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Abstract: Alzheimer’s disease is a progressive neurodegenerative disorder, the early detection of
which is crucial for timely intervention and enrollment in clinical trials. However, the preclinical
diagnosis of Alzheimer’s encounters difficulties with gold-standard methods. The current definitive
diagnosis of Alzheimer’s still relies on expensive instrumentation and post-mortem histological ex-
aminations. Here, we explore label-free Raman spectroscopy with machine learning as an alternative
to preclinical Alzheimer’s diagnosis. A special feature of this study is the inclusion of patient samples
from different cohorts, sampled and measured in different years. To develop reliable classification
models, partial least squares discriminant analysis in combination with variable selection methods
identified discriminative molecules, including nucleic acids, amino acids, proteins, and carbohydrates
such as taurine/hypotaurine and guanine, when applied to Raman spectra taken from dried samples
of cerebrospinal fluid. The robustness of the model is remarkable, as the discriminative molecules
could be identified in different cohorts and years. A unified model notably classifies preclinical
Alzheimer’s, which is particularly surprising because of Raman spectroscopy’s high sensitivity
regarding different measurement conditions. The presented results demonstrate the capability of
Raman spectroscopy to detect preclinical Alzheimer’s disease for the first time and offer invaluable
opportunities for future clinical applications and diagnostic methods.

Keywords: preclinical Alzheimer’s; cerebrospinal fluid; vibrational spectroscopy; machine learning;
PLS-DA; variable selection

1. Introduction

Alzheimer’s disease (AD) is the primary cause of cognitive impairment and represents
the main prevalent neurodegenerative disorder and challenge. Characterized by a contin-
uum, it includes a very large preclinical (PC) stage followed by a mild cognitive impairment
(MCI) period, leading ultimately to a dementia stage. The importance of early AD diagnosis
cannot be overestimated. Timely and successful initiation of treatment is crucial to halting
the progression of the disease [1–3]. Early detection primarily involves preclinical AD
(PC-AD), originally defined in the late 20th century as cognitively unimpaired individuals
who exhibit AD brain lesions post-mortem. With the addition of pathologic AD markers,
PC-AD now includes cases in which these markers are also present in cognitively normal
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individuals [4,5]. To date, the European Academy of Neurology and other associations do
not approve PC diagnosis in clinical practice. Currently, the diagnosis of MCI or dementia
is made in clinical practice, and the recognition of PC stages is limited to the research
context. Nevertheless, the relevance of early diagnosis cannot be underestimated, partic-
ularly given the potential of emerging treatments such as Lecanemab and Donanemab.
These drugs promise to change the course of the disease, especially if they are used in the
preclinical stages, as the ongoing AHEAD study to investigate the efficacy of Lecanemab in
this context shows [6].

According to the International Working Group (IWG), “The diagnosis of AD is clinical-
biological and requires the presence of both a specific clinical phenotype of AD and
biomarker evidence of AD pathology” [7]. This statement makes the correct diagnosis
of the disease even more difficult, as the disease is progressive and biomarkers change
during years preceding the disease [8]. Its gradual progression covers a prolonged PC
phase marked by sequential amyloid peptide and tau protein deposition, culminating in
neurodegeneration preceding clinical symptomatology [7,9–11].

Although previous studies have addressed the identification of the preclinical stage, ex-
isting evidence remains limited regarding its traditional diagnostic approaches to
neurological–neuropsychological assessments and the analysis of amyloid tau neurode-
generation (ATN) biomarkers (amyloid beta Aβ, phosphorylated tau and total tau) in cere-
brospinal fluid (CSF) [5,12–14]. The ATN classification system classifies AD biomarkers into
three groups, providing information on neuropathological changes [15–17]. AD-specific
biomarkers are crucial since neurodegeneration and lesions can also occur in non-AD
diseases, especially in older people with other pathologies [11,18]. Positron emission
tomography (PET) imaging is used for this type of analysis; it uses radiotracers bind-
ing to Aβ or tau plaques in the brain and offers high diagnostic accuracy and localized
information [19]. Another analytical route is CSF extraction by lumbar puncture and
enzyme-linked immunosorbent assays (ELISA). In this case, it is possible to evaluate brain
pathology and measure Aβ and tau biomarkers from the same collection. These techniques
are proven, and studies have shown a strong correlation between CSF biomarkers and
PET results [11,20,21]. Consequently, biomarkers are used to support the diagnosis of AD,
whereas clinical diagnosis is used to identify AD severity.

