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A B S T R A C T

Falls pose a major threat for the elderly as they result in severe consequences for their physical and mental
health or even death in the worst-case scenario. Nonetheless, the impact of falls can be alleviated with
appropriate technological solutions. Fall detection is the task of recognising a fall, i.e. detecting when a person
has fallen in a video. Such an algorithm can be implemented in lightweight devices which can then cater to
the users’ needs, e.g. alerting emergency services or caregivers. At the core of those systems, a model capable
of promptly recognising falls is crucial for reducing the time until help comes. In this paper we propose a fall
detection solution based on transformers, i.e. state-of-the-art neural networks for computer vision tasks. Our
model takes a video clip and decides if a fall has occurred or not. In a video stream, it would be applied in a
sliding-window fashion to trigger an alarm as soon as it detects a fall. We evaluate our fall detection backbone
model on the large UP-Fall dataset, as well as on the UR fall dataset, and compare our results with existing
literature using the former dataset.
1. Introduction

According to the Centers for Disease Control and Prevention,1 falls
represent a significant cause of injury and, in some cases, even fatalities
over the age of 65 in the United States, where a fall occurs every
second, every day, affecting one out of four elderly adults each year. In
a society with an ever-ageing population, this issue not only presents
health concerns but also creates economic challenges related to their
treatment. The aftermath of falls often leads to a loss of independence,
impacting elderly adults’ daily live. Hence, preventing falls or allevi-
ating their impact is of paramount importance for a healthy ageing.
That is why research related to fall detection is crucial to develop
technologies capable of aiding the elderly feel safer in their daily
routines.

In this paper, we focus on vision-based approaches (those including
a vision sensor) for fall detection due to the advantages they offer
compared to their wearable sensor-based counterpart (wearable sensors
like accelerometers, excluding wearable vision sensors). Vision-based
approaches are less intrusive and eliminate compliance issues asso-
ciated with wearing special garments, particularly for patients with

∗ Corresponding author at: Department of Computer Languages and Systems, University of the Basque Country (UPV/EHU), Paseo Rafael Moreno Pitxitxi 3,
Bilbao, 48013, Spain.
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1 https://www.cdc.gov/injury/features/older-adult-falls/index.html

cognitive issues such as dementia. Moreover, the widespread preva-
lence of cameras nowadays presents an opportunity to leverage their
ubiquity, potentially allowing for the scalability of fall detection models
beyond specific settings like smart homes to broader contexts such as
public spaces. This holds especially true for 2D cameras, in contrast to
3D cameras (which are capable of capturing depth information). Addi-
tionally, 2D cameras provide a more cost-effective solution compared
to 3D range sensors, which are often more expensive and may require
additional hardware setup and calibration.

Thanks to the advent of deep learning for vision-based models, the
performance of vision-based methods has significantly improved, clos-
ing the gap between sensor-based and vision-based models in terms of
performance. In fact, the transformer technology introduced in Vaswani
et al. (2017) has replaced Convolutional Neural Networks (CNNs) in
many tasks. Consequently, in this paper, we propose the use of a
transformer-based neural network for the detection of falls in videos.

Our objective is to extract features from raw RGB frames, without
the need for additional computations such as optical flow (OF) images,
skeletons/poses and so on. To the best of our knowledge, we are the
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first to directly apply transformers to address the fall detection task us-
ing only RGB images, without requiring to compute additional features.
Given that fall detection models are usually deployed in lightweight
devices for inference, it is imperative that the employed models have
low latency and minimal dependencies. Additionally, since the timely
detection of falls is critical due to their severe consequences, we adhere
to the guidelines of the dataset we propose for evaluation, the UP-Fall
dataset (Martínez-Villaseñor et al., 2019), by reporting detection results
at 1-second intervals, or, equivalently, in a 16-frame video interval.
The UP-Fall dataset comprises 11 activities, making it suitable for fall
detection, as nearly half of the classes are related to falls.

We present two parallel evaluation strategies to facilitate a compre-
hensive comparison with the existing literature. The first strategy aligns
with the approach taken by the original authors of the UP-Fall dataset
and has also been used in the subsequent fall detection challenge they
organised. The second strategy follows the approach of Espinosa et al.
(2019), in which they compare their model in the binary classification
(by grouping the 11 activities into two classes: fall and no fall) and
multiclass classification settings.

Furthermore, we conducted experiments to assess the model’s abil-
ity to learn from additional datasets and generalise effectively. To
evaluate this, we selected the UR Fall dataset (Kwolek and Kepski,
2014) and a performed joint training using both the UP-Fall and UR
Fall datasets. Subsequently, we evaluated the model’s performance on
each dataset separately. It is important to note that, while our model
demonstrated the ability to learn from diverse data, we acknowledge
the limitation that its real-world application would need a substantial
dataset, which is currently unavailable for the fall detection task.
Nonetheless, we believe that the model has the potential to adapt
and further improve through additional data, as demonstrated by its
performance on the UR Fall dataset.

