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Abstract: Zero-Defect Manufacturing (ZDM) is a promising strategy for reducing errors in industrial
processes, aligned with Industry 4.0 and digitalization, aiming to carry out processes correctly the
first time. ZDM relies on digital tools, notably Artificial Intelligence (AI), to predict and prevent
issues at both product and process levels. This study’s goal is to significantly reduce errors in
machining large parts. It utilizes data from process models and in situ monitoring for Al-driven
predictions. Al algorithms anticipate part deformation based on manufacturing data. Mechanistic
models simulate milling processes, calculating tool deflection from cutting forces and assessing
geometric and dimensional errors. Process monitoring provides real-time data to the models during
execution. The research focuses on a high-value component from the oil and gas industry, serving as
a test piece to predict geometric errors in machining based on the deviation of cutting forces using
Al techniques. Specifically, an AISI 1095 steel forged flange, intentionally misaligned to introduce
error, undergoes multiple milling operations, including 3-axis roughing and 5-axis finishing, with
3D scans after each stage to monitor progress and deviations. The work concludes that Support
Vector Machine algorithms provide accurate results for the estimation of geometric errors from the
machining forces.

Keywords: Zero-Defect Manufacturing; Artificial Intelligence; mechanistic model; 3D scanning; monitoring

1. Introduction

Within the new era of Industry 4.0 and digitalization, the concept of Zero-Defect Man-
ufacturing (ZDM) is one of the most promising strategies to decrease and mitigate failures
in industrial processes and states the philosophy of “doing things right the first time” [1].
It is based on the ability to incorporate digital technologies such as Artificial Intelligence
(AI) and Machine Learning (ML) [2,3], as well as advancements in smart machine tool
system architecture [4]. It aims to intelligently reduce defects through detection, prediction,
prevention and correction strategies, ensuring both process and product quality [5].

While Al is a broad concept that usually refers to the ability of machines to solve tasks
with something similar to human reasoning, Machine Learning (ML) is a branch of Al that
uses large amounts of data to learn patterns that allow it to solve a specific problem through
prediction. Furthermore, as a subset of ML, the concept of Deep Learning (DL) appears,
in which multi-layered neural networks—modelled to work like the human brain—learn
from large amounts of data [6].
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However, there are many challenges to making the best use of Al. Data are among the
most important ingredients in modelling based on Al algorithms and must be of high qual-
ity, with reliability based on accuracy and integrity [7]. Accuracy refers to the truthfulness
of the data. It means that the data are true and free of errors, while integrity refers to the
completeness of the data, meaning that the relevant fields are present, taking into account
the intended uses. Collecting the right information is essential to running a productive Al
model. Although the most widely used method is monitoring through signals captured
over time from the process, this is a technique with certain limitations, as the signals only
detect the potential presence of defects. To date, it is still difficult to quantitatively estimate
the defect of a component only using signals captured by sensors [8]. Additionally, con-
ventional mechanistic models, commonly used in manufacturing processes, can be used as
input data and implemented in these Al models.

In recent decades, the modelling of milling processes has been performed by means
of mechanistic models, which face numerous challenges inherent to the process. They
are based on the use of experimentally obtained coefficients and enable the calculation
of cutting forces, power consumption and torque, even for complete machining paths.
Numerous mechanistic models have been developed for different types of tools and tool
positioning, materials, processes and process features [9-12]. To develop a good mechanistic
model, process monitoring is required during execution. In the case of machining, signals
about relevant process variables and critical parameters (spindle vibrations, instantaneous
power, axial force and torque, etc.) can be gathered online by machine integration of
different sensors such as accelerometers, force sensors in tool or workpiece holders, and
microphones, as well as CNC (computerized numerical control) inherent data that allow
process monitoring in a less invasive manner [13]. These systems, exemplified by companies
like Prometec [14] and Artis [15], utilize strategies based on signal boundaries, patterns,
and real-time data analysis to optimize production processes, enhance quality control,
and minimize costly downtime. The evolution over time of critical process variables,
such as tool wear, temperature at the cutting point, etc., remain topics of great research
interest [16] with the aim of further refining these monitoring systems and improving
machining efficiency.

From the milling process point of view, one of the main challenges to be faced by mech-
anistic models is the static deformation of cutting tools during milling, which contributes
considerably to geometric and/or dimensional errors of the resulting machining surface
with respect to the required level, which can result in exceeding tolerances [17,18]. The
mechanistic model of this study includes a module for the calculation of the tool deflection
caused by cutting forces, which allows for estimating geometric and dimensional errors of
the final product.

