
Active Learning for Road Lane Landmark Inventory in
Highly Uncontrolled Image Capture Conditions

JM Lopez-Guede, Asier Izquierdo, Julian Estevez, Manuel Graña
Computational Intelligence Group, UPV/EHU

Abstract

Road landmark inventory is becoming an important industry for the mainte-
nance of transport infrastructures. Several commercial sensors are available
which include optical cameras allowing to build panoramic images around the
vehicle used for road inspection. We focus on a specific region of such panora-
mas which contains most of the relevant information. The landmark detection
is posed as a two class classification problem that may be solved by some stan-
dard approaches, such as random forest (RF) and ensembles of extreme learning
machines (V-ELM). Besides model parameter selection, a central problem is the
construction of the labeled training dataset due to human labor cost and the
highly uncontrolled conditions of image capture. We propose an open ended
Active Learning approach with a human operator in the loop who can start
the Active Learning process when detection quality is degraded by the change
in imaging conditions in order to achieve adaptation to them. We report en-
couraging results over a collection of sample images selected from an industrial
operation. As an additional contribution, we have assessed the ability of Active
Learning to overcome the issues raised by highly class imbalanced datasets.

1. Introduction

Road landmark inventory is a flourishing industry around the world, as the
traffic becomes more dense and the drivers must rely on a well maintained in-
frastructure. Specifically, horizontal signals and lane landmarks, such as lines,
arrows or other drawings on the asphalt, are of great public concern. In this
introductory section we present the problem definition and motivation, some in-
troductory review of Active Learning, the description of the proposed approach,
and finally the paper contributions and content.

1.1. Problem definition and motivation
The task ahead is driven by the industrial exploitation of a car mounted

sensor nicknamed “ladybug” (figure 1). More precisely, the sensor is the IP-S3
HD11 product of Topcon, Japan. It is composed of a positioning system (wheel
encoder, GPS receiver, Inertial Measurement Unit), five cameras pointing at
regular arc intervals of the circumference, and a sixth one pointing up. with

1https://www.topcon.co.jp/en/positioning/products/product/3dscanner/IP-S3_HD1_
E.html
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Figure 1: The ladybug sensor mounted in a car

one pointing directly at the rear of the car, and a LiDAR sensor. The views of
the cameras are composed into panoramas such as the one shown in figure 2,
where the central view corresponds to the rear view of the car, so that the front
view is splitted left and right of the panorama. At the bottom of the panorama
it is possible to appreciate the scaffolding supporting the sensors. Notice the
changes in hue and saturation in the image due to the different sensitivities of
the cameras. The LiDAR data and the image capture has a frequency of 1Hz.
The task ahead is to create an inventory of the road signals and landmarks using
both LiDAR and image data. All images are tagged spatially with coordinates
provided by onboard GPS. In this paper we deal with the extraction of the
horizontal signals drawn on the road: lane limiting lines, arrows, and other hor-
izontal signaling. The image capture conditions, specially the illumination, is
wildly changing from one traveling capture to another, or during the same trip
due to the changes in the position of the sun, the time of the year, the weather,
etc. Besides, the road maintenance is often in bad condition, so the lines may be
fading or interrupted. Finally, for supervised classification approaches the con-
struction of the labeled dataset would be costly so we are extremely interested
in exploiting cheaper alternatives, such as the Active Learning strategy[34].

Figure 2: An example panorama from the ladybug sensor, obtained by the composition of the
views of the five cameras.
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1.2. Active Learning
Classification approaches need careful selection and labeling of training data

samples from the available data. In response to this issue, Active Learning [15]
tries to achieve the most accurate classification using the smallest possible train-
ing set, minimizing the user interaction needed to label the training samples.
Active Learning starts with a minimal training sample, adding new labeled sam-
ples in an iterative process. Aiming to provide the greatest increase in classifier
accuracy [30], the additional samples are selected according to some classifica-
tion uncertainty measure which does not require knowledge of the actual data
label. Besides its benefits in economy of computation and data labeling, Active
Learning is also useful when the underlying data statistics are non stationary, so
that the classifier built at one time instant may not be optimal later on. Active
Learning has been successfully applied to classification of remote sensing images
[29, 34, 33], and image retrieval based on semisupervised Support Vector Ma-
chines [20]. Active Learning inspiration for the selection of a minimal collection
of training images is proposed in [25] for the development of combined gener-
ative and discriminative models in the segmentation of CT scans. An active
feedback approach is used in [32] to improve the classification based annotation
of radiographs.

