataset with spatial relations named Synthetic Spatial Training
Dataset (SSTD), which is used to teach LMs on how to relate location
tokens and explicit spatial descriptions. Given an image in an existing
dataset, an object detector is used to produce textual descriptions
with object labels and location tokens. Given two objects and their
bounding boxes, simple rules and templates are used to generate a
positive or negative question about the spatial relation between the
two objects (or alternatively, about a single object). Fig. 4 shows such
a generated example. The most important advantages of SSTD are: (i)
it can generate thousands and thousands of different examples, (ii) it
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involves light human labour,2 (iii) it can be easily extended to support
new spatial relations, and (iv) it can be used as a visio-linguistic or
text-only dataset.

To build SSTD, we use the 2014 version of the COCO dataset (Lin
et al., 2014). We obtain SSTD training examples from the train set and
validation examples from the validation set. Instead of using human
annotated object detections, we use automatic VinVL detections, be-
cause the vocabulary size of VinVL is much larger than COCO (1848
classes against 80). In COCO, for example, we have the class ‘‘person’’,
while VinVL detects more specific classes like ‘‘woman’’, ‘‘man’’, ‘‘boy’’
or ‘‘girl’’, among others, which add more diversity to SSTD. Although
VinVL introduces errors in the object detection label or bounding box,
this is not important for the text-only case, as we do not need matching
visual and textual representations of the image. We are just interested
in generating correct spatial relations for the detected object bounding
boxes and labels.

In order to generate SSTD, we manually define a list of interesting
and unambiguous spatial relations based on previous work (Johnson,
Gupta, & Fei-Fei, 2018). For example, given two bounding boxes,
deciding whether an object is left of another object, is unambiguous.
However, using only those bounding boxes, it is not possible to decide
whether the objects are close to each other. Even though both BBs
may be close, one of the objects can actually be very far in the depth
dimension, so we need the context of the image to decide about the
spatial relation. In that sense, notice that we did not have to adapt
SSTD relations to VSR, just focus on what kind of relations we could
unambiguously derive from bounding boxes. In consequence, SSTD
should be useful for other tasks involving spatial grounding, not only
VSR. In Table 1 we provide all the implemented relations and the
category they belong to. All of them can be implemented following
some simple rules based on object bounding boxes (more details in
Appendix A). This is the process we follow to generate an example for
SSTD:

1. We take an image and check the number of detected objects.
As we implement one- or two-object relations, depending on
the number of detections, we randomly select among the three
categories of Table 1 (i.e. if we have only one detection, we
select ‘‘object position in the image’’). If we have two or more
objects, we prioritize two-object relations (i.e, we assign 70%
of probability to two-object relations and 30% to one-object
relations). Given the category, we randomly sample the required
objects (one or two depending on the relation) from all the
detections.

2. We randomly decide between generating an affirmative or neg-
ative question. This way, we make sure that yes and no answers
will be balanced. Using hand-designed verbalization templates,

2 We spent ∼ 5 hours of work for our specific implementation including
rules and templates.
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Fig. 4. An example of the SSTD validation set generated from the image, which
includes question (Q), description (Descr) and answer (A), but not the image itself.
Description partially shown, as it comprises 44 objects. Location tokens are discrete
grid coordinates of the BB, e.g. (0, 3) and (16, 29) for horse.

we generate the question corresponding to the spatial rela-
tion selected in the previous step (templates are provided in
Appendix A).

3. We verbalize the scene in the image. We provide two kinds of
verbalizations: (i) generate the textual scene description as the
concatenation of all objects detected by VinVL in the image,
where each object is accompanied by its location; (ii) use only
the concatenation of object names, excluding location tokens.
Notice that other image verbalization approaches could easily
be added, such as captions.3

4. A SSTD example is comprised by a question, a textual scene de-
scription and an answer. The image is discarded in the text-only
version.

Following this procedure, we can generate many examples from
each image. In that sense, SSTD does not have a fixed size: users can
decide how many examples they want to extract from each image. In
our case, during the spatial training phase of our models, we decide to
produce random examples from the same images (COCO train set) in
each epoch. That means that the models see an estimate of 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠×
80𝐾 examples during the training process, where 80𝐾 corresponds to
the number of images for COCO train set. Finally, as VSR is also based
on COCO, to avoid any contamination, we do not include in the train
set of SSTD the images that are already in VSR dev or test splits.