The paper makes two significant contributions. Firstly, we propose
the first vision-based transformer specifically designed to learn solely
from RGB data for fall detection. Secondly, we provide a comprehen-
sive comparison of our results with the existing literature, specifically
focusing on works that do not rely on additional features, thereby
ensuring that the model directly learns from RGB frames using the
UP-Fall dataset. Furthermore, we have made all the experimental code
publicly available (see Section 3), enabling fellow researchers to easily
verify and build upon our findings.

The remainder of the paper is organised as follows: Section 2
delves into the recent fall detection literature, Section 3 introduces our
proposed transformer model and, in Section 4, we present the UP-Fall
dataset, explain the evaluation strategy and compare our results with
the existing literature. Finally, we give some concluding remarks on
Section 5.

2. Related works

Fall detection (Alam et al., 2022) is the task of detecting when a
person is falling so that an alarm can be raised and call, for example, an
ambulance or warn someone. The types of approaches followed for this
detection (depending on what is used to detect the fall) can be divided
between sensor-based approaches (Nooruddin et al., 2021) and vision-
based approaches (Gutiérrez et al., 2021). Vision-based methods are,
in theory, very rich in information, but the computational capacity and
the algorithms were not able to correctly exploit it until recently. Due
to the increasing interest in deep learning networks, this research topic
shifted its interest to the vision-based methods that will be explained
in this literature review.

Fall detection cannot be approached as a regular video classification
task. A potential fall needs to be detected as soon as possible (within a
video stream) in order for a fall detection model to be useful in a real-
life situation. That is why intermediate outputs need to be generated.
The most common method, thus, is the use of a sliding window that
takes a chunk of frames and decides whether a fall has occurred. For
2

example, a pioneer work which introduced CNNs to solve the fall
detection was Yu et al. (2017). The authors of that work extracted a
binary silhouette of the person appearing in each frame and carried
out a per-frame classification of the pose, and identified falls among
their potential outputs. Instead of using a CNN to directly classify
images, Wang et al. (2016) extracted several features from silhouette
images, which also included CNN features among them. Both methods
required to segment people from images, which may be prone to
errors in some cases (e.g. multiple people, cluttered background, etc.).
Instead, compared to those first works, we directly use the RGB frames
to infer the fall.

Instead of binarising images, Núñez-Marcos et al. (2017) extracted
OF images from videos to perform sliding-window-based fall classifica-
tion, using 10 pairs of OF images to output a possible fall detection. The
authors employed a VGG16 (Simonyan and Zisserman, 2014) network
(with the feature extractor part frozen) and trained it to perform a bi-
nary classification task. Similarly, Espinosa et al. (2019) also extracted
OF images but instead of directly stacking horizontal and vertical
components, the magnitude of the flow was computed. Moreover, the
authors combined those magnitudes from different cameras and resized
them to a small resolution. Their model was a small CNN with a
binary cross entropy loss. Similar to the first works introduced in this
section, these also require the computation of additional features (in
this case OF images), which can add more computational burden to the
fall detection pipeline. In fact, depending on the lighting conditions,
the generated OF images may not be really helpful since the OF
algorithm does not correctly recognise the movement flow with not-
controlled lighting conditions. Lu et al. (2018) trained a 3DCNN and
an LSTM model in which the 3DCNN was pre-trained in the Sports-
1M dataset (Karpathy et al., 2014) (not related to fall detection) and
an LSTM was trained for fall detection making use of the already
pre-trained feature extractor. We believe that the Transformer-based
network we employ in this work is more interesting to model the
temporal dynamics. Due to its self-attention component, the network
can attend to all the tokens.

A multi-stream approach was proposed by Carneiro et al. (2019)
with a VGG16 network as a backbone feature extractor. Each stream
processed a different feature, namely: stacked OF, poses and RGB
data. Chen et al. (2020) extracted the skeleton of the person of interest
using OpenPose (Cao et al., 2019) and used a set of heuristics to
decide whether the activity could be categorised as a (potential) fall.
Moreover, the model incorporated the activation of an alarm which
would be triggered if the subject could not stand up.