1.3. Proposed approach
In this paper we formulate the road landmark segmentation problem [26]

as a pixel classification into road landmark and background classes. The ex-
perimental setup for validation is illustrated in Fig. 3. We collect the input
panorama images provided by the so-called “ladybug” sensor to be described
later. As shown in figure 2, the central part of the panorama contains most of
the image useful information given by the rear view of the vehicle, so we crop
this central part for processing, discarding the remaining parts of the panorama.
We compute the Gabor features over the images collecting all the image features
in a unique pool for the training of the classifiers and their validation. We apply
an Active Learning strategy in order select the optimal training dataset. The
classifier trained with the optimal training dataset is validated over the entire
images, producing the performance report for the specific classifier. We repeat
the validation for the diverse classifiers and classifier parameters explored. The
Active Learning oracle providing sample labels in the reported experiments is
the ground truth provided by manual segmentation. In the practical application
the oracle will be the user through some graphical interface for the selection of
most informative pixels to be added to the training dataset.

For pixel classification we explore the results of Random Forest (RF) [9,
11] and Ensembles of Extreme Learning Machines (V-ELM) classifiers based
on texture features computed at pixel level. Specifically we apply a bank of
Gabor filters, so that the feature vector of each pixel is composed of the Gabor
coefficients plus some spatial localization information. We report performance
results over a collection of road images in order to assess the most adequate
classifier and parameter settings.

1.4. Paper contributions and content
Some specific contributions of the approach proposed in this paper relative

to the state of the art of road image segmentation algorithms are: (1) Active
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Figure 3: Pipeline of the experimental setup for the Active Learning segmentation process

Learning reduces the human intervention to the minimum in the process of
training data selection and labeling, (2) we compare two extremely efficient and
fast classifier approaches, namely RF and V-ELM, which allow quick adaptation
to incremental training datasets, (3) the approach does not required a priori
information or geometric models, (4) feature extraction is based on an specific
systematic approach, i.e. Gabor filters (5) if we need to transfer the trained
classifier to new data stream we only need to pick new training samples according
to the Active Leaning approach, i.e. the process is an open ended learning
process with a human in the loop. (6) In our experimental exploration we have
found that Active Learning may provide an alternative avenue to tackle the
issues raised by heavily class imbalanced datasets.

The structure of the paper is as follows: Section 2 describes the Active
Learning framework, the machine learning approaches, and the image feature
generation method. Section 3 describes the experimental set-up. Section 4
provides the experimental results. Finally, Section 5 provides our conclusions
and some hints for future work.

2. Methods

2.1. Random Forest Classifiers
Random Forest (RF) algorithm is a classifier [11] that encompasses bagging

[10] and random decision forests [1, 19], whose performance has been demon-
strated in a variety of applications [9, 27]. RF became popular due to its sim-
plicity of training and tuning while offering a competitive performance to other
machine learning approaches, such as support vector machines. Consider a RF
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as a collection of decision tree predictors, built so that they are as much decor-
related as possible, denoted:

{h(x;ψt); t = 1, ..., T} ,

where x is a d-dimensional random sample of random vector X, ψt are inde-
pendent identically distributed random vectors modeling the stochastic nature
of the tree building process. Each tree h(x;ψt) casts a unit vote in order to
decide the class assignment of x. RF captures complex interaction structures
in data, and are proposed [11] to be resistant to both over-fitting of data when
individual trees are very deep and no pruned, and under-fitting when individual
trees are too shallow.

Given a dataset of N samples, a bootstrapped training dataset is used to
grow a tree h(x;ψt) on a randomly selected subset of data dimensions d̂ such
that d̂� d. Decision tree growing recursively picks the best data split of each
node based on these information measure of each dimension. In RF pruning
is not required [11]. The RF training process picks randomly the dimension
and the dataset bootstrapping according to independent identically distributed
random vectors ψt. This randomness is the source of RF individual tree diversity
ensuring the decorrelation of their outputs.

Classification of a new input x is done by majority voting over the responses
of the trees in the RF Cu(x). The critical parameters of the RF classifier for the
experiments reported below are the number of trees in the forest, the dimension
of the random subspace, and the maximum tree depth. We report experiments
assessing the effect of these parameters in our specific study.

