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RESUMEN: 

Este proyecto desarrolla una gestión de infraestructura autónoma para clústeres de 
Kubernetes de Multi-Cloud, donde el enfoque radica en aprovechar las API de 
Kubernetes para construir y gobernar una infraestructura de clúster autónoma en un 
entorno multi-cloud, donde se activa el autocontrol en AWS, GCP y Azure. Para el 
desarrollo del proyecto, y en concreto, para la gestión del ecosistema del cluster, se han 
utilizado diversas herramientas y proyectos de código abierto como Kubernetes, 
Kubebuilder, Kubeadm, Linux Ubuntu o WireGuard entre los más relevantes. Para 
controlar los recursos de los proveedores, este proyecto se basa en los kits de desarrollo 
de software (SDKs) de programación en AWS, GCP y Azure. El proyecto abarca una 
combinación de lenguajes de programación, pero se utilizó predominantemente Go 
Language y Shell Script. 

ABSTRACT: 

This project develops an Autonomous Infrastructure Management for Multi-Cloud 
Kubernetes Clusters, where the focus lies in harnessing Kubernetes' APIs to construct 
and govern an autonomous cluster infrastructure in a multi-cloud environment, where 
self-control across AWS, GCP, and Azure is enabled. For the development of the project, 
and specifically, to manage the cluster ecosystem, several open-source tools and 
projects have been used like Kubernetes, Kubebuilder, Kubeadm, Linux Ubuntu, or 
WireGuard among the most relevant. To control providers' resources this project relies 
on the go programming Software Development Kits (SDKs) of AWS, GCP, and Azure. 
The development journey encompasses a blend of programming languages, but 
predominantly Go Language and Shell Script was used. 

LABURPENA: 

Hodei anitzeko Kubernetes-en klusteretarako azpiegitura autonomoaren kudeaketa 
garatzen duen proiektua, non kuberneten APIak aprobetxatzen ditu kuberneten APIa 
eraikitzeko eta kluster autonomoaren azpiegitura bat gobernatzeko multi-cloud-en 
ingurune batean, non aktibatu da autokontrola AWS-n. , GCP eta Azure. Proiektuaren 
garapenerako, eta konkretuki, cluster-aren ecosistemaren kudeaketarako, kode irekiko 
hainbat tresna eta proiektu erabiltzen ditu Kubernetes, Kubebuilder, Kubeadm, Linux 
Ubuntu edo WireGuard garrantzitsuenen artean. Hornitzaileen baliabideak 
kontrolatzeko, proiektu hau AWS, GCP eta Azure programaziorako software-ko kitetan 
(SDK) oinarritzen da. Programazio-lengoaien konbinazio bat ireki zuen proiektua, baina 
nagusiki Go Language eta Shell Script erabili zituen. 
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1. Introduction 

In the rapidly evolving scenario of modern technology, the concept of Cloud Computing 
has risen to the forefront, redesigning the way organizations deploy and manage their 
applications and infrastructure. Kubernetes in parallel is the most famous and adapted 
Cloud Computing orchestrator whose objective is to manage Cloud applications. Both of 
them have become indispensable tools for many businesses seeking scalability, agility, 
and efficiency in their solutions. 

Cloud Computing, with its promise of on-demand access to a virtually limitless pool of 
computing resources, has revolutionized the way we think about IT infrastructure. The 
Cloud is not just a trend, it's a fundamental design pattern that makes organizations move 
away from traditional solutions to achieve a more flexible and scalable model for running 
their applications. 

Kubernetes, on the other hand, has emerged as the de facto orchestration platform for 
containerized applications. It provides a powerful framework for automating the 
deployment, scalability, and management of containerized applications across multiple 
nodes independently of their location. With Kubernetes, businesses can grant scalability, 
high availability, and easy management to their applications, regardless of whether these 
applications run on-premises on local servers, in cloud providers such as AWS, or in 
hybrid environments. 

In this era, where resilience and cost-effectiveness are a priority, understanding and 
adopting the core principles of Cloud Computing or Kubernetes is not merely an 
advantage; it's a necessity. This project will delve into these two concepts and will 
propose a solution where, taking advantage of the adoption of the cloud and Kubernetes, 
extends Kubernetes functionality for making the Cloud control its underlying 
infrastructure. 

This project tries to achieve the idea of having a single API (Kubernetes API) to rule 
everything. Having a polyvalent tool that can control an entire cloud solution, from the 
microservices it is composed to the hardware that processes them. This concept could 
be referred as an “Universal Control Plane”. 
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2. Context 

2.1. History of servers’ management 

At the beginning of the internet’s development servers were significantly different from 
the system we know and use today. An engineer needed to buy a computer, configure it 
manually, install an operating system, connect it to the internet, and configure it to serve 
the desired purpose. This configuration did not adapt to the conditions of the moment, 
the computers were the same regardless of the amount of traffic it hosted. Hence, the 
engineer needed to configure the number of computers that were going to be able to 
handle peak moments of traffic, while in the downtime the computer would be using only 
part of their power. What is more, if the popularity of the service grew the engineering 
team needed to configure additional computers — which meant buying them, shipping 
them, configuring them… taking days or weeks at a time. 

Later on, with the adoption of virtualization, this process evolved. Provider companies 
with high computing resources started to rent virtual computers also known as Virtual 
Machines (VMs). As a VM can be created in a matter of seconds, and it is possible to 
create several virtualized versions of varying sizes inside of a physical computer, it 
provides higher speed flexibility and optimizes the use of resources. The virtualization 
layer slightly reduces the total amount of computing power, however, it allows for much 
more efficient use of resources, saving in costs and providing better speed. For renting 
these VMs to the provider clients used graphical tools like web pages or computer 
applications. 

Afterward, these providers developed Application Programmatic Interfaces (APIs). To 
understand better what the APIs are, saving the distances, languages are to humans 
what APIs are to computers, they allow computers and their programs to interact with 
each other. Provider APIs allowed to interact with them programmatically instead of 
doing it through graphical tools, which allowed users to control provider resources 
programmatically. Control the provider programmatically drastically increases the 
possibilities in terms of functionality, since one can create programs that contain a 
specific logic and make them interact with the provider. For example, it is possible to 
create sets of instructions (also called scripts) that can simultaneously automate the 
creation, deletion, or configuration of hundreds of VMs. 

2.2. Imperative vs Declarative approach 

This brings us to this project. The next logical step in this evolution of computer services 
management is to overcome the imperative approach and advance toward a declarative 
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one. Imperative solutions consist in giving a set of instructions that will be executed, for 
example, “create,” “deploy,” “update,” “delete,” etc. On the other hand, a declarative 
solution defines the desired state of a specific service. To clarify the purpose, let us 
consider the following example: 

If the necessity was to create 10 VMs spread across Europe, within an imperative 
approach, several steps will need to be done: choose a provider like AWS, configure it, 
pay it, install it, and execute the commands to create the servers in different locations of 
Europe like: "aws create vm size medium location Frankfurt ...", "aws create vm size 
medium location madrid...", ... and so on until the 10 VMs are created. In comparison, in 
a declarative approach, only one step is necessary, one that could look like a single 
command similar to this "vm create amount 10 location europe". The engineers have to 
take care of all the complexity and only allow the command to specify the most relevant 
information, like in this case, the number of VMs (10) and the continent (Europe). The 
program will take care of all the complexity of managing the providers and other 
decisions such as select what will be the specific location of the servers, like Madrid or 
Frankfurt, or the size that these servers will have, among other needed decisions. 