5. Experiments and results

We use the random split of the VSR dataset for the experiments,
given its bigger size. For all the fine-tuning processes described, we
train the models in the train set and select the best performing model
in the validation set. That model is then evaluated in the test set. Fol-
lowing the recommendations of VSR authors, we provide the average
results of three different runs, with the observed standard deviation.

3 We consider that for our experiments, those alternative verbalization
approaches are not interesting, since we want to test how explicit spatial
relations are grounded to location tokens.
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Table 2
Test results on VSR as mean accuracy with standard deviation. First block for language
models with and without location tokens. Second block for spatially trained language
models (using SSTD) which are then fine-tuned on the VSR training set.

Model Locations VSR acc

Language Models BERT-base No 62.11 ± 0.88
BERT-base Yes 61.60 ± 0.92

Spatially trained
Language Models

BERT-base No 61.83 ± 0.28
BERT-base Yes 73.69 ± 0.88

Table 3
Results (accuracy) on the validation set of our
synthetic SSTD dataset.
Model Locations SSTD

BERT-base No 76.96
BERT-base Yes 94.49

The hyperparameters of different models and GPU usage are specified
in Appendix B.

5.1. The influence of the location tokens and spatial training

We want to assess the importance of two fundamental factors of our
approach: (i) the use of location tokens for LMs, and (ii) the benefits of
a spatial training phase using SSTD to better leverage those location
tokens. For that purpose, we use BERT-base (Devlin, Chang, Lee, &
Toutanova, 2018) as our LM and train it in different ways, testing
different combinations of using (or not) location tokens and previously
training (or not) spatially with SSTD. We add a classification head on
top of the [CLS] embedding (𝐭(𝑛𝑙 )1 , where 𝑛𝑙 is the index of the top layer)
for binary classification. We define the head as a multilayer perceptron
(MLP) of one hidden layer. We define our MLP in Eq. (1).

𝐡 = LayerNorm(GELU(𝐖ℎ𝐭
(𝑛𝑙 )
1 + 𝐛ℎ))

𝐲̂ = Sigmoid(𝐖𝑦̂𝐡 + 𝐛𝑦̂)
(1)

In order to develop the spatial training phase using SSTD, we
randomly built a validation set for SSTD (comprising 40,504 examples)
and chose the model which performs best as the one to be used in the
VSR experiments.

Table 2 shows the obtained VSR test results for the mentioned
combinations. The first block shows the performance of BERT-base fine-
tuned on the VSR training set, with no significant differences between
using or not location tokens. However, we do observe important differ-
ences in the second block, where both BERT-base models are previously
trained on our Synthetic Spatial Training Dataset (SSTD) and only the
model which uses location tokens improves over the previous models.
The improvement with the use of spatial training and locations with
respect to the other three options is notable, with ∼ 12 absolute point
improvement. The results show that location tokens are a good way to
encode spatial information for language grounding, and that the spatial
training step using SSTD is crucial to make the model learn how that
grounding should be done.

On the other hand, Table 3 shows the results obtained in the
validation split of SSTD. Although SSTD is used for spatial training and
the obtained results are not the focus of this paper, it is interesting to
see how using location tokens, the LM can achieve 94.49 of accuracy,
whereas without location tokens, it cannot reach an accuracy of 77.
The gap is of around 17 absolute points, which, once again, shows the
importance of location tokens.

5.2. Comparison with the state of the art

In this section we compare our results to the current state-of-the-
art models for VSR, and, in addition, we explore whether scaling up
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Fig. 5. Comparison of three BERT models in terms of accuracy per spatial relation. Relations are ordered by frequency in descending order. For readability, we only show the
relations that appear more than 15 times in the test set. All three models use location tokens. The ‘‘st’’ acronym in the model name indicates that the model has been spatially
trained before the fine-tuning on VSR. Best viewed in color.
Table 4
Test results on VSR as mean accuracy with standard deviation. First block for
multimodal systems, see text for references. † for models with no spatial information.
Second block for our spatially trained language models.