A mobile-device-oriented application for fall detection was designed
by Han et al. (2020): a two-stream approach combining a motion-
based feature extraction and a lightweight VGG architecture called
mobileVGG. Khraief et al. (2020) presented a weighted neural multi-
stream approach in which the input modalities were: (i) RGB (for
colours and textures) and depth (for illumination), (ii) silhouette vari-
ations (in order to detect movement), (iii) amplitude and oriented flow
and (iv) optical flow. The authors carried out experiments on early and
late fusion and also on the weighting of each stream. Berlin and John
(2021) employed a Siamese network trained by distance-metric-based
learning. The network took pairs of different videos and measured
their L1 distance before applying a sigmoid function to the result. If
the videos are similar, their ground truth should be 1, or 0 other-
wise. Gomes et al. (2022) used a YOLOv3 detection network (Redmon
and Farhadi, 2018) to extract humans per-frame and the Kalman filter
for the time-aware alignment of frame sequences (tracking each person
in the scene). Each sequence was then classified into fall or not fall by
a 3DCNN or a 2DCNN with an LSTM.

More recently, the authors of Yadav et al. (2022) evaluated their
ARFDNet model with the same dataset we use, i.e. the UP-Fall dataset.
ARFDNet is composed of (i) a skeleton extraction module, (ii) a CNN
to extract spatial features and (iii) a Gated Recurrent Unit (Cho et al.,

2014) module for the spatio-temporal features. The output of the latter
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Fig. 1. Our proposed fall detection model. A sequence of input clips (of 1 s each)
sampled from a video is passed through the Uniformer network to extract features.
Besides, the Uniformer generates, for each clip, a probability distribution across the
possible fall and no-fall classes of a given dataset. The highest probability is taken as
the predicted class label of each clip.

was used for the classification of activities and falls. Similarly, Suarez
et al. (2022) also fed their network with pose information. The for-
mer was composed of 1D CNN layers and a classifier on top. Inturi
et al. (2023) used a CNN + LSTM combination with poses as input
too. Mobsite et al. (2023) employed silhouettes as input to a ConvL-
STM (Shi et al., 2015) model. And going even further, Galvão et al.
(2022) completely segmented the person on each frame and trained a
Generative Adversarial Network (Goodfellow et al., 2014) to classify
activities of daily living. In this model, falls are considered anomalies
and detected as such. All of these approaches require a preprocessing
step of extracting poses, silhouettes or segment the person falling,
which adds a computation overhead and can propagate errors to the
next step.

Instead of using poses, other features were extracted in the work
of Le et al. (2022) using wearable devices. These features, used as input
for various traditional classification algorithms, allowed them to obtain
very high F1 metric results (96.16 for falls and 99.90 for non-falls) on
the UP-Fall dataset.

In contrast to most of these works, our model does not require
additional features such as OF or depth images for the detection of falls.
This alleviates the computational overhead of computing more features,
which may be pivotal for lightweight devices with low computational
resources (usually employed for inference).

3. Methodology

A fall detection model addresses the binary problem in which the
model must decide, for a given input (e.g. a sequence of frames or
data from a wearable device), whether a person is falling or not.
For that purpose, our fall detection model’s first objective was to
exclusively use RGB frames. This means that additional features, e.g. OF
or depth images, are not required, thus allowing for the development of
computationally less intensive networks. This also reduces the latency,
which is crucial for real-time fall detection applications. On the other
hand, the second objective of our model was to process videos in a
sliding-window fashion to produce intermediate outputs. With this, the
model is able to detect falls shortly after processing a few frames, hence
allowing the model to quickly respond to fall events.

More formally, consider an input video 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑁} com-
posed of 𝑁 frames. We extract several chunks of size 𝑊 (representing
the number of frames within each chunk) and generate an output
3

𝑃 = {𝑝1, 𝑝2,… , 𝑝
⌈𝑁∕𝑊 ⌉

}, where each element 𝑝𝑖 = {0, 1} is the output
result, indicating whether a fall has been detected in the 𝑖th chunk
(0 ≤ 𝑖 < ⌈𝑁∕𝑊 ⌉). This high-level overview of the model is illustrated in
Fig. 1. In a data stream, frames accumulate until 𝑊 frames are available
to create a chunk and a single output (indicating whether a fall has been
detected) is generated. For the evaluation of our model, we will use a
state-of-the-art fall detection dataset and, thus, we will consider sets of
videos of varying sizes instead of a continuous stream of frames.

Our fall detection model takes each of the 𝑐𝑙𝑖𝑝𝑖 (0 ≤ 𝑖 < ⌈𝑁∕𝑊 ⌉)
chunks and passes them through a feature extraction network 𝑀 . This
network decides whether a fall has ocurred in the input video clip.
Our chosen backbone network, 𝑀 , is a Uniformer (Li et al., 2022),
which is a vision transformer that, as highlighted by the authors, has
a good balance between accuracy and computational efficiency. This
is desirable for applications looking for a good performance but with a
minimal latency. What the authors of Li et al. (2022) contribute in their
paper is the Uniformer block, which is composed of three components:
(i) the Dynamic Position Embedding (DPE), (ii) the Multi-Head Relation
Aggregator (MHRA) and a feedforward network. Fig. 2 illustrates a
Uniformer block with its three main components.