Besides that, another challenge for machining companies to manufacture high-added-
value components is the initial positioning of blanks. These are usually produced by inexact
processes such as casting or forging and do not have reference surfaces or features that
facilitate the initial positioning process. Incorrect positioning could result in part rejec-
tion. Due to the high associated cost, initial alignment is performed meticulously, using
time-consuming and labour-intensive techniques. They are generally performed on the
machine itself and in a non-repetitive manner, which implies a high risk of error. In the
literature, there are studies for the automatic alignment of parts, such as “virtual” Coor-
dinate Measuring Machines (CMM) [19], and specific research to solve the mathematical
problem of surface alignment taking into account the final geometry to avoid problems
of material shortage, all without losing sight of the associated computational cost [20-22].
There are commercial reverse engineering systems that perform the adjustment of a surface
obtained by 3D scanning to a design surface [23-26] and studies that carry this out by
photogrammetry [27].

In the present study, the aim is a drastic reduction in defects and nonconformities
in the machining of large-sized parts. The notion of large-sized parts varies according to
industries and production needs, lacking a universal definition. Specifically, within the
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machining and machine-tool industry, large parts require advanced machinery, beyond
standard milling machines, due to the tight dimensional tolerances relative to their size,
which poses challenges in maintaining accuracy given the size of the machines themselves.
Consequently, minimizing defects is crucial given the economic and environmental con-
sequences of rejections. This focus on large parts underscores their importance in the
machining industry, where precision and quality are paramount. To support digitaliza-
tion, the information obtained from process models and in situ monitoring is required,
which provides reliable and quality data and enables predictions using Al techniques.
The research introduces a novel approach by applying ZDM principles and harnessing
Al algorithms to mitigate errors in machining large parts within industrial settings. This
innovative strategy acknowledges the inherent challenges in generalizing advanced tech-
niques for seamless integration into diverse manufacturing environments. Despite the
complexities involved in implementing Al-driven solutions, particularly due to the vari-
ability and intricacies of real-world production processes, this study serves as a pioneering
effort to bridge the gap between theory and practice. Ultimately, the aim is to facilitate the
widespread adoption of Al-driven approaches in industrial settings, thereby advancing
the goal of achieving zero defects and enhancing operational efficiency in manufacturing
processes. A high-value-added component from the oil and gas industry is selected as a test
piece. It is a flange made of AISI 1095, manufactured by forging and afterward subjected to
several machining operations by chip removal, in particular, 3-axis and 5-axis milling.

2. Methodology

In order to make a prediction of the geometric error in machining as a function of the
deviation of the cutting forces, using Artificial Intelligence techniques, a test piece (case
study) was defined consisting of the machining of a forged steel flange made of AISI 1095
steel from the oil and gas sector shown in Figure 1. A deviation in the initial positioning
of the part was provoked to guarantee the presence of error, with a difference of 0.5 mm
between the real position and the theoretical reference. Several milling operations were
performed, in particular, 3-axis roughing and 5-axis finishing, the last one being the object
of the study. After each machining stage, 3D scanning of the part was conducted.

Figure 1. Finished machining of the 5-axis forged flange on ZAYER'’s Arion G machining center.

With the aim of minimizing errors due to other factors, such as clamping, machining
has been carried out in two phases and with two clamps. Both have been performed using
an inside jaw chuck. The first involves a strong clamp for roughing. The second clamp,
for finishing operation, is a lighter one. Since in finishing, machining forces are much less
aggressive, a clamp as strong as in roughing is not necessary. The clamping for finishing
will not cause significant deformations in the piece.
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This study corresponds to an actual cutting operation conducted in the industry; hence,
the chosen cutting parameters mirror those used in production. For the 5-axis finishing
process, a 25 mm diameter ball-nosed end mill with 2 cutting edges was utilized. The
machining parameters employed include spindle rotational speed set at 3200 rpm and a
feed rate of 1834 mm/min.

For the online monitoring of the 5-axis machining process in this study, the Spike®
commercial system was used [28]. This system consists of a milling tool holder that
integrates intelligent sensors for signal capture and allows recording variables such as axial
force, bending moment or torque. The assembly was complemented by advanced software
for diagnosing the condition of the cutting tool. This device makes it possible to determine
different problems arising from the processes of wear, vibration, edge breakage, deflection,
etc. A polar stress diagram was used to distinguish between the different cases. With this
system, it was possible to see the forces per cutting edge live during the process. This
provides permanent information on the condition of the cutting tool (wear) and the quality
of the workpiece achieved.