The crucial difference is that in the declarative approach, a background service needs to 
be running continuously waiting for the orders, and more importantly, it must be able to 
understand them. Due to this, the complexity of this approach is significantly higher, as 
well as the time it requires to be programmed. Yet, since it runs without interruption, it 
ensures that the outcome desired, like having 10 VMs running across Europe, is always 
true. If it detects that the desired state is not true, it will work towards fixing it. To follow 
up on the example, if one of the VMs dies leaving only 9 VMs running, the program will 
detect the discrepancy and try to create another VM, with the objective of matching the 
real state to the desired state. 

Therefore, while its programming is initially more time-consuming, the declarative 
approach certainly triumphs with its long-term benefits, not only by saving time but also 
by subtracting complexity, allowing people to use the tool without needing high expertise 
in the programming field. In our example, the instruction "vm create amount 10 location 
europe" is easier to execute by moderate users with less expertise in the field. 

2.3. Kubernetes 

The most successful tool at the time of writing that automates processes in a declarative 
approach is the open-source project Kubernetes [1], which was originally created for 
“container orchestration” a technology used in Kubernetes to implement microservices.  
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These microservices are an architectural approach directly linked with the concept of 
“The Cloud” more known in popular culture.  Without entering into detail about 
microservices and “The Cloud” yet (described further), they are becoming nearly 
indispensable for well-designed applications, particularly at the “application layer.” This 
layer is built over the “infrastructure layer,” which until this point we had focused on. For 
example, in a computer that has Microsoft Windows installed, Windows would be the 
application and the computer itself would be the infrastructure. Both layers are necessary 
for providing internet services, like websites or applications. To automate and manage 
the application layer in a declarative approach, Kubernetes is the most adopted tool. 

This project wants to get advantage of the fact that numerous companies are already 
using Kubernetes in their systems and expand Kubernetes functionality to automate the 
infrastructure layer in the same way they are already doing for their applications. 

2.4. Multi-cloud solution 

In addition to that objective, this project tries to break the dependency applications have 
on their infrastructure provider, and prove it by working over multiple cloud providers. To 
better understand the motivation behind this, these are the reasons. 

On one hand, a multi-cloud solution offers numerous benefits. Among the most important 
ones are the following. Firstly, it reduces vendor dependency by providing flexibility to 
choose the most suitable services and pricing models from different providers. This helps 
mitigate the risk of becoming tied to a single provider's proprietary ecosystem, making it 
easier to adapt to changing business needs and cost considerations. And secondly, a 
multi-cloud strategy enhances resilience and redundancy. By distributing workloads 
across multiple providers, organizations can protect against failures or performance 
issues from any single provider. This redundancy ensures uninterrupted service 
availability and minimizes downtime, which is crucial for maintaining operational stability. 

And, in there other, the most dominant infrastructure provider at the moment of writing is 
Amazon with their AWS solution, taking almost a 30 percent control of the market [2]. 
The biggest providers like AWS offer self-managed Kubernetes services that take care 
of the infrastructure for the client. The problem with this is that these self-managed 
solutions are designed to work only within the provider that delivers the service with few 
customization options which makes multi-cloud clusters’ design very complicated. 
Sometimes these solutions even force the client to buy additional services from the 
provider due to the design of the Kubernetes service offered. 

Because of the reasons just described, this project does not use these self-managed 
Kubernetes solutions, and it treats separately the new functionality the project aims to 
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achieve from the providers themselves, making this project less dependent on any 
provider and giving it the possibility to work over multiple ones. This project will use the 
3 leading infrastructure providers currently from Amazon, Google, and Microsoft; but 
because the provider's logic is separated from the rest of the project, it should be easy 
to migrate it to work over new different providers. 

2.5. The Chicken and Egg Situation 

In this context of making a cloud application control infraestructure there is the problem 
of the chicken and egg, which this project tries go give a solution as one of its main goals.   

This problem refers to a situation where two interdependent components or processes 
rely on each other to function, but neither can start without the other already in place. In 
this scenario, one component is like the "chicken," and the other is like the "egg," and it's 
unclear which should come first. 

For instance, consider a cloud application designed to manage and provision VMs in a 
data center. The chicken might be the application itself, which needs VMs to operate and 
provide services. The egg represents the VMs, which need the application to create and 
manage them. The problem arises because the cloud application needs VMs to be up 
and running to perform its tasks, but it also needs the application to exist in the first place 
to create those VMs. This circular dependency makes it challenging to get the system 
up and running smoothly. 
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3. Objectives 

The main objectives of this project are to make a Kubernetes cluster able to control its 
underlying infrastructure and doing it building a reliable architecture avoiding a single 
point of failure across the whole infrastructure design. In addition to avoid a single point 
of failure at the provider level and to avoid dependency from any specific cloud provider, 
the architecture must be multi-cloud, working across different providers and not 
depending entirely on one of them. Having these objectives in mind the following specific 
objectives must be accomplished: 

¾ Find and design the best way to control infrastructure natively from Kubernetes, 
with new K8s components. 

¾ Implement infrastructure resource control for VMs of AWS, GCP, and Azure from 
these new K8s components to create. 

¾ Find a way to solve the chicken-egg problem, for Kubernetes to be able to control 
its own infrastructure. 

¾ Build a VPN for computers spread across the internet programmatically to build 
a cluster. 

¾ Build K8s node architecture over this new cluster. 
¾ Avoid a single point of failure for every component in the architecture. 
¾ Make the architecture adaptable to changes and self-healable to errors that could 

happen in a real live environment. 
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4. Benefits provided 

The present project proposes a solution that has inherent benefits because of the fact of 
using Kubernetes, controlling infrastructure from it, and having a multi-cloud solution. 

4.1. Technical Benefits 

Automated Infrastructure Management 

Kubernetes excels at managing components automatically. Its core concept involves 
programming Kubernetes components to continuously monitor and self-heal. This 
means that the infrastructure adapts to changes and fixes errors on its own, saving 
human operators time. Instead of spending hours fixing issues, Kubernetes can resolve 
them within minutes. This results in a more reliable infrastructure compared to one 
controlled solely by humans. 

Multi-Cloud Resilience 

Using a multi-cloud cluster architecture prevents a single point of failure at the cloud 
provider level. If one cloud provider's services experience downtime, the infrastructure 
seamlessly adapts by shifting the workload to other providers. This redundancy 
enhances the overall resilience of the system. 

Unified Control via Kubernetes API 

In a cloud-based solution, Kubernetes controls the infrastructure through its API. This 
means that the entire application ecosystem has a single control API, making 
management more streamlined. All components can easily communicate with each other 
through this unified control API. Furthermore, integrating this control API with other 
systems becomes more straightforward. Many third-party tools already have built-in 
integrations with Kubernetes, allowing for seamless integration of infrastructure 
components. 

Simplified Integration 

When one Kubernetes cluster manages its own infrastructure, it leads to a more unified 
system. In contrast, if infrastructure management were in a separate environment, it 
would require additional effort and resources to create and manage. By keeping 
everything within a single cluster, all components are perfectly integrated, resulting in a 
more cohesive and efficient system. 

4.2. Economic Benefits 

The various technical advantages just discussed lead to several economic benefits: 
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Human Hours 

Initially, setting up and configuring everything may require more human effort, leading to 
higher short-term costs in terms of human hours. However, the long-term benefits 
outweigh this initial investment due to the higher level of automation in the infrastructure. 
For instance, if the infrastructure experiences an issue on a weekend night, the company 
would need to pay engineers to work the extra hours to resolve it in the lowest time 
possible, incurring extra shift costs. Meanwhile, if this fix was automated it won’t produce 
extra cost. 

