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Abstract: Aims: Cheminformatics models are able to predict different outputs (activity, property, 
chemical reactivity) in single molecules or complex molecular systems (catalyzed organic synthesis, 
metabolic reactions, nanoparticles, etc.).  
Background: Cheminformatics models are able to predict different outputs (activity, property, chemical 
reactivity) in single molecules or complex molecular systems (catalyzed organic synthesis, metabolic 
reactions, nanoparticles, etc.).  
Objective: Cheminformatics prediction of complex catalytic enantioselective reactions is a major goal 
in organic synthesis research and chemical industry. Markov Chain Molecular Descriptors (MCDs) 
have been largely used to solve Cheminformatics problems. There are different types of Markov chain 
descriptors such as Markov-Shannon entropies (Shk), Markov Means (Mk), Markov Moments (πk), etc. 
However, there are other possible MCDs that have not been used before. In addition, the calculation of 
MCDs is done very often using specific software not always available for general users and there is not 
an R library public available for the calculation of MCDs. This fact, limits the availability of MCMD-
based Cheminformatics procedures.  
Methods: We studied the enantiomeric excess ee(%)[Rcat] for 324 α-amidoalkylation reactions. These 
reactions have a complex mechanism depending on various factors. The model includes MCDs of the 
substrate, solvent, chiral catalyst, product along with values of time of reaction, temperature, load of 
catalyst, etc. We tested several Machine Learning regression algorithms. The Random Forest regression 
model has R2 > 0.90 in training and test. Secondly, the biological activity of 5644 compounds against 
colorectal cancer was studied.  
Result: We developed very interesting model able to predict with Specificity and Sensitivity 70-82% 
the cases of preclinical assays in both training and validation series.  
Conclusion: The work shows the potential of the new tool for computational studies in organic and me-
dicinal chemistry. 

Keywords: Molecular descriptors, Markov chains, Singular values, Online tool, R-script, Chiral catalyst, Enantioselectivity, 
α-Amidoalkylation reactions, Biological activity, Colorectal cancer. 

1. INTRODUCTION

Cheminformatics models are able to predict different
outputs (activity, property, chemical reactivity) in complex 

*Address correspondence to this author at the Department of Organic
Chemistry II, University of the Basque Country UPV/EHU, P.O.Box 644,
48080, and IKERBASQUE, Basque Foundation for Science, 48011, Bilbao,
Spain; E-mail: humberto.gonzalezdiaz@ehu.es

molecular systems (metabolic reactions) [1], nanoparticles 
[2], etc . Specifically, the prediction of chemical reactivity of 
complex reactions in organic synthesis is a goal of major 
importance for both basic research and chemical industry. 
Cheminformatics methods may be very useful in the predic-
tion of chemical outcomes in stereoselective reactions [3]. 
Sigman et al . reported some of the pioneer works for the 
prediction of enantiomeric ratios of the products [4-6]. More 
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recently, Cheminformatics methodologies have been applied 
to predict the enantioselectivity of different types of reac-
tions. Some of these reactions are alkylation [7, 8] allylation 
[9], propargylation [10, 11] intramolecular carbolithiation 
[12], dehydrogenative Heck-type C-C and C-N coupling 
reactions [13-16], Heck-Heck cascade reactions [17], asym-
metric copper-catalyzed cyclopropanation of alkenes [18] 
and Henry reaction [19]. On the other hand, colorectal cancer 
(CRC) is the third most commonly occurring cancer in men 
and the second in women, having a mortality of approxi-
mately 56 % of the patients [20] Although a number of com-
pounds for anti-CRC activity have been synthetized and 
tested, the possibility of coming across an effective drug is 
still too low. Moreover, this process led to a notable eco-
nomical and time loss [21]. 

Markov Chain Molecular Descriptors (MCDs) have been 
largely used to solve Cheminformatics problems. There are 
different types of Markov chain descriptors such as Markov- 
Markov Means (Mk), Shannon entropies (Shk), Markov Mo-
ments (πk), etc. [22]. However, there are other possible indi-
ces that have not been used before. For instance, singular 
values of matrices have been used before in Cheminformat-
ics [23]. Nevertheless, until the best of our knowledge, there 
are no reports of the uses of Singular Values (SVk) of 
Markov matrices as molecular descriptors. In addition, the 
calculation of MCDs is done very often using specific soft-
ware not ever available for general users and there is not an 
R library public available for the calculation of MCDs. This 
fact limits the availability of general Cheminformatics pro-
cedures for organic synthesis researchers using MCDs. In 
this sense, the development of new tools which are publicly 
available for the calculation of molecular descriptors in gen-
eral and specifically of MCDs is a promising area of re-
search. The free accessibility to these tools may promote the 

development of Cheminformatics models for areas of re-
search less explored before with this type of technique. 