Model Parameters VSR acc

Multimodal
Systems

CLIP (w/ prompting) 632M 55.2 ± 1.4
VisualBert† 110M 57.4 ± 0.9
ViLT 87.4M 69.3 ± 0.9
LXMERT 240M 70.1 ± 0.9

Our
Spatially trained
Language Models

BERT-base 110M 73.69 ± 0.88
BERT-large 336M 74.44 ± 0.73
T5-base 220M 73.09 ± 0.59
T5-large 770M 74.49 ± 0.36
T5-3B 3B 74.52 ± 0.25

LMs brings some extra performance. For that purpose, we use BERT-
large as our LM (also adding a binary classification head as in Eq. (1)),
but we also explore the T5 family of encoder–decoder models (Raffel
et al., 2020). We include T5 models because the larger size of some
models and in order to explore encoder–decoder models, as opposed
to encoder-only models such as BERT. To use T5, we add text prefixes
before each sentence, such as ’caption:’ for the VSR caption and ’con-
text:’ for the textual scene description. This is done to mimic the input
prompts used during the pretraining process of the T5 model, and help
the LM to better leverage what it has learnt before. As T5 is a generative
LM, it produces answers in an open-ended text generation manner. We
select the answer (yes or no) with maximum probability. Thus we do
not use any classifier head in this case.

Table 4 shows the obtained results for those experiments.4 The best
LM, i.e. LXMERT, obtains an accuracy of 70.1. All our spatially trained
Ms surpass that accuracy significantly, which is notable as our models
nly access bounding box labels and locations, losing potentially im-
ortant information in the image. The best models are our three largest
Ms, with over 74 accuracy, 4 absolute points ahead of LXMERT.

4 The results of VLMs are directly extracted from Liu, Emerson, and Collier
2022).
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From those results, we can conclude that location tokens and the
spatial training phase are good strategies to ground spatial relations
in LMs. More importantly, LMs can handle spatial information, which
opens the door for applications such as document layout tasks or textual
spatial reasoning, for example. However, if we look at the benefits of
scaling up the LMs, our experiments show diminishing returns for this
specific task. It is true that our best model is a T5 of 3B parameters,
however the difference with T5-large or BERT-large is quite small.
Notice, though, that we did not perform any extensive hyperparameter
tuning, so it could be the case that those larger LMs could actually
perform better. Regarding sizes, we would like to note that we use the
decoder part of T5 to generate one of Yes or No, and as such it would
seem that the decoder is oversized.

6. Analysis of the results

In this section we analyze the results of individual spatial relations,
we compare our systems with a rule-based baseline and a VLM, and we
finally analyze the use of object attributes.

6.1. Analysis per spatial relation

As the 65 relations in VSR are of different nature, we compare
the performance of our spatially trained LMs relation by relation. The
objective is to see how spatial training and scale affect the performance.
Fig. 5 shows the accuracy of three LMs per relation. The selected models
are BERT-base with location tokens but without any spatial training,
the same BERT-base with spatial training and BERT-large, also with
location tokens and spatial training. We only visualize the relations that
appear 15 times or more in the test set.

In general, spatial training helps in almost all relations, with some
exceptions. For instance, an orientation relation (facing away) and an
adjacency relation (at the edge of ). This could be expected, as SSTD
does not cover those relations, because orientation cannot be inferred
from BB information, and the object detector in use (VinVL) does not
codify it in the attributes either. Orientation seems to be also difficult
for VLMs (Liu, Emerson, & Collier, 2022), so more work is needed in

this regard.
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Fig. 6. Comparison of our spatially trained BERT-large model and the rule-based baseline for the VSR test relations that can be solved using bounding boxes and heuristic rules.
Best viewed in color.
There are also positive effects which show the generalization ca-
pabilities of the LMs to some extent. BBs do not provide any 3D
information, so we did not include relations like behind, in front of
and at the back of in SSTD, but spatial training performs very well
for those relations. One of our hypothesis is that SSTD does include
size relations (wider, smaller and so on), and thus the spatially trained
models learn to combine BB information with typical size relations to
infer depth (e.g. as persons are larger than cats, if a particular person is
smaller than a cat, it has to be farther in the scene). We plan to further
investigate those cases, since they provide hints of how spatially trained
LMs can leverage location tokens to generalize to spatial relations that
cannot be described unambiguously with arithmetic rules. We provide
a preliminary qualitative analysis in Appendix C.