Infrastructure 

This project's approach, which involves building and managing the infrastructure 
internally rather than relying solely on a service provider, results in substantial cost 
savings and greater flexibility. The hourly cost of VMs provided by any cloud service 
provider is typically lower than the cost of self-managed K8s clusters available in the 
providers. Additionally, the adaptable nature of this infrastructure allows for the automatic 
removal of unused resources, directly reducing operational costs. If these resources are 
needed again, they can easily be recreated. Moreover, the flexibility to build a hybrid 
cloud cluster means it can be integrated with cheaper infrastructure as could be, 
company local servers, potentially reducing costs. 

Multi-cloud 

Self-managed solutions offered by cloud providers are usually designed to function 
exclusively within their own ecosystems, making costs and downtime more dependent 
on the provider's offerings. In contrast, the solution presented in this project allows for 
the specification of the desired cloud distribution for the multi-cloud infrastructure. This 
means that if one cloud provider offers significantly lower prices than another, you can 
allocate a higher weight to the cheaper provider in the cloud distribution, while reducing 
or eliminating the weight assigned to the more expensive one. Additionally, a multi-cloud 
approach helps mitigate the consequences of downtime in a single provider's service. In 
situations where infrastructure is not multi-cloud, a service outage from the provider can 
result in substantial costs due to denied services for clients, damage to the company's 
reputation, extended downtime, and more. 
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4.3. Social Beneficts 

Open source 

This project embraces open-source solutions, fostering a collaborative and inclusive 
community of developers and contributors. This collaborative ethos promotes knowledge 
sharing, skill development, and innovation, benefiting individuals and organizations alike. 
It encourages a culture of transparency and accessibility, making technology more 
equitable by ensuring that anyone can access, use, and modify the software. 

Internet decentralization 

The decentralization of infrastructure reduces the dependency on a few dominant cloud 
providers. This decentralization enhances the resilience of digital services against 
potential disruptions, whether caused by technical failures, cyberattacks, or other 
unforeseen circumstances. The way providers are integrated in the project, simplifies the 
process of including new ones. This democratizes access to computing resources, 
enabling smaller businesses and startups to compete on a more level playing field and 
reducing the risk of monopolistic practices in the industry. 
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5. State of the Art and Alternative Analysis 

5.1. The cloud and microservices 

The cloud and microservices are two fundamental pillars of modern computing that have 
revolutionized the way software applications are developed and deployed. The cloud 
refers to a network of remote servers hosted on the internet, which enables users to 
access and store data and applications over the web, eliminating the need for on-
premises infrastructure. It offers scalability, flexibility, and cost-efficiency. On the other 
hand, microservices is an architectural approach where complex applications are broken 
down into smaller, and independent services that can be developed, deployed, and 
scaled independently. This design fosters agility, easier maintenance, and the ability to 
adapt to changing demands. 

Both technologies complement each other and are deeply interconnected, with the cloud 
providing a flexible infrastructure necessary in the nature of microservices. 
Microservices, in turn, leverage the cloud's features to create a more efficient and flexible 
application architecture, and developers can build and deploy microservices 
independently with each service dynamically adjusting its resources according to the 
cloud's capabilities, optimizing the use of resources. 

The Cloud Native Computing Foundation (CNCF) is a non-profit organization that was 
founded in 2015. It serves as a home for a variety of open-source projects specifically 
focused on cloud-native technologies. The foundation's primary objective is to support 
the development and adoption of cloud computing paradigms, and every year they 
launch reports on the state of cloud technologies. Looking at some reports they did in 
last years like on the one in 2022 [3], different trends indicate the adoption rise of cloud 
technologies every year. Like, the adoption of cloud technologies by companies or the 
increased use and knowledge by developers of these technologies. 

5.2. Universal control plane APIs 

The concept of a Universal Control Plane (or UCP) API is yet to be explored in previous 
papers, but it is occasionally mentioned in some mediums. In the opinion of the writer, 
the concept was born with the creation of Crossplane [4], which is an application that 
extends Kubernetes functionality, and that will be described in further detail ahead in this 
article. 

A universal control plane API refers to a standardized API (or lenguaje) that allows 
interaction with all different components, services, and systems. This API serves as a 
central control point, enabling unified management, configuration, and coordination 
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across all the diverse resources, regardless of their underlying technologies. Specifically 
for cloud solutions, there are two different systems that need to be controlled equally in 
other to have a UCP. On one hand, the containers, which are inherent to cloud 
applications, and on the other, the infrastructure where all these containers are running. 

Only a few technologies seem to go in the direction of the concept of UCP. On one hand, 
there are several solutions highly focused on infrastructure management, and on the 
other, a few solutions focused on cloud application management.  

The chosen technology needs to fit different criteria. First, it has to be widely used and 
have a promising future since the idea behind this project is to achieve a concept that 
will make the future of the cloud and automation easier and more versatile. Second, it 
has to be a flexible solution since this project aims to extend its functionality to become 
a UCP. And third, it will make the development of the project easier the fact that the 
technology is easy to use. 

 Infraestructure oriented solutions 

There are many technologies that facilitate the management of infrastructure with very 
distinct approaches. In the book “Terraform: Up & Running” [5], a chapter contains a 
comparison of all the most relevant infrastructure management technologies. They are 
compared in different aspects such as community, simplicity, approach, etc. These 
technologies are Chef, Puppet, Ansible, Pulumi, CloudFormation, Heat, and Terraform. 

From the comparison offered and having in mind the requirements described before, 
most of the solutions can be discarded, and only Ansible and Terraform seem to be the 
better candidates. Both of them share in common that they have the biggest communities 
which is crucial in terms of use and versatility. The community grants wider support 
across services offered by the providers and easier debugging when facing 
complications with their implementations. 

The main differences between these solutions are the next ones. While Terraform 
approach is a declarative one similar to the one that is described in the introduction of 
this article, the Ansible approach is more imperative or procedural as it is described. The 
approach of Ansible makes it more complicated to use but its complexity gives it more 
flexibility in terms of possibilities and functions extensibility. Terraform on the other hand 
is simpler and easy to use, and its declarative approach makes the maintenance of the 
services easier. 

 Cloud oriented solutions 

On the other side, there are solutions designed to manage the cloud. These solutions 
are also called container orchestration tools in a more technical name. This name is due 
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to the fact that managing the cloud means coordinating and managing (orchestrating) all 
the containers, which saving the distances are the microservices, that form a cloud 
application.  

The paper “Overview of Docker container orchestration tools” [6] goes through the main 
orchestration tools available at the moment and describes their benefits and 
disadvantages. It tasks about three solutions which are Kubernetes, OpenShift, and 
Docker Swarm. And having in mind the requirements seems that the better candidate is 
Kubernetes, due to the fact that is the one more used and the one with the biggest 
community. It is very important, especially for an open-source project to have a huge and 
active community behind otherwise the project will end up dying, as probably will end up 
happening for Docker Swarm. OpenShift is a privative solution based on Kubernetes 
itself with some additional functionality, but less used and less popular than Kubernetes. 
Also to remark that this project tries to exclude as many privative technologies while 
there is a good open-source alternative. 

The community behind Kubernetes is very active and this makes Kubernetes a very 
versatile project with lots of different functionalities. For example, other tools for data 
visualization or GitOps tools, among many others, offer an integration with the API of 
Kubernetes. This means that if this project chooses Kubernetes many of these tools, like 
visualization or management ones, could be used alongside this universal control plane, 
making it easier or faster to work with. Also, the Kubernetes community already has 
worked on different sub-projects made to either control infrastructure or extend 
Kubernetes functionality, projects that will come in handy to achieve the objective of this 
project and that will be analyzed further in this paper. 

 Best solution 

Even though there are a few different alternatives, and tools like Terraform or Ansible 
are compatible with a wide range of services and seem closer to the idea of a UCP, in 
the opinion of the writer it is very obvious that the best solution is Kubernetes. Here are 
described a few reasons why. 