The recent increase in imaging and fluid biomarkers of AD pathophysiology provides
the opportunity to identify several biological stages in the preclinical phase of AD [22]. Pos-
itive Aβ and tau biomarkers can be observed in individuals without cognitive impairment
(PC-AD), in those with MCI, and in those with dementia (Figure 1).

Figure 1. Alzheimer’s disease continuum as defined by the International Working Group (IWG).

In the search for reliable biomarkers for neurodegenerative diseases applying novel
methods, various molecular markers in tissues, biofluids, and imaging techniques are
currently being investigated [23]. Although mass spectrometry (MS) and ELISA stand
out as established biomarker identification and quantification techniques, they have their
limitations: they are destructive, time-consuming, expensive, and require highly trained
personnel [23,24].

The integration of imaging and fluid biomarkers has expanded our understanding
of AD pathophysiology, offering insights into various biological stages preceding clinical
symptoms. In this endeavor, novel methods are being explored, with Raman spectroscopy
emerging as a holistic, more cost-effective, non-destructive, and technically less complex al-
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ternative that overcomes the limitations of conventional approaches. Raman spectroscopy is
a label-free and rapid spectroscopic method that provides chemical and structural informa-
tion by detecting inelastically scattered photons [25]. Moreover, it requires minimal sample
preparation, eliminates the need for additional chemicals, is non-destructive, and signifi-
cantly reduces analysis time. The performance of Raman spectroscopy in the classification
of AD, as reported by Xu and co-authors in a comprehensive review encompassing eight
selected studies [26], demonstrates high sensitivity (0.86) and specificity (0.87), indicative
of its potential for future medical diagnostics.

A drawback of Raman spectroscopy with biological samples is that Raman spectra
often contain non-relevant signals superimposed onto interesting ones, along with a number
of artifacts (e.g., baseline drifts) that make it difficult to directly interpret the Raman
peaks obtained. Therefore, it is of utmost importance to analyze Raman spectra using
sophisticated machine learning methods (chemometrics) and, in particular, in combination
with variable selection methods to minimize artifacts, highlight important signals and
be able to build reliable classification models, which have been investigated to diagnose
AD in biofluidic samples [12,27–30]. Most of the published research is based on limited
statistics with small cohorts and, therefore, compromises the accuracy of classification and
additional variable selection methods, providing limited insight into the physiological
origin of classification results.

In this manuscript, we put forward a new and more reliable approach by combining the
datasets from two cohorts from different years, thus increasing the number of participants
and enhancing the robustness and reliability of the models beyond what is commonly
found in the literature. The combined dataset provides significantly larger sample sizes
compared to those reported in similar proof-of-concept studies utilizing both Raman
spectroscopy and surface-enhanced Raman spectroscopy for the identification of AD in
bodily fluids [12,27–31]. Although Raman spectroscopy is a very sensitive technique and
susceptible to changing environmental conditions, we demonstrate here that it is possible
to build stable classification models with Raman datasets from different cohorts measured
during different years (2022 and 2023). The focus of this study is on the early detection of
AD, i.e., the classification of preclinical Alzheimer’s, which has not yet been investigated in
other studies. It is much more difficult to detect physiological changes in PC-AD, and we
address this challenge with chemometric methods employing specific variable selection.