Concerning each of the components of the Uniformer block, the first
one, the DPE, is a lightweight position encoding based on a depthwise
convolution, adaptable to varying sequence lengths. The MHRA is a
self-attention block designed to minimise redundancy; it works like a
convolutional layer: it applies self-attention on a smaller neighbour-
hood of tokens instead of trying to apply attention over all tokens.
This includes a token affinity matrix that expresses the relation between
two tokens or positions. In shallow layers, token affinity is simply the
relative distance between tokens. In deeper layers, token affinity is
computed as the content similarity with the rest of the tokens within the
neighbourhood. Having taken these three components into account to
build a Uniformer block, the Uniformer network is built stacking local
and global Uniformer blocks (i.e. stacking blocks that apply MHRA in
shallow layers and blocks of deeper layers, respectively).

The Uniformer network is pretrained2 on two human action classifi-
cation datasets, Kinetics (Smaira et al., 2020) and Something-Something
(Goyal et al., 2017), at a resolution of 224 × 224. Since the model is
pretrained, 𝑊 will be fixed to 16, i.e. 16 frames are taken to detect
falls. Fig. 2 illustrates the structure of the model.

Each video clip of 𝑊 frames is automatically labelled taking the
majority vote of the per-frame ground-truth class labels. In other words,
within a single chunk 𝑐𝑙𝑖𝑝𝑖 = {𝑥𝑗 , 𝑥𝑗+1,… , 𝑥𝑗+𝑊 }, each frame 𝑥𝑗 will
have its own label 𝑦𝑗 = {0, 1,… , 𝐶}, where 𝐶 represents the amount
of classes in the dataset. The dataset comprises several classes, some of
which are related to falls. Depending on the experiment, the number
of classes can be reduced to 2 (binary classification) and, hence, each
frame will be classified as negative or positive.

We trained the model on a per-clip basis, treating each clip of size
𝑊 as a training sample. We employ cross entropy loss and the Adam
optimiser for the training. After each epoch, an evaluation is conducted
on the development set (that is, an evaluation dataset extracted from
the training set and not used for training). Training is stopped when
a chosen metric (F1 score in our experiments, see Section 4.2 for our
evaluation metrics) computed on the development set does not improve
after a predefined number of epochs. This number is referred to as
patience and is shown in the experiment tables of Section 4.3. In what
follows, the patience has been set to 10 epochs.

The code for these experiments can be accessed on GitHub.3

2 https://huggingface.co/Sense-X/uniformer_video
3 https://github.com/AdrianNunez/transformer-based-fall-detection

https://huggingface.co/Sense-X/uniformer_video
https://github.com/AdrianNunez/transformer-based-fall-detection
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Fig. 2. Uniformer block that is stacked to build the Uniformer network. It is composed of three main components: the Dynamic Position Embedding (DPE), the Multi-Head Relation
Aggregator (MHRA) and a feedforward network (FFN). The purpose of the MHRA is to minimise redundancy. We refer readers to the original Uniformer publication (Li et al.,
2022) for further details about its architecture.
Fig. 3. UP-Fall Detection Dataset sample video frames. Example of a sequence of frames showing a fall, corresponding to Subject 1, Activity 1, Trial 1.
Table 1
UP-Fall dataset’s activities or classes. Classes 1–5
are fall-related classes.
ID Description

1 Falling forward using hands
2 Falling forward using knees
3 Falling backwards
4 Falling sideward
5 Falling sitting in empty chair
6 Walking
7 Standing
8 Sitting
9 Picking up an object
10 Jumping
11 Laying

4. Evaluation

4.1. Datasets

The UP-Fall dataset (introduced by Martínez-Villaseñor et al. 2019)
is a large fall detection dataset composed of 11 activities (see Table 1),
each with 3 trials, and recorded using 17 young adults without im-
pairments. The dataset contains data from wearable sensors, ambient
sensors and vision devices (although, in this paper, only the latter will
be used). Concerning the vision devices, two cameras are available,
each providing a distinct viewpoint of the falls. For our experiments,
we only employed the data from camera 1 since the data obtained from
camera 2 was considered to be too noisy. A sample sequence (from
camera 1) of the dataset is shown in Fig. 3.

The dataset can be binarised by merging classes 1 to 5 into a single
class, which we call ‘‘Class 1’’, while the rest are merged into another
one which we will refer to as ‘‘Class 0’’. Depending on the evaluation
strategy employed, the binary setting or the multiclass setting will be
used.

The UR Fall dataset (Kwolek and Kepski, 2014) is another fall
detection dataset comprising 70 videos, where 30 of them contain a
fall event (see Fig. 4 for an example). Since fall detection datasets are
inherently unbalanced in terms of classes (since there are many more
non-fall samples), we restricted the dataset to these 30 videos and did
include the remaining 40 videos without falls.