The first reason is the huge utilization by people and companies and the wide community 
this brings. Being constantly growing and adapting to new challenges and with great 
quality in the design. Kubernetes is one of the most prominent projects of the CNCF and 
every year the launch report about Kubernetes trends like the one of June 2023 [7], 
where it is visible how the project keeps growing year by year in contributions, people 
and companies participating in the project. 

And the second reason is that the complexity inherent to a cloud orchestrator like 
Kubernetes is significantly higher than the complexity behind managing infrastructure 
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resources or services. A tool like Kubernetes is composed of several internal 
microservices that will need to be reprogrammed in order to replace its functionality. 
Kubernetes is a more complex solution because it solves a more complex problem. In 
these two pictures, it is visible the internal difference between an infrastructure provider 
like Terraform and Kubernetes. 

 

Figure 1. Terraform components. [14] 

 

 

Figure 2. Kubernetes internal core components. [15] 
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So in other words, it seems quite easier to replace Terraform/Ansible functionality inside 
Kubernetes, than the other way around. 

5.3. Kubernetes to control infraestructure 

Once justified that Kubernetes is the best solution to achieve this project objective, a 
harder decision needs to be made. The idea to control infrastructure from Kubernetes 
itself isn't original from this project, in fact, several projects already exist built around 
Kubernetes to control infrastructure inside of Kubernetes. - The originality or innovation 
of this project relies on making a Kubernetes instance control its own infrastructure over 
multiple providers - The following projects make a Kubernetes instance control other 
infrastructure, but not its own. This way the control of the infrastructure over which 
Kubernetes runs needs to be done apart, breaking with the idea of a UCP that was 
described before in this paper and that this project tries to achieve. 

The three main projects that already exist and that can be used to control infrastructure 
are Cluster API, Crossplane, and Kubernetes API. 

 Cluster API 

Cluster API is a Kubernetes sub-project focused on providing declarative APIs and 
tooling to simplify provisioning, upgrading, and operating multiple Kubernetes clusters, 
hosted by the CNCF. [8] [9] 

Even though it is a good solution in many use cases it has two main problems. On one 
hand, the project doesn't seem very mature at the time of writing compared with other 
solutions, that solve the problem of creating and managing infrastructure for Kubernetes 
clusters, but outside of Kubernetes itself. And on the other hand, it is a complex project 
that requires a huge understanding in order to use it in an effective way. [10] 

Additionally, there is another solution that tries to solve a similar problem but it is more 
ambitious that also aims to bring a solution to many other new use cases. This solution 
is Crossplane which is described in further detail in the following section. 

 Crossplane 

Crossplane is an open-source project, also acquired by the CNCF, that extends 
Kubernetes by enabling the management of cloud services and infrastructure through 
the Kubernetes API. It provides a declarative way to define and manage resources 
across multiple cloud providers, allowing developers to provision and manage services 
seamlessly, abstracting away the complexities of different cloud APIs.  
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Very similar to what Terraform does but with the difference that Crossplane is running 
inside Kubernetes. The major advantage of this is that this allows Crossplane to run all 
the time in the background, so it can constantly ensure that the state of the wanted 
service matches the desired state, and fix it if it doesn't match. The similarity with 
Terraform is such, that the Crossplane community built a project called Terrajet. This 
project consists of making Crossplane able to understand Terraform code and act as a 
translator between both technologies, which drastically increased Crossplane's 
provider’s services support, taking advantage of the huge community behind Terraform. 

 Kubernetes API 

Kubernetes API extension capabilities refer to the ability to customize and enhance the 
Kubernetes API to support new functionalities beyond its core features. Kubernetes 
offers a powerful extension mechanism that enables developers to create Custom 
Resource Definitions (CRDs) and Custom Controllers. CRDs allow users to define their 
custom objects for their new resources. These custom resources can represent anything 
from applications, services, configurations, infrastructure, or any other entity. 

CRDs work with Custom Controllers, to manage the lifecycle of these custom resources. 
Custom Controllers use the Kubernetes API to watch for changes to custom resources, 
and track the real state of the entity they represent. And if something isn't as it is 
supposed to be, they take action accordingly to fix it. This allows the automation and 
orchestration of complex workflows and empowers users to automate processes using 
Kubernetes. 

To be able to program these custom resources and their controllers, Kubernetes 
Operators exist. There is a huge market of operators with different focuses and designs 
that will be discussed in the following section. 

 Best solution 

From the options above seems like Crossplane was the better candidate to control 
infrastructure. Because it is a technology built to control any kind of service in 
Kubernetes, and its apparent simplicity, especially compared to Cluster API. Initially in 
this project, Crossplane was the chosen option to develop this project, but due to the 
following reasons it was discarded and this project was developed with Kubernetes API 
extensibility directly. 

The first reason is the fact that Crossplane is a very young project and its native support 
of services is very limited. The main resource this project needs to control is VMs, but it 
wasn't supported by any of the 3 main providers. Since the project Terrajets exist, it was 
tried to use it for being able to control VMs, but due to the fact that Terrajet is even a 



– 16 – 
 

 

younger project the lack of community and support made the development almost 
impossible. 

And the second huge reason is that the customization level necessary to achieve what 
this project want to achieve wasn't enough with either Cluster API or Crossplane. To 
make a Kubernetes cluster control its own infrastructure, as is the goal of this project, it 
is necessary to manage and create the VMs over the ones Kubernetes will run. Both 
Cluster API and Crosspalne can create these machines but the customization over these 
ones isn't enough. To better understand this, creating VMs is a mandatory service 
required for this project, but while all these tools can create these VMs, it is not enough 
with that. Kubernetes needs to configure its networking, include it in a VPN, join them to 
the Kubernetes cluster, solve the chicken-egg problem, monitor status parameters, etc. 
And doing this with Crossplane seemed too difficult, and it was decided to work with the 
Kubernetes API directly to create custom resources. It is initially more complex to learn, 
but the inherent flexibility it provides will make this project easier to develop. 

5.4. Other relevant decisions 

Although there are other aspects of the project that require choosing a technology to 
work with, the impact on the overall outcome is relatively minor. Due to the fact that 
choosing alternative technologies would yield almost identical results. Still, a decision 
needs to be made, and here it is explained why in each of them. 

 Kubebuilder vs other operators 

To create custom resources in Kubernetes there are over a hundred different Kubernetes 
Operators that can be used to create them. Even though all of them cover a similar 
functionality, only 2 options were considered, the 2 most popular ones: the Operator SDK 
developed by RedHat, a company with a huge reputation in the Linux ecosystem, and 
Kubebuilder, the operator framework developed by the Kubernetes community. 

Due to the presence of sizable communities and the shared objective of addressing the 
same problem, both Operator SDK and Kubebuilder decided to collaborate and pool their 
efforts. As a result, the Operator SDK now builds upon the Kubebuilder project, 
effectively expanding its capabilities. While both tools are excellent open-source 
solutions, the choice was made to adopt Kubebuilder as it serves as the foundation for 
both projects and because is the project that belongs to the Kubernetes community. 
Nonetheless, it's worth noting that a similar outcome could likely have been achieved 
with the Operator SDK as well. 
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 Kubeadm to build the cluster 

Similarly, for managing a Kubernetes cluster, several options exist that could be used. 
But Kubeadm [11] was the chosen option due to its simplicity, robustness, and alignment 
with the Kubernetes project because it also belongs to Kubernetes. Kubeadm simplifies 
the process of bootstrapping and maintaining a cluster, making it accessible to both 
beginners and experienced users. It follows best practices and leverages the official 
Kubernetes components, ensuring compatibility and stability. While other alternatives 
may offer additional features and customizations, Kubeadm's focus on core functionality 
ensures a reliable foundation for a Kubernetes deployment, reducing complexity and 
minimizing the risk of compatibility issues. As a result, Kubeadm remains an optimal 
choice for organizations seeking a straightforward and well-supported approach to 
efficiently manage Kubernetes clusters. 