2. Results and Discussion

As explained in Section 3, the CSF samples were obtained from two studies per-
formed during different years, and the Raman measurements for each of these sample
sets were also performed in different years at a later time point. We refer to the corre-
sponding datasets here as Dataset 1 and Dataset 2. Figure 2 presents the Raman spectra
corresponding to Dataset 1 (light pink), Dataset 2 (dark pink), and their combined (red)
form (Dataset 1 + Dataset 2), referring to the two cohorts with Raman measurements from
different years. The initial focus is on variable selection for each dataset to identify molec-
ular fingerprints indicative of PC-AD. Employing the variable selection strategy with a
cross-validation of 15 random subsets and 5 iterations, Dataset 1 and Dataset 2 were reduced
to 93 and 50 discriminative wavenumbers, respectively. Assembling both datasets into a
unified one, the same variable selection procedure was systematically applied, discovering
213 discriminating variables. From the representative wavenumbers of each cohort, as
illustrated by the dashed lines in Figure 2, distinctive and common spectral patterns emerge
for the control and PC-AD groups within the Dataset 1 and Dataset 2 studies. This observa-
tion shows the potential utility of Raman spectroscopy in detecting molecular alterations
associated with PC-AD. The clear differences in spectral profiles within each dataset and
the presence of shared spectral features across Dataset 1, Dataset 2, and their combination
indicate subtle molecular changes linked to PC-AD progression.
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Figure 2. Averaged spectra and selected variables for the (a) Dataset 1 + Dataset 2 study. (b) Dataset 2
study. (c) Dataset 1 study. Dashed lines in black represent wavenumbers selected in common across
all three datasets.

A more in-depth analysis of the chosen wavenumbers shows agreement with crucial
peaks described in the literature as decisive for Alzheimer’s discrimination. The identified
peaks, among others, are outlined in Table 1.

Table 1. Characteristic molecular vibrations for discriminating PC-AD extracted from Raman spectra.

Wavenumber (cm−1) Biomarkers Description [32]

727 Nucleic acids Phosphatidylserine, hypotaurine, guanine
956 Proteins, carbohydrates ν1 of the phosphate group, guanine
998 Monophosphate group

1009 Phenylalanine Tryptophan
1039 Proteins, carbohydrates Taurine
1045 Hypotaurine
1046 Hypotaurine, taurine
1051 Taurine
1065 Hypotaurine

In particular, the specific bands at 1045 cm−1 and 1065 cm−1 exhibit significant inten-
sity changes that correlate with alterations in amino acids attributed to AD biomarkers
such as tau proteins and Aβ42 peptides [29]. These spectral peaks may correspond to
taurine and hypotaurine [32], both of which are amino acid derivatives. Taurine, known
for its diverse physiological functions essential for overall health and wellbeing, acts as
an osmoregulatory agent [33]. Moreover, experimental studies have shown the binding
of taurine with oligomeric Aβ plaques [34], preventing the neurotoxicity of Aβ and gluta-
mate receptor agonists, which indicates a potential interaction between taurine and key
pathological features associated with AD. Interestingly, the identification of characteristic
bands at 727 cm−1 and 956 cm−1 shared by both guanine and phosphatidylserine (PS)
highlights potential molecular mechanisms underlying AD pathology. Guanosine, known
for its neuroprotective effects, is a derivative of guanine, a nucleotide base present in DNA
and RNA structures. Guanine’s association with purinergic signaling and its conversion
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to guanosine suggests a potential link between purinergic signaling pathways and AD
pathology [35]. Similarly, PS, a structural component of eukaryotic membranes, plays a
multifaceted role in many biological processes, including enzyme activation, apoptosis, and
neurotransmission. The dysregulation of PS and other phospholipids in AD brains alters
membrane viscosity and hampers essential biological processes, potentially contributing to
synaptic dysfunction and neurodegeneration [36,37].