The dataset has been annotated frame by frame with three possible
labels: ‘‘fall has not occurred’’, ‘‘falling’’ and ‘‘on the floor’’ (after the
fall). We binarise the dataset so that any frame not labelled as ‘‘falling’’
is considered a ‘‘not fall’’ frame. Moreover, the dataset also contains
4

data from accelerometers and another camera view. The former will
not be employed in this work since we are exclusively interested in
vision-based approaches. The additional camera view provides a top-
down perspective, which is not usual in fall detection datasets. It would
be interesting to cover it in another work as a top-view approach, but
we have deemed it out of the scope of this work.

4.2. Evaluation methodology

In order to compare our work with the state of the art, we adopted
two evaluation strategies. We will simply refer to them as the first and
the second evaluation strategies.

In the first evaluation strategy we will adopt in this work, which
was originally proposed in the paper of the dataset (Martínez-Villaseñor
et al., 2019) and has been described in Section 4.1, a multiclass
classification problem is addressed. The authors also proposed a public
fall detection challenge, which was presented in Ponce and Martínez-
Villaseñor (2020). This is precisely the first evaluation strategy we
will adopt in this work. We split the data into three sets: training,
development and test. The training set is used to tune the network’s
weights; the development set is used to evaluate the model iteratively
and stop the training; and the test set is used for the final evaluation.
The following subjects’ data is used for training: 1, 3, 4, 7 and 10–14, in
total they comprise 70% of the dataset. The trial 3 of subjects 1, 3 and
4 were chosen by us for the development set, as the original challenge
does not specify how to create a development set. For the testing or
evaluation set, the challenge proposes the data from subjects 15–17.
The detection results to be evaluated must be given using windows of
1 s of duration, without overlapping. The label of a given window is
considered to be the most frequent one among the labels of individual
frames within the window, as described in Section 3.

The second evaluation strategy we employed is the one originally
presented by Espinosa et al. (2019) in which the classes are binarised,
i.e. any fall class is considered class 1 while the rest of activities are
grouped in class 0. For the sake of comparison with the literature, we
also obtained results for the multiclass setting. All trial 3 data is used
for the test set while the remaining trials’ data is used for the training
set. Just like in the previous strategy, we created a development set
taking trial 2 data of subjects 1, 3 and 4.

The metrics proposed for the evaluation are the accuracy and the F1
score (using the implementation of Pedregosa et al. 2011). The former
one is usually given in the state of the art, although it is not very
useful in fall detection datasets as they tend to be skewed, i.e. there
are many more negative samples than positive samples, making the
accuracy not reliable. In fact, in tasks such as fall detection, in which
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Fig. 4. UR Fall Detection Dataset sample video frames (camera 0, first sample with fall).
Table 2
Summary of the experiments performed with the first evaluation strategy as proposed by Dodge et al. (2019).
Computing infrastructure Nvidia A100
Best validation accuracy 98.21
Best validation F1-score 91.89
Training duration 5.12 h
Model implementation https://github.com/AdrianNunez/transformer-based-fall-detection

Hyperparameter Search space Best assignment

Number of epochs {10, 50} 50
Learning rate {10e−4, 5e−5 10e−5, 5e−6} 1e−5
Batch size 16 16
Weight decay 0.00001 0.00001
Early stopping patience (in epochs) 10 10
Oversample classes {No, Yes} Yes
Model variation {Small400, Baseline400, Small600, Baseline600} Small400
Table 3
Results for the first evaluation strategy with the UP-Fall dataset.
ID Accuracy F1-score

Martínez-Villaseñor et al. (2019) 94.32 (±0.31) 70.44 (±1.25)
Challenge 1st position (Ponce and Martínez-Villaseñor, 2020) – 82.47
Challenge 2nd position (Ponce and Martínez-Villaseñor, 2020) – 34.04
Challenge 3rd position (Ponce and Martínez-Villaseñor, 2020) – 31.37
Challenge honorific mention (Ponce and Martínez-Villaseñor, 2020) – 60.40

Ours 96.67 82.24
not detecting a fall can lead to serious consequences, it is crucial to
avoid false negatives. Given the small amount of positive samples in
fall detection datasets, the accuracy metric can misleading, as a high
accuracy can also come with a relatively high number of false nega-
tives. Alternatively, the F1 score is proposed in the UP-Fall challenge
and is recommended as an alternative to the accuracy as it takes into
account the unbalanced nature of fall datasets. For our experiments, we
computed the unweighted mean of F1 scores across classes.

4.3. Results

The results of our experiments are compared with the state of the art
if the comparison is fair, i.e. the results are compared under the same
evaluation strategy, data split and so on. We divided the experiments
into two sets: those experiments using the first evaluation strategy
and those using the second one. In the latter, we also divided the
experiments between those using a binary classification approach and
those following a multiclass classification setting.