 Wireguard to build the VPN 

Among all the different VPN protocols, several options exist for building a VPN 
infrastructure, with some of the most widely used being OpenVPN, IPsec, and 
Wireguard. However, after consideration, Wireguard was chosen as the better fit for this 
project. Wireguard is as a relatively new and increasingly popular choice, primarily due 
to its exceptional performance, and simplicity in both usage and management. These 
attributes make Wireguard’s future very promising and also make it a highly attractive 
solution for this project. [12]  

 SSH, and Shell Scripts to manage the nodes 

For managing the nodes SSH and Shell Script offer a straightforward, and widely 
supported approach to interact and automate tasks on the nodes of the infrastructure. 
SSH provides secure remote access, enabling fluid communication and control over the 
nodes without exposing sensitive information. Additionally, Shell Scripts offers a 
lightweight and versatile means of automating repetitive tasks, such as deploying or 
configuring the nodes. This combination is a powerful toolset that requires minimal setup 
and provides ease of maintenance. 
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6. Deployment Description 

6.1. Kubernetes Custom Components Design 

 Kubernetes API extension capabilities with Custom Resources 

In recent years, Kubernetes has evolved beyond being a simple container orchestration 
platform to becoming an extensible platform for managing diverse workloads and 
applications. One of the key features that enables this extensibility is the ability to define 
Custom Resource Definitions (CRDs). CRDs allow users to extend the Kubernetes API 
by introducing their own custom resources and controllers. These controllers, created 
using tools like Kubebuilder, enable the automation and management of these custom 
resources. 

 Reconciliation Loop 

When creating new custom resources, the most part of the programming relies on the 
reconciliation process or loop. This reconciliation loop is a crucial concept in Kubernetes 
controllers. It ensures that the actual state of resources matches the desired state 
specified in the custom resources. The following figure helps to understand better this 
process: 

 

 

Figure 3. Kubernetes Reconciliation Loop. 
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This critical process is what enables Kubernetes to maintain the desired state, detect 
any discrepancies, and autonomously take corrective actions as needed, making it ideal 
for building robust and self-managing applications. As Kubernetes continues to evolve, 
the reconciliation loop in CRDs extensibility remains the central core concept. 

  Custom Resources Created for this Project 

In this project, two custom resource definitions, namely "Vm" and "VmGroup," have been 
created using Kubebuilder. These CRDs extend the Kubernetes API to accommodate 
the specific requirements of the project. 

¾ Vm: This custom resource definition represents a virtual machine instance, 
allocated in any of the available providers. 

¾ VmGroup: This custom resource manages all the Vm that this project is using, 
building, managing, and adapting the cluster over them, where Kubernetes runs. 

The following figure helps to understand the relation between these two CRDs and why 
both of them are necessary to manage the K8s cluster. 

 

Figure 4. VmGroup and Vm Design. 

The creation of a VmGroup involves the creation of several Vms which the VmGroup 
configures for them to be able to belong and communicate in the VPN and it builds the 
K8s cluster over them. 

 Vm CRD 

For creating a Vm it is necessary to specify some Specs that act as input variables that 
are necessary to create the VM. The necessary Specs are the next ones: 

¾ Provider: It will be the provider where the VM will be created, either AWS, GCP, 
or Azure 
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¾ Role: The role the VM will play. The options are either, Load Balancer, K8s 
Master, or K8s Worker 

¾ NetworkNumber: The Network Number is the number in the VPN network that 
the VM will have, it depends on the role the VM is made for, and the Network 
Number already used by other VMs. The IP assigned will look like this 
“10.0.0.NetworkNumber”. 

The following diagram shows the reconciliation process of the Vm controller, in charge 
of the maintenance of the Vm CRDs. This reconciliation process starts when a Vm CRD 
is defined and ends when it is deleted. These two actions are done by the VmGroup 
reconciliation process explained later. 

 

Figure 5. Vm CRD Reconciliation Process. 

To encapsulate the essence of this diagram, the creation of a Vm CRD serves the 
purpose of generating a VM within the designated provider. Once this creation process 
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is completed, the system attempts to establish a connection with the public key specified 
during VM creation. If this connection is successfully established, the VM is marked as 
"Ready." Subsequently, the system continuously monitors the VM's status, conducting 
checks at two-minute intervals. 

In the event of any anomalies or issues, the error count is incremented, prompting the 
system to initiate corrective measures within a 10-second timeframe, trying to rectify the 
situation and restore normal operation. 

6.1.4.1. Vm Creation Scripts 

When VM custom resources initiate an order to a provider to create a virtual machine, 
they include an initial configuration script that ensures the VM is prepared for integration 
into the cluster. This script may vary from one provider to another due to differences in 
default configurations and also depending on the tipe of the node (LB, master, or worker), 
but it generally includes the following essential steps for each machine during its initial 
configuration: 

¾ Assignment of a Master Private Key: A master private key is assigned to the 
VM. This key is used as a master key for SSH all the nodes in the cluster, but its 
use is limited to the K8s VMGroup instance. It provides a secure way to control 
for cluster. 

¾ Installation of VPN and Key Pair Generation: A Virtual Private Network (VPN) 
is installed on the VM, and a unique set of private and public keys is generated. 
These keys play a crucial role in securing communication within the cluster. 

¾ Initial VPN Configuration: The VPN is configured with the VPN IP assigned by 
the VMGroup. This step ensures that the VM can securely communicate within 
the cluster through the established VPN tunnel. 

¾ Enabling Forwarding in the Node: Network packet forwarding is enabled on the 
VM node. This is a necessary step for proper Kubernetes functionality and the 
correct behavior of cluster load balancer nodes. It allows the VM to efficiently 
route network traffic as required by the Kubernetes cluster. 

¾ Installation of Kubernetes Dependencies: Finally, the VM's dependencies are 
installed to enable it to join and function as a Kubernetes node. These 
dependencies typically include containerd (container runtime), kubelet 
(Kubernetes node agent), kubeadm (Kubernetes administration tool), and kubectl 
(Kubernetes command-line tool). These components are essential for the VM to 
participate in the Kubernetes cluster, manage containers, and execute 
Kubernetes commands. This step is skipped for the load balancer because they 
do not belong to the K8s cluster. 
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 VmGroup CRD 

For creating a VmGroup it is necessary to specify some Specs that act as input variables 
as in the Vm CRD. But in this case, the necessary Specs are the next ones: 

¾ MasterNodes: The number of masters wanted in the cluster. 
¾ MinimumWorker: The minimum number of workers wanted in the cluster. 
¾ MaximumWorkers: The maximum number of workers wanted in the cluster.  
¾ CloudDistribution: The distribution of VMs across the different providers. It is a 

struct composed of 3 integers AWS, GCP, and AZURE. The number specified in 
them represents the distribution, and if one is 0 that provider won't be used. 

¾ OriginNode: An object that is composed of the id of the first VM used to initialize 
the cluster and the provider to which this VM belongs to. The use of this 
parameter will be explained later in the section “Solving the chicken and egg 
problem”. 

The diagram presented below illustrates the reconciliation process of the VmGroup 
controller, responsible for overseeing the maintenance of VmGroup CRDs. Similar to the 
VM controller, this reconciliation process begins when a VmGroup CRD is initially defined 
and concludes when it is deleted. However, in contrast to Vm CRDs, these two actions 
are initiated and managed by human operators interacting with the Kubernetes system. 
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Figure 6. VmGroup CRD Reconciliation Process. 
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In summary, the creation of a VmGroup CRD involves a multi-step process. First, it 
establishes a connection with the original node used to initialize the cluster, a process 
detailed in the "Solving the Chicken Egg Problem" section. Subsequently, the VmGroup 
CRD interprets the specifications provided during instance creation. This interpretation 
determines the required number of LBs, master nodes, and worker nodes. If any of these 
components are missing, the VmGroup CRD generates them by creating Vm CRD 
instances, as previously explained. 