Thus, the presented methodology was divided into the following phases shown in the
flowchart in Figure 2:

PREDICTION OF GEOMETRIC ERROR

PRELIMINARY ANALYSIS
I

|
CAM data Mechanistic
reading calculation
| ]

EXPERIMENTAL DATA ADQUISITION

|
/ 5-axis machining ] \

monitoring
VEE] Bending
forces moment
Tool
\ condition /

[ 3D Scanning ]

|
SIGNAL CONDITIONING

( \
Synchronize Homogenize
data data

ARTIFICIAL INTELLIGENCE ANALYSIS

Figure 2. Flowchart of the different phases of the methodology.
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3. Mechanistic Modelling

The modelling of the milling process was the first of the input data sets that fed the Al
study. The model used for this test piece is specific to milling operations and it is integrated
in CAM software version 6.10, specifically in Siemens NX version 8.5. This CAD/CAM
software version 1.0 is, in fact, the one used for programming the machining paths. The
methodology and fundamentals of the model are those proposed by Sarasua et al. [29]
and Gonzalez-Barrio et al. [30]. Among the modelling stages, the following ones are of
special interest:

e  Pre-processing: Data reading from the CAM.

The model is fed with a CL file (cutter location) containing the information about the tool,
programmed path and cutting parameters, and an STL file with the initial blank geometry
for the operation to be simulated.

e  Processing: Mechanistic calculation.

Based on the expressions presented by Altintas [31], the model starts from a differential
discretization of the tool, obtains the tool-workpiece engagement domain and, finally,
performs the summation of forces.

The results obtained from the previous model were the static cutting forces in the
reference system of the part (Fx, Fy, Fz), the power and the torque. Subsequently, a new
quasi-static module was implemented which, as a function of the static cutting forces (F)
and the stiffness of the cutting tool (K), obtains the tool deflection over time (see Equation
(1)). This formula is a modification of the bending formula (basic formula to calculate
the deflection of a cantilever beam under a point load). The assumption is made that the
stiffness of the tool remains constant, which depends on the cantilever length, the Young’s
modulus of the material, and the second moment of the tool’s cross-sectional area. Since
there is a transient period until equilibrium is reached, as the force affects the deflection
and vice versa, a parameter C called deflection factor has been included to establish the
relationship with the theoretical deflection according to the general formula. A theoretical
centered deflection has been assumed, where the tool will find equilibrium at the center of
the displacement generated by the cutting force, i.e., C = 2.

nyz <t>
C-K

Tool deflectionyy (t) =

3.1. Simulated Area

The critical region of the forged steel flange with the biggest curvature was selected as
the study area for the simulation of the machining. Among milling operations, the 5-axis
finishing operation carried out in the aforementioned area of the test piece was simulated
and analyzed. Figure 3 shows the programmed tool path and the blank part resulting from
the roughing operation. This study is aligned with a real cutting operation carried out in
the industry and, thus, the cutting parameters selected are those of production. The tool
used for the 5-axis finishing operation is a 25 mm diameter ball-nosed end mill with two
cutting edges. The machining parameters used are as follows: spindle rotational speed,
S = 3200 rpm; feed rate, F = 1834 mm/min.

3.2. Modelling Results

Figure 4 shows obtained results from the tool path simulation, under the cutting
conditions specified in Section 3.1. Particularly, the cutting forces Fx, Fy and Fz in the
workpiece coordinate system (Figure 4a), the tangential force on the tool (Figure 4c), the
tool deflection (Figure 4b) and the power (Figure 4d) are shown.
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(b) (c)

Figure 3. (a,b) 3D geometry of the test piece and machining path (¢) Zoom of the area shown in b:
blank, path and tool in 3 positions.
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Figure 4. Mechanistic simulation results. (a) Cutting forces in the workpiece coordinate system.
(b) Quasi-static deflection of the tool. (c) Tangential force on tool. (d) Power.
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In the central zone of the tool path, a slight increase in the cutting forces was observed,
especially appreciable in the tangential force (Figure 4c), along with an increase in the tool
deflection (Figure 4b). However, a drop in the power prediction was observed. This was
because, in that zone, the end mill cuts with a part of the cutting edge close to the tip of the
ball. It should be highlighted that the cutting speed was at its maximum in the widest area
of the mill, while it was zero at the tip of the ball. Thus, in that intermediate zone of the
tool path, the cutting speed of the active region of the tool was very low and this caused a
drop in power.

