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A B S T R A C T

Spiking Neural Networks (SNN) are recognised as well-suited for processing spatiotemporal information with
ultra-low energy consumption. However, proposals based on SNN for classification tasks are more common than
for forecasting problems. In this sense, this paper presents a new general training methodology for univariate
time-series forecasting based on SNN. The methodology is focused on one-step ahead forecasting problems and
combines a PulseWidth Modulation based encoding–decoding algorithm with a Surrogate Gradient method as
supervised training algorithm. In order to validate the generality of the presented methodology sine-wave,
3 UCI and 1 available real-world datasets are used. The results show very satisfactory forecasting results
(𝑀𝐴𝐸 ∈ [0.0094, 0.2891]) regardless of the characteristics of the dataset or the application field. In addition,
weights can be initialised just once to achieve robust results, boosting the advantages of computational and
energy cost of SNN.
1. Introduction

Model accuracy has been the main factor to be enhanced by Ma-
chine Learning (ML) and Artificial Intelligence (AI) researchers in
recent years with model efficiency being considered as a non-important
criterion (García-Martín, Rodrigues, Riley, & Grahn, 2019). Nonethe-
less, the existing problem between IA techniques and the global energy
consumption is increasingly being recognised (de Vries, 2023; Suetake,
ichi Ikegawa, Saiin, & Sawada, 2023). Actually, hardware efficiency im-
provement and innovation in model architectures and algorithms could
help to mitigate or even reduce AI-related electricity consumption in
the long term (de Vries, 2023).

In this sense, Spiking Neural Networks (SNN), the so-called third
generation of neural networks, have gained popularity in the last
years. One of the main advantages of SNN is that they can be im-
plemented in neuromorphic hardware with ultra-low power consump-
tion (Sboev, Litvinova, Vlasov, Serenko, & Moloshnikov, 2016). In fact,
recent works (Bu, Ding, Yu, & Huang, 2022; Deng et al., 2020; Fang
et al., 2023) have claimed that SNN are more power efficient than
Artificial Neural Networks (ANN), which are one of the most widely
used IA algorithms (Mesanza et al., 2020; Nakai & Nishimoto, 2023; Shi
et al., 2022; Zamri et al., 2022). Among other reasons, SNN gain their
energy efficiency due to event-driven calculation, sparse activation, and
multiplication-free characteristics (Bu et al., 2022).
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The potential of SNN is that they mimic biological neurons more
closely than ANN using more biologically plausible and energy efficient
neuronal models as computational units. In SNN the information is
encoded in temporal spike sequences or spike trains trying to imitate
the nervous system. This means that the shape of the spikes does not
carry any information itself, but the importance is in the number and
the timing of the aforementioned spikes. On the contrary, in ANN the
information is encoded in real type values, which can be understood as
a rate encoding scheme (Wang, Lin, & Dang, 2020).

Given the temporal encoding of the spikes SNNs possess intrinsic
features to manage temporal data. In spite of this important quality,
the vast majority of works in the literature are focused on applying
SNNs to classification problems such as fault prediction (de Abreu,
Silva, Nunes, Moioli, & Guedes, 2023), image recognition (Qasim Gi-
lani, Syed, Umair, & Marques, 2023), pattern recognition (Aghabarar,
Kiani, & Keshavarzi, 2023), object detection (Lien & Chang, 2022),
event recognition (Yao et al., 2023), and electrocardiogram classifi-
cation (Feng, Geng, Chu, Fu, & Hong, 2022). Actually, little effort
has been made in applying SNNs to regression problems (Rançon,
Cuadrado-Anibarro, Cottereau, & Masquelier, 2021) and even much less
in time-series forecasting problems due to two main reasons.

The first reason is the traditional lack of algorithms capable of
encoding accurately real value data into spikes and decoding or re-
constructing the SNN output into real values precisely (Arriandiaga,
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Portillo, Espinosa-Ramos, & Kasabov, 2020). Among different existing
encoding methods, rate encoding and temporal encoding approaches
stand out. Rate encoding uses the number of spikes emitted in a
time window. Popular algorithms behind this idea are Poisson distri-
bution, HoughSpiker Algorithm (HSA), Ben’s Spike Algorithm (BSA),
Address-Event Representation (AER) and Adaptive Threshold-Based
(ATB). On the contrary, temporal encoding is based on the distance
between spikes. Among temporal encoding methods, Time-to-First-
Spike and Rank Code can be highlighted. Although rate encoding is
widely used, temporal encoding preserves more relevant information
from the original signal than rate coding (Lopes-dos Santos, Panzeri,
Kayser, Diamond, & Quian Quiroga, 2015). Nonetheless, many tempo-
ral encoding algorithms also have significant drawbacks such as the
impossibility to decode the output from the SNN, which is essential in
regression and forecasting problems, or the decoding process introduces
significant errors in the reconstruction of the signal (Arriandiaga et al.,
2020; Wang, Guo, & Adjouadi, 2016).