In this work, we developed the first library in R for the 
calculation of MCDs. We also report here the first public 
web server for the calculation of MCDs online. This online 
tool includes the calculation of a new class of MCDs called 
Markov Singular indices. We report two case studies in 
Cheminformatics and other areas of interest can be combined 
with promising results. In the first case study, we illustrate 
the use of Markov matrix singular probability values as mo-
lecular descriptors, for the first time. With these descriptors, 
we modeled the enantioselective organic reactions. This con-
stitutes a practical example of the use of the MCDs, the R 
library, and the online tool in Organic Chemistry and Cataly-
sis. In the second case study, we illustrated the use of 
Markov matrix mean values as molecular descriptors in the 
study of compounds active against Colon Rectal Cancer 
(CRC). The works open a new paradigm on the applications 
of online tools to the study of either chemical reactivity or 
biological activity using MCDs. In (Fig. 1), we depict the 
general but simplified workflow of the present paper. 

2. MATERIALS AND METHODS 

2.1. RMarkov.mol Package 

We propose an implementation in R of the algorithm for 
calculation of MCDs in the RMarkov.mol package. 
RMarkov.mol can calculate two drug topological indices 
(TIs) families: Markov Mean Properties (MMPs) using 
RDMarkov Means function and Markov Singular Values of 
Transition Probabilities (MMSVs) using RDMarkov Singu-
lars function. Both types of TIs are using molecular graph 
topology with 4 atom physical properties to encode molecu-

 
Fig. (1). General workflow of the present paper.
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lar information and Markov chains theory to include atomic 
intra-molecular interactions. The algorithm is derived from 
previous python private software, MInD-Prot but the atom 
weights are different: number of valence electrons, van der 
Waals atomic radius, covalent radius, atomic mass, van der 
Waals volume, Sanderson electronegativity, atomic po-
larizability, ionization potential, and electron affinity. The 
open source R package is based on ChemmineR, base, expm, 
and MASS packages and it is available at 
https://www.github.com/muntisa/RMarkov.mol. The combi-
nation of RMarkov.mol with RRegrs package generates a 
powerful and fast R tool for designing QSAR regression 
models. The current study is presenting the Web interface to 
the R version of the tool using only the Markov Singular 
Values of Transition Probabilities (MMSVs). The main algo-
rithm of RMarkov.mol has the following steps: 
• Read the SMILES Formulas Inputs 
• Extraction of the atom connectivity matrix. 
• The atomic properties are added as weights. 
• The transition probabilities matrix is calculated (Markov 

chains). 
• Vector - matrices products are calculated using k value 

as matrix powers (k = distance between interacting at-
oms). 

 Calculation of molecular descriptors for each atom prop-
erty and atom type, averaging the values for all ks. The in-
cluded atom properties are the following: number of valence 
electrons (Zv), van der Waals atomic radius (Rvdw), cova-
lent radius (Rcov), atomic mass (m), van der Waals volume 
(Vvdw), Sanderson electronegativity (SAe), atomic po-
larizability (aPolar), ionization potential (IP), and electron 
affinity (EA). All TIs are calculating for six types of atoms: 
All (all atoms), Csat (saturated C), Cuns (unsaturated C), Hal 
(halogen), Het (heteroatoms) and HetNoX (heteroatoms but 
not halogens). The user can modify the atom properties file 
by adding or removing any column. The descriptors are av-
eraged for all k values (distance between atoms that are in-
teracting). The molecular graph is defined for each molecule 
as the set of nodes (atoms) and edges (chemical bonds). In 
the case of MMSVs, additional calculations of the singular 
values of the transition probabilities are used. RDMark-
ovMeans is calculating 54 TIs (9 atom properties x 6 atom 
types). RDMarkovSingulars generates a different number of 
TIs depending on the flag fAllKs: if fAllKs=1, it calculates 
540 TIs for each atom property, atom type, k value, Min and 
Max values + the averages for all ks; if fAllKs=0, only 108 
averaged TIs are calculated. There are 288 descriptors for all 
k values: (4 properties*6 atom types* 6 powers) * 2 for Min 
and Max. Only 48 descriptors are represented by the aver-
aged values: (4 properties*6 atom types) * 2 for Min and 
Max. Specifically, the Drug Markov Singular Values of 
Transition Probabilities are calculated using the following 
steps: 
• Read the inputs: SMILES formulas and atom properties. 
• Get connectivity matrix (CM), nodes = atoms, edges = 

chemical bonds. 
• Get weights vector (w) for each atom property. 