In Figure 4c, in the intermediate position, it was appreciated that the tool-workpiece
engagement happens in the ball tip zone. The power was obtained as a result of multiplying
the tangential cutting force and the cutting speed. The cutting speed, in turn, depends
on the rotational speed (constant) and the tool diameter (D) which is variable along the
ball-nosed end mill’s profile.

4. Experimental Data Acquisition

This section details the experimental process carried out to manufacture the forged
steel flange. The flange was milled on a ZAYER Arion G 5-axis machining center. The
process was conducted in two stages: 3-axis roughing and 5-axis finishing, the last one
being the object of the study. On the other hand, the online monitoring systems used for
data acquisition during machining are described hereafter.

4.1. Three-Dimensional Scanning and Machining

A 3D scanning approach was developed using the Phoxi 3D Scanner M to obtain the
forged steel flange, as illustrated in Figure 5. This equipment presents great versatility
because the scanning area is variable depending on the distance to the part (i.e., it is
800 mm x 600 mm at a distance of 750 mm), with a resolution of 0.3 mm and a calibration
accuracy of 0.1 mm. Additionally, it allows working with a collaborative robot. In this case,
the selected robot is Fanuc R2000iB-210F, setting the scanner in Eye in Hand configuration
as shown in Figure 5.

Figure 5. Scanning and robot devices to scan the forged steel flange.

To select the scanning parameters, the scanner type is chosen considering the part
dimensions and the working distance to minimize the number of scans to cover the whole
part. The PhoXI M scanner’s field of view is about 800 x 600 mm over a distance of 850 mm.
This field of view is enough to reconstruct the part using the selected robot. The internal
parameters such as the shutting exposure of the laser power are selected considering
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the type of material and the surface brightness; in this case, the laser power selected is
the maximum one, 4095, and it is recommended to decrease only when experiencing
overexposure. The single pattern exposure is the duration of the projection of one pattern;
in this case, it is set to 40 ms after experimental tests.

The matching strategy requires an automatic view registration to rebuild the flanges
throughout the different machining processes and owing to the flange geometry. To obtain
the optimal matching, two-point clouds were required to ensure the capture of the entire
geometry. Nonetheless, at the same time, they must have a recognizable common surface
to be able to put them together. These processes are automatically performed when the
geometry presents distinguishable zones. An additional challenge needs to be considered
when the component is symmetrical because a marker is needed on the piece to match the
different views. In the selected case study, Figure 6 shows the matching reference to the
optimal scanning process.

Figure 6. Matching reference to scan the forged steel flange.

The main reason to select a marker is the ambiguity among references in the manu-
facturing stations. That is, this industrial component is symmetric and there could be an
ambiguity between the reference-taking with the vision system and the reference-taking in
the manufacturing machine when the piece moves from the scanning station to the machin-
ing stations. Therefore, a marker was selected in the industrial part as a distinguishable
reference that defines the X-axis of the component.

The 3D scanner rebuilds the geometry according to the views and references the point
cloud to the marker. To obtain the complete reconstruction of the component, the 3D
scanner is moved around the piece and creates different views to rebuild the part. A total
of eight capture positions on the flange were selected. In this way, the first view position
was created by transforming the scanner positions into robot coordinates. Finally, an ICP
algorithm was used to match the final profile.

Firstly, the rough part from the forging process (Figure 7a) was scanned in order to
obtain a blank of revolution (ideal CAD geometry) that serves as the starting geometry
when programming the machining by CAM in the roughing stage (Figure 7b).

Secondly, the blank was roughed down by 3-axis milling. Thirdly, the rough-machined
blank was scanned to obtain the intermediate geometry to ensure the dimensions after
roughing. The system proved to be able to detect geometric errors of the order of a tenth of
a mm. Figure 7c shows the flange after the rough machining process and Figure 7d shows
the matching profile of the flange.

The industrial flange was placed and referenced again on the ZAYER Arion G ma-
chining center to proceed with the finishing operation. However, prior to the execution
of the 5-axis finishing program, an offset of 0.5 mm in the X-axis direction deviation was
induced on purpose in the part. Thus, the machining process removed more material than
the theoretical on one side of the part and less material than estimated on the opposite side.

Finally, after the 5-axis finishing milling process (Figure 7e), a 3D scanning of the
finished part was carried out as can be illustrated in Figure 7f.
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(b)

(d) ()

Figure 7. (a) Blank, result of the forging process. (b) CAD of ideal solid-of-revolution obtained from
3D scanning of the blank. (c) Roughed flange. (d) Matching profiles of roughed scanned flange.
(e) Finished flange. (f) Matching profiles of finished scanned flange.

