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A B S T R A C T   

The detection of patterns associated with the invasive form of Candida albicans, such as Candida albicans germ 
tube antibodies (CAGTA), is a useful complement to blood culture for Invasive Candidiasis (IC) diagnosis. As 
CAGTA are detected by a non-standardisable and non-automatable technique, a Candida albicans cDNA 
expression library was screened with CAGTA isolated from serum of an animal model of invasive candidiasis, and 
five protein targets were identified: hyphally regulated cell wall protein 1 (Hyr1), enolase 1 (Eno1), coatomer 
subunit gamma (Sec21), a metallo-aminopeptidase (Ape2) and cystathionine gamma-lyase (Cys3). Homology 
with proteins from other organisms rules out Cys3 as a good biomarker while Sec21 results suggest that it is not 
in the germ tubes surface but secreted to the external environment. Our analysis propose Ape2, Sec21 and a 
region of Hyr1 different from the one currently being studied for immunoprotection as potential biomarker 
candidates for the diagnosis of IC.   

1. Introduction 

In critical patients, invasive fungal infections (IFI) rate is increasing, 
being one of the main causes of morbidity and mortality; most of these 
infections are caused by species of the genus Candida [1]. Invasive 
Candidiasis (IC) not only affects to critical patients; according to the 
review of Lamoth and collaborators [2], live threating Candida in-
fections are the most common IFI in the majority of solid organ re-
cipients, and the second cause in haematopoietic stem cells transplant 
recipients and in patients with haematological malignancies. IC is also 
the third cause of bloodstream infection in children, mainly affecting 
low birth weight newborns [3]. 

Although the global incidence of IC increased, this trend seems to be 
steadying in most of the countries [4,5]. In spite of this stabilization, it is 
estimated that, annually worldwide, there are 750,000 cases of IC with 
mortality rates over 40 % [6]. Regarding the causative species, despite 
an increasing rate of infections by non-albicans Candida species, 

C. albicans remains the most common [7]. 
The term IC comprises three types of pathologies: candidemia 

(bloodstream infection), deep-seated candidiasis and candidemia asso-
ciated with deep-seated candidiasis [8]. 

Candidemia is the most frequent presentation of IC, and has an 
estimated attributable mortality between 10 and 47 % [9]. On the other 
hand, for intraabdominal candidiasis (IAC), which is the most common 
group of deep-seated candidiasis, mortality ranges between 13 and 88 % 
depending on the type of infection [10]. In addition, deep-seated 
candidiasis incidence could be underestimated because culture, the 
reference standard for diagnosis, often fails to detect this type of infec-
tion, detecting only 2-10 % of IAC [10]. 

The prognosis of these infections is strongly associated with early 
diagnosis and correct adherence to treatment [11]. However, diagnosis is 
challenging, as clinical manifestations are similar to some severe bacterial 
infections [12]. Besides the low sensitivity of the blood culture, it may take 
24-48 hours to obtain the results, and even longer for the species 
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identification and antifungal susceptibility assays. Consequently, empir-
ical therapy is often applied in high-risk patients with some studies ques-
tioning the benefits of this practice [2] in addition to the associated costs. 

Several alternative non-culture-based methods have been developed 
and some of the best studied are based on the detection of biomarkers, 
including β-D-glucan (BDG) as well as mannan and anti-mannan anti-
bodies, but they still have limitations. For example, BDG is a panfungal 
marker implying that a negative result may rule out IC but a positive test 
result may be due to infection by other fungi, as well as to certain 
interfering medical procedures such as dialysis [13]. On the other hand, 
some studies suggest that the detection of mannan and anti-mannan 
antibodies has a low predictive value for deep-seated candidiasis [8] 
and fails to differentiate between Candida colonization and infection 
[14]. 

The detection of CAGTA (Candida albicans Germ Tube Antibodies) is 
a technique that was developed in our laboratory [15] and relies on the 
detection of antibodies that react with specific superficial antigens of the 
germ tubes of Candida albicans by indirect immunofluorescence (IIF). 
Several studies have proved the CAGTA title determination as a useful 
diagnostic and prognosis tool even though it has moderate sensitivity 
and specificity [8,16]. CAGTA detection can distinguish colonisation 
from invasive infection; however, IIF is a very subjective and 
non-automatable technique. For this reason, the identification of the 
specific targets of these antibodies would allow the development of 
techniques, such as ELISA or lateral flow test, that overcome these 
limitations. These techniques could complement blood culture to 
advance the results, together with other techniques that may indicate 
other characteristics of the microorganisms, such as antimicrobial 
resistance. 