2.2. Ensembles of Extreme Learning Machines
Extreme Learning Machine (ELM) [24, 21] was proposed for fast and ef-

ficient training of Single-Hidden Layer Feedforward Neural Networks (SLFN).
It is composed of the random generation of the input-to-hidden layers weights
followed by least squares estimation of the hidden-to-output layer weights. Ran-
dom weight generation allows to solve the non-linear training problem as a linear
problem, gaining in speed at the cost of some instability that has been shown
empirically to be affordable. In general terms, a supervised classifier is a map
from input feature space into a target value space, for the SFLN this map has
the following form:

fL (x)=

L∑
i=1

βi·hi(x) = h (x)β, (1)

where β = [β1, . . . ,βL]
T is the matrix composed of the weights of the connec-

tions hidden-to-output units, and the transformation h (x) is the ELM nonlinear
transformation from input to hidden space. The hidden units of ELM may be
any piecewise continuous function that satisfies simple universal approximation
conditions [22, 23]. Given a sample of feature vectors and corresponding labels
{(xi, yi)}Ni=1, the estimation of the labels given the input features can be written
in matrix notation as

Hβ = Ŷ, (2)

where H is the matrix of responses of the hidden units to the input features
in the sample, and Ŷ is the achieved approximate value of the labels of the
samples.
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The process of training an SLFN following ELM approach has two stages: (1)
feature mapping implemented by random sampling of the hidden units activa-
tion in response to the input features in order to build the feature kernel matrix
H, and (2) least squares resolution of the following minimization problem:

min
β∈RL×m

‖Hβ −Y‖2 , (3)

whose optimal solution is given by β̂ = H†L, where H† is the Moore-Penrose
generalized inverse of H. Note that the definition of ELM allows naturally
multivariate output SFLN.

ELMs can be combined very efficiently in ensembles which can be homo-
geneous or heterogeneous [5]. Applications on the prediction of readmissions
in hospital environments [3], remote sensing image processing [4, 6, 7, 8] have
already been reported. The simplest ensemble of ELM is the Voting ELM (V-
ELM) [13], consisting of a collection of ELMs each trained on a bootstrap of
the training dataset. Every SFLN has the same number of hidden neurons, and
the decision on the class is performed by majority voting over the responses of
the SFLN in the ensemble. Examples of applications of V-ELM are hyperspec-
tral image classification [? ], remote sensing data classification [18]and natural
gas reservoir characterization [2], and wastewater quality index modeling [35].
It has been proved that accuracy converges to perfect classification as the size
of the ensemble grows under the mild assumption that individual classifiers
have performance better than random choice [13]). The V-ELM has spurred
some variations in the literature, such as the use of soft-class dependent voting
schemes [12] trying to increase model reliability. We apply the basic scheme in
our work.

2.3. Active Learning
The motivation of the Active Learning approach [14, 15, 33] is to facilitate

the task of data labeling for supervised classification. The two objectives pur-
sued by this approach are to reduce as much as possible the manual effort of
data sample labeling, and the selection of those data samples which are more in-
formative towards the building a robust and efficient classifier. Data labeling is
a costly process involving manual labor and some interactive data visualization
tool that facilitates the labeling process. In some cases, data labeling involves
quite complex field work, so minimizing the number of required labeled samples
and ensuring that each labeled sample contributes significantly to the quality
of the classifier is of paramount importance. Moreover, manual data labeling
may introduce erroneous classifications, which further interfere and degrade the
training process. Such kind of errors are less likely in small datasets. Addi-
tionally, in the case of highly class imbalanced datasets, the guided selection
of balanced training datasets may enhance the results as we have found in our
experiments reported later.

Let us denote X = {xi, yi}li=1 and U = {xi}l+u
i=l+1 ∈ Rd the training set con-

taining labeled samples, and the unlabeled samples in the pool of candidates,
respectively. We have that u� l, xi ∈ Rd, and yi ∈ {1, . . . , N}. Active Learn-
ing is an iterative algorithm. At iteration t, the algorithm selects q candidates
from U t to be added to the current training set Xt, aiming at maximal gain
in performance of the classifier trained with the incremented training dataset,

6



while reducing the classification model uncertainty. An oracle provides the la-
bels {ym}qm=1 to the selected samples St = {xm}qm=1 ⊂ U . The oracle can be
a human carrying out an interactive segmentation, or available ground truth
if we are carrying out computational experiences, such as we do in this pa-
per. The current training set is increased with the candidates selected from
the pool(Xt+1 = Xt ∪ St) , while being removed from the pool of candidates
(U t+1 = U t\St)The process stops when some criterion is met, such as the
achieving accuracy over a preset threshold θmax. Algorithm 1 summarizes the
Active Learning process.