4.2. Online Monitoring during Machining

In this study, the Spike® commercial system was employed to conduct online moni-
toring of the 5-axis machining process [28]. This system incorporates a milling tool holder
equipped with intelligent sensors for signal acquisition, enabling the recording of variables
such as axial force, bending moment, or torque over time. In the subsequent analysis, the
torque signal monitored by Spike® on a time basis was utilized. The set-up parameters for
online monitoring are shown in Table 1.

Table 1. Set-up parameters for online monitoring.

Predicted Resolution Predicted Measuring Range
Tension 4.3561 N 58.3 kN
Torsion 0.0267 Nm 357.8 Nm
Bending 0.0272 Nm 364.4 Nm
Frequency of acquisition 2.500 Hz

5. Signal Conditioning

In order to carry out the Al study and establish a correlation between process and
product quality, the input data must be comparable, i.e., expressed with respect to a
common reference variable. For this purpose, the process signals (theoretical and real) must
be synchronized and homogenized. The Spike® capture system monitors variables on a
time basis; it is not synchronized with the machine tool control. On the other hand, the
theoretical signal from simulation can be obtained both on a theoretical time basis and on a
tool path (position) basis.

In earlier studies, the power signal was monitored through the machine control. This
allowed us to obtain the signal based on XYZ coordinates on the machine. However, when
working in five axes, it is not possible to obtain the power from the control based on XYZ,
since axes A and C are also moving. Thus, this monitoring method has been discarded,
limiting the real signals to those obtained with the Spike® system.
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Finally, the 3D scan of the part (quality) is focused on the point cloud describing the
real geometry.

In order to be able to match theoretical signals, process signals and geometric quality,
which feed the Al study, the following combination of signals was selected:
Theoretical (simulated) tangential force on points of the tool path.
Torque signal monitored by Spike® on a time basis.
Three-dimensional point cloud of the scanned final part.
CAD of the theoretical part.

A protocol was developed to transfer all the above signals to a single reference system
on which the Al can work. In particular, the objective has been focused on transferring all
the information to a geometric basis, specifically to the points that confer the theoretical
surface to be able to perform the analysis using the minimum Euclidean distance.

6. Theoretical Tangential Force (Simulation)

The tangential force signal obtained from the simulation was originally located on the
points describing the tool path in the CAM, although much more discretized. However,
since all the tool position and velocity data are available for all the sections of the tool path,
it is possible to calculate a theoretical time vector and express the theoretical tangential
force signal as a function of time as well, as shown in Figure 8a.

Tangential force [N]—Theoretical
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Figure 8. Theoretical tangential force signal, obtained as a result of the mechanistic simulation.
(a) Original tangential force signal and after application of maximum motion. (b) With color map,
represented on the workpiece geometry.

On the other hand, the CLS tool path contains the positions of the tool’s tip. As
mentioned above, the aim was to express the information based on the theoretical CAD
surface. The tool’s tip does not usually correspond to the tool-workpiece contact point
(see Figure 3). Therefore, it is necessary first to convert the points containing the positions
of the ball tip to the centers of the ball. For this purpose, the ball diameter and the tool
angle of inclination were considered. Then, the minimum Euclidean distance between the
points on the surface of the workpiece and the tool centers was calculated and the contact

points were obtained. The tangential force signal in space was expressed based on them
(Figure 8b).
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6.1. Real Tangential Force (Spike®)

The Spike® system is not able to measure the tangential force directly. It was therefore
calculated from the measured torque. Specifically, the measured moment value is divided
by an average tool radius of 10 mm in the case of the present case study.

In order to convert the tangential force from a base in the time regime to a base in XYZ
coordinates, it is necessary to synchronize the real signal with the theoretical signal and
linearize the XYZ values for each case. Thus, the point cloud obtained is the same as in the
simulation stage over the tool path, but with a real value (Figure 9). It should be noted that
instead of the original simulation tool path containing the positions of the tool’s tip, the
tool path with the positions of the ball centers has been used (Figure 9a).

Tangential force [N]—Real

150
100
T T
£ E 50
N N 0
-50
-200
Y [mm] Y[mm] o
200 400  -200 200 0 400  -200
200 100 % rmm] 200 100 X [mm]
0 100 200 300 400 500 600 0 100 200 300 400 500 600
(a) (b)

Figure 9. Real tangential force calculated from the torque signal measured with Spike®, represented
with color map on XYZ basis. (a) On the points of the tool path of the ball centers. (b) On the
workpiece geometry.