Among the works that are left out of this comparison, we have
Ramirez et al. (2021, 2022), in which the authors extracted skeleton
poses from RGB frames. Ramirez et al. (2021) only used individual
frames, but Ramirez et al. (2022) employed 1-second windows of poses
(poses of every frame) to classify instances between fall and not fall.
However, their data split was randomly selected and, hence, it is not
directly comparable with any of the two strategies presented here. Their
best results were obtained with a Random Forest classifier, obtaining a
99.81% of accuracy and a 99.56 of F1. Afterwards, the same authors
extended this work with Ramirez et al. (2023). Since in their first work
they did not obtain good results using an LSTM model, in this new work
they used a BERT model (Devlin et al., 2018), whose inputs were pose
sequences. They initially obtained an accuracy of 81.14% and an F1
5

score of 80.95, but they argued that the lower results are a consequence
of the class imbalance. To alleviate this, they artificially augmented
the dataset using a GAN network called TABGAN (Ashrapov, 2020).
With this new data taken into consideration, the accuracy and F1 score
increased to 99.50% and 87.20, respectively.

Following with the use of poses, Taufeeque et al. (2021) obtained
poses with a multi-camera and multi-person approach. Their approach
also employed an LSTM network and obtained an F1 score of 92.5.
Meanwhile, Galvão et al. (2021b) employed a spatio-temporal graph
neural network (pretrained on a large activity recognition dataset) as a
feature extractor. An autoencoder tried to reconstruct the input and, in
case the error was higher than a predefined threshold, an anomaly (a
fall) was detected. Their proposed method led them to an accuracy of
98.62% and an F1 score of 93. All the works mentioned here detect
falls in a binary setting (not multiclass), but they do not share the
data splits of the first and second evaluation strategies and, therefore,
cannot be directly compared with our experiments. Nonetheless, they
also obtained remarkable results, compared with the results obtained
by our model.

4.3.1. Results under the first evaluation strategy
With the first evaluation strategy, we made the hyperparameter

search detailed in Table 2 following the guideline to present machine
learning results published by Dodge et al. (2019). Four variations of
the Uniformer were used, namely, the small and baseline versions
pretrained on Kinetics-400 and on Kinetics-600.

The results of the experiment with this evaluation strategy are
shown in Table 3 alongside other approaches in the literature that
follow the same evaluation strategy. Martínez-Villaseñor et al. (2019)
presented the UP-Fall dataset and some baseline experiments using
that dataset with traditional machine learning algorithms, i.e. no deep

https://github.com/AdrianNunez/transformer-based-fall-detection
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Table 4
Second evaluation strategy’s search space and best assignments.
Computing infrastructure Nvidia A100
Best validation accuracy 99.02 (binary), 97.37 (multiclass)
Best validation F1-score 93.83 (binary), 97.20 (multiclass)
Training duration 1,67 h (binary), 12.76 h (multiclass)
Model implementation https://github.com/AdrianNunez/transformer-based-fall-detection

Hyperparameter Search space Best assignment

Number of epochs {10, 50} 50
Learning rate {10e−4, 10e−5} 1e−4
Batch size 16 16
Weight decay 0.00001 0.00001
Early stopping patience (in epochs) 10 10
Class weight for falls {1, 2} 1
Oversample classes {No, Yes} Yes
Window size {8, 16} 16 (binary), 8 (multiclass)
Model variation {Small400, Baseline400, Small600, Baseline600} Small400
r
u
i
w
t
T
n
a
t

f
a
s
a
d
d
e

Table 5
Results for evaluation strategy 2 with UP-Fall dataset
(with multiclass classification).
ID Accuracy F1-score

Espinosa et al. (2019) 82.26 72.94
Ours 93.17 93.39

Table 6
Results for evaluation strategy 2 with UP-Fall dataset
(with binary classification).
ID Accuracy F1-score

Espinosa et al. (2019) 95.64 97.43
Ours 99.17 94.14

learning algorithm was used. The models they applied were Random
Forests, Support Vector Machines, k-Nearest Neighbours and Multi-
layer Perceptrons. They also explored various data types and their
combinations: (i) infrared sensor data, (ii) wearable IMU data, (iii) all
wearable IMU data and the EEG headset data, (iv) all infrared sensors,
all wearable IMU data and the EEG headset data, (v) camera data, (vi)
all infrared sensors and camera data and (vii) all wearable IMU, EEG
headset and camera data. Their best result in terms of accuracy and
F1-score, shown in Table 3, was obtained with a Multilayer Perceptron
and a window size of 1 s, using all wearable IMU, EEG headset and
camera data as input.