Algorithm 1 Active learning general algorithm
Imputs
–Initial training set Xt = {xi, yi}li=1(X ∈ X , t = 1).
–Pool of candidates U t = {xi}l+u

i=l+1(U ∈ X , t = 1).
–Number of voxels q to add at each iteration (defining the batch of selected
voxels S ).
1: repeat
2: Train a classifier with current training set Xt

3: for each candidate in U t do
4: Evaluate a user-defined heuristic
5: end for
6: Rank the candidates in U t according to the score of the heuristic
7: Select the q most interesting voxels St = {xk}qk=1

8: The system assigns a label to the selected voxels St = {xk, yk}k=1

9: Add the batch to the training set Xt+1 = Xt ∪ St

10: Remove the batch from the pool of candidates U t+1 = U t\St

11: t = t+ 1
12: until t > T

2.3.1. Classification uncertainty in ensemble classifiers
RF and V-ELM classifiers implement committee approaches to the decision

of the class corresponding to an unlabeled sample. This distributed coopera-
tive decision can be used for classification uncertainty estimation [33]. Given a
committee of k base classifiers, then we have k labels for each candidate unla-
beled sample xi ∈ U . The data sample class label is provided by the majority
voting. Heuristically, we equate the measure of the classification uncertainty of
xi with the standard deviation σ (xi) of the class labels generated by the com-
mittee. Let us order the pool of candidates. i.e.: U∗ = {xji}

l+u
i=l+1, according to

σ (xji) > σ
(
xji+1

)
. The standard deviation query-by-bagging heuristic selection

of samples to be added to the train set is stated as the following selection:

St= {xjm}
q
m=1 (4)

The standard deviation of ensemble label predictions is a powerful heuristic mea-
sure of classification uncertainty. A candidate sample that is classified equally
by all ensemble members has a zero prediction standard deviation, hence its in-
clusion in the training set does not add any information. On the other hand, if
a candidate has uniformly distributed responses from the ensemble, its standard
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deviation is maximal, hence it contributes maximal information when included
in the training dataset.

2.3.2. Active Learning for Image Segmentation
We want to classify image pixels into two classes, the target and the back-

ground [27]. Target in our case are the pixels corresponding to the lane marks
and other landmarks in the road. In a nutshell, an Active Learning system
returns to the user an image whose intensity value corresponds to the degree of
uncertainty in the classification of the pixel. Upon this image, the user, in its
role as the oracle will pick some of the pixels with greatest intensity labeling
them for insertion in the training dataset. Then, a new instance of the classifier
is trained [30]. The features of each pixel are the result of the application of
a bank of Gabor filters, the pixel intensity and its coordinates. Though the
feature vector dimensionality is relatively high, we do not carry out any fea-
ture selection procedure because we prefer to leave open the possibility that a
certain orientation or scale may be meaningful in future images. We assume
that the stream of images may produce images that are quite different from the
ones used for training. Hence, the final implementation will allow to restart the
Active Learning process when the human operator detects deviations from opti-
mal segmentation. It is an open-end learning process with a human in the loop.
For the computational exploration reported in this paper, we do not resort to a
human oracle. Instead, we use a hand delineated ground truth of a collection of
images. Hence, the labeling process consists in the selection of the pixels with
maximal uncertainty, applying random selection to solve ties.

2.3.3. Active Learning and class imbalance
Class imbalance is a widely know issue in machine learning [17] that is gain-

ing increased attention due to its very strong bias effect in classifier training by
almost any modeling approach. In the case of digital mapping, the effect of class
imbalance has been also recognized [31]. The data dealt with in this paper is
highly class imbalanced, hence we must take into account this fact in the use of
performance metrics, and in the way we select the samples that are added to the
training set. We have carried out comparative experiments ensuring that the
added samples are class balanced and not ensuring this class balance. Usually,
using subsampled balanced datasets for training does not achieve competitive
test results. However, we hypothesized that the optimal selection of the sam-
ples followed by the Active Learning may compensate for the subsampling. We
carried the comparative over the RF experiments to test this hypothesis.