The correlations identified in the spectral analysis highlight the complex interactions
of molecular components in AD pathology and emphasize the need for comprehensive
research to understand its underlying mechanisms. The subsequent deeper analysis sep-
arately evaluates machine learning models for each study (Dataset 1 and Dataset 2), as
shown in Table 2. The best model, which was determined for both cohorts individually, has
good performance indicators. While the Dataset 1 study demonstrates comparatively more
representative features and latent variables for optimal prediction (93 features and 4 LVs for
Dataset 1 and 50 features and 3 LVs for Dataset 2), it still achieves commendable accuracies
of up to 0.93, although slightly below the Dataset 2 model’s accuracy of 0.97. Despite
variations in the studies of individual years and the timeline of Raman measurements, the
potential for PC-AD classification remains significant.

The decision to develop a unified model incorporating both studies is motivated by
several factors: first, to comprehensively analyze both datasets with a larger sample size
for an expected improved discrimination; second, to investigate whether combining data
sets could improve the predictive abilities of the model by capturing a broader range
of characteristics and patterns; lastly, to investigate common variables across the data
sets and discovering common factors that clearly influence AD classification, which was
triggered by the unified approach. In contrast to individual cohort-specific models, the
unified model requires a higher complexity in terms of the number of latent variables
for optimum performance, which is six compared to three and four LVs for individual
sets Dataset 1 and Dataset 2. However, higher statistics did not improve the model’s
predictive ability because of its complexity. Of course, the differences in measurement
years and cohort characteristics may have influenced these outcomes. Additionally, when
considering a model with variables selected jointly for all three datasets (Dataset 1, Dataset 2,
and Dataset 1 + Dataset 2), a decreased discriminative power was observed, emphasizing
the impact of factors such as cohort, year, or measurement strategy. The augmentation
of Raman datasets by different measurement cycles, varying measurement conditions,
and/or environmental changes subject to many factors will definitely increase uncertainty
in a combined dataset. However, augmentation will finally lead to a stable model that
considers all uncertainty factors and can be used as a clinical predictive tool. Whether the
predictive power is worse or better cannot be foreseen, as long as the inner structure of
such hierarchical datasets is not fully captured.

Table 2. Figures of merit for PLS-DA models for preclinical AD prediction across different datasets.
Dataset 1 and Dataset 2 individually; variable selection across the whole dataset: Dataset 1 + Dataset 2;
shared variables in all datasets: Dataset 1 + Dataset 2 in common; variables occurring more than
30 times across 100 iterations for the combined dataset: Dataset 1 + Dataset 2 thr@30.

Cohort Matrix AUC Accuracy Sensitivity Specificity LVs Variables

Dataset 1 40× 93 0.99 0.93 0.95 0.92 4 93
Dataset 2 35× 50 1.00 0.97 0.93 0.98 3 50

Dataset 1 + 75× 213 0.98 0.93 0.91 0.94 6 213
Dataset 2 Dataset 1 + 75× 9 0.61 0.53 0.63 0.51 2 9
Dataset 2 in common

Dataset 1 + 75× 168 0.99 0.96 0.93 0.96 6 168
Dataset 2 thr@30 1

1 Variables occurring more than 30 times over the process of 100 iterations.

By extending the analysis, we employed an iterative approach for the variable selection
procedure to increase discriminative information and reveal meaningful patterns in the
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frequency analysis of selected wavenumbers. Figure 3a shows the frequency distribution
of selected wavenumbers over 100 iterations, which motivated the creation of machine
learning models for various frequency thresholds. Figure 3b displays heat maps of figures
of merit for all the created models and highlights the optimal PLS-DA model with six
latent variables and wavenumbers for frequencies exceeding 30. This model achieves a
remarkable AUC of 0.99 and an accuracy of 0.96 in predicting PC-AD cases, providing a
competitive model for its statistically enhanced robustness and performance comparable
to single cohorts. Iterative cross-validation or jackknifing improves the discrimination
information extracted from the combined data.

a

b

Figure 3. (a) Number of variables selected and frequency of each selected variable during the
100−fold iteration process. (b) Heat maps of specificity, sensitivity, and accuracy for each frequency
threshold for the different models.