2. Materials and methods 

2.1. Candida albicans cDNA library 

The cDNA library used in this study was kindly provided by Dr. W. 
Fonzi (Georgetown University, USA) and Dr. P. Sundstrom (Ohio State 
Medical School, USA). It is a λ ZAP II (Stratagene) cDNA library prepared 
from mRNA of the Candida albicans strain SC5314 growing in the 
mycelial phase. The library was propagated in E. coli XL1-Blue MRF’ 
(Agilent). 

2.2. Serum quantification, fractionation and purification 

Serum from a rabbit model of IC was used; this infection was carried 
out prior to this study following the protocol described by Sáez-Rosón 
et al. [17] with the approved file M20/2017/067 of the animal ethics 
committee of the University of the Basque Country and procedures were 
conducted following animal welfare policy. CAGTA levels were titrated 
by indirect immunofluorescence following the protocol described by 
Moragues et al. [18]. Serum fractions were obtained through incubation 
of the sera with heat-inactivated C. albicans blastospores to obtain 
CAGTA-enriched fraction (CAGTA-enr) that was subsequently incubated 
with C. albicans germ tubes. The germ tube attached antibodies were 
eluted to obtain the CAGTA-purified fraction (CAGTA-pur). Protocols 
were previously described by Sáez-Rosón et al. [17]. Lambda phage and 

E. coli cross-reactive antibodies were removed from the 
CAGTA-enriched serum fraction by absorption to nitrocellulose mem-
branes embedded in E. coli lysed with non-recombinant Lambda ZAP II 
phage (E. coli-λ ads-CAGTA), following the protocol described by Sam-
brook and Russell [19]. 

2.3. Screening of the cDNA library 

Screening of the phage library was performed following the protocols 
described by Sambrook and Russell [19]. Briefly, while growing, plates 
containing E. coli infected with the cDNA library phages were overlaid 
with 0.5M IPTG-soaked nitrocellulose filters to induce the expression of 
the C. albicans proteins that resulted blotted to nitrocellulose mem-
branes when visible lysis plaques were developed. Membranes were 
lifted and blocked with TBS-BSA (Tris-Buffered Saline with 2.5 % (w/v) 
bovine serum albumin), then incubated with E. coli-λ ads-CAGTA and 
next incubated with an anti-rabbit IgG conjugated to 
alkaline-phosphatase. The positive plaques that were revealed with 
BCIP/NBT substrate in the first screening round were selected and 
re-screened at a lower plaque density to confirm the positive reaction 
with CAGTA-enr antibodies and to ensure the isolation of pure plaques. 

Clones codifying for proteins that were considered of interest were 
mixed 1:5 with non-insert phages and rescreened with CAGTA-pur to 
further verify their CAGTA specificity. 

2.4. Analysis of positive clones for protein identification and 
characterization 

To obtain the sequence of interest from the positive clones a PCR was 
performed with T3 and T7 primers, whose sequences flank the 
C. albicans gene inserts in the phage genome. Amplicons were submitted 
to the Sequencing and Genotyping Service SGIker of the University of 
the Basque Country UPV/EHU and the resulting sequences were ana-
lysed with the BioEdit software. Protein identification was carried out 
with BLAST, and they were checked for similar sequences in other mi-
croorganisms. To determine whether the proteins were located on the 
surface of the organism, the presence of signal peptides, GPI anchor sites 
and transmembrane motifs was checked with the software programs 
SignalP [20], PredGPI [21] and TMHMM [22]. 

3. Results 

3.1. Antigens recognized by the CAGTA-enriched fraction 

The initial screening of 1.5 × 106 plaque forming units followed by 
several rounds of purification and re-screening with the rabbit E. coli-λ 
ads-CAGTA serum fraction allowed the selection of 53 positive clones that 
were checked to confirm that their inserts were in the correct reading 
frame to be expressed. The sequence analysis of the 53 clones showed 
identity with full or partial gene sequences codifying for five different 
C. albicans proteins (Table 1). Most clones (28) codified for different 
segments of the Hyr1 protein, derived from different HYR1 gene se-
quences, comprised between nucleotides 113 and 2,760. Twenty one 
codified for the whole Eno1 protein while the remaining clones contained 
partial sequences of the SEC21 (2 clones), CYS3 and APE2 genes. 

Table 1 
Number of positive clones analysed and C. albicans proteins identified in the phage library screening.  