2.4. Gabor texture features
In order to have a systematic characterization of the surroundings of each

pixel we use a bank of Gabor filters. The magnitude of the responses of the
Gabor filters are used a the feature vector for classification. In other words, we
use the local texture descriptor of the image as features [16, 28] for classification.
Formally, a Gabor filter is defined by the product of a sinusoidal wave, a plane
wave in 2D, and a Gaussian function. The Gaussian component modulates the
scale of the filter, while the wave component acts as a selector of the orientation
and spatial frequency of the detected objects. In many implementations, Gaus-
sian scale and wavelength are linked, so only the wavelength is specified. The
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Figure 4: Examples of filtered images with Gabor filters of various orientations and scales.

Gabor filter provides a complex valued response, so its magnitude and phase
can be used as features. In this paper we use only the phase. Formally, a the
impulse response of single filter is defined as follows:

g (x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x′2

σ2
x

+
y′2

σ2
y

)]
exp [2πi (Ux+ V y)] ,

where we rotate the Euclidean coordinates by θ such that x′ = x cos (θ) +
y sin (θ), and y′ = x sin (θ) + y cos (θ). Parameters σx, σy define the spatial
support and bandwidth of the filter. The complex exponential factor is 2D
sinusoid wave of frequency F =

√
U2 + V 2 and orientation γ = tan−1 (V/U).

Figure 4 shows some examples of the magnitude response of different filters
over the same road image. Diverse orientations highlight different road lane
marks, and diverse wavelengths produce crisp or blurred images, where details
are highlighted or removed.

3. Experimental setup

3.1. Dataset
From the actual collection of landscapes gathered from several trips of the

data recording car we have selected 15 images in order to carry out the experi-
mental work. Instead of working on the full panoramas illustrated in Figure 2,
we have automatically cropped a central region of the panorama that contains
most of the rear view of the ladybug. Figure 5 shows some of the experimental
images (left column) and their manually delineated ground truth. The actual
imbalance ratio of the data is 1:39, the target minority class accounts 2.45%
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Figure 5: Some of the experimental images (left column) and their corresponding manually
delineated ground truth (right column) white=background

of the dataset, the remaining 97.55% corresponds to the background, including
the road and the environment.

3.2. Model parameter exploration.
We have carried out an exhaustive exploration of the model parameter set-

tings in order to assess robustness of the approach and to find out which pa-
rameter is more influential. As a conclusion we can provide some guidance on
the best parameter setting and the most promising model. Regarding RF com-
putational experiments, we have explored the influence of the number of trees
(NT), the number of variables taken into account at node split (NVS), and
the size of the sample (NS) that is added to the current training dataset. We
have also make the comparative between ensuring that the dataset subsample
added to the current training dataset is class balanced and not ensuring class
balance. This experience is not repeated on the ELM experiments. Regarding
ELM computational experiments, we have explored the influence of the ensem-
ble size (NELM), the number of hidden units (NHELM), and the size of the
sample (NS) added to the current training dataset. We have used the standard
sigmoid activation function. In all reported experiments we have performed a
fixed number of iterations (T=10) of the Active Learning algorithm.

3.3. Validation.
We report the sensitivity (SEN), specificity (SP), accuracy (AC), and true

positive ratio (TPR) of the pixel-wise classification of the entire images using
the classifiers built upon the selected training datasets at the end of the Active
Learning process. The most valuable metric is the TPR because of the strong
class imbalance of the dataset.

The pool of pixels used for the selection of the training dataset is composed
of pixels of all labeled images, so the selection tries to have representatives from
all images, in order to avoid overtraining on one image. Hence, at each Active
Learning iteration we compute the classification uncertainty over all images.
However we do not ensure that the selection is fair, in the sense of picking the
same amount of pixels from each image to be added to the training dataset.
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Figure 6: Some visual results of the trained RF (left column) and V-ELM (right column)
ensemble classifiers using balanced training sample increments.