Alternatively, one could imagine constructing a model that only contains the variables
that were selected together in all three data sets (Dataset 1, Dataset 2, and Dataset 1 + Dataset 2).
However, the exclusive use of these selected wavenumbers, as shown in Table 1, proves to
be insufficient for building machine learning models and leads to a decrease in classification
performance. Various factors contribute to the selection of additional variables, especially
cohort and measurement year. Figure 4 shows the model scores derived from Table 2,
thereby providing a visual representation. The two-latent space depicted in the upper part
of Figure 4, which includes LV1 and LV2, highlights the models’ discriminative capacity
for PC-AD in both studies on Dataset 1 and Dataset 2. In particular, the color variation in
the labels, as observed in the lower part of Figure 4, indicates clustering between healthy
and preclinical groups, whereas the studies from Dataset 1 and Dataset 2 exhibit clustering
in a different direction. This explains why more variables and model latent spaces are
required when combining the studies from Dataset 1 and Dataset 2 to build a more robust
and predictive model for the discrimination of PC-AD.
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a b

c d

Figure 4. (a) Unified studies from Dataset 1 + Dataset 2 with disease−specific labels. (b) Unified
studies from Dataset 1 + Dataset 2 with year−specific labels. (c) Dataset 1 study with disease−specific
labels. (d) Dataset 2 study with disease−specific labels.

3. Materials and Methods
3.1. Dataset Creation

The samples were collected from a population-based clinical–biological cohort of
adults with and without cognitive decline. They belonged to a cross-sectional study, and
the recruitment of all individuals was performed by the CITA-Alzheimer Foundation. The
syndromic diagnosis was established through comprehensive neurological and neuropsy-
chological assessment, structural magnetic resonance neuroimaging (MRI), and a CSF
AT(N) biomarkers study. CSF samples were obtained in 2014 and 2015 (Dataset 1) from the
participants of the Gipuzkoa Alzheimer Project (GAP) [38] and from 2016 to 2018 (Dataset 2)
in the DEBA study [39]. Research was conducted in accordance with the Declaration of
Helsinki and approved by local Ethics Committees. A total of 75 volunteers were recruited
to detect PC-AD using CSF samples. In both studies, volunteers were categorized into a
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control group comprising healthy individuals (H) and PC-AD patients who exhibited abnor-
mal biomarker values while maintaining normal cognitive function. The control group was
defined by specific CSF analysis cutoff values (Aβ42 > 1030 pg/mL, total-Tau > 300 pg/mL,
p-Tau > 27 pg/mL) to validate ATN negativity and cognitive normalcy. The inclusion of
data from two separate studies increases robustness and provides an extended time range
for the analytical framework, enabling a comprehensive assessment of preclinical AD
detection performance. Age and gender distribution were comparable between the control
and preclinical AD groups, as summarized in Table 3.

Table 3. Datasets utilized in the study: Dataset 1 corresponds to samples collected between 2014 and
2015, while Dataset 2 corresponds to a cohort with samples collected between 2016 and 2018.

Status Total Male/Female Age

Dataset 1 Healthy 20 40 10/10 59.5± 6.8
Preclinical 20 10/10 65.4± 5.1

Dataset 2 Healthy 20 35 11/9 65.7± 6.1
Preclinical 15 10/5 68.5± 6.2

Dataset 1 + Healthy 40 75 21/19 62.7± 7.1
Dataset 2 Preclinical 35 20/15 66.7± 7.7