We also observe in Fig. 5 that, in general, the performance for VSR
relations covered in SSTD (at the right side of, at the left side of, on
top of, above and so on) improves significantly. Knowledge transfer for
those relations was expected, as they are semantically very similar to
some SSTD relations. However, in one case, beneath, which is tightly
related to the SSTD relation below, spatially trained BERT-base does
not outperform BERT-base, but BERT-large does (+12 absolute points).

To add more context to this analysis, Table 5 provides the number
of VSR relations per category, alongside the coverage in SSTD and the
performance difference between a BERT-base model with and without
spatial training (both with location tokens). Overall, SSTD covers only
17 out of the 65 relations in VSR, but there are some relations in SSTD
which can be helpful for some other relations in VSR. For example,
the VSR relation detached to is related to the SSTD relation overlapping.
Depending on the image, overlapping BBs can be detached objects, but
in general, BBs that do not overlap will be detached. Looking at the
performance difference (3rd column of Table 5), we can see that spatial
training is beneficial for all the categories, except for topological, where
the difference is very small in any case. The unallocated category has
an impressive performance gain (+56.8), but it is not very significant
since there are only 51 examples in the test set. In general, we can
say that those categories that are better represented in SSTD, consis-
tently improve in VSR. That is the case of projective (+14.4), adjacency
(+4.7) and directional (+2.9). In that sense, the performance gain of 9.1
absolute points for orientation relations is quite surprising.
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Table 5
For every category in VSR, we show how many relations there are. In the second
column, we show how many relations are already covered in SSTD. In the last column,
the average performance difference between a spatially trained BERT-base against a
BERT-base without spatial training is shown.

VSR category VSR Relations In SSTD Perf. gap

Adjacency 10 2 +4.7
Directional 11 2 +2.9
Orientation 4 0 +9.1
Projective 12 8 +14.4
Proximity 5 0 +1.1
Topological 18 5 −1.2
Unallocated 5 0 +56.8

Finally, in terms of LM size, the differences between BERT-base
and BERT-large are irregular. In general, BERT-large performs better,
but there are some cases where BERT-base outperforms it. We do not
observe any remarkable behavior.

6.2. Comparison with a rule-based baseline

An interesting question that arises from our results is whether
our spatially trained LMs learn more than the heuristic spatial rules
represented in SSTD. To answer that question, we implemented a rule-
based baseline, using the same spatial rules of SSTD to solve the VSR
dataset (implementation details can be found at Appendix D). We found
that around 38% of test instances could be solved using our spatial
rules. However, due to caption-context object matching failures, only
25% of the instances are actually solved using rules. The obtained
accuracy for those instances is 60.7, clearly below the performance of
our spatially trained LMs. Indeed, if we solve randomly all the instances
that cannot be solved by rules (around 75% of the test set), we obtain
an overall accuracy of 52.4, whereas our best spatially trained LM has
an accuracy of 74.5.

Fig. 6 provides a detailed comparison between our rule-based base-
line and the spatially trained BERT-large model for VSR test. As can be
seen, for all those relations that can be solved using bounding boxes
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Fig. 7. Comparison of our spatially trained BERT-large model and LXMERT for the VSR test categories. Best viewed in color.
Fig. 8. Comparison of our spatially trained BERT-large model and LXMERT for the VSR test relations, where the difference between both models is bigger than 4 absolute points.
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nd heuristic rules, the spatially trained LM clearly outperforms the
ule-based baseline for all the relations except three: within and around,

where both approaches have the same performance, and into, where the
rule-based baseline obtains better results (notice, though, that there are
only 6 instances for that relation in VSR test, so the results are not very
representative). From those results we can conclude that our text-only
LMs learn more than the information encoded in the spatial rules of
SSTD.

6.3. Comparison with a VLM

Even though it is not the main focus of the paper, it is also inter-
esting to see how our spatially trained LMs compare to VLMs. For that
analysis, we compare the results of our spatially trained BERT-large and
LXMERT for every relation in VSR test.