Regarding the issue of the separation of training and test data for validation, it
is ensured as far as we are reporting the performance measures over the pixels
not in the training set. Active Learning is per se safe in this regard, because
never uses the labeling information of data outside the training dataset [34].

4. Experimental Results

For a qualitative appraisal of the results we show in Figure 6 some images
of the detections achieved by RF (left) and V-ELM (right) classifiers trained on
the final training datasets of Active Learning processes. Notice that we are not
reporting results after post-processing and noise removal of the classification
results. Removing noisy detections may be easily achieved applying morpholog-
ical operators and some standard computer vision tools. We think that these
processes correspond to the industrial implementation of the approach, and
including them here would somehow obscure the intended contribution of the
paper. Regarding the quantitative analysis of the results, we have organized it
into several research questions.

Impact of the sample selection strategy. We compare the performance achieved
by the RF classifiers when the training datasets are increased by candidate
samples with or without ensuring class balancing, as shown in Table 1 and Table
2, respectively. A one-sided t-test comparing the SP and TPR of the balanced
versus imbalanced increments confirms that there is a significant increment in
performance (p < 1e − 10 for TPR, p < 1e − 8 for SP). Wilcoxon rank sum
test is even more significant (p < 1e − 11 for TPR, p < 1e − 9 for SP). This
result is meaningful in the sense that it provides an alternative approach to the
resolution of the bias induced by strong class imbalance. In this situation, if
we examine the AC performance we are mislead, because ignoring the minority
class lead to very high AC values, but very poor TPR values as can be seen in
Table 2 where imbalanced training dataset growth lead to high AC and SEN
but very poor SP and TPR. In fact the mean TPR in Table 2 is 0.051 while in
Table 1 it is 0.552. The result is so definitive that we have not carried out the
equivalent experiment on the V-ELM classifiers, which have been trained only
with balanced incremental training datasets.

11



Table 1: Active Learning using RF classifiers ensuring that set of samples added at each
iteration is class balanced. Performarce results measured by sensitivity (SEN), specificity
(SP), accuracy (AC), True Positive Ratio (TPR) of RF varying the number of trees (NT),
the number of variables considered for the split at each node (NVS), the number of samples
added in each iteration of the active learning algorithm (NS). The added set of samples is
class balanced.

NS NVS NT SEN SP AC TPR
100 5 50 0.858 0.283 0.843 0.898
100 5 100 0.816 0.344 0.804 0.865
100 5 150 0.732 0.483 0.726 0.890
100 5 200 0.995 0.010 0.970 0.090
100 10 50 0.851 0.254 0.836 0.873
100 10 100 0.853 0.304 0.839 0.857
100 10 150 0.850 0.264 0.835 0.812
100 10 200 0.998 0.002 0.973 0.034
100 15 50 0.716 0.488 0.710 0.859
100 15 100 0.759 0.458 0.752 0.890
100 15 150 0.733 0.501 0.727 0.851
100 15 200 0.984 0.034 0.960 0.158
100 20 50 0.864 0.310 0.850 0.812
100 20 100 0.882 0.227 0.865 0.804
100 20 150 0.812 0.383 0.801 0.800
100 20 200 0.891 0.172 0.873 0.363
50 5 50 0.972 0.096 0.950 0.389
50 5 100 0.943 0.156 0.923 0.638
50 5 150 0.999 0.010 0.974 0.043
50 5 200 1.000 0.013 0.975 0.013
50 10 50 0.953 0.128 0.932 0.581
50 10 100 0.924 0.183 0.905 0.622
50 10 150 0.978 0.058 0.954 0.333
50 10 200 0.991 0.011 0.966 0.083
50 15 50 0.874 0.256 0.858 0.599
50 15 100 0.940 0.137 0.919 0.486
50 15 150 0.927 0.181 0.908 0.617
50 15 200 0.910 0.151 0.890 0.274
50 20 50 0.851 0.296 0.837 0.718
50 20 100 0.917 0.168 0.898 0.596
50 20 150 0.945 0.114 0.924 0.533
50 20 200 0.917 0.192 0.899 0.311
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Table 2: Active Learning using RF classifiers without ensuring that set of samples added at
each iteration is class balanced. Performarce results measured by sensitivity (SEN), specificity
(SP), accuracy (AC), True Positive Ratio (TPR) of RF varying the number of trees (NT),
the number of variables considered for the split at each node (NVS), the number of samples
added in each iteration of the active learning algorithm (NS).

