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Alcohol is the most widely consumed psychoactive substance in the world that

has a severe impact on many organs and bodily systems, particularly the liver

and nervous system. Alcohol use during pregnancy roots long-lasting changes

in the newborns and during adolescence has long-term detrimental effects

especially on the brain. The brain contains docosahexaenoic acid (DHA), a major

omega-3 (n-3) fatty acid (FA) that makes up cell membranes and influences

membrane-associated protein function, cell signaling, gene expression and lipid

production. N-3 is beneficial in several brain conditions like neurodegenerative

diseases, ameliorating cognitive impairment, oxidative stress, neuronal death and

inflammation. Because alcohol decreases the levels of n-3, it is timely to know

whether n-3 supplementation positively modifies alcohol-induced injuries. The

aim of this review is to summarize the state-of-the-art of the n-3 effects on

certain conditions caused by alcohol intake, focusing primarily on brain damage

and alcoholic liver disease.
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1. Introduction

Alcohol is a worldwide-consumed drug and its use depends on gender, age and health
status. In 2016, 43.0% of the global adult population were current drinkers and caused 5.3%
of all deaths (1). The average intake in the world is 13.9 grams of pure alcohol per day. Its
use is more common and the consumption is the highest in the European Region (59.9%),
followed by the Region of the Americas (54.1%) and the Western Pacific Region (53.8%).

Chronic heavy consumption of alcohol causes injuries in the organism, notably in the
digestive, immune and central nervous system (CNS). The liver alcohol dehydrogenase
metabolizes the acetaldehyde of alcohol making this organ particularly susceptible to lesion
(2). Alcohol intake during pregnancy can result in damage in newborns with detrimental
effects on memory (3) due to hippocampal and prefrontal cortical alteration (3, 4). In
addition, alcohol use commonly starts during adolescence disrupting brain maturation and
key processes of development. Binge drinking during adolescence has a long-lasting impact
on hippocampal neurogenesis increasing cell death (5, 6) as well as on parahippocampal
and neocortical structures altering brain plasticity, cognition and behavior (7–10). Likewise,
we observed deficits in recognition, spatial and associative memory in early adulthood
after chronic ethanol intake during adolescence (11, 12). Cognitive impairment in adult
brain after adolescent alcohol intake correlates with changes in white matter, disrupted gray
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matter (13), reduced hippocampal volume and low levels of brain-
derived neurotrophic factor in the adult hippocampus (14, 15).
Furthermore, loss of prefrontal gray matter associates with motor,
emotional and memory deficits (16) and the blood flow is altered
in prefrontal and parietal regions of the female brain (17). Glial
cells are also responsive to the adolescent binge drinking insult
through the TLR4/NFκB signaling cascade with the consequent
inflammatory response and the long-term impaired behavior
and cognition (18, 19). Moreover, because dysfunctional swelled
astrocytes with much less cannabinoid CB1 receptors is a key
feature in adult hippocampus upon cessation of adolescent binge
drinking (20), astroglial anti-inflammatory response mediated
by cannabinoid receptors in astrocytes (21) is likely altered in
alcohol conditions.

The brain is mainly composed of lipids, particularly
docosahexaenoic acid (DHA) (22:6n-3), a n-3 long-chain
polyunsaturated FA (PUFA), and eicosapentaenoic acid (EPA,
20:5n-3) and, at lower levels, by the omega-6 (n-6) arachidonic
acid (AA) (22). The content of DHA varies among regions and
between neurons and glial cell types (22), is essential for membrane
structure and function, membrane-associated protein function, cell
signaling, gene expression and lipid production (23, 24), having
potent anti-inflammatory effects (22). The detrimental impact
of alcohol on DHA (25–28) impairs synaptic plasticity (29–31),
particularly N-methyl-D-aspartate (NMDA)-dependent long-term
potentiation (LTP) in the hippocampus (31) and medial prefrontal
cortex (30), two brain regions enriched with DHA (22). Also,
adequate EPA levels are needed for a proper acute behavioral
response to alcohol (32).

Compelling evidences have shown that n-3 protects against
some brain conditions, such as multiple sclerosis, depression or
schizophrenia (33). In Alzheimer’s and Parkinson’s disease, n-3
FAs ameliorate cognitive impairment related to synaptic plasticity
disturbance (34), diminish oxidative stress (34, 35) and reduce
neuronal death (35). They also decrease inflammatory cytokine
levels in various pathologies (35, 36).