Fig. 7 shows the accuracy obtained by both models, grouped by
categories. As can be observed, there are no important differences,
except for the unallocated category, where BERT-large significantly out-
performs LXMERT (92 vs 68). However, if we look at the performance
relation by relation, there are interesting differences. In Fig. 8, we show
the accuracy obtained with both models for those relations where the
difference is bigger than 4 absolute points (we consider that difference
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being significant, since it is approximately the overall difference of both
models for VSR test). As can be seen, BERT-large outperforms LXMERT
for the relations in front of, at the left side of, in, far away from, inside, left
of, far from, close to, at the back of and over. Some relations only require
two-dimensional information (at the left side of, left of, over) and thus,
the better performance of BERT-large could be expected. However, it
is curious to see that BERT-large is better than LXMERT for relations
like in front of, in, far away from, inside, far from, close to and at the
back of. Those relations should benefit from visual information, but
it seems LXMERT cannot leverage that information properly. On the
other hand, LXMERT only outperforms BERT-large significantly for the
relations on top of and in the middle of. In the case of on top of, the
ifference is of 4 absolute points and we do not see any clear reason for
hat difference. For the relation in the middle of, BERT-large is specially
ad, even worse than BERT-base, which is on par with LXMERT. We
elieve this behavior is more related to the low number of instances
or that relation in VSR test (only 15).

.4. Analysis of the use of object attributes

VinVL returns not only objects but also their attributes like colors,
oses (open hand, standing boy), sizes, textures (striped jacket), materials
brick wall) and so on. We modified the spatial training phase to include
the attributes in the textual scene description and trained a BERT-base
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model with the same hyperparameters as in Section 5.1. Afterwards,
we fine-tune the best SSTD validation model on the VSR training set.
Again, we add the attributes in the textual scene descriptions. The VSR
test accuracy is of 74.14, which is inside the standard deviation of the
BERT-base models shown in Table 2. We conclude that using object
attributes as extracted by VinVL is not beneficial for this specific task,
although our analysis in the previous section showed that additional
attributes non covered by VinVL like orientation or depth information,
if extracted, could be of use.

7. Conclusions and future work

In this paper, we have presented a novel way to ground spatial
relations in text-only language models through location tokens. To
make LMs learn the grounding between spatial relations and loca-
tion tokens, we also propose the Synthetic Spatial Training Dataset,
a textual dataset with unambiguous spatial relations between objects
automatically derived from existing images. We run experiments on
a verbalized version of the Visual Spatial Reasoning dataset, where
spatial grounding can be tested, showing that our approach to ground
spatial relations in LMs is effective. Indeed, when compared with VLMs,
we obtain even better results, which is another important indication
that our spatial grounding approach is working.

Furthermore, scaling up our LMs we obtain the new state-of-the-art
in VSR. However, we observe diminishing returns, which may suggest
that to ground better those spatial relations, scale is not determinant.
That opens the door for other techniques and approaches.

In the future, we want to deepen on spatial training, including
categories like orientation and depth, for example. We also want to
transition to text-only spatial reasoning tasks like SpartQA (Mirzaee
et al., 2021) and RESQ (Mirzaee & Kordjamshidi, 2022), where we
plan to transform the natural language scene descriptions with explicit
spatial relations provided in those tasks, to our textual scene descrip-
tions based on location tokens. We want to see whether those grounded
representations do actually improve the spatial reasoning capabilities of
LMs.
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Appendix A. SSTD implementation details

We will present here the rules and heuristics followed to derive spa-
tial relations from bounding boxes, grouped by category (see Table 1).
We also present the templates we use to generate automatic questions
for every case. We assume all BB coordinates are normalized between
223

[0, 1].
Object position in the image. We first define a region for each of top
eft, top right, bottom left and bottom right. For example, [0, 0, 0.5, 0.5]
orresponds to top left. If the object BB is inscribed in one of those
egions, we return that spatial relation. Otherwise, we check whether
he object is in the following regions: top, bottom, left or right. An object
s in the left region, for instance, if the object bounding box is inscribed
n the [0, 0, 0.5, 1] region. In all the other cases, the object is in the center.
iven an object 𝑜𝑏𝑗 and a region 𝑟𝑒𝑔, the template we use for question
eneration is: ‘‘is ⟨𝑜𝑏𝑗⟩ in ⟨𝑟𝑒𝑔⟩ region?’’