• Calculate weighted matrix (W) using CM and w. 
• Calculate transition probability (P) based on W. 
• Calculate k powers of P; the results are Pk matrices. 
• Calculate Markov Singular Values for all power, each 

type of atom property and atom type. 
• Calculate the average values over all K values (total = 

336). 

2.2. RMarkov.mol Library  

The main functions of RMarkov.mol permits two calls, 
each for one single family of MCDs: DMarkovMeans and 
RDMarkovSingulars. The details about the parameters of the 
functions are presented in the R package documentation. All 
these parameters have specific default values such as input 
file name as "SMILES.txt", output file name as "RDMarkov 
Singulars Results.csv", power k = 3 (distance between inter-
action atoms) and a flag for full or averaged descriptors 
(only for MMSVs). The user can modify these parameters. 
The following examples present custom calls of the 
RDMarkovMeans() and RDMarkovSingulars() functions 
using different input and output files, and k values. The out-
put variables DMMs and MMSVs contain data frames with 
all correspondent MCDs. These molecular descriptors can be 
coupled with a regression R package to seek new Chemin-
formatics models using the same language for all the proc-
ess. The code of this library is as follows:  
> library (RMarkov.mol) 
> #Run RDMarkovMeans & RDMarkovSingulars with de-
fault values 
> #SFile ="XXXXX", sResultFile ="XXXX", kPower = "3") 
> DMMs <- RDMarkovMeans() 
> MMSVs <- RDMarkovSingulars() 
> 

> # Run RDMarkovMeans and RDMarkovSingulars with 

> # mySMILES.txt as input, myResults.csv as results, k = 4 

> DMMs <- RDMarkovMeans () SFile ="mySMILES. txt " , 

> sResultFile ="myResults.csv " , 

> kPower="4") 

> MMSVs <- RDMarkovSingulars (SFile 
="mySMILES.txt", 

> sResultFile ="myResults.csv " , 

> kPower="4") 

3. CHEMICAL REACTIVITY (CASE STUDY) 

3.1. Data for Chemical Reactivity Study 

A large benchmark dataset of α -amidoalkylation reac-
tions was used in this work. This dataset included the Brøn-
sted acid catalyzed intermolecular α -amidoalkylation reac-
tions developed by our group [24, 25] and literature data [26-
31] for related reactions with different types of substrates 
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(cyclic and bicyclic hydroxylactams), nucleophiles (ena-
mides, indoles, etc.) and chiral catalysts (phosphoric acids, 
phosphoramides, etc.), under different experimental condi-
tions. 

3.2. Molecular Descriptors for Chemical Reactivity Study 

The descriptors used for the current models contain in-
formation about reaction factors: catalyst configuration, ad-
ditive (TMSCl), temperature, time, solvent dipole, catalyst 
load, and drying agent. Molecular structural factors: mole-
cule with role q-th in the reaction, substrate, product, sol-
vent, catalyst, and nucleophile. In Table 1, we summarized 
the input variables used in the linear model. The linear mod-
els have the following form. 

   (1)  

Table 1. Output vs. Input variables used in the model. 

Variable Type Variable Details 

Output ee(%)[Rcat] 
Enantiomeric excess  

using R catalyst 

Input f0 = (R =1/S = -1)cat Catalyst configuration 

Reaction f1 = TMSCl(eq) TMSCl additive 

Operation f2 = T(K) Temperature 

Variables f3 = t(h) Reaction time 

 f4 = Ds Solvent dipole 

 f5 = Load(%) Catalyst load 

 f6 = Da Drying agent 

Input SV(w, g, Sub) Sub = Substrate (q = 0) 

Chemical SV(w, g, Prod) Prod = Product (q = 1) 

Structure SV(w, g, Solv) Solv = Solvent (q = 2) 

Variables SV(w, g, Cat) Cat = Catalyst (q = 3) 

 SV(w, g, Nuc) Nuc = Nucleophile (q = 4) 

SV(w, g, mq) = Max Singular Values (SVmax) for molecule (mq) with organic 
chemical group g and role q-th (substrate, product, solvent, etc.) in the reac-
tion. 