The second reason is the supervised training process. In general,
supervised learning is considered more accurate and reliable than
unsupervised learning (Kim, 2020). Given that in forecasting tasks past
values are available supervised training is commonly applied (Bojer,
2022). However, the difficulties for applying Back Propagation (BP)
and Back Propagation Through Time (BPTT) to SNN are due to the
non-differentiable nature of the spiking units. Over the past few years
a significant effort has been made to solve this limitation to implement
supervised learning in SNN. The supervised learning approaches for
SNN can be categorised into indirect and direct training. Indirect
training lies in firstly training a conventional ANN and, secondly,
the learned parameters are transferred to a functionally equivalent
SNN (O’Connor, Neil, Liu, Delbruck, & Pfeiffer, 2013). Nonetheless, in
these methods the signals used for training cannot accurately represent
the statistical behaviour of the spike trains, which results in insufficient
accuracy for many practical applications (Lee, Delbruck, & Pfeiffer,
2016). Thus, this proposal advocates for direct training in SNN.

Section 1.1 proposes a systematic literature review about the fore-
casting proposals based on SNN. The literature works are grouped into
categories and analysed attending to relevant aspects that define both
forecasting and SNN scopes.

1.1. Related work

A forecasting problem can be understood as the prediction of future
values of a series based solely on its past observations (Semenoglou,
Spiliotis, & Assimakopoulos, 2023). In this sense, this work proposes
two main basis to classify the existing forecasting proposals based on
SNN. The first one is the application scope of each proposal, which can
be either a general methodology (G) valid for any forecasting task or
a solution for a specific problem or application field (S). The second
basis is the difficulty in use of each proposal, which is categorised
depending on three criteria: (a) if other AI and ML techniques are
applied alongside the SNN the difficulty in use increases; (b) regarding
the learning approach and algorithm not using a standard, well-known,
general and available algorithm increases the difficulty; (c) if a more
complex SNN topology than the traditional one (basic feedforward) is
used the difficulty in use increases. In this context three categories are
defined depending on how many criteria are met in each proposal:

• High Difficulty (HD): two or more of the criteria described above
are met.

• Medium Difficulty (MD): one of the criteria described above is
met.

• Low Difficulty (LD): none of the criteria described above is met.

According to these basis in Table 1 a categorisation of the literature
eview is proposed. For each literature reference classified as (1) G or
, and as (2) HD, MD or LD, the following information is provided:
2

• Information about forecasting

i Number of previous values required (Np) to make a pre-
diction.

ii Prediction horizon (H).

• Information about SNN

i Encoding method (TE: temporal encoding, RE: rate encod-
ing).

ii Type of learning approach (U: unsupervised, SD: super-
vised direct, SI: supervised indirect) and learning algorithm
applied to SNN.

iii Neuron model.
iv Structure (number of layers and neurons) of the network.

• Information about the datasets

i Number of datasets (N).
ii Application field.

iii Availability (DNA (a): Dataset Not Available because the
source is not provided; DNA (b): Dataset Not Available
because the link of the source has expired; DNA (c): Dataset
Not Available because the information is partially pro-
vided; DA: Dataset Available).

Notice that in Table 1 ‘‘−’’ indicates that the according informa-
tion is not provided in the literature reference impeding comparison,
reproducibility and replication of the corresponding proposal.