NS NVS NT SEN SP AC TPR
100 5 50 0.997 0.012 0.972 0.078
100 5 100 0.999 0.008 0.973 0.032
100 5 150 0.996 0.014 0.971 0.108
100 5 200 0.999 0.020 0.973 0.057
100 10 50 0.996 0.000 0.97 0.09
100 10 100 0.998 0.000 0.972 0.043
100 10 150 0.992 0.011 0.967 0.172
100 10 200 0.998 0.017 0.973 0.064
100 15 50 0.998 0.005 0.972 0.059
100 15 100 1.000 0.000 0.974 0.015
100 15 150 0.998 0.015 0.973 0.067
100 15 200 0.996 0.001 0.97 0.079
100 20 50 0.998 0.012 0.973 0.043
100 20 100 0.999 0.011 0.974 0.03
100 20 150 0.999 0.000 0.973 0.039
100 20 200 0.999 0.018 0.974 0.043
50 5 50 1.000 0.004 0.974 0.015
50 5 100 1.000 0.004 0.974 0.009
50 5 150 0.995 0.032 0.97 0.132
50 5 200 0.999 0.000 0.973 0.024
50 10 50 0.999 0.005 0.973 0.037
50 10 100 0.995 0.008 0.97 0.127
50 10 150 0.999 0.001 0.973 0.04
50 10 200 0.998 0.002 0.973 0.04
50 15 50 0.997 0.007 0.972 0.055
50 15 100 1.000 0.000 0.974 0.005
50 15 150 0.998 0.004 0.973 0.046
50 15 200 1.000 0.000 0.974 0.013
50 20 50 1.000 0.000 0.974 0.009
50 20 100 1.000 0.003 0.974 0.014
50 20 150 0.999 0.000 0.973 0.034
50 20 200 0.999 0.006 0.973 0.027
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Table 3: Active Learning using V-ELM ensemble classifiers ensuring that set of samples
added at each iteration is class balanced. Performarce results measured by sensitivity (SEN),
specificity (SP), accuracy (AC), True Positive Ratio (TPR) of RF varying the number of
ELM components (NELM), the number of hidden units at each ELM (NHELM), the number
of samples added in each iteration of the active learning algorithm (NS).

NHELM NELM NS SEN SP AC TPR
25 50 50 0.45 0.9524 0.9401 0.45
25 50 100 0.8059 0.8534 0.8522 0.8059
25 100 50 0.828 0.8217 0.822 0.828
25 100 100 0.5241 0.9289 0.919 0.5241
25 150 50 0.8277 0.7921 0.8277 0.8277
50 50 50 0.6395 0.9021 0.8956 0.6395
50 50 100 0.8442 0.8398 0.84 0.8442
50 100 50 0.8289 0.8151 0.8154 0.8289
50 100 100 0.8469 0.9399 0.9376 0.8469
50 150 50 0.8001 0.8425 0.8415 0.8001
50 150 100 0.8972 0.9227 0.9221 0.8972
50 200 50 0.8167 0.8234 0.8232 0.8167
50 200 100 0.9097 0.8931 0.8935 0.9097
100 50 50 0.8792 0.8025 0.8044 0.8792
100 50 100 0.8713 0.9101 0.9091 0.8713
100 100 50 0.9237 0.845 0.8469 0.9237
100 100 100 0.8984 0.921 0.9204 0.8984
100 150 50 0.8091 0.8866 0.8846 0.8091
100 150 100 0.8345 0.8091 0.8097 0.8345
100 200 50 0.9099 0.8764 0.8771 0.9099
100 200 100 0.8444 0.8186 0.8192 0.8444
150 50 50 0.6467 0.9247 0.918 0.6467
150 50 100 0.8223 0.8974 0.8955 0.8223
150 100 50 0.9038 0.721 0.7255 0.9038
150 100 100 0.9284 0.8785 0.8798 0.9284
150 150 50 0.8418 0.7856 0.7871 0.8418
150 150 100 0.8272 0.8859 0.8844 0.8272
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Effect of parameter settings. The size of the sample (NS) that is added to the
training dataset at each iteration is a global parameter of the Active Learning
process. In the RF experiments, we find moderate but significant effect of
the sample size 100 versus 50 in Welch one-sided t-test (p < 0.004 for TPR,
p < 0.005 for SP) and in Wilcoxon rank sum test (p < 0.02 for TPR, p < 0.007
for SP) on the data of Table 1. In the V-ELM experiments reported in Table
3 we find even lower significance in Welch one-sided t-test (p < 0.5 for TPR,
p < 0.05 for SP) and in Wilcoxon rank sum test (p < 0.5 for TPR, p < 0.09
for SP). However, we think that the greater sample increment is preferable,
for instance, for V-ELM the mean value of TPR for NS=100 is 0.82, while for
NS=50 it is 0.77. Similar values for RF are 0.67 and 0.42.