No. of clones Gene name Name of the protein Nucleotide sequence contained in the phage coding for the C albicans protein GenBank accession number a 

28 HYR1 Hyphally regulated protein 1 Different segments between nt 113 and 2,760 (end of the CDS) XM_717090.2 
21 ENO1 Enolase 1 Whole protein (nt 1-1,323) XM_706790.2 
2 SEC21 Coatomer subunit gamma Nt 934- 2,811 (end of the CDS) XM_708476.2 
1 CYS3 Cystathionine gamma-lyase Nt 952-1,200 (end of the CDS) XM_711148.2 
1 APE2 Metallo-aminopeptidase Nt 544-840 XM_019475095.1  

a GenBank (NCBI) database accession number of the sequence used for identification. 
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3.2. Clones selection and reaction with purified CAGTA 

One clone of each protein was selected as representative to confirm 
their reaction with CAGTA-pur. Since HYR1 clones covered different 
segments of the gene sequence codifying for the Hyr1 protein, we 
selected a clone of 579 bp (from nucleotide 1,441 to 2,019), named 
D22b, because the alignment of most HYR1 clones sequences shared this 
gene region. 

The purified CAGTA from the rabbit serum recognized the selected 
clones that contained the sequences of Hyr1, Cys3 and Ape2. However, 
those expressing Eno1 and Sec21 did not show any specific reaction. 

3.3. Protein analysis 

In silico analysis of the five proteins predicted that only Hyr1 has a 
putative signal peptide and a GPI anchor point. Meanwhile, TMHMM 
detects, a signal peptide-like sequence in Ape2 between the amino acids 
21 and 40 and, only in this case, a helix transmembrane motif. 

According to BLAST, none of the identified proteins presents signif-
icant similarity with human proteins nor with any other higher 
eukaryotic organism. For Eno1, Sec21, Cys3 and Ape2 proteins, the 
alignments show high similitude (>80 %) with their correspondents of 
the genus Candida (especially Candida africana and Candida dubliniensis) 
and other yeasts of genera such as Spathaspora or Scheffersomyces. Ape2 
showed around 50 % similarity with an Aspergillus peptidase and a hy-
pothetical protein of Penicillium. Interestingly, Ape2, Eno1 and Cys3 
showed high identity (80-90 %) with sequences of the Asgard archaea 
group proteins. 

Concerning Hyr1 sequence, it only shows high homology with the 
hyphally regulated protein of C. africana (87.5 % identity with 65 % 
coverage) and mild similarity (40-50 % identity with 38-53 % coverage) 
with C. dubliniensis, Candida tropicalis, Candida viswanathii and Candida 
maltosa proteins. Hyr1 sequence also showed mild similarity with an 
Asgard archaea group hypothetical protein. 

The analysis of the protein fragments codified by Sec21 and Ape2 
phages that were recognized by the CAGTA-enr serum fraction, yielded 
equivalent rates of homology as for the complete protein. On the con-
trary, the subterminal section of the Hyr1 protein codified by the D22b 
phage showed only mild homology with a putative hyphally-regulated 
cell wall protein precursor of C. dubliniensis and the hyphally- 
regulated protein of C. africana. Finally, the peptide codified by the 
Cys3 phage showed high homology (85.7 %) with the cystathionine beta 
lyase of Chlamydia. 

4. Discussion 

The presence of Candida as a commensal in the human body and the 
lack of specific symptoms for IC, together with the low sensitivity of 
blood culture make it necessary to develop new diagnostic approaches, 
especially in the case of deep-seated candidiasis. CAGTA are specific for 
antigens located on the surface of the germ tubes of Candida albicans, 
morphology which is associated with the invasion [23] and has shown 
good diagnostic results for deep-seated candidiasis [24]. However, this 
technique has limitations, because it is subjective and requires training 
of the person in charge, so the identification of specific CAGTA targets 
would help to develop more sensitive, objective and automatable tech-
niques. In this regard, Díez et al. [25] have had promising results with 
some of the proteins recognised by these antibodies, but the identifica-
tion of new targets or specific protein fragments could improve or 
complement them. 

In our study, we used a C. albicans cDNA phage library and serum 
from a rabbit model of invasive candidiasis to identify proteins suscep-
tible to be biomarkers for IC. With this approach, a CAGTA-enriched 
fraction of the immune serum recognized five C. albicans proteins 
identified as: Hyr1, Eno1, Sec21, Cys3 and Ape2, but only three of them 
(Hyr1, Cys3 and Ape2) were confirmed with the purified CAGTA. 