bject size comparison. Assuming two objects 𝑜𝑏𝑗1 and 𝑜𝑏𝑗2 and their
ounding boxes, we calculate the functions 𝑤𝑖𝑑𝑡ℎ(𝑜𝑏𝑗), 𝑡𝑎𝑙𝑙(𝑜𝑏𝑗) and
𝑟𝑒𝑎(𝑜𝑏𝑗) for each object, using BB coordinates. If 𝑤𝑖𝑑𝑡ℎ(𝑜𝑏𝑗1) >
𝑖𝑑𝑡ℎ(𝑜𝑏𝑗2), 𝑜𝑏𝑗1 is wider than 𝑜𝑏𝑗2 (and 𝑜𝑏𝑗2 is narrower than 𝑜𝑏𝑗1). We
pply analogous rules for taller/shorter using the 𝑙𝑒𝑛𝑔𝑡ℎ(𝑜𝑏𝑗) function
nd larger/smaller using the 𝑎𝑟𝑒𝑎(𝑜𝑏𝑗) function. Given two objects
𝑏𝑗1, 𝑜𝑏𝑗2 and a size comparison relation 𝑟𝑒𝑙, the template we use for
uestion generation is: ‘‘is ⟨𝑜𝑏𝑗1⟩ ⟨𝑟𝑒𝑙⟩ than ⟨𝑜𝑏𝑗2⟩?’’

wo object positional relations. Assuming two objects 𝑜𝑏𝑗1 and 𝑜𝑏𝑗2 and
heir bounding boxes, if the BB of 𝑜𝑏𝑗1 is inscribed in the BB of 𝑜𝑏𝑗2,
𝑏𝑗1 is inside 𝑜𝑏𝑗2, and 𝑜𝑏𝑗2 is surrounding 𝑜𝑏𝑗1. For the relations left of,
ight of, above and below, we use the angle between the centers of both
bjects. If the center of 𝑜𝑏𝑗2 is between the angles [−34 𝜋, 34𝜋], we say

𝑜𝑏𝑗2 is left of 𝑜𝑏𝑗1. Similarly, [−34 𝜋, −14 𝜋] corresponds to above, [−14 𝜋, 14𝜋]
corresponds to right of and [ 14𝜋,

3
4𝜋] corresponds to below. Finally, using

the Intersection over Union (IoU) of both BBs, we say that 𝑜𝑏𝑗1 and
𝑜𝑏𝑗2 are separated if their IoU is 0, and overlapping if IoU > 0. Given
two objects 𝑜𝑏𝑗1, 𝑜𝑏𝑗2 and a positional relation 𝑟𝑒𝑙, the template we use
for question generation is: ‘‘is ⟨𝑜𝑏𝑗1⟩ ⟨𝑟𝑒𝑙⟩ ⟨𝑜𝑏𝑗2⟩?’’. In the case of the
relation separated we use the following template: ‘‘are ⟨𝑜𝑏𝑗1⟩ and ⟨𝑜𝑏𝑗2⟩
separated?’’.

Appendix B. Hyperparameters and GPU usage

We always use a grid size 𝐺 = 32 all over the experiments. For
experiments with BERT-base, both for the spatial training and VSR fine-
tuning, we train the models for 20K steps, with AdamW optimizer, a
batch size of 56, a maximum learning rate of 5×10−5, a warmup phase
of 2K steps and cosine scheduler for learning rate decay. We use a
single NVIDIA A30 GPU to perform all the experiments. Each of the
experiments need around 5 h.

We train BERT-large models for 20K steps, with a batch size of 32,
maximum learning rate of 10−5, AdamW optimizer, warmup phase of
2K steps and cosine scheduler. Using a NVIDIA A100 GPU, we need
around 4 h for the spatial training and additional 5 h for fine-tuning
on VSR. In the case of T5 we train the models spatially for 88K steps
(T5-3B is trained for 20K steps due to its size) and fine-tune on VSR for
20K. We use a batch size of 32, AdamW optimizer, maximum learning
rate of 5 × 10−5, a warmup phase of 2K steps and cosine scheduler for
learning rate decay. Regarding the T5 family: T5-base is trained on 1
NVIDIA A30 GPU: for spatial training it needs ∼ 20 hours and for VSR
fine-tuning ∼ 3.5 hours. T5-large is trained on 1 NVIDIA A100 GPU: it
needs 1 day and ∼ 4 hours for spatial training, whereas VSR fine-tuning
takes ∼ 3.5 hours. Finally, T5-3B is also trained on a single NVIDIA
A100 GPU: spatial training ∼ 20 hours (20K steps) and VSR fine-tuning
∼ 15 hours.