3.2. Raman Measurements and Sample Preparation

CSF samples were collected according to international consensus recommendations [21]
and centrifuged immediately at 4 ◦C and stored at −80 ◦C within one hour of lumbar
puncture. For Raman measurements, CSF samples underwent ultracentrifugation using
an Amicon® Ultra-0.5 filter with a 3 kDa pore size, resulting in a protein-rich supernatant.
Raman measurements were performed with an inVia Qontor confocal Raman microscope
(Renishaw plc, Wotton-under-Edge, UK). One microliter of the CSF sample was deposited
onto a microscope glass slide covered with aluminum foil to enhance the Raman signal.
The droplet was dried under vacuum for 10 min before each Raman measurement. Optimal
measurement conditions were defined for a balanced signal-to-noise ratio and sample
preservation. Point-by-point mapping was employed, capturing 15 spectra at the ring of
the dried droplet (Figure 5). Laser wavelength and output power were set to 785 nm and
73 mW, respectively; a 50×-long distance objective was selected, and 50 accumulations
were performed with an exposure time of 1 s. Raman measurements from Dataset 1 samples
were taken in 2022 and for the Dataset 2 samples in 2023.

Figure 5. (a) Sample preparation and Raman measurement conditions. (b) Stages of the machine
learning workflow.
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3.3. Modeling Workflow
3.3.1. Data Preprocessing

All stages of the data analysis were carried out in MATLAB 2022a (The MathWorks,
Inc., Natick, MA, USA) using in-house routines and the PLS-Toolbox (Eigenvector Research
Inc., Wenatchee, WA, USA). The detailed workflow, covering feature extraction, model
training, and validation, is explained in the following section. The order of these steps
(Figure 5b) is essential and was carefully considered in the spectroscopic data analysis
workflow. Figure 5b provides a visual summary of the intrinsic process steps of the data
analysis approach. The Raman spectra underwent a meticulous pipeline for optimum
preprocessing, which is important, non-trivial, and can significantly affect model perfor-
mance [40]. The data collected from the two cohorts, Dataset 1 and Dataset 2, exhibit similar
and distinct characteristics. To ensure meaningful comparisons and to facilitate the creation
of a unified model incorporating both cohorts, a consistent preprocessing strategy was
applied, starting with noise reduction and signal enhancement (using Savitzky-Golay filter-
ing), followed by baseline correction using Whittaker’s method to eliminate fluctuations
and artifacts and standard normal variate (SNV) spectral scaling [41–43]. All 15 spectra
per patient were first preprocessed and scaled and subsequently averaged per patient [44],
as depicted in Figure 6, to obtain one representative spectrum per patient for subsequent
variable selection and classification. Figure 6 displays the mean spectra for healthy (upper)
and PC-AD (lower) individuals, accompanied by the standard error (shadowed area). The
subtle differences between healthy and preclinical subjects are barely visible, and classifica-
tion can only be achieved by proper selection of feature extraction and subsequent machine
learning algorithms.

a

b

Figure 6. Preprocessed and averaged spectra per patient to unify both cohorts from Dataset 1 and
Dataset 2; shaded area refers to the standard error. (a) Healthy or control group. (b) Preclinical
Alzheimer’s subjects.

3.3.2. Feature Extraction Methods for Identification of Discriminative Molecules in
Preclinical AD’s Discrimination

Feature extraction was performed using the integrated action of variable importance
in projection (VIP) method and the selectivity ratio (SR). This approach uses the spectra
projected into the latent space of a partial least squares discriminant analysis (PLS-DA)
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model to select iterative variables due to their importance in the model [45]. The itera-
tive process optimizes wavenumber subsets by comparing the root mean square error
of cross-validation (RMSECV) values and removing those wavenumbers with the lowest
influence on prediction. The approach integrates VIP and SR, progressively eliminating
variables until the model no longer improves. This variable selection strategy not only
elevates the importance of the feature set but also plays a crucial role in identifying relevant
wavenumbers to distinguish between distinct patient cohorts. Selected wavenumbers serve
as valuable indicators, which help identify molecular vibrations that contribute to the dif-
ferentiation of PC-AD. To assess the reliability of the selected features, an iterative approach
was implemented by running the variable selection strategy 100 times. In each iteration,
10 patients (5 from each class) from a dataset of 75 patients were randomly excluded,
allowing for both interclass and intraclass variability. The procedure was then applied with
the same cross-validation structure of 15 random subsets and 5 iterations, ensuring a robust
assessment by excluding 10 different patients from model training and cross-validation in
each iteration. Subsequently, the variable selection distribution across the 100 iterations
was examined, and an additional model based on this analysis was constructed, as shown
in the results section.