In the colored tool path in Figure 9, it is observed that the tangential cutting forces are
higher in the area of X(—) (on the right side of the workpiece, as shown in Figure 9) and
lower in X(+) (left side of the workpiece, as shown in Figure 9). This is due to the induced
offset of 0.5 mm, described in Section 3.1.

6.2. Dimensional Deviation: Scanned Part

The scanned part was evaluated by directly matching the clouds and obtaining the
geometric error on the desired points (CAD). The matching strategy estimates the minimum
distance between grid points against the CAD, taking into account that the reconstruction
is focused on the selected marker—in this case, the inner drilled hole and the above surface.
Figure 10 illustrates the geometric errors after roughing and scanning processes.

The geometric errors in the positions of the inner and outer cylinder diameters are
0.032 mm and 0.079 mm, respectively. These results are reasonably reliable for detecting an
artificial offset in the following machining process.

After finishing and scanning operations, the geometric errors were measured to
detect the artificial offset before the finishing operation in the X direction, as observed in
Figure 10a.

To verify the identification of the artificial offset, Figure 10b illustrates the geomet-
ric error of —0.47 mm in the X direction detected throughout the measurement of the
outer cylinder.

All in all, the 3D scanning and the matching strategies are reasonably reliable as
an input to predict a lack of quality during milling operations based on Artificial Intelli-
gence strategies.
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(a) (b)

Figure 10. (a) Geometric errors of 3D scanning of the finished flange. (b) Matching outer cylinder

after finishing process.

7. Analysis Using Artificial Intelligence (AI)

The aim of modelling this problem using Al algorithms is to be able to estimate or
predict the deformation of the part using the data collected during its manufacture [32].
For that reason, supervised learning techniques are required, which are the part of ML that
estimates a mathematical relationship between the input data and the output variable—
in this case, the geometric deformation. All experimentation was carried out in R and
data-driven modelling was conducted using functions from the caret library [33].

The data collected come from two different sources: on the one hand, the position in
the 3-axis (x_sim, y_sim, z_sim) simulation by the theoretical model, the theoretical force
(Fteor) and the recorded force (Ft) at each point and, on the other hand, the real trajectory
(x_real, y_real, z_real) measured after machining. These data sets were aligned together
using the minimal Euclidean distance between points. Finally, for each observation, an
error was provided scanning the flange in eight positions and matching the geometric
clouds according to the scanning and matching strategies (see Section 3.1. and Section 4.1.),
respectively. The geometric error for each point was estimated by the minimum distance
between each point of the scan and the closest point belonging to the CAD surface. In total,
15,665 multivariate data points are stored for the study and design of the predictive model
of the geometric deformation of the part.

For the results obtained by these techniques to be robust, it is desirable to have high-
quality data, as mentioned above. In manufacturing problems, apart from accuracy and
completeness, it is important to consider the concept of repeatability. For the model to be
rich in information, the training data should have sufficient variability so that the results
can be transferred to industry [34].

In this case, it was treated as an experiment as a demonstrator but we stress the
limitation of application in industry due to the lack of repeatability of the part. To simulate
this repeatability, the position of the deformations was studied, and it was decided to
partition the training and test set along the z-axis of the part.

Figure 11 shows the plan view of the part colored according to the deformation value
found in each of the data collected. Clearly, the position has a direct relationship with the
value of the error. However, introducing these variables as inputs to the model would give
very accurate but unrealistic prediction results as known that the error will not appear in
the same position when a new part is machined. For that reason, path variables cannot be
used in the data model, and the only inputs available are those related to forces.
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Figure 11. Plan view of data points colored according to error values.

In order to have a similar distribution of the values of the geometric distortion in
each of the training sets, it was decided to partition the data along the z-axis as shown in
Figure 12. The z variable takes values between 95.60 mm and 114.96 mm and each partition
has an altitude of 2.42 mm with a different color on the graph. After partitioning, each of
the subsets contains between 1700 and 2300 observations and was used for one iteration in
the training validation.

Test partitions

: %
.1
.

Z position (mm)

® N o s W N

-100 0 100
X position (mm)

Figure 12. Eight partitions of the data based on the values of the position on the z-axis.

Therefore, for the training of the models, the Leave-One-Group-Out Cross Validation
(LOGOCYV) technique is used. LOGOCYV is a variation of k-fold cross-validation where
the data was divided into groups, with one group left out as the validation set and the
remaining groups used as the training set. This method is particularly useful when the goal
is to assess the performance of the model for each group, being ideal for small sample sizes.
LOGOCYV can be computationally expensive, but it helps to reduce the risk of overfitting
and provides more accurate estimates of the model performance [35].