The first general conclusions that can be drawn from Table 1 are:
(1) The application field of SNN for forecasting is relatively reduced
with most of the works within the field of energy (Brusca, Capizzi,
Lo Sciuto, & Susi, 2019; Capizzi, Sciuto, Napoli, Woźniak, & Susi, 2020;
Chen et al., 2016; Dudek et al., 2022; Han, Li, & Qian, 2018; Kulkarni,
Simon, & Sundareswaran, 2013; Madhiarasan & Deepa., 2016; Sharma
& Srinivasan, 2010; Sun et al., 2016; Wang, Xue, Liu, Peng & and Jiang,
2020; Wei, Wang, Niu, & Li, 2021), followed by air pollution (Liu, Lu,
Wang, & Kasabov, 2021; Macia̧g, Kasabov, Kryszkiewicz, & Bembenik,
2019; MacIag, Kryszkiewicz, & Bembenik, 2020) and financial (Ma-
tenczuk et al., 2021; Reid, Hussain, & Tawfik, 2013, 2014) fields; (2)
Regarding the application scope the vast majority of the works are
specific proposals (S).

As stated above, works classified as HD meet at the same time
two or more of the aforementioned criteria. HD works in Table 1
are Brusca et al. (2019), Capizzi et al. (2020), Dudek et al. (2022),
Laña, Capecci, Del Ser, Lobo, and Kasabov (2018), Liu et al. (2021),
Macia̧g et al. (2019), MacIag et al. (2020), Reid et al. (2013, 2014),
Saeedinia, Jahed-Motlagh, Tafakhori, and Kasabov (2021), Wei et al.
(2021).

In Saeedinia et al. (2021) the criteria of using a complex SNN
topology and a non-standard learning approach are met. In this work a
3-dimensional (3D) SNN is proposed. The SNN is structured according
to Magnetic Resonance Imaging (MRI) personal data consisting of
interconnected observed (input/output) and hidden neurons. Hence,
the proposed 3D SNN structure is limited to MRI problems. In addition,
300 neurons (15 observed and 285 hidden) based on Izhikevich model
are used. This model is commonly applied in neuroscience research due
to its high biological plausibility. However, Izhikevich neuron model
is also considered a complex model since it requires two differential
equations to describe the functioning of a neuron. Thus, it is unusual to
apply it in ML research, where the Leaky Integrate-and-Fire (LIF) model
is the most widely used model due to its simplicity (Schuman et al.,
2017). Regarding the learning approach, in Saeedinia et al. (2021)
a combination between supervised (GDM: Gradient Descent Method)
and unsupervised (STDP: Spike Time Dependent Plasticity) strategies
is carried out. The combination of two learning approaches during the
training process increases considerably the computational and energy
cost, countering the advantages offered by SNN.
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Table 1
Literature review of the forecasting with SNN.

Applic.
Scope

Difficulty in
use

Applied techniques Ref. Dataset SNN information Forecasting information

N. Applic. Field Availability Encoding Method Learning approach
and algorithm

Structure Neuron Model Np H

S HD SNN + Output
Module

Saeedinia
et al.
(2021)

2 Health DNA (a) DNA
(b)

– U (STDP) and S
(GDM)

15 observed
neurons and 285
hidden neurons

Izhikevich – –

Polychronous SNN Reid et al.
(2013)

3 Financial 3xDNA (a) TE. Absolute Spike
Timing

U (STDP). – Izhikevich – 1, 5

Reid et al.
(2014)

3 Financial 3xDNA (b) 1, 5, 10, 15

Online evolving
SNN (OeSNN)

MacIag
et al.
(2020)

1 Air Pollution DNA (c ) InputLayerEncoding
Procedure

OeSNN-IP – – – 1, 12

NeuCube + dynamic
evolving Spiking
Neural Network
(deSNN)

Capizzi
et al.
(2020)

1 Energy (Biogas
Production)

DNA (a) RE. BSA. U (STDP) and S
(SDSP + Rank
Order (RO)).

10 × 10 × 10
8 × 8 × 8
6 × 6 × 6
4 × 4 × 4

LIF 10 100

Brusca
et al.
(2019)

1 Energy (Power
Generation)

DNA (a) RE. BSA. U (STDP) and S
(SDSP + RO).

10 × 10 × 10 LIF 5 1

Laña et al.
(2018)

1 Traffic DNA (c ) RE. ATB. U (STDP) and S
(STDP + RO).

90 × 60 LIF 20 1

Clustering + Neu-
Cube + evolving
Spiking Neural
Network (eSNN)

Macia̧g
et al.
(2019)

1 Air Pollution DA RE. ATB and Spike
Rate.

U (STDP) and S
(eSNN training).