No hyperparameter search was performed.

Appendix C. Qualitative analysis of generalization capabilities

We compare some examples of two text-only LMs: the BERT-base
model with location tokens trained only on VSR (BERT for short)
and the BERT-base model with location tokens trained on SSTD and
fine-tuned on VSR (st-BERT for short). We want to see the effects
of the spatial training on SSTD to better generalize in VSR. For that
purpose, we focus on two relations that cannot be represented in SSTD,
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Fig. C.9. Comparison of the predictions of two BERT models for VSR test examples. The spatially trained BERT model predicts correctly the labels, whereas the BERT which has
been trained only on VSR does not.
since they cannot be unambiguously defined with BB information and
involve 3D arrangement of objects: behind and in front of. For behind,
the accuracy of BERT is 0.6 and the accuracy of st-BERT is 0.75,
calculated over 136 examples. For in front of, BERT scores 0.58 and
st-BERT 0.61 (116 examples). Those results show that SSTD training
helps even when the spatial relations are not represented in the dataset.
Fig. C.9 offers some intuition of why this might be happening. For the
first example, we see that the bus is much smaller than the bike. As
SSTD includes relative size relations, we think the model has learned
that buses are typically bigger than bikes. Thus while training on VSR,
the model might be able to leverage that information and relate size
differences with 3D arrangements of objects. A similar reasoning can
be applied to the second (motorcycle and dog) and the last examples
(bench and potted plant), but for the in front of relation. For the third
example (bus and book), it seems st-BERT could leverage the fact that
the book can only be visible if it is in front of the bus, given the
arrangement of the bus BB. However, BERT could not predict the spatial
relation correctly.

We also analyze two other relations that are not in SSTD, but are
also related to relative object sizes: next to and far from. For next to,
BERT obtains 0.56 and st-BERT 0.73 (over 41 examples). For far from
BERT scores 0.83 and st-BERT 0.91 (over 23 examples). Notice that the
relation far away from is very similar to far from and st-BERT clearly
outperforms BERT also (0.88 vs 0.73 over 49 examples). For the first
example of Fig. C.10 (pizza and chair), given the small size of the
chair, it can be inferred that it is far in the depth dimension. It seems
st-BERT can leverage this information, whereas BERT cannot. For the
second example (refrigerator and cat), both BBs overlap and it seems
st-BERT infers that situation cannot lead to two objects far away given
the typical sizes of those objects. The third example (backpack and cat)
shows a case where both BBs are slightly overlapping. Again, the typical
sizes of both objects could lead st-BERT to infer that they are actually
next to each other. Finally, for the fourth example we see that the hot
224
Table D.6
The mapping between VSR relations and SSTD relations.
VSR relation SSTD Relations

at the right side of right of
at the left side of left of
around surrounding
into inside
on top of above
beneath below
left of left of
right of right of
under below
below below
above above
over above
contains surrounding
within inside
surrounding surrounding
inside inside
outside separated

dog BB is inside the bowl BB. st-BERT infers that this is not the typical
arrangement for next to, but BERT cannot do that, even though it has
the same textual scene representation.

Appendix D. Implementation details of the rule-based baseline

To implement the rule-based baseline, we first defined manually
a mapping between VSR relations and SSTD relations. As shown in
Section 6.1, only 17 VSR relations out of 65 can be mapped to SSTD
relations. That mapping is shown in Table D.6. Given a VSR test
instance, we check the spatial relation (provided in the annotations of
the dataset) and if it can be mapped to a SSTD relation, we perform
the following steps: (a) from the VSR caption, we retrieve the subject
and object using string manipulation; (b) we find the same subject and
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Fig. C.10. Comparison of the predictions of two BERT models for VSR test examples. The spatially trained BERT model predicts correctly the labels, whereas the BERT which has
been trained only on VSR does not.
object in the textual scene description, using string matching; (c) if both
subject and object are found, we retrieve their bounding boxes and
apply SSTD rules to solve the instance; (d) if any of subject or object
are not found, or the relation cannot be mapped to a SSTD relation, we
choose the answer randomly (50% of probability).
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