After the aforementioned work, the team launched the challenge
presented in Ponce and Martínez-Villaseñor (2020). They presented
the winners of the challenge and one honorific mention. The results
obtained by these four participants are shown in Table 3. The winner
employed a Random Forest and sensor data, the second place used a 1-
layer CNN and sensor data, the third place made use of a bi-LSTM (the
data used is not mentioned) and the honorific mention did not send a
short paper and, thus, it is unknown how they obtained their result.

With the first evaluation strategy, we obtained a result similar to
the first position of the challenge presented in Ponce and Martínez-
Villaseñor (2020) only relying on vision data, without the need of
the sensor data they employed. Besides, compared with the best base-
line model proposed in Martínez-Villaseñor et al. (2019), we have an
improvement of more than 10 points in the F1 score.

4.3.2. Results under the second evaluation strategy
With the second evaluation strategy, we also made a hyperparame-

ter search. The details have been written down in Table 4. Once again,
four variations of the Uniformer were explored.

Let us begin by comparing our multiclass result (see Table 5) with
the one obtained by Espinosa et al. (2019). We were able to obtain
a 20 point difference in the F1 score with respect to them. For the
binary classification case, shown in Table 6, we are 3 points below
in the F1 score, although both results are very high. Nonetheless, our
6
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purpose was to create a model that only takes RGB frames, without any
additional computation and, in contrast, Espinosa et al. (2019) used OF
images. In fact, the task may get easier using OF images due to the
erased background clutter. Our model, in contrast, seems to generalise
better to more classes, maybe due to the usage of RGB frames and the
suppression of appearance-related features.

Even though the comparison it not fair, the works presented in the
introduction of Section 4.3, i.e. Ramirez et al. (2021, 2022), Ashrapov
(2020), Taufeeque et al. (2021), Galvão et al. (2021b), also presented
results of a binary fall detection task. We were able to perform better
than most of them even though we did not compute skeletons.

4.3.3. Joint fine-tuning with UP-Fall and UR Fall datasets
To assess the adaptability of our approach to other datasets, we

conducted an additional experiment by combining two datasets: UP-
Fall and UR Fall (both introduced in Section 4.1). Using the pretrained
network (on UP-Fall) without fine-tuning on the new dataset (UR Fall)
the results were unsatisfactory, as shown in the first row of Table 7. The
accuracy was only 43.48% and the F1 score was 30.30. This outcome is
attributed to the fact that the original benchmark-trained model lacks
the ability to generalise to any fall event, as it has not been trained
with sufficient data from diverse sources. However, collecting a massive
amount of data for fall detection is currently not possible (to the best
of our knowledge). To address this limitation, we propose a fine-tuning
approach (i.e. re-training the pretrained Uniformer from scratch) in
which we train the network with both datasets together (mixed in
the same training procedure) to observe how the model adapts when
provided with more data.

The training procedure for this experiment followed the same ap-
proach as in our previous experiments (using the second evaluation
strategy with binary classes). We used a combined development dataset
(including samples of both classses, equally represented) to guide the
training. In order to identify the optimal fine-tuning learning rate, we
explored three different learning rates: 1e−4, 5e−4 and 5e−5 (the best
esult was obtained with 5e−5). Additionally, we experimented with the
se of a class weight of 2 for the fall class to address any class imbalance
ssues that may arise during training and we saw that the use of this
eight improved the results. Furthermore, to ensure a fair representa-

ion of the fall class in the UR Fall dataset, we performed oversampling.
he fall class was oversampled to match the number of samples in the
egative class within the same dataset. This oversampling technique
llowed us to mitigate potential biases and improve the model’s ability
o learn from both classes effectively.

The results can be found in Table 7. Although the training is per-
ormed with both datasets at the same time, the evaluation is divided
s seen in Table 7 to assess the results on both datasets separately. A
light drop in performance is observed on the UP-Fall dataset, likely
ttributed to the model having to learn the appearance of another
ataset. Nevertheless, even with this drop, the performance on both
atasets remains remarkably high in terms of F1 score. This outcome is
ncouraging and suggests that the model has the potential to generalise

ell to different fall scenarios.

https://github.com/AdrianNunez/transformer-based-fall-detection
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Table 7
Results for evaluation strategy 2 with the UP-Fall and UR Fall datasets (with binary
classification) mixed together. The first result for UR Fall has been computed using the
best model fine-tuned with UP-Fall in previous experiments.