4. BIOLOGICAL ACTIVITY (CASE STUDY) 

4.1. Data for Biological Activity Study 

Firstly, 5644 preclinical assays of CRC active com-
pounds were obtained from ChEMBL. The result of each 
assay is expressed by one experimental parameter ε ij used to 
quantify the biological activity of the ith molecule (mi) over 
the jth target. The values of εij depend on the structure of the 
drug and also on a series of boundary conditions that delimit 
the characteristics of the assay cj = (c0, c1, c2, …cn). The first 
cj is c0 = the biological activity vij (Inhibition, GI50, IC50, 
etc.). Other conditions are c1 = target protein, c2 = organism 
of assay, etc. The values ε ij compiled are not exact numbers 
in many cases. That is why we used classification techniques 

instead of regression methods. In doing so, we discretized 
the values as follows: f(vij)obs = 1 when vij > cutoff and desir-
ability of the biological activity parameter d(c0) = 1. The 
value is also f(vij)obs = 1 when vij < cutoff and desirability 
d(c0) = -1, f(vij)obs = 0 otherwise. The value f(vij)obs = 1 points 
to a strong effect of the compound over the target. The desir-
ability d(c0) = 1 or -1 indicates that the parameter measured 
increases or decreases directly with a desired or not desired 
biological effect. 

4.2. PTML Linear Model 

Perturbation-Theory Machine Learning (PTML) algo-
rithm is useful to seek predictive models for complex 
datasets with multiple Big Data features [1, 32]. We can pre-
dict scoring function values f(vij)calc for the ith compound in 
the jth preclinical assay with multiple conditions of assay cj = 
(c0, c1, c2, …cn) using as input a value of reference f(vij)ref 
and the PT operators. PT operators similar to Box-Jenkins 
Moving Average (MA) measure the deviation of the com-
pounds from the group of reference [33, 34]. The MA opera-
tors ΔDk(cj)g are dependent on the conditions of assay cj, the 
type of the property studied k (electronegativity, polarizabil-
ity, etc.), and the group of atoms considered g (All, Heteroa-
toms, etc.). It is possible to develop linear PTML models in 
order to predict the biological activity and/or classify com-
pounds as active or non-active in terms of biological activity 
[35-40]. Using Linear Discriminant Analysis (LDA) [41] we 
can develop PTML-LDA linear classification models. 
PTML-LDA linear models have the following form. 

 (2)  

5. RESULTS AND DISCUSSION 

5.1. RMarkov.mol Library 

In this work, we developed the first library in R for the 
calculation of MCDs. Several molecule descriptors could not 
be directly related to physical-chemical properties and the 
explanation of the Cheminformatics models become diffi-
cult. Therefore, the new RMarkov.mol tool implements two 
new classes of molecule descriptors that are based on physi-
cal-chemical atom properties. RMarkov.mol calls can be 
integrated into complex desktop and Web tools in Chemin-
formatics and combined with RRegrs (10 methods regression 
tool) can develop simple model building scripts. The 
RMarkov.mol library is available online as an open reposi-
tory at https://www.github.com/muntisa/RMarkov.mol. 

5.2. MCDCalc Desktop Software and Online Tool, Avail-
ability and System Requirements  

In this work, we have also developed the first public tool 
for the calculation of MCDs online. The name of this tool is 
Markov Chemical Descriptors Calculator (MCDCalc). The 
MCDCalc web server is available online at the following 
link: http://oms.ehu.eus/CPTMLTool/mcdCalc. This tool is 
an online implementation of the R-script mentioned before 
using Java and JavaScript for the interactive behavior, 
Apache maven for project management, Spring for depend-
ency injections and Thymeleaf as a server-side Java template 
engine. Operating system(s): Web service—platform inde-
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pendent. Command-line tool/Library—Windows, Linux, 
MacOS. Programming language: R-script Java and 
JavaScript, Apache maven for project management, Spring 
for dependency injections, and Thymeleaf as a server-side 
Java template engine. Other requirements: Java 1.8. Any 
restrictions to use by non-academics: Password (available 
upon request to authors) is required for running or accessing 
the results using the web service. Permission of the authors 
is required for use in commercial applications. The online 
tools are freely available online (upon password request) at: 
http://oms.ehu.eus:8080/CPTMLTool/mcdCalc. The com-
mand-line tool/Library is available online at: 
https://www.github.com/muntisa/RMarkov.mol. The data 
used to train both the reactivity and biological activity mod-
els is available at Figshare project https://figshare.com/ ac-
count/home#/projects/32039. The reactivity and biological 
activity files have been uploaded with doi: 
https://doi.org/10.6084/m9.figshare.6260549.v3 and 