Before starting the modelling, the error distribution shown in Figure 13 was checked
on the left in the total data set and on the right, by partitions. It was observed that in both
visualizations, there is an overlap of two normal distributions. The first one would have an
approximate mean at —1 and the other one would have a slightly more doubtful mean at 0.
The graph on the right shows that the distribution of errors is similar in all layers, which
allows the model to be reasonably trained with the proposed approach.
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Figure 13. Probability density function of the errors. (a) In the complete part. (b) In each of the
partitions performed.

The force signal exhibits oscillatory behavior with decreasing variance throughout
most of the process. The largest absolute errors appear at each of the peaks of these
oscillations as can be seen in Figure 14a.

200

Stationary force Ft

-200

5000 10000 15000 0 5000 10000 15000

Index Index
(a) (b)

Figure 14. (a) Evolution of the tangential force signal Ft, calculated from the torque signal measured
with Spike®, colored according to the error appearing in each observation. (b) Stationary force signal
Ft colored according to the error appearing in each observation.

To train a model based on data relating Ft to error, it should be possible to introduce
a trend-following transform of the force. The oscillations occur with a periodicity of
approximately 570 observations. This value was considered as the frequency of the time
series and the series is decomposed into its trend and seasonality. The resulting stationary
signal is shown in Figure 14b.

The linear relationship between the error and the other features, available to train the
predictive model, has been calculated by Pearson’s correlation [36]. The transformation
performed by converting the force signal to stationary (F_stationarity) proved to be a good
strategy since this new feature had a correlation of —0.7 with the error, so it is intuited that
it can be a good input for the predictive model. The other three correlation values are not
considered significant enough to ensure a linear relationship. A correlation of 0.17 was
obtained with the theoretical force (Fteor), —0.29 with the tangential force (Ft) and —0.07
with its derivative (Ft_diff). Despite these results, they are preserved in the study as there
are ML algorithms that deal with more complex relationships.
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Two different approaches were considered in supervised learning: regression and
classification. In this case, the study was focused on regression since the output variable, the
geometric error, took numerical values. Regression techniques aim to predict continuous
numerical outcomes based on input features and linear regression (LR), support vector
regression (SVR) and random forest regression (RF) were tested to predict the geometric
error. LR and SVR with a linear kernel are chosen to assess whether relationships in the
data are linear and straightforward. SVR with a radial kernel is selected for its ability to
effectively capture non-linear relationships, especially in datasets with more complex and
non-linear structures. The k-NN method is employed to evaluate similarities between
inputs, leveraging the premise that similar instances tend to have similar values. Finally,
RF is used to address datasets with complex and non-linear characteristics, owing to its
ability to efficiently handle interaction among multiple predictor variables.

The metrics used to measure the prediction error were root mean squared error (RMSE)
and mean absolute error (MAE), two common strategies to quantify the performance of the
models. Dynamic time warping (DTW), an elastic measure of similarity in time series that
allows the comparison of non-aligned values, is also used.

The results obtained in the experimentation with the regression algorithms are sum-
marised in Table 2.

Table 2. Prediction results of regression models.

Regression Cost Regression Metrics
Time RMSE MAE DTW
LR (1) 0.71s 0.33 0.27 236.16
LR (2) 0.72s 0.32 0.27 212.57
SVR (linear) 23.95s 0.32 0.28 218.99
SVR (radial) 3.42 min 0.30 0.24 203.44

1. The first linear regression is the simplest possible with only one explanatory vari-
able. In this case, a model was built taking as input the stationary tangential force
(F_stationarity), the variable with a significant correlation with the geometric error.
After validation by groups, the values of the three metrics and the average time taken
to train each of the models were shown in the first row of the table.

2. Given that the computational cost of the linear regression is very low, it was de-
cided to re-train this algorithm by taking the four available inputs (Fteor, Ft, Ft_diff,
F_stationarity) to check if the rest of the variables could provide relevant information
to improve the estimates. Both the training cost and the static metrics of accuracy
measurements remained at similar values. However, an improvement in the average
DTW value was observed. This is because in some cases the magnitude of the error
estimation did not improve, whereas the alignment did. The two most extreme cases
are shown in Figure 15—firstly, the case of the partition where group 2 is kept for
testing, where the DTW worsens by 119.07, and secondly, the case where group 8 is
used for testing and the DTW is reduced by 63.47.