Dataset Accuracy F1-score

UR Fall (not fine-tuned) 43.48 30.30

UP-Fall (jointly fine-tuned) 99.03 92.35
UR Fall (jointly fine-tuned, w/o oversampling) 91.30 89.73
UR Fall (jointly fine-tuned, w/ oversampling) 95.45 94.76

4.3.4. Comparison with wearable-based fall detection
Throughout this paper, we have focused on vision-based approaches,

specifically those using 2D cameras. However, it is essential to ac-
knowledge that wearable-sensor-based solutions have their own set of
advantages and disadvantages, depending on the specific scenario. In
terms of performance, wearable sensors often provide more discrimina-
tive data for the detection of falls, which can lead to a higher accuracy
in this task compared to vision-based methods. As a result, wearable-
sensor-based solutions tend to achieve better results in fall detection
tasks. In this section, we present a comparative analysis, contrasting
the results obtained from our vision-based approach with those of
wearable-sensor-based solutions. By understanding the trade-offs and
strengths of each approach, we aim to provide insights into the relative
merits of vision-based and wearable-sensor-based fall detection models.

Table 8 presents a summary of the recent results from the literature
for the UP-Fall dataset, specifically focusing on studies using wearable-
sensor information or a combination of sensor and RGB data. Our
results in this table are based on the second evaluation strategy, as we
conducted experiments in both binary and multiclass settings.

It is important to note that a direct comparison between the ap-
proaches listed in Table 8 and the model proposed in this paper may
not be fair, as they may not share the same train/evaluation splits, com-
pute metrics differently and have different clip lengths for generating
outputs. Moreover, some works adopt a binary configuration (i.e., fall
or not fall), while others consider all possible classes of the dataset.
However, this comparison allows us to observe that our vision-based
transformer approach achieves results that are close to the state-of-the-
art solutions in the sensor-based fall detection task. This finding further
reinforces the promise and potential of vision-based methods for fall
detection and highlights the effectiveness of our proposed approach in
capturing relevant information from RGB data to identify fall events
accurately.

It is worth mentioning that the goal of this comparison is not to
establish superiority over other approaches but rather to put in context
the performance of our method in relation to the existing body of
literature. We believe that the diverse range of fall detection techniques
showcased in Table 8 contributes to a comprehensive understanding of
the advancements in this field and emphasises the significance of our
contributions within the vision-based fall detection domain.

5. Conclusions

In this paper, we introduced a transformer-based fall detection
model, leveraging the Uniformer architecture. Our RGB-only approach,
aligned with UP-Fall dataset guidelines, achieved competitive or im-
proved results compared to existing methods without relying on ad-
ditional features or wearable-sensor data. Our fall detection model
demonstrates the capability to promptly emit an alarm upon detecting
a fall event.

Future research avenues include exploring anticipation capabilities,
inspired by recent works such as Li and Song (2023). Collaborating
with healthcare professionals is also crucial for refining our model’s
real-world application. Their insights will guide adjustments to meet
7

end-user needs effectively.
Table 8
Results of the literature of fall detection using the UP-Fall dataset for the evaluation
and sensor data or skeleton information as input. For our results, we used the second
evaluation strategy.

Type Binary? Accuracy F1-score

Ponce et al. (2020) Sensor+RGB ✓ 98.72 95.77
Waheed et al. (2021) Sensor ✓ 97.21 97.43a

Galvão et al. (2021a) RGB+Sensor ✓ 99.99 –
Al Nahian et al. (2021a) Sensor ✓ 96.00 97.00a

Al Nahian et al. (2021b) Sensor ✓ 100.00 –
Ashrapov (2020) Skeleton ✓ 99.50 87.20
Taufeeque et al. (2021) Skeleton ✓ – 92.5
Galvão et al. (2021b) Skeleton ✓ 98.62 93
Ramirez et al. (2021) Skeleton ✓ 99.34 98.52
Ramirez et al. (2022) Skeleton ✓ 99.81 99.56
Ramirez et al. (2023) Skeleton ✓ 81.14 80.95

Ours RGB ✓ 99.17 94.14

Type Binary? Accuracy F1-score

Martínez-Villaseñor et al. (2019) Sensor ✗ 95.49 70.31
Chahyati and Hawari (2020) Sensor ✗ – 81.40
Chahyati and Hawari (2020) RGB+Sensor ✗ – 95.44
Ramirez et al. (2021) Skeleton ✗ 99.45 92.34
Le et al. (2022) Sensor ✗ – 99.60
Mohan Gowda et al. (2022) RGB+Sensor ✗ 99.2 98.4
Islam et al. (2023) RGB+Sensor ✗ 97.90 97.88
Yan et al. (2023) Skeleton+Sensor ✗ 98.05 88.30

Ours RGB ✗ 93.17 93.39

a Manually computed based on Recall and Precision.

Furthermore, to improve the robustness and generalisability of our
model, a larger, diverse fall detection dataset is essential. This ex-
pansion will facilitate training a more adaptable and reliable neural
network.

In conclusion, our work lays a solid foundation for vision-based fall
detection models and presents a promising direction for future research.
By exploring proactive fall detection, collaborating with healthcare
professionals, and collecting more comprehensive datasets, we aspire
to continue advancing the field of fall detection and contribute to
improving the safety and well-being of individuals at risk of falls.
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