3.3.3. PLS-DA Model Development and Evaluation Metrics

Following the workflow from Figure 5 and using the reduced feature set from the
variable selection procedure, reliable PLS-DA models were constructed. PLS-DA is a ver-
satile multivariate classification method selected for its simplicity and effectiveness [46].
Differentiating from classical PLS regression, PLS-DA involves an additional step where
a suitable threshold is applied to the computed y values. This thresholding process aids
in determining the classification of a sample within a specific class. It is a powerful tool
for modeling the relationship between variables and reducing data dimensionality while
preserving the covariance structure, making it particularly relevant to our study. The
optimization process focuses on tuning the number of latent variables (LVs). PLS-DA is
well-suited for handling complex data relationships and correlated variables, making it an
ideal choice for efficient machine learning [46–49]. Due to the low number of subjects in
each of the individual cohorts and to ensure the robustness of the model, a cross-validation
approach with random subsets was adopted, in which each data set was divided into
15 distinct subsets with 5 iterations. This resampling strategy of cross-validation included
partitioning the dataset into training sets and diverse cross-validation sets to evaluate the
model performance [44,50]. The performance of the PLS-DA models was systematically
evaluated using standard classification metrics, including accuracy, sensitivity, specificity,
and the area under the receiver operating characteristic curve (AUC-ROC). Permutation
tests were also performed to determine the stability of the models. These tests involved
randomizing the assignment of class labels and re-evaluating the models multiple times to
assess the likelihood of obtaining similar performance by chance [44,51,52]. The permu-
tation tests provided valuable statistical information on the reliability and stability of the
developed PLS-DA models.

4. Conclusions

Our study explores the potential of Raman spectroscopy in combination with ad-
vanced chemometric methods as an innovative and far less complex technical approach
for the early diagnosis of preclinical Alzheimer’s disease compared to positron emission
tomography, computed tomography, or CSF analysis. The priority of early detection results
from the prolonged preclinical phase of Alzheimer’s disease, in which medication and the
development of new therapies could help slow down the pathogenesis. Traditional diag-
nostic modalities, such as neurological–neuropsychological assessments and biomarkers of
cerebrospinal fluid, have limitations and require the exploration of alternative methods.
Raman spectroscopy provides a molecular fingerprint of physiology without subjective
interpretations and relatively simple technical effort. In our study, we investigated dried
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droplets of cerebrospinal fluid and took Raman measurements at the ring of the dried
structures. Our investigation, across multiple years of sampling, includes two separate
studies and corroborates the potential of Raman spectroscopy to distinguish between
healthy subjects and those in the preclinical stage of Alzheimer’s with high accuracies
reaching 0.96 in a cross-validated model. We demonstrated significant discriminative
power despite variations in cohorts and measurement years. Fusing the data from both
studies not only improves the robustness of the overall model but also allows for a more
comprehensive assessment of the variables that play a role in the classification of preclin-
ical Alzheimer’s disease. Significant identified wavenumbers were consistent with key
peaks for Alzheimer’s disease reported in the literature, including amino acids found in
established biomarkers such as tau proteins and Aβ42 peptides. Our study represents a
significant advance in the application of Raman spectroscopy for the early detection of
Alzheimer’s, and we note that the influence of cohort-specific factors, including sampling
and measurements at different time stamps and under different conditions, underlines the
need for further research and larger datasets to capture as much uncertainty as possible, in-
corporate the full range of various inter and intraclass variabilities, and ultimately, provide
a general robust and reliable prediction model for new, unseen data in clinical settings via
external validation.
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