3 dimensional
template network
with 1000 neurons

LIF 12 1, 3, 6

Liu et al.
(2021)

2 Air Pollution DNA (b) DA Step-Forward
Encoding.

U (STDP) + S. – LIF – 1, 3, 6, 12,
14

VMD + ANN –
SNN + Loihi
hardware

Dudek
et al.
(2022)

1 Energy (Wind
Power)

DNA (a) – SI. – – – 1

Empirical Wavelet
Transform
+ RNN + Convolu-
tional
SNN

Wei et al.
(2021)

4 Energy (Wind
Speed)

4xDNA (a) – SD. SG. – LIF 10 –

MD Grey Correlation
Analysis
(preselection
samples) + SNN

Chen
et al.
(2016)

1 Energy (Power
Generation)

DNA (a) TE. Time To First
Spike

SD. SpikeProp. [16 - (empirical
formula) - 16]

SRM – 1

VMD + SNN Sun et al.
(2016)

1 Energy (Carbon
Price)

DNA (c ) – SD. SpikeProp. 3 layers. Neurons
depend on
subseries

SRM Depending on
subseries

–

SNN + Continuous
Ranking Probability
Score
(CRPS) + Group
Search Optimiser
(GSO)

Wang,
Xue, et al.
(2020)

2 Energy (Wind
Power)

DA DNA (a) – SD. SpikeProp. [12-11-17-(number
of intervals
defined)]

IF – 1

SNN + SNN Kulkarni
et al.
(2013)

2 Energy (Electricity
load)

DNA (b) – SD. GDM. [29 - (adjustable
hyperparameter) -
6]

SRM Depending on
variables

1

[68 - (adjustable
hyperparameter) -
48]

LD SNN Matenczuk
et al.
(2021)

1 Financial DNA (a) – – – – 14 1

Han et al.
(2018)

1 Energy (Wind
Speed)

DA – SD. SpikeProp. [28 - (empirical
formula) - 24]

SRM 24 + other
variables

24

Mad-
hiarasan
and
Deepa.
(2016)

1 Energy (Wind
Speed)

DNA (a) – SD. SpikeProp. [7 - 9 - 1] SRM – –

Yang and
Zhongjian
(2011)

1 Grain Yield DNA (a) – SD. SpikeProp. [10 - 5 - 1] – – –

G MD SNN Sharma
and
Srinivasan
(2010)

2 Energy (Electricity
Price)

DA DNA (b) TE. Time Interval. SD. Evolutionary
Strategies

[7 - 12 - 1] IF – 1
In Reid et al. (2013, 2014) successful forecasting in financial time-
eries datasets are performed. Nonetheless: (i) the STDP algorithm is
pplied, which is an unsupervised strategy considered less accurate
han the supervised one for forecasting purposes (Kim, 2020); (ii) the
forementioned Izhikevich complex model is used; (iii) Polychronous
NN based on polychronization (Izhikevich, 2006) is used, which lies
n organising the SNN into clusters of neurons with similar spike firing
haracteristics. Hence, the training process of a Polychronous SNN
equire higher memory and computational cost compared to the basic
eedforward SNN topology.

The literature work (MacIag et al., 2020) is classified as HD work
ince the criteria of using a complex SNN topology and a non-standard
earning approach are met. In particular, a model based on Online
volving SNN (OeSNN) is presented. This type of SNN were originally
esigned for classification problems but authors of MacIag et al. (2020)
dopt them for air pollution forecasting. However, additional informa-
ion about air pollution such as temperature or wind parameters are
ntroduced as input data which may distort the forecasting concept
nd it is out of scope of this proposal. In addition, authors propose a
3

ew encoding algorithm (InputLayerEncoding Procedure) and a new
learning approach (OeSNN-IP). Nonetheless, they are only suitable for
OeSNN and cannot be reproducible for other SNN topologies.