3. SVR with linear kernel is used when data are linearly separable. As the linear cor-
relation with one of the features was high, it was a good option to test. However,
keep in mind that if mostly one of the inputs was used in the regression, this algo-
rithm eventually ends up estimating a line like the one obtained in the simple linear
regression model. Therefore, as can be seen in the third row of the table, the accuracy
results provided by the metrics were very similar to the previous cases but with a
computational cost 33 times higher.

4.  SVR with radial kernel, which is the most used and most successful kernel, due to its
flexibility in separating observations.

5. The results obtained with the RF were not reported as they exceeded the accuracy
obtained by the previous algorithms. In addition, most of the partitions exceeded
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10 min of training. This excessive waiting time could make it difficult to maintain and
update the predictive models if they are part of an industrial prediction system.
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Figure 15. Prediction of errors in partitions 2 and 8 by linear regression. (a) Training the model with
the stationary tangential force. (b) Training with the four available forces: theoretical force, tangential
force and its derivative and stationary tangential force.

SVR with the radial kernel was the most accurate of the options tested in this ex-
periment. Therefore, it was decided to tune the hyperparameters of this algorithm to
achieve a setting that can be used in completely new parts without lowering the perfor-
mance and without losing generality. The radial kernel function has the following mathe-
matical expression:

The only hyperparameter specific to the kernel is gamma, which regulates the smooth-
ness of the decision bands and controls the variance of the model. In addition, the common
C parameter that regulates the margins is tuned to adjust the bands. It was decided to
create a grid where y= {0.3; 0.6; 0.8} and C = {0.5; 0.75} were tested. In all cases, the best
result was obtained when y= 0.8 and C = 0.75 with a mean RMSE of 0.21 and a mean MAE
of 0.15. Those hyperparameters would be taken to train the final model in case of having
more parts. A simulation test was conducted, and the results obtained for partition 5 are
shown in Figure 16.

Although these results were promising and an accurate estimation of the errors was
achieved by using only the features relating to the forces, it is necessary to point out that,
for correct validation of the methods, it would be necessary to train the algorithm with
data from different parts and to be able to validate it on a set of complete parts, instead of
the procedure carried out by layers.
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Figure 16. Prediction of errors in partition 5 by Support Vector Machine with Gaussian kernel using
y=0.8and C=0.75.

8. Conclusions

This paper presents a methodology and a case study combining theory and experi-
mentation, in which Al techniques are used to predict the geometric error in machining
as a function of the deviation of the cutting forces. For this purpose, a high-value-added
component from the oil and gas industry was selected as a test piece: a flange made of
AISI 1095, manufactured by forging and afterward subjected to 3- and 5-axis milling. To en-
sure the existence of errors to validate the proposed Al model, a deviation in the positioning
of the part is provoked.

The present work reaches to the following conclusions:

e  The use of Al requires digitalization and quality data, which are obtained from mod-
elling and monitoring. On the one hand, the mechanistic simulation of milling opera-
tions results in cutting forces, power and deflection suffered by the tool. On the other
hand, the Spike® device monitors the machining process and the 3D surface of the
workpiece is scanned after each machining stage.

e  The quality of the data is crucial but, in the case of being from a different nature or
source, in order to carry out the Al study, the optimal synchronization and homoge-
nization are needed to make them comparable. This issue depends not only on the
data but on the previous knowledge of the process of study.

e In the mechanistic modelling phase, cutting forces in x,y,z, tangential cutting force,
power and tool deflection were calculated for the region of the part with the biggest
curvature. In the central zone of the tool path, an increase was observed in the cutting
force and tool deflection, but a decrease was observed in the cutting power due to
the low cutting velocity of the cutting tool area (close to the tip of the ball). It was
observed that the feasibility of the mechanistic model will condition the feasibility of
the AI model prediction.

e  Inthe experimental data capture phase, the part underwent several 3D scans following
each stage of machining. The artificial offset in the X direction induced during the
finishing operation was estimated by the 3D scanning procedure. Consequently, this
technique was considered acceptable for predicting a lack of quality during a cutting
process. Furthermore, this approach can provide geometric information during the
manufacturing operation to diagnose the final quality of the product.

e Regarding the Al study, in the layered exercise to simulate the training and test sets, it
is concluded that the Support Vector Machine algorithm with a radial basis kernel pro-
vides accurate results for the estimation of geometric errors from the tangential forces.

As a future research thread, we aim to improve the Al-developed model using data
from different high-added-value components with more complex geometries. In addi-
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tion, filling in with extra data will improve the ML algorithm, and consequently the
Al performance.
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