https://doi.org/10.6084/m9.figshare.7993118.v2, respec-
tively. This data include values of T(K), t(h), Load(%)), 
SMILE codes (chemical structure) of substrate, product, 
catalyst, nucleophile, and observed vs. predicted values for 
reactivity model. The data also includes drugs, targets, cell 
lines, molecular descriptors, etc. for biological activity 
model.  

In Fig. (2A), we show the user-friendly graphical inter-
face of this webserver. In addition, we have developed a 
software desktop application for use offline, (Fig. 2B). The 
desktop version is available upon request to the correspond-
ing authors. We recommend the use of this version in case 
you have no connection to the internet or the webserver fails 
due to different reasons. For the use of the desktop version, 
the user should have the Java virtual machine installed. The 
executable is the file MMD.jar. 

 
Fig. (2). (A) MCDCalc online tool user interface and (B) Executable software. (A higher resolution / colour version of this figure is available 
in the electronic copy of the article). 
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6. ML MODELS OF CHEMICAL REACTIVITY 
(CASES STUDY 1) 

6.1. The α-amidoalkylation Reactions 

The α -amidoalkylation reaction [42-45] is one of the 
most attractive methods for the stereoselective C−C bond 
formation and it has been widely utilized in the synthesis of 
a variety of complex organic molecules, including natural 
products and pharmaceuticals [46-48]. This method pos-
sesses several distinct advantages. The reaction is reported to 
have a wide nucleophile and substrate scope. In addition, the 
reaction is highly diastereoselective [49-51] when cyclic and 
bicyclic N-acyliminium ion intermediates are involved, 
which can be generated in situ from the corresponding hy-
droxylactams, using both protic and Lewis acids. This strat-
egy is applicable to the construction of tertiary and quater-
nary stereocenters in an asymmetric fashion [52]. These 
enantioselective variants [53-55] have been developed using 
mainly chiral Brønsted acids (CBAs) as BINOL derived 
phosphoric acids and phosphoramides [56-59] as well as 
ureas and thioureas [60-63] as catalysts. In addition, the pro-
cedure works well with aromatics and heteroaromatics 
(Friedel-Crafts reactions) [64-67] enamides, silylenol ethers, 
etc. [68]. Computational chemistry has helped to understand 
the mechanism of these α -amidoalkylation reactions. In 
Scheme 1, we depict the general idea behind the catalytic 
enantioselective intermolecular α -amidoalkylation reactions 
studied here. 

 
Scheme 1. Catalytic enantioselective intermolecular α-
amidoalkylation reactions. 

6.2. Chemical Reactivity RMarkov.mol ML Linear 
Model 

However, there are no Cheminformatics models for this 
reaction using MCDs. The understanding of how the differ-
ent parameters affect its stereochemical outcome is still dif-
ficult to rationalize. Therefore, we sought to develop compu-
tational chemistry methods for the prediction of the enanti-
oselectivity of this type of intermolecular α-amidoalkylation 
reactions. We used the previous indices calculated with 
RMarkov.mol as input for a Multivariate Linear Regression 
(MLR) model. Therefore, the resulted dataset contains 156 
features and 324 examples/cases. The output of the model is 
the parameter ee(%)[Rcat]. This parameter is equal to the 
enantiomeric excess of the reaction using a catalyst of con-
figuration R. Consequently, in the cases of reactions reported 
in the literature with R-catalysts ee(%)[Rcat] = ee(%) enanti-
omeric excess. Conversely, in the cases of reactions enanti- 
 

omeric excess ee(%) reported for an S-catalyst ee(%)[Rcat] = 
- ee(%)[Scat] = - ee(%). Therefore, all the values of enanti-
omeric excess predicted with this model are for reactions 
using an R-catalyst. In order to predict the value for S-
catalyst, we only have to multiply the output of the equation 
by -1. The best linear model found have a R2 = 0.828 with  
Fisher ratio F = 92.07 and p < 0.05. These are promising 
values because the model is statistically significant (p < 
0.05) and explains more than 80% of the variance. In Table 
2, we summarized the values of the parameters for each vari-
able in the model.  
Table 2. Results of the linear model. 