HD works are also characterised by the use of other techniques
alongside SNN, which is the case of Neucube (Brusca et al., 2019;
Capizzi et al., 2020; Laña et al., 2018; Liu et al., 2021; Macia̧g et al.,
2019). NeuCube is a well-known computational framework for the
development of machine learning models inspired in the brain function-
ing. This framework consists of three different blocks: data encoding
block, SNN cube block and prediction block. In the case of forecasting
related works that use NeuCube: (i) in the encoding block rate encoding
algorithm is applied, which is less accurate than temporal encod-
ing (Lopes-dos Santos et al., 2015); (ii) in SNN cube block topologies
such as dynamic evolving Spiking Neural Network (deSNN) (Brusca
et al., 2019; Capizzi et al., 2020; Laña et al., 2018) and evolving
Spiking Neural Network (eSNN) (Liu et al., 2021; Macia̧g et al., 2019)
are used, which were designed for classification problems; (iii) the
structures commonly applied in SNN cube block consist of 3D SNN,
which increase the computational cost of the training; (iv) apart from
the 3D SNN, other LIF spiking neurons are required in the prediction
block to make the forecast; (v) an unsupervised learning approach to
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train the SNN cube block and a supervised learning approach to train
the spiking neurons in the prediction block are applied, increasing
considerably the computational and energy cost.

Other HD works such as Dudek et al. (2022) and Wei et al. (2021)
combine SNN with techniques that pre-process the time-series. In the
case of Dudek et al. (2022) Variational Mode Decomposition (VMD)
technique is applied, while in Wei et al. (2021) Empirical Wavelet
Transform algorithm is used. This idea of pre-processing the data is
applied to decompose the original series into subseries in order to
simplify the process of modelling and ease of inference (Suradhaniwar,
Kar, Durbha, & Jagarlapudi, 2021). Then, the forecasting is made
by applying different SNN to each subseries. However, these actions
lead to specialised models for each subseries focusing each SNN on
specific characteristics of the data. Notice that building and train-
ing one SNN per subseries increases considerably the computational
cost of the methodology. Furthermore, these works also present some
other limitations: (i) in Dudek et al. (2022) an indirect supervised
training is performed, which has been demonstrated to be less ac-
curate and more energy consumption than direct supervised training
algorithms (O’Connor et al., 2013); (ii) in Wei et al. (2021) a Gated
Recurrent Unit (GRU) is used as principal forecasting unit instead of
SNN. The SNN are used to predict the forecasting errors made by
each GRU. Hence, this is not a solution based only on SNN and the
computational and energy cost advantages of the SNN are not fully
exploited.

Works classified as MD meet only one of the criteria stated above.
MD works in Table 1 are Chen et al. (2016), Kulkarni et al. (2013), Sun
et al. (2016), Wang, Xue, et al. (2020).

The criteria of using other techniques alongside SNN is met in Chen
et al. (2016) and Sun et al. (2016) since both pre-process the time-
series. In Chen et al. (2016) a forecasting of photovoltaic system power
generation is carried out. A grey correlation analysis (GRA) is applied
in order to classify the data from the dataset in four different groups
with similar characteristics. Then, a SNN is used for each group. In
the case of Sun et al. (2016), the same strategy is performed but
VMD technique is used to decompose the original time-series. The
idea of applying different SNN to groups with similar characteristics
reduces the generality of the forecasting methodology and increases
considerably the computational cost since it is necessary to build and
train a different SNN for each group. In both works Spike Response
Model (SRM) is applied as neuron model, which is commonly applied
in SNN.

In Wang, Xue, et al. (2020) the criteria of using more techniques
alongside SNN is also met. In this case a traditional SNN is combined
with other statistical techniques to directly calculate the varying in-
tervals of future wind power with associated confidence levels. The
methodology proposed is based on using the group search optimiser
(GSO) algorithm as optimisation algorithm, where the objective func-
tion to reduce is the probability ranges calculated by the continuous
ranking probability score (CRPS). Hence, the methodology is focused
on probabilistic forecasting, being a specific field within forecasting
and not pertinent for other forecasting problems. Furthermore, no
information is provided about the encoding method and the previous
values required to make the forecasting.

In Kulkarni et al. (2013) two consecutive SNNs are used for a short-
term load forecasting. The first SNN is used to forecast the temperature
profile. However, as input data other variables such as the humidity
or the maximum solar radiation of the previous day are introduced.
Similarly, in the second SNN many other inputs are required such as
the maximum and minimum demand in the last day in order to forecast
the electrical load. Again, introducing as input more variables than the
one to be forecasted may distort the forecasting concept and it is out
scope of this proposal.

In LD works none of the criteria stated above are met. LD works
in Table 1 are Han et al. (2018), Madhiarasan and Deepa. (2016),
4

Matenczuk et al. (2021) and Yang and Zhongjian (2011).
In Matenczuk et al. (2021) a comparison between the performance
of traditional NN and SNN for financial time-series forecasting is per-
formed. However, regarding SNN there is a lack of information concern-
ing the encoding method, the learning approach, the structure of the
network and the neuron model, impeding comparison, reproducibility
and replication.