2. Alcohol damage to the nervous
system and omega-3

Alcohol use during pregnancy can result in fetal alcohol
spectrum disorder (FASD), characterized by long-lasting physical,
mental, behavioral and learning deficits due to damage of the CNS
(37). In the 1990s, first pieces of evidence provided a link between
n-3 and FASD, as proper n-3 intake, particularly DHA and EPA,
ameliorated newborn brain and body weight reduction caused by
alcohol (38, 39). All the abnormalities of the developing brain
elicited by prenatal ethanol exposure (PNEE) imply behavioral
changes. N-3 intake improves locomotion and, although not at all
ages, anxiety-like behavior in FASD (39, 40). Furthermore, DHA
reverses the PNEE deficits in somatosensory performance, social
behavior and vocalization (41).

Distinct protocols of ethanol administration result in different
effects on brain phospholipid composition, ranging from a
reduction in some saturated FA (12:0, 14:0, and 16:0) and a rise
in 18:0 without diet effects (38), to unaffected levels of saturated
FA (39). Furthermore, the ethanol-induced increase in n-6 and

decrease in n-3 elevates the net n-6/n-3 ratio that can be reversed by
a diet enriched in n-3 (38, 39, 42). N-3 increases the levels of 18:2n-6
and 20:3n-6 FA (38, 39), but more contradictory is the rise in 18:1n-
9 achieved by ethanol intake (38) and a DHA-enriched diet (39).
Although PNEE and diet do not alter the protein carbonyl levels
detected by spectrophotometry, n-3 reduces lipid peroxidation in
the dentate gyrus and prefrontal cortex after PNEE, thus preventing
brain oxidative stress in FASD (43, 44). Furthermore, n-3 intake
restores glutathione levels dampened by PNEE in adulthood (44),
despite the fact that neither alcohol nor diet influence the activity
of the superoxide dismutase and catalase. Glutathione regulates
the thiol redox state of the cells positively affecting NMDA
receptor function and plasticity disrupted by PNEE in the dentate
gyrus of adult males, and recovered by a diet enriched with n-
3 from birth to adulthood (45) (Figure 1). Also, n-3 lowers the
increased caspase-3 and calpain activity detected by p-nitroanilin
absorbance and calcium- and non-calcium-dependent fluorescence
in ethanol conditions, reducing cell injury, neurodegeneration,
brain hemorrhage, congestion, necrosis, leukocytosis and microglia
activation (43).

Chronic ethanol impairs both basal and forskolin induced
cAMP-dependent neurogenic differentiation of neural stem
cells (NSC), by decreasing adenylyl cyclase (AC) mRNA,
phosphodiesterases (PDEs) activity, as well as by downregulating
Cyclic adenosine monophosphate (cAMP) production by reducing
G-protein activation analyzed by [γ-35S] GTP binding assays.
Ethanol also reduces Tuj-1 expression, an early stage of neural
differentiation marker, and protein kinase A (PKA) and cAMP-
response element binding protein (CREB) phosphorylation.
Noticeably, synaptamide, a DHA metabolite analog of the
endocannabinoid anandamide, ameliorates cAMP signaling and
boosts the NSC differentiation impaired by ethanol (46) (Figure 2).

Alcohol intake in adulthood promotes oxidative stress and
neurodegeneration particularly in the hippocampus, entorhinal
cortex and olfactory bulb (28, 47, 48). It also increases aquaporin-
4 (AQP-4) involved in glial edema (28, 47), and poli ADP-ribose
polymerase-1 (PARP-1) that favors necrosis through glial activation
(28). In addition, a rise in phospholipase A2 (PLA2) which
mobilizes AA from membrane phospholipids, a major reactive
oxygen species (ROS) source in brain conditions, was revealed
by immunoblotting and scintillation spectroscopy after binge

FIGURE 1

FASD and n-3 effects. Due to maternal ethanol intake, fetal
glutathione decreases, oxidative stress augments, neuronal necrosis
raises and LTP is impaired. Maternal n-3 enriched diet increases
glutathione, decreases oxidative stress, reduces neuronal necrosis
and rescues LTP, mitigating ethanol harmful effects. Created with
www.Biorender.com.