Input Variables Param. Std.Err t p 

a0 10347.6 2319.8 4.5 0.001 

T(K) -0.1 0.1 -1.4 0.165 

t(h) 0.0 0.1 0.3 0.789 

Load(%) 0.2 0.5 0.5 0.628 

SV(SAe,HetNoX,Cat) -7394.4 1881.6 -3.9 <0.05 

SV(aPolar,Csat,Cat) 18.8 5.1 3.7 <0.05 

SV(aPolar,HetNoX,Cat) -947.1 108.7 -8.7 <0.05 

SV(aPolar,Csat,Nuc) -18.8 4.6 -4.1 <0.05 

SV(Zv,Csat,Prod) 1128.5 70.4 16.0 <0.05 

SV(aPolar,Csat,Prod) -1035.2 114.4 -9.0 <0.05 

SV(EA,Csat,Prod) -285.3 66.9 -4.3 <0.05 

SV(Vvdw,HetNoX,Sub) -11202.3 2947.3 -3.8 0.001 

SV(aPolar,HetNoX,Sub) 11109.8 3030.9 3.7 <0.05 

This result confirms the hypothesis of a linear relation-
ship between the new molecular descriptors SVmax and the 
ee(%)[Rcat] of the Brønsted acid-catalyzed α-amidoalkylation 
reactions. Notably, all the input variables encoding structural 
information (SVmax values) are statistically significant with 
p-values <0.05. However, the value of R2 could be im-
proved, in principle, and more importantly, some input vari-
ables are not statistically significant. For instance, T(K), t(h), 
Load(%) have p-values higher than 0.05. In (Fig. 3), we de-
pict the Pareto’s chart of t-values for coefficients input vari-
ables in this model (Sigma-restricted parameterization). 

6.3. Chemical Reactivity RMarkov.mol & RRegrs Mod-
els 

We also used the SVmax values calculated with 
RMarkov.mol as input for the RRegrs package in order to 
find better regression models. Several different regression 
methods have been tested and the R2/RMSE results are pre-
sented in Table 3 (averaged over 10 data splits). We founded 
the best four results with the following regression algorithms 
Partial Least Squares (PLS), Neural Network (NN), Support 
Vector Machines (SVM), and Random Forest (RF). As 
shown in Fig. (4), the RRegrs package has been used to test 
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Fig. (3). Pareto chart for input variables.

Table 3. RRegrs results for enantiomeric excess using R catalyst prediction. 

Training Test 
Method 

R2 RMSE R2 RMSE 

RF 0.907 0.101 0.926 0.093 

SVM 0.868 0.122 0.866 0.128 

NN 0.849 0.132 0.829 0.143 

PLS 0.801 0.155 0.775 0.167 

 
Fig. (4). Model differences for the training set (data split 10). Differences for R2 among the package machine learning models are presented. 
The average performance with two-sided confidence limits is plotted as derived by the Student t-test with Bonferroni multiplicity correction. 
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Fig. (5). Mean decrease Gini importance of the main variables selected by RF. We range this value from zero to one in order to simply under-
stand the influence of each variable in the final model. (A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 

LASSO, LM, ENET and GLM. We can observe in Fig. (4) 
that Lasso Regression (LASSO), Linear Multi-regression 
(LM) and Generalized Linear Model (GLM) models are not 
fitting the dataset very well. We used as input variables 
SVmax values for all the molecules involved in the reaction: 
substrate, nucleophile, catalyst and product.  

No correlated features have been removed. We used as 
input variables SVmax values for all the molecules involved 
in the reaction: substrate, nucleophile, catalyst, and product. 
Ten random splits of the data were performed (75% train and 
25% test) along with 100 Y-randomization runs for the vali-
dation of RF, the best model. 

 The PLS and NN methods have values of R2 lower or 
similar (R2 = 0.775 and R2 = 0.829) to the value for the MLR 
method (R2 = 0.828) described before during the test phase. 
The SVM-radial method (R2 = 0.866) has a value of R2 
slightly higher than the MLR method. The best result in the 
test was achieved by the RF method with R2 = 0.926. This 
value implies that the model explains more than 90% of 
variance; which is above 10% more than the MLR method. 
Furthermore, we found three models that outperformed 
MLR: RF, SVM and NN. In Fig. (5), we summarized the 
main variables of the best model (RF) using the so-called 
Gini importance. This index can be calculated to assess the 
importance of each variable on the final model. 