The in silico analysis of these proteins pointed only at Hyr1 as a 
conventionally secreted glycosylphosphatidylinositol (GPI) -anchor 
protein. GPI-anchor proteins are essential in cell wall integrity, 
morphogenesis and virulence of C. albicans [26]. An exposed location, as 
well as their role in pathogenicity, have led to study several proteins 
such as Als3, Hwp1 or Hwp2 as possible biomarker candidates, vaccine 
antigens and/or therapeutic targets [25,27-29]. Hyr1 has already been 
described as a GPI protein [30,31] associated to hyphal morphology of 
C. albicans, nevertheless its absence does not influence the morpholog-
ical switching [30]. Luo and co-workers [32] showed that this protein is 
involved in resistance to phagocytosis and considered it an interesting 
vaccine candidate. In this respect, mice immunisation with Hyr1 
induced protection not only against C. albicans infections, but also 
against other microorganisms such as Acinetobacter baumannii and 
Klebsiella pneumoniae [33] and, recently, the multi-resistant Candida 
auris [34]. Cases of cross immunization might be due to conformational 
features since the BLAST analyses did not reveal any similarities be-
tween Hyr1 and any protein of these microorganisms. While these 
studies focused on the N-terminal region of the protein (up to amino acid 
350), the fragment proposed in our study is located in the 
medial-to-C-terminal region of the protein (amino acids 479 to 667), and 
covers part of the Ser/Thr-rich domain (amino acids 346 to 576), an area 
that is predicted to be heavily O-glycosylated. Glycosylation has been 
reported to be relevant for the particular conformation of other Candida 
proteins and therefore, essential for their correct function [35]. More-
over, glycosylation has a double role in the antibody-antigen recogni-
tion; on the one hand, it could mask some epitopes, while on the other 
hand, it could be indispensable for the correct exposure of the epitope 
[36] either because the oligosaccharide is directly recognised by the 
antibody or because it influences the proper presentation of the peptide 
epitope. In this regard, the protein fragments expressed in this lambda 
phage screening, were produced in E. coli and therefore without any 
eukaryotic post-translational modification, thus, the native conforma-
tion of this protein should also be studied. 

Concerning the utility of Hyr1 for the diagnosis of invasive candi-
diasis, to our knowledge, there is only one report of our group that 
evaluated the detection of antibodies to the recombinant Hyr1 protein 
produced in E. coli, with moderate results of sensitivity and specificity, 
58.3 % and 82.2 % respectively [37]. Aiming to improve the diagnosis of 
invasive candidiasis, in this work we propose the use of the mid-terminal 
segment of Hyr1 recombinantly expressed in a yeast expression model 
such as Pichia pastoris. The incorporation of glycosidic residues, as well 
as the correct folding of this Hyr1 fragment, would mimic the native 
protein, improving the detection of specific antibodies for diagnosis, as 
well as the development of a more specific response in immunisation 
models. 

Although predictive tools differ on whether the metallo- 
aminopeptidase Ape2 has a signal peptide or not, Klinke et al. [38] 
isolated this protein from the Candida cell wall and observed that its 
gene sequence is likely to encode for two exons linked by an intron, with 
the first exon acting as a secretion signal that would explain how the 
protein reaches the surface. In addition, a posterior study [39] registered 
a significant increase in the expression of Ape2 during epithelial inva-
sion, which would imply a role in the virulence of the fungus. With re-
gard to a diagnostic application, El Moudni et al. [40] used a secreted 
aminopeptidase from C. albicans with good results, but the protein they 
studied seems not to be the one identified in our study [38]. Further 
studies may help to evaluate the utility of secreted aminopeptidases for 
diagnosis. 

The in silico analysis of Eno1, Cys3 and Sec21 did not detect any 
secretion signal peptide for them, however, some C. albicans proteins 
without a signal peptide have been found in the cell surface as well as in 
the external medium after being released by alternative secretion pro-
cesses [41–42]. Some of this non-signal peptide secreted proteins have a 
known function in the cytoplasm but are also involved in 
surface-specific processes. These so-called moonlighting proteins, 
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perform some additional function unrelated to their “conventional” 
function and usually occur in subcellular locations where they are not 
expected to be [43]. 