Frontiers in Nutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2023.1068343
http://www.Biorender.com
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1068343 March 30, 2023 Time: 15:36 # 3

Serrano et al. 10.3389/fnut.2023.1068343

ethanol (28, 48). Also, the ethanol-induced enhancement of 4-
hydroxynonenal-adducted and 3-nitrotyrosinated (3NT) proteins,
two oxidative footprints derived from AA and free radicals,
were detected by immunoblot analysis (28). The ethanol-elicited
DHA decrease shown by PI fluorescence labeling in cultures is
detrimental, as this PUFA abolishes the changes in AQP-4, PLA2,
PARP-1, and 3NT caused by alcohol with the consequent positive
effects on neurodegeneration and oxidative stress (28, 47, 48).
Likewise, DHA enrichment is able to counteract its own low brain
levels due to alcohol (28).

3. Alcoholic liver disease and
omega-3

In vitro investigations have shown opposite effects of the main
n-3 FAs on hepatocyte damage caused by ethanol, with their more
significant impact on lipid rafts (49, 50). Thus, EPA promotes
membrane remodeling by phospholipase C (PLC) translocation
into lipid rafts, enhancing the oxidative stress and cell death of
ethanol that can be diminished by vitamin E and membrane
stabilizers (49). In contrast, DHA prevents the harmful ethanol
effects on hepatocytes by inhibiting PLC relocation into lipid
rafts (50).

Oxidative stress causes membrane lipid peroxidation, impairs
mitochondrial function and decreases antioxidant enzymatic
activity, all together leading to liver damage (51). DHA mitigates
PNEE-induced fetal liver enlargement and reduces alcohol rise
of liver oxidative stress by normalizing the excess of glutathione
reductase mRNA and the deficit in glutathione peroxidase mRNA,
as detected by real-time quantitative polymerase chain reaction
(52). Like in FASD, the increased liver-to-body weight ratio elicited

FIGURE 2

Alcohol damage of neurogenic NSC differentiation and n-3 effects.
Alcohol decreases G protein and AC activation, consequently cAMP
signaling is downregulated and PKA and CREB phosphorylation are
increased, having a negative impact on NSC differentiation. PDE
activity is upregulated by alcohol. However, n-3 intake improves
cAMP signaling, decreasing PKA/CREB that promotes NSC
differentiation. Also, n-3 downregulates PDE. Created with
www.Biorender.com.

by alcohol is reduced by n-3 in adulthood (53, 54). Ethanol
increases ROS and reactive nitrogen species, thus rising lipid
peroxidation measured by levels of hepatic malondialdehyde (55).
The increase in CYP2E1 and, therefore, in ROS and acetaldehyde
production (54, 55), as well as in inducible nitric oxide synthase
that rises hydrogen peroxide and nitrite (55) point to the alcohol
challenge of mitochondrial function. Also, conventional Oil Red
O and hematoxylin and eosin staining revealed lipid droplets (54,
56, 57) and hepatocellular ballooning (54, 55) caused by alcohol
disruption of the FA enzymatic metabolism (55). Compelling pieces
of evidence have shown that n-3 reduces ROS (54, 55) and DHA
supplementation promotes heme oxygenase-1 protein and mRNA
against oxidative stress and cell death (54, 56).

N-3 reduces adipose lipolysis and FA biosynthesis (53). DHA
binds to the G protein-coupled receptor 40 in hepatocytes
downregulating the sterol regulatory element-binding protein 1
(SRBEP-1) that controls gene expression of lipogenic enzymes (54,
57, 58), thus decreasing triglycerides and cholesterol accumulation
in liver caused by alcohol consumption (55, 57). Furthermore, n-
3 diminishes gene expression and activation of lipolytic enzymes
and promotes adipose tissue storage (53) as well as FA oxidation
by activation of peroxisome proliferator-activated receptor alpha
(PPARα) (54, 57). This results in the decrease in lipid droplets
and hepatocellular ballooning ameliorating liver steatosis (55, 57,
59) (Figure 3). In fact, DHA supplementation combined with
extra virgin olive oil prevents the fall of PPARα mRNA and
its target genes in animals fed in a high fat diet to induce
hepatic steatosis (60). The n-3 enrichment also decreases alanine
aminotransferase, aspartate aminotransferase, alkaline phosphatase
and total bilirubin, lowers n-6/n-3 ratio and suppresses ethanol
liver inflammation by reducing pro-inflammatory cytokines (53,
54, 56, 59, 61). Finally, lipolysis increase, high free FA flow to the
liver, pro-inflammatory cytokines rise, FA oxidation dysregulation
and de novo lipogenesis, are common features in both ethanol-
induced liver injury and non-alcoholic fatty liver disease (NAFLD)
(62). All these changes have been linked to the existence of a
chronic detrimental low-grade inflammatory state in the adipose
tissue (62). Lipid mediators generated from EPA (E series resolvins)
and DHA (D series resolvins, protectins, maresins) (62) have anti-
inflammatory properties contrary to n-6 derivatives (59). In fact,
current pieces of evidence indicate that the antioxidant, anti-
inflammatory and anti-apoptotic effects of DHA on metabolic
diseases, including NAFLD, are mediated by resolvins (63–65).