7. PTML MODEL OF BIOLOGICAL ACTIVITY 
(CASE STUDY 2) 

7.1. PTML Model of CRC Active Compounds  

PTML model correlates the expected activity value and 
includes different perturbation parameters in the system. 
Thus, the model is constructed by two types of input vari-
ables: the observed-value function f(vij)obs and the PT opera-
tors ΔD(w,g,cj). After different calculations, the best model 
was found to be the one expressed in the following equation: 

 
The input variable f(vij)obs is related to the previously ob-

served value of biological activity for the reported compound 
in different combinations of experimental conditions cj = (c0, 
c1, c2, … cj … cmax). In our case, PTML-LDA algorithm gave 
the best results, including the most important parameters that 
are a measured type of activity, studied cell line and assay 
organism. These results were directly obtained from 
ChEMBL data set. The reported online free available 
Rmarkov.mol server gave the indices, obtaining a dataset 
containing 30 features and 5644 cases. The output of the 
model f(vij)obs combines the value vij of biological activity of 
the ith studied compound in different combinations of condi-
tions of assay c0,1,2. Among all the possibilities that include 
the use of LM, and in this particular case, the algorithm can 
calculate the probabilities by using Mahalanobis’s distance 
metric to calculate the probability [41] for a given value of 
f(vij)calc. The use of forward-stepwise strategy [41] of vari-
able selection was also performed to select the more impor-
tant perturbations on different conditions cj related to anti-
colorectal cancer. After calculating p(f(vij) = 1)pred, the Boo-
lean function f(vij)pred = 1 can easily be calculated when 
p(f(vij) = 1)pred > 0.5 or f(vij)pred = 0. The values of f(vij)pred = 1 
or 0 are compared with the respective observed values 
f(vij)obs = 1 or 0 to calculate the Sn, Sp, and Ac of the model 
for the selected cutoff. Finally, when f(vij)pred = f(vij)obs , the 
case can be classified as correct [41]. The presented model 
gave moderated values of Specificity Sp = 70.5 and high 
values of Sensitivity Sn = 80.2, with an overall Accuracy Ac 
= 74.1 in training series. The model presented slightly higher 
values of Sn, Sp, and Ac in the external validation series as 
shown in Table 4. These values are in accordance with clas-
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Table 4. Results of the model and input variables analyzed. 

Obs. Stat. Pred. Predicted Sets 

Setsa Param.a Stat.a nj f(vij)pred = 0 f(vij)pred = 1 

Training series 

f(vij)obs = 0 Sp 70.5 2685 1894 791 

f(vij)obs = 1 Sn 80.2 1548 306 2033 

Total Ac 74.1 4233   

Validation series 

f(vij)obs = 0 Sp 72.1 906 653 253 

f(vij)obs = 1 Sn 81.6 505 93 412 

Total Ac 75.5 1411   
aObs. Sets = Observed sets, Stat. Param. = Statistical parameter, Pred. Stat. = Predicted statistics. 

 
Table 5. One-condition averages, cutoff, desirability d(c0), etc., for selected biological parameters. 

Condition c0
a Input Parameters Used to Specify c0

 

Activity nj(c0) nj(f(vij)=1)obs p(f(vij)=1)expt cutoff d(c0) 

Inhibition(%) 2744 1582 0.577 70.00 1 

GI50(nM) 1305 113 0.087 50 -1 

IC50(nM) 664 133 0.200 50 -1 

TGI(nM) 314 0 0.000 50 -1 

LC50(nM) 237 1 0.004 50 -1 

IC50(ug.mL-1) 100 98 0.980 50 -1 

Activity(%) 89 34 0.382 75.00 1 

EC50(nM) 37 2 0.054 50 -1 

ED50(ug ml-1) 33 26 0.788 50 -1 

Ratio 25 6 0.240 32.22 1 

AC50(nM) 23 0 0.000 50 -1 

GI(uM) 16 16 1.000 50 -1 

ID50(nM) 13 11 0.846 50 -1 

TCS50(uM) 12 9 0.750 50 -1 

MG MID(uM) 11 9 0.818 50 -1 

SI 11 3 0.273 1.83 1 

ID50(M) 10 10 1.000 50 -1 
aCondition c0 = the type of activity parameter measured. 

 
sifiying the model with application in Medicinal Chemistry 
[69]. It is important to mention that the data points (com-
pound-assay pair) used in validation series have not been 
used to train the model.  