Once all the essential VMs are created and reach the 'ready' status, the VmGroup CRD 
conducts resource utilization checks. If there is an imbalance in resource allocation, it 
takes appropriate action, such as creating or deleting worker nodes to maintain balance. 
Following this, the VmGroup CRD verifies that all VMs are correctly configured within the 
VPN. If any misconfigurations are detected, it initiates the VPN Propagation Protocol 
method, as detailed in Figure 14. 

After confirming that the VPN is correctly configured across all VMs, the VmGroup CRD 
checks whether all VMs are part of the cluster. If any VMs are not part of the cluster, they 
are added accordingly. Finally, the VmGroup CRD enters a loop to continuously monitor 
the status of the cluster at two-minute intervals. If any issues arise, it switches to a more 
frequent 30-second re-check cycle. 

6.2. Cluster architecture 

The main goals in designing the architecture of the cluster are the two following: 

¾ Eliminating Single Points of Failure: This goal revolves around ensuring that 
the architecture remains resilient even in the face of component failures. Single 
point of failure refers to the situation when in an architecture the failure of a single 
component can break the complete architecture down. 

¾ Multi-cloud Architecture: Another key objective of this project is to distribute 
the architecture across multiple service providers. This approach aligns with the 
first goal, as spreading the workload across various providers prevents a 
complete system failure in the event of a provider experiencing downtime. 

 

 Single Node Architecture 

To understand the final architecture of the Kubernetes cluster and the factors that led to 
its design, let's begin by delving into the foundational concept of a single-node cluster. 
Where the control plane and the applications themselves run in the same node. 
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Figure 7. Single node K8s architecture. 

However, this architecture is not flexible to changes and is neither robust since it 
supposes a single point of failure for all the components. If this node fails, everything 
falls with it. 

  1 Master / 1 Worker Architecture 

Kubernetes was conceived with the separation of control plane nodes and worker nodes 
in mind. The control plane nodes, known as Master nodes, are responsible for managing 
everything unrelated to the applications themselves, including provisioning, networking, 
security, and more. On the other hand, the Worker nodes host the applications and can 
dynamically scale the number of instances based on varying demands. Following this 
characteristic, the next step in this architecture is to use 2 different nodes 1 Master for 
the control plane and 1 Worker for the applications. 

 

 

Figure 8. 1 Master / 1 Worker - K8s architecture. 
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The benefits of this architecture compared with the previous one is that the control plane 
can take care of and ensure the good behavior of the Worker node, if it fails or something 
doesn't work as expected the control plane node will try to fix it. However, the control 
plane won't be able to heal itself, so the single point of failure at this point is on the 
Control plane node. 

  Multiple Masters and a Load Balancer Architecture 

The next step to avoid a single point of failure in the control plane is through several 
masters. Kubernetes allows to work with several control planes natively, only a Load 
Balancer (LB) is necessary between the workers and the masters so that the load 
balancer can choose to route the request to a working master. The architecture would 
look like this. 

 

 

Figure 9. 2 Masters / 2 Workers / 1 LB - K8s architecture. 
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At this point, the architecture still has a single point of failure. But this time it is the load 
balancer, if it falls the workers won't be able to connect with the masters. 

  High Available Architecture with multiple LBs and multi-cloud Architecture 

Because of this, the next step is to create several load balancers, so that if one fails 
another load balancer can replace it. There is a mechanism used to manage the load 
balancers with a “Floating IP” explained in a further section of the paper. The following 
figure, also shows how the architecture will look like in a multi-cloud environment with 3 
Masters, 3 Load Balancers, and 3 Workers, one of each in each provider. 

 

 

Figure 10. Final K8s High Availability Architecture 

At this point, the architecture boasts a robust design free from any single points of failure. 
Multiple master nodes work in tandem to ensure high availability across the entire 
infrastructure. The Master's VmGroup controllers monitor the status of all nodes, 
including the masters themselves, and take corrective actions in any event of failure. 

VmGroup will also add additional workers if the use of resources is very high and scale 
down when resource utilization is low. Moreover, in the unfortunate event of one 
provider's failure, VmGroup seamlessly deploys additional nodes from alternative 
providers to maintain uninterrupted service until the affected provider is back online. 
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6.3. VPN Management and Control Network 

 Wireguard basic behavior 

WireGuard is a modern and efficient VPN (Virtual Private Network) protocol that allows 
two or more computers (referred to as peers) to securely communicate over an untrusted 
network, such as the Internet. It's designed for simplicity and performance while 
maintaining strong security. The following figure illustrates a basic communication 
between 2 computers A and B. 

 

 

Figure 11. WireGuard Single Peers Communication 

In order to establish a secure and private connection between two computers using a 
Virtual Private Network (VPN), several key pieces of information are required. These 
details facilitate the creation of a secure tunnel that allows data to flow between the two 
peers while maintaining confidentiality and integrity. The three essential pieces of 
information necessary for this connection are: 

¾ VPN IP Address: Each computer involved in the VPN connection is assigned a 
unique VPN IP address. The VPN IP address acts as an identifier for the specific 
computer within the VPN network, enabling data to be directed to the correct 
peer. 

¾ Public IP Address: The public IP address of the computer on the other end of 
the VPN tunnel is essential for routing data across the internet. It serves as the 
endpoint for the VPN tunnel, allowing data to be transmitted to and received from 
the correct location. The public IP address acts as a network address translation 
(NAT) reference, enabling data packets to traverse the public internet and reach 
the intended destination. 
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¾ Public Key: Public key cryptography is a fundamental element of VPN 
technology. Each computer generates a pair of cryptographic keys: a public key 
and a private key. The public key is shared openly with the other peer, while the 
private key remains confidential. The public key is used to encrypt data that is 
sent to the other computer, ensuring that only the corresponding private key 
holder can decrypt and access the information. This asymmetric encryption 
method enhances the security of the VPN connection. 

When both computers possess these three pieces of information about each other, the 
VPN connection can be established. 

 VPN Configuration 

Once we have a clear understanding of how WireGuard functions, we can delve into how 
Kubernetes VmGroup custom resource initially sets up the VPN on each of the 
computers. The initial landscape consists of multiple VMs spread across various cloud 
providers, each possessing distinct public IP addresses and geographical locations. In 
some cases, these machines may even be situated on different continents. The visual 
representation below illustrates better this scenario of VMs originating from three distinct 
cloud providers. 

 

 

Figure 12. VMs spread across the internet from each provider. 
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Once the VMs have been successfully created, are up and running, and are reachable 
through ssh, the Kubernetes VMGroup will proceed with their initial configuration. This 
configuration process is accomplished by establishing SSH connections to the VMs 
using their respective public IP addresses. And once connected the configuration 
basically consists of the assignation of an IP depending on the type of node: 

¾ Load Balancers: IP addresses range from 10.0.0.1 to 10.0.0.9. 
¾ Kubernetes Masters: IP addresses range from 10.0.0.10 to 10.0.0.19. 
¾ Kubernetes Workers: IP addresses range from 10.0.0.20 to 10.0.0.255. 

The following figure illustrates this initial configuration. 

 

 

Figure 13. K8s VmGroup initial VPN configuration of the nodes. 

 VPN propagation 

After completing the initial configuration, there is one crucial step remaining to ensure 
the VPN is fully operational. Although the VPN has been correctly configured on each 
node, these nodes lack awareness of one another's existence, resulting in a lack of 
connectivity. To establish comprehensive connectivity among all nodes, each node must 
disseminate its information to the others. 