Eno1 is a highly conserved moonlighting protein found in a wide 
range of organisms [44]. Even though the role of this C. albicans 
glycolysis and gluconeogenesis enzyme in the fungal pathogenesis is not 
clear, it seems to be involved in the adhesion to the host [45], the spread 
of infection [46] and phenotypic changes [47]. Moreover, its diagnostic 
utility has already been confirmed in several studies, either by detecting 
the free antigen [48] or specific antibodies [49], based on the significant 
amounts of enolase that can be detected on the surface of filamenting 
C. albicans, and the strong reaction developed by patients with IC against 
this protein [44]. 

Regarding to the presence of the enolase 1 in the external environ-
ment, several hypotheses have been considered, however, Gil-Bona and 
collaborators [50] showed evidences that Eno1 was exported to the 
external medium via vesicle mediated transport. Later, 
Karkowska-Kuleta et al. [44] proposed that secreted Eno1 was reab-
sorbed and captured by the Als3 protein as a way of adhesion to the cell 
wall. 

Cys3, a cytoplasmic enzyme involved in aminoacid biosynthesis, was 
detected in a recent study in external vesicles in both yeast and hyphae 
forms of C. albicans [51]. Even though hyphae shown an increased 
amount of this protein in the cytoplasm [52] and its gene is overex-
pressed during the biofilm formation [53] we have not found any studies 
showing evidence of this protein on the external surface, of Candida spp., 
nor in other organisms. The reaction with the purified CAGTA fraction 
could be due to cross-reactivity with conformational epitopes from other 
proteins. In addition, the identified fragment would not be a good 
diagnosis marker of IC due to its high homology with the cystathionine 
beta-lyase from Chlamydia. 

Finally, Sec21 has also been found in vesicles secreted by C. albicans 
[54]. Sec21 and other six proteins conform the coat complex protein I 
(COPI) of the vesicles responsible for retrograde transport from Golgi to 
the Endoplasmatic Reticulum [55] and it is therefore a cytoplasmic 
protein in origin. However, unlike Eno1 and Cys3, Martínez-López and 
collaborators [54] found that this protein and other COP proteins were 
detected only in the vesicles secreted to the external medium by 
C. albicans growing as mycelia but not in the yeast form. Although these 
proteins seem to be related to the morphological change, the induction 
of specific antibodies by IC patients would follow a similar pattern to 
Sec20, another structural protein involved in the retrograde transport 
[56,57]. 

Eno1 and Sec21 were recognized by the CAGTA enriched serum 
fraction of serum of a rabbit with invasive candidiasis but not by the 
purified CAGTA. In the case of Sec21, this could be due its presence in 
the external environment but not on the germ tubes surface. However, 
Eno1 can be in both yeast and hyphal surfaces, as well as secreted to the 
external medium [50,58]. Our results contrast with a previous study of 
our group where Eno1 was detected by the purified CAGTA of a similar 
animal model of invasive candidiasis but they used a more sensitive 
chemoluminiscent detection reaction [17]. These same authors [59] 
reported that CAGTA reaction with Eno1p was higher when the protein 
was purified from a cell wall extract than when it was produced 
recombinantly in E. coli; these antigenicity changes could be due to 
protein folding, post-translational modifications or, if the theory pro-
posed by Karkowska-Kuleta [44] is correct, the link between Eno1 and a 
cell wall-binding protein that could alter its conformation, exposing 
some epitopes that could be buried in the soluble form of the protein. 
Further studies would be necessary to determine the Eno1-C. albicans 
cell wall interactions as well as antibody- antigen interactions for this 
protein. 

5. Conclusions 

In this study, five proteins have been identified through the 
screening of a C. albicans cDNA library with CAGTA: Eno1, Hyr1, Ape2, 
Sec21 and Cys3. Of them, only the moonlighting protein Eno1 has been 
extensively studied with diagnostic purposes. Hyr1, the most frequently 
identified protein in this study, and more precisely the N-terminal sec-
tion of it, is being studied as a vaccine candidate with good results, but 
its application as a diagnostic tool is more limited. In contrast, as far as 
we know, the medium-to-C-terminal Hyr1 section that we are intro-
ducing in this study has not been studied for any of the mentioned 
purposes, and would avoid possible cross-reactivity derived from the 
inter-organisms highly conserved N-term end of the protein. Taking into 
account characteristics such as protein location and their role in viru-
lence and/or yeast-to-hyphae transition, further studies are needed 
involving Ape2 and Sec21, together with the above mentioned subter-
minal fragment of Hyr1 as potential biomarkers for the diagnosis of 
invasive candidiasis. 
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