4. Other organs damaged by alcohol
and the effects of omega-3

DHA alleviates testosterone fall due to early ethanol exposure
and recovers the low steroidogenic acute regulatory protein
mRNA caused by PNEE in adolescence, responsible for cholesterol
transport into mitochondria needed for testosterone synthesis.
Also, DHA increases sperm number and morphology in adulthood
(66). Diets enriched in both DHA and EPA modify phospholipid
FA composition in rat gastric mucosal cells (67). Likewise,
n-3 enriched diet (but not EPA alone) reduces the stomach
lesion due to alcohol-induced gastric hemorrhage. Combined
exposure to ethanol and palmitoleic acid (POA) increases
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FIGURE 3

Alcohol-induced hepatic steatosis and n-3 effects. The increase in
SRBEP-1 and ROS by alcohol elevates liver FA biosynthesis and
oxidative stress, respectively, and alcoholic PPARα rise reduces liver
fat oxidation. The consequence is steatosis. N-3 enriched diet
lowers SRBEP-1 and ROS, decreasing liver FA biosynthesis and
oxidative stress. It also promotes liver fat oxidation by
downregulating activation of PPARα. Altogether, n-3 ameliorates
steatosis. Created with www.Biorender.com.

intracellular and mitochondrial ROS in AR42J pancreatic cells
that results in a significant increase in the necroptosis mediator
receptor-interacting protein and mixed lineage kinase domain-like
pseudokinase. EtOH/POA also promotes calcium overload and
nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)
oxidase activation. However, DHA suppresses EtOH/POA-induced
ROS increase, necroptosis mediators and NADPH oxidase activity,
thus dodging cell loss (68). Acute ethanol exposure decreases
angiogenesis by reducing microvascular endothelial cell migration
and tubulogenesis, as well as impairs wound healing measured by
the relative epithelial gap and granulation tissue area. Interestingly,
the DHA metabolite 14S, 21-diHDHA improves wound healing and
increases vascularization, counteracting alcohol damage (69).

5. Conclusion

Alcohol elicits long-lasting body damage being one leading
death cause surpassing diabetes, AIDS and tuberculosis (37).
Compelling pieces of evidence have shown that n-3 intake,
including maternal n-3 consumption, has beneficial effects
in alcohol-elicited neurodegeneration, particularly in FASD,
and alcoholic liver damage, also improving alcoholic gastric
hemorrhage (67), pancreatitis (68) and angiogenesis (55)
(Supplementary Table 1).

N-3, particularly EPA and DHA, and its derivatives reduce
oxidative stress and inflammation, and decrease cell death in
several pathological conditions (24, 33, 70, 71) through different
mechanisms closely related to microglial activity. Thus, they
modulate gene expression by surface and intracellular receptors,
reducing pro-inflammatory cytokines and eicosanoids as well
as promoting lipid mediators to resolve inflammation (72–74).
Few receptors for DHA and EPA derivatives are known and
most of them are highly expressed in microglial cells such as
PPARs (75, 76). They also increase microglial phagocytic activity

and their anti-inflammatory phenotype in various pathological
conditions (77–79). The DHA rise in n-3 enriched diet promotes
DHA incorporation into cell membranes. Membrane changes
particularly in glial cells have consequences on pro-inflammatory
receptor localization and related signaling cascades (80). Not the
least, EPA lowers AA and DHA antagonizes the pro-inflammatory
effects of AA products (81).

Despite the promising results described, more studies are
needed in order to decipher the n-3 efficacy and dose required to
alleviate the harmful effects of ethanol. Furthermore, the pathways
by which n-3 PUFAs and their derivatives have their beneficial
effects should be investigated in detail.
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