As illustrated in Figure 11, in order to establish a successful connection with a peer within 
the VPN, each node must share the following essential information with the other nodes: 
VPN IP Address, Public IP Address, and Public Key. 
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The propagation method involves a star communication network among all nodes, where 
each node connects with every other node to exchange information. The process is 
visually ilustrated in the following figure. 

 

 

Figure 14. VPN star propagation method. 

The method progresses from the initial node to the final one, disseminating information 
along the way. However, the program conducts parallel executions for each node's 
propagation, ensuring that configuration time does not experience exponential growth as 
the cluster's node count increases. 

 VPN final configuration 

After completing the initial configuration and the VPN propagation of the information, the 
nodes transform their networking by adjusting their default routing settings within the 
VPN, effectively cutting the access to the broad internet. This strategy limits public 
network access to exclusively allow tunneling traffic among VPN members, while only a 
select few nodes retain the privilege of maintaining direct internet connectivity. Within the 
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project's architectural framework, the design places the responsibility for internet access 
upon the load balancers, as illustrated in the following figure. 

 

 

Figure 15. VPN Final Design. 

 VPN control network 

Given the restricted connectivity between nodes within the VPN, direct connections from 
K8s to these nodes are not possible when changes are required. Therefore, a new 
method for accessing these nodes must be implemented. After the VPN configuration is 
complete, the control network involves a double SSH tunneling process through one of 
the load balancers, which serves as the entry point to the VPN network. This process is 
better illustrated through the following figure. 
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Figure 16. Control Network. 

6.4. Load Balancers’ Management 

In the architectural context, it is important to address the reliance on multiple load 
balancers to mitigate the risks associated with a single point of failure, as it was already 
explained in the section of Cluster Architecture of this paper. The essence of load 
balancer management involves the complete replacement of one load balancer with 
another, transitioning all infrastructure to utilize the new one. However, this process is 
complex, primarily because the load balancer serves as both the central hub of the 
architecture and the point of entry from the public network. Achieving this transition is 
not straightforward, and while there exist protocols to solve similar challenges, none were 
found that fully meet the specific requirements of this project. Consequently, in this 
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project, it was chosen to manually program the solution within the Kubernetes VMGroup 
resource.  

The initial scenario is the one illustrated in the following figure, where there are several 
Load Balancers but only one is active and the rest remain inactive and unused.  

 

 

Figure 17. LBs Initial scenario. 

All the traffic directed from the workers to the masters goes through the active LB and 
this LB is also used as the default route to reach the internet because LBs are the only 
ones with direct access as explained in the section of the VPN management of this paper. 

If this LB fails it creates two challenges one within the public network and another within 
the private VPN network, and to fix them Floating IP and Dynamic DNS are used 
respectively. 

 Floating IP 

To fix the problem within the VPN network it was chosen to use a Floating IP that will 
move depending on the active LB. As displayed in the following figure instead of using 
the initially assigned IP to balance the traffic the IP 10.0.0.100 is used. 
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Figure 18. LBs with Floating IP.  

Now if the active LB fails the VmGroup instance will notice and it will move the floating 
IP to a working LB as displayed here. 

  

 

Figure 19. Migrating LBs' Floating IP. 

The way to achieve this for the VmGroup is by these steps: 

¾ First changing internally a variable that points the active LB, to point to another 
working LB. 

¾ Accessing the new active LB by SSH and changing its IP to 10.0.0.100. 
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¾ Relaunching the VPN propagation information method that is explained and 
illustrated in Figure 14, to let all the nodes know that the IP 10.0.0.100 now is 
associated with a different public IP, corresponding to another LB. 

 Dynamic DNS 

And to address the problem within the public side, regarding the access from the internet 
to the cluster, a Dynamic DNS (DDNS) solution is employed, with Duck DNS [13] being 
the specific service of choice. 

In this scenario, the VmGroup does an additional step, involving the configuration of 
DDNS on the newly active LB. This step is crucial for ensuring that the DNS server being 
utilized is informed of the updated public IP address required to access the cluster. 

¾ Access with SSH to the new active LB, and configure the DDNS 

 

 

Figure 20. LBs with Dynamic DNS. 
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6.5. Solving The Chicken and Egg Problem  

As explained within the context of this paper, achieving unified control of an entire 
application through the Kubernetes API necessitates the resolution of the classic 
"chicken and egg" scenario. This project aims to establish a Kubernetes instance 
capable of autonomously managing its underlying infrastructure, encompassing the 
creation, destruction, and adaptation of resources to various situations. However, a 
fundamental challenge arises: how can this Kubernetes instance initiate the creation of 
its infrastructure when the infrastructure itself does not yet exist, and as a consequence 
neither is the Kubernetes instance. 

The most optimal solution found to address this situation is the one illustrated in this 
figure. 

 

 

Figure 21. Chicken and Egg situation catch. 

Explaining further each step: 

¾ Manual VM Creation: A human operator manually creates a VM that serves as 
the genesis of the infrastructure. This VM can be provisioned on any of the 
available cloud providers. 

¾ Configuration Setup: The operator configures this VM with all the necessary 
settings to integrate it into the forthcoming cluster. This includes tasks such as 
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configuring VPN and SSH settings, installing Kubernetes dependencies, and any 
other prerequisites. 

¾ Initialization of Kubernetes Cluster: The Kubernetes cluster is initiated on the 
configured VM, commencing the process of establishing the infrastructure. 

¾ VmGroup Creation: Create the CRD VmGroup described in the “VmGroup 
CRD” section of this paper. To do so it is necessary to specify a parameter called 
OriginNode that contains information about the VM created in step 1. 

¾ Catching Origin: With the information of the original Vm passed as a parameter, 
the VmGroup can join and catch the already created VM instead of creating a 
new one, and this way being able to manage and access it. 

Upon completing these steps, Kubernetes gains control over its initial node, effectively 
resolving the "chicken and egg" problem. Subsequently, the VmGroup continues with the 
creation and configuration of the remaining infrastructure components. 

 

 

Figure 22. VmGroup creation of the cluster from the original node 

6.6. Multi-cloud Solution 

To establish a multi-cloud environment, the virtual machines (VMs) utilized in this project 
are treated independently, regardless of their hosting platform. It is assumed that each 
VM possesses the following prerequisites: 

¾ A public IP address. 
¾ Access to the internet. 
¾ An open SSH port to facilitate incoming connections. 
¾ Open ports required for Kubernetes. 
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Any VM meeting these requirements can be integrated into the cluster, regardless of its 
cloud provider. 

In addition to these prerequisites, it is essential to program various methods specific to 
each cloud provider's SDK. To maintain independence from any particular provider, 
these methods are encapsulated within a common interface. In this case, the interface 
is programmed in Go and includes the following methods that must be implemented for 
integration into the cluster: 

¾ `CreateVm`: This method should encompass the process of creating a VM. 
¾ `DescribeVm`: In this method, a mechanism must be programmed to describe 

the VM with the ID provided as a parameter. This method is crucial for 
determining the VM's state, whether it is running, in the process of creation, or 
experiencing issues. 

¾ `DeleteVm`: This method should include the logic for deleting the VM with the ID 
passed as a parameter. 

¾ `ListVms`: In this method, a procedure must be programmed to list all the VMs 
that have been created. 

¾ `Configurations`: This method is responsible for executing any necessary pre-
configuration processes to ensure that the VMs created align with the before 
mentioned prerequisites. Each cloud provider has its unique processes, including 
profiles, projects, networks, and more, which are configured within this method. 