The input parameters used to specify c0 are resumed in Table 
5. This model is useful for the prediction of the activity of 
new compounds for different organisms and cell lines. 
Moreover, this paper reported that free available 
Rmarkov.mol server can calculate MCDs that could help in 
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the discovery of new anticolorectal cancer drugs, decreasing 
the compounds that may be synthesized for an active drug. 

The experimental probability was calculated according to 
the formula p(f(vij)obs =1)expt = n(f(vij)=1)obs/nj, that is the 
ratio between the number of compounds that are up from the 
selected desired level of activity for each selected condition 
in the total number of compounds of the condition. When-
ever the vij > cutoff and the desirability d(c0) = 1, the com-
pound may be selected as f(vij)obs= 1. In the same way, when 
vij < cutoff and d(c0) = -1 the compound is selected as fa-
vourable, whereas the other cases will be assigned as 
f(vij)obs= -1. For this reason, f(vij)obs has a linear dependence 
with the cutoff, and may be appropriately chosen. For this 
case study, cutoff =50 for properties with units in nM 
whereas in the rest of the cases, average was used. 

7.2. Comparison to Other Models from the Literature 

Bediaga et al. and Speck-Planche and Cordeiro et al. 
published before different PTML-like models for the discov-
ery of anticancer compounds [70-77]. In Table 6, we sum-
marize the results obtained using these models for compara-
tive purposes. All these PTML-like models account for per-
turbations (variations) on the structure of the drug and multi-
ple assay conditions simultaneously such as target proteins, 
cellular lines, organisms, etc. We excluded classic models 
from the comparison because they are useful only for one 
specific set of conditions. Due to the difference in the 
datasets, this comparison focused only on the models and not 
on the performance of the descriptors. We can note that al-
most all models focus on other types of cancer. However, the 
model published by Speck-Planche et al. in 2012 is specific 
for CRC active compounds. It could be noted from Table 6 
that our model has lower values of Sn(%) and Sp(%) but it is 
able to fit a training dataset above three times larger than the 
previous model, 4233 vs. 1237 preclinical assays. In this 

sense, the present model is expected to be able to predict a 
broader range of compounds and preclinical assays due to 
the more large and updated data set used. 

CONCLUSION 

MCDs have been largely used to solve Cheminformatics 
problems. In this work, we have developed the first library in 
R for the calculation of MCDs. We also report here the first 
public web server for the calculation of MCDs online. This 
online tool called MCDCalc includes the calculation of a 
new class of MCDs called Markov Singular values SVk(w,g) 
along with a classic class of MCDs called Markov mean val-
ues Dk(w,g). Lastly, we have shown that SV is either useful 
to predict the enantiomeric excess ee(%)[Rcat] for α -
amidoalkylation reactions or for the activity prediction of 
anti-colorectal cancer compounds. In the case study of 
chemical reactivity, the reactions have a complex mechanism 
depending on various factors. The model includes MCDs of 
the substrate, solvent, chiral catalyst, product along with 
values of time of reaction, temperature, load of catalyst, etc. 
We tested several regression algorithms. The RF regression 
model showed the best results. On the other hand, the case 
study of biological properties can lead to an alternative for 
the fast and rational design of colorectal cancer drug design 
for different organisms and cell lines.  
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Table 6. Comparison to other PTML models of anti-cancer compounds. 

Cancer Type Cancers PTa MLb NVb Casesc Sn(%)d Sp(%)d Refs. 

Colorectal 1 MMA LDA 4 4233(train) >70 >80 This 
work 

Colorectal 1 MA LDA >10 1237(train) >90 >90 [74] 

Breast 1 MA LDA >10 24285(total) >90 >90 [70, 
71] 

Bladder 1 MA LDA n.a. n.a. >90 >90 [72] 

Brain 1 MA LDA n.a. n.a. >90 >90 [73] 

Breast 1 MA LDA >10 2272(total) >85 >95 [75] 

Prostate 1 MA LDA >10 1250(train) >85 >95 [77] 

Multiple >10 MA LDA >10 87701(total) >70 90 

Cancers - MMA LDA 3 - >70 >90 

This 
work 

- - - ANN 4 - >80 >80 - 
a PT operators used, MA = Moving Average, MMA = Multi-condition Moving Average. b ML method used and NV = Number of input variables, n.a. = not 
available to authors of this work. c Total number of cases in training and/or validation series. d Approximate values for training and validation series. 
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