Regarding the effect of the RF parameters, we find that the number of trees
in RF has a stronger effect than NVS in an analysis of variance (p < 1e − 5
for TPR, p < 0.005 for SP). It is very interesting to observe a clear overfitting
effect, i.e. often there is a decrease in performance when NT goes from 150 to
200 all other parameters unchanged. Looking at the mean values of TPR for
NT values 50, 100, 150, 200 we obtain 0.71, 0.72, 0.60, and 0.16, respectively.
Hence there is catastrophic overfitting effect when we try to use more than 150
trees.

Regarding the effect of the parameters of V-ELM, namely the number of
hidden units and the number of ELMs in the ensemble, their effect is minor.
An analysis of variance on the data of Table 3 reports a minor effect of NHELM
on TPR and SEN (p < 0.6). If we look in detail at the performance for varying
NHELM values 25, 50, 100, and 150 we obtain average TPR values 0.68, 0.81,
0.87, and 0.82, respectively. Therefore, we may have a big performance increase
going from 25 to 100 hidden units, but afterwards there is a degradation of the
classifier performance. Although the number of ELMs in the ensemble seems
to be rather irrelevant, it must be noted that the average TPR for NELM
values 50, 100, 150, and 200 is 0.74, 0.83, 0.83, and 0.81, respectively. Therefore
there is significant improvement increasing the number of ELMs until saturation
around 100 ELMs which leads to performance degradation at 200 ELMs but not
as dramatic as in the case of RF number of trees.

Effect of the classifier ensemble. When comparing the V-ELM against the RF,
we find a highly significant difference in Welch two sample t-test (p < 1e− 4 for
TPR and p < 1e − 15 for SP) and in Wilcoxon rank sum test (p < 1e − 3 for
TPR, p < 1e− 6 for SP). The mean vales of the TPR and SP for V-ELM over
Table 3 are 0.80 and 0.86, respectively, while for the RF in Table 1 are 0.55 and
0.20, respectively. The best TPR and SP values achieved by V-ELM classifiers
are 0.92 and 0.95, while RF achieves 0.89 and 0.50, respectively. Adding up
the insensitivity to the parameter settings and the improved results, V-ELM
appears to be the most promising approach for the full development of the large
scale road images segmentation.

5. Conclusion and future works

In this paper we present an Active Learning approach to deal with the label-
ing of road landmarks in images obtained by an onboard sensor that includes
LiDAR as well as positioning sensors for the purpose of detailed road signaling
inventory. The underlying problem is a two class classification problem with
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strong class imbalance, and potentially large volume of images taken under very
diverse light and atmospheric conditions, as well as road conditions. The pro-
posed solution is an open ended process segmentation with a human in the loop
that may start the adaptation to new images at any moment. Due to the cost of
image labeling, the adaptation follows an Active Learning approach, where the
training set is built incrementally with the most informative image samples. We
have explored the performance of two ensemble classifiers, namely the random
forest (RF) and the ensemble of extreme learning machines (V-ELM). Our com-
putational experiments have found that the V-ELM improves RF in terms of
true positive ratio (TPR), a performance measure more appropriate than Accu-
racy for strong class imbalanced datasets. Additionally, we have found a novel
way to deal with class imbalance through Active Learning selection of optimal
balanced training datasets. We think that the approach deserves further exhaus-
tive study, as it has not been previously proposed in the literature. Besides, we
have found in our computational exploration that both RF and V-ELM show
some overfitting issues as the model complexity grows. This exploratory work
may lead to more detailed experimentation in order to propose optimal model
parameterizations for the task at hand. Future works would be addressed to
the exploitation of the fused image and LiDAR information in order to enhance
the road landmark recognition.
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