 

Figure 23. Multi-Cloud Providers Interface 
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7. Planning 

The project planning has established the development timeline from February 1st to 
September 17th, totaling 156 working days. These days exclude weekends and official 
holidays in the Basque Country. The official holidays that fall on working days are as 
follows: 

¾ April 6, 2023 - Jueves Santo (Holy Thursday) 
¾ April 7, 2023 - Viernes Santo (Good Friday) 
¾ May 1, 2023 - Día Internacional del Trabajador (International Workers' Day) 
¾ July 25, 2023 - Santiago Apostol 
¾ July 31, 2023 - San Ignacio 
¾ August 15, 2023 - Asunción de la Virgen (Assumption of the Virgin) 
¾ August 25, 2023 - Viernes de Semana Grande (Friday of Semana Grande) 

In addition to these holidays, 5 working days of vacation have been scheduled from May 
26th to 30th. Taking these holidays and vacation days into account, the project effectively 
contains 151 working days. Each of these days is considered as a half-day, meaning 4 
hours of work per day, resulting in a total of 604 hours of work for the project. 

7.1. Tasks’ description 

The project has been divided into 6 task packages: 

¾ P.T.1. Definition of the project 
¾ P.T.2. Study and analysis of technologies 
¾ P.T.3. Analysis of alternatives 
¾ P.T.4. Proof of concept (PoC) design 
¾ P.T.5. PoC Deployment 
¾ P.T.6. Project management and documentation 

These task packages, as well as the tasks contained in each one, are briefly described 
in Table 1. Likewise, the duration of each of them is shown in the form of a Gantt Chart 
in Figure 24. 
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Table 1. Description of the tasks that compose the project. 

Code Task name Task description 

P.T.1 Definition of the project Definition of the project bases 

T.1.1 Discussion and definition of the topic Definición de las bases del proyecto 

T.1.2 Definition of scope and objectives Definition of the basis of the project 

P.T.2 Study and analysis of alternative 
technologies 

Training, testing, and choosing the 
best technologies necessary for the 
development of the project 

T.2.1 Orchestration technologies 
Testing a choosing the container 
orchestration technology. 

T.2.2 IaC tools 
Testing a choosing the best way to 
control services with project 
requirements 

T.2.3 
Kubernetes API extension 
frameworks	 

Chosing the best framework to to 
extend and create new K8s 
components 

T.2.4 VPNs tecnologies 
Trying and finding the easiest way to 
build and manage programatically a 
VPN 

P.T.3 Proof of concept (PoC) design Basic and high-level design of the 
deployment architecture 

T.3.1 Requirements analysis Analyze deployment requirements 

T.3.2 Architecture design 
Design the architecture, with its 
components, nodes and necessary 
applications 

P.T.4 PoC Deployment PoC Implementation 

T.4.1 Development of the application 
Development of all the components 
necesary for the deployment of the 
cluster 

T.4.2 Deployment of the cluster 
Execution of the application and 
deployment of all the components 

P.T.5 Project management and 
documentation 

Preparation of project 
documentation 

T.5.1 Project documentation 
Generation of documentation for the 
entire project 

T.5.2 Final review of documentation Review of final documentation 

H.5.3 Final delivery Final delivery milestone 
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7.2. Gantt Chart 

 

Figure 24. Gantt Chart 
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8. Budget 

This section provides an overview of the project's associated costs, encompassing both 
direct and indirect expenses, with an additional allocation of 10% reserved for 
unforeseen events. 

The breakdown of direct costs typically comprises four components: internal hours, 
amortization, expenses, and subcontracting. However, it's worth noting that no funds 
have been earmarked for subcontracting in this particular project. The remaining three 
components are elaborated upon in the following tables: Table 2, Table 3, and Table 4. 

Table 5 offers a comprehensive breakdown of the project's total cost, totaling 
24.320,84€. Notably, the majority of the budget allocation (80%) is directed towards 
internal hours, primarily because the project's demands do not entail substantial material 
resources. 

Table 2. Internal hours in the project budget. 

INTERNAL HOURS 
Concept Unit cost (€/h) Units Nº (h) Total 

Telecommunication engineer 30 604 18.120,00 € 
Project Manager 50 30 1.500,00 € 

SUBTOTAL 19.620,00 € 

Table 3. Amortizations in the project budget. 

AMORTIZATIONS 

Concept Acquisition 
cost 

Useful life 
(years) 

Use 
(months) TOTAL 

Laptop Lenovo ThinkPad 1.199,00 € 5 8 159,87 € 
Licence Microsoft 365 69,00 € 1 8 46,00 € 

SUBTOTAL 205,87 € 

Table 4. Expenses in the project budget. 

Expenses 
Concept Unit cost Nº units Total 

Electrical expense 
Office supplies 

0,117 €/kWh 
- 

2000 kWh 
- 

234,00 € 
40,00 € 

SUBTOTAL 274,00 € 
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Table 5. Total cost of the project. 

DIRECT COSTS 
Internal Hours 19.620,00 € 

20.099,87 € Amortizations 205,87 € 
Expenses 274,00 € 

INDIRECT COSTS 10% of direct expenses 2.009,98 € 
SUBTOTAL 1 22.109,86 € 

UNFORESEEN 10% of subtotal 1 2.210,98 € 
TOTAL (subtotal 1 + unforeseen) 24.320,84 € 

 

  



– 45 – 
 

 

9. Conclusions 

In conclusion, this project successfully addressed the complex task of enabling a 
Kubernetes cluster to autonomously manage its own cluster infrastructure across 
multiple cloud providers. Leveraging the power of Kubernetes, this project developed 
CRDs that provided the necessary abstractions and control mechanisms. This innovative 
approach not only achieved the primary objective but also opened up new possibilities 
for enhanced automation, scalability, and resilience in multi-cloud environments. The 
work showcases the potential of Kubernetes as a versatile orchestration platform and 
underscores the significance of custom CRDs in extending its capabilities. As cloud-
native technologies continue to evolve, the seamless integration of Kubernetes with 
diverse infrastructure resources becomes increasingly crucial, and this project 
represents a significant step in that direction. 

Originally, the plan was to develop this project with Crossplane, a technology that aims 
to become a universal control plane with Kubernetes. However, as the project's 
customization needs grew, a more flexible framework was chosen, Kubebuilder. 
Nevertheless, the core idea inspired by Crossplane persisted, and the project retained 
its ability to oversee and manage all infrastructure within the Kubernetes ecosystem. 

Speaking of infrastructure, the primary goal was to ensure self-healing and resilience in 
such a way that no single point of failure could break the entire infrastructure. 
Remarkably, this project accomplishes this by eliminating single points of failure in each 
node and making all the components self-healable and reset, including the LBs who are 
responsible for routing most of them within the cluster and gateways to the Internet. 

To achieve this, the project establishes a VPN and implements a dynamic routing 
protocol that unifies all nodes as if they belonged to the same cluster, even though each 
node could be on different continents. Whenever changes occur in the infrastructure, this 
protocol ensures that all nodes promptly update their information, so everyone 
successfully communicates with each other. Additionally, a combination of a manually 
programmed Floating IP and a DDNS adds a layer of flexibility to the architecture, making 
it resilient to changes and adaptable to evolving needs. 

In summary, this project and multi-cloud infrastructure management showcased the 
platform's potential. It stands as a testament to the innovative spirit driving the evolution 
of cloud-native technologies and their integration with Kubernetes, marking a significant 
leap towards a more automated, scalable, and resilient future. 

This project shows how Kubernetes and multi-cloud management are coming together, 
demonstrating what the platform can do. It's proof of how technology is advancing to 
make cloud-based systems more automated, flexible, and strong for the future. And it 
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also exemplifies the convergence and ambition of Kubernetes and its adaptability to 
overtake new challenges.  
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