In Han et al. (2018), Madhiarasan and Deepa. (2016) and Yang and
Zhongjian (2011) traditional SNN topologies with SpikeProp learning
algorithm are performed. However, some drawbacks are the following:
(i) no information is supplied about the encoding method in any of the
works; (ii) in Han et al. (2018) other variables such as temperature,
humidity and pressure are introduced as input in the network, which
is out of scope of this proposal; (iii) in Madhiarasan and Deepa. (2016)
and Yang and Zhongjian (2011) there is no information provided
about the number of previous values required to make the forecast
and the prediction horizon, impeding comparison, reproducibility and
replication.

To the best of the author’s knowledge, only one Sharma and Srini-
vasan (2010) in the literature defines a general methodology. However:
(a) authors claim its generalisation capability only within the energy
application field; (b) information about the encoding method is not
complete enough; (c) evolutionary strategies are applied as supervised
learning algorithm, thus increasing the difficulty in use; (d) no infor-
mation is provided about the number of previous values introduced
as input data into the network; (e) although one dataset is available,
authors mention a special normalisation and data processing without
providing detailed information, which unables the results comparison
with other methodologies.

Thus, from the literature review it can be concluded that:

1. There is no proposal of supervised training general methodology
based on SNN applicable to any forecasting problem indepen-
dently of the characteristics of the application field.

2. A wide variety of proposals applies different ML and AI tech-
niques alongside SNN. This entails an increase in model com-
plexity and, consequently, an increase in computational and
energy cost which leads to counter the advantages offered by
SNN.

3. The difficulty and thus the implementation time for the practical
application of the existing proposals is considerable, requiring a
high level of expertise in SNN.

4. No proposal provides all the information necessary to reproduce
their work, impeding the comparison of different approaches.

In this sense, the aim of this work is to provide a new methodology
for univariate time-series forecasting with SNN, in particular for one-
step ahead forecasting. The methodology is based on the combination
of a temporal encoding algorithm and a direct supervised training strat-
egy which, as explained above, are both encouraged in the literature
review for this type of problem. Regarding the encoding algorithm our
temporal encoding method based on PulseWidth Modulation (PWM) is
extended and used (Arriandiaga et al., 2020). This algorithm provides
substantial improvements in terms of precision in the encoding and
decoding phases with respect to predecessor algorithms. Concerning
the supervised training strategy a proposal based on Surrogate Gradient
(SG) method (Neftci, Mostafa, & Zenke, 2019) is presented.

Thus, the main contribution of this work is a new methodology that
can be easily applied to any time-series regardless of its characteristics
and application field, boosting the use of SNN in forecasting problems.
In addition, this work makes specific contributions such as:

• A systematic review of the state-of-the-art for SNN based forecast-
ing, as shown in Table 1.

• A general methodology validated on five different application
fields.
• Ultra low-latency one time-step solution.
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• A robust methodology whose results do not vary depending on
the initialisation of the SNN weights.

• An extension of the PWM based encoding–decoding algorithm.
• A loss function suitable for the PWM based algorithm.

The rest of this paper is organised as follows: Section 2 exposes
he methodological approach proposed for a supervised training for
nivariate time-series forecasting with SNN. Section 3 describes the
xperimental datasets used to assess the performance of the proposed
pproach. Section 4 presents the results and the discussion is included
n Section 5. Finally, Section 6 concludes the paper.

. Methodological approach

As stated in the first section, Surrogate Gradient (SG) method (Neftci
t al., 2019) is applied as direct supervised training algorithm. SG
ethods are based on using differentiable surrogate functions in place

f discrete activation functions during the training phase and apply-
ng gradient-based optimisation techniques with the surrogate func-
ion (Han & Lee, 2021), which enables the application of BP algorithms
o SNN.

.1. Spike encoding of the data and input–output pairs for training

Before the training based on SG method it is necessary to encode
ll the real value information into spikes. Although it is claimed that
he encoding process has a great influence on the performance of
upervised learning algorithms for SNN (Wang, Lin, & Dang, 2020), few
orks in the literature (see Table 1) clearly point out how the data is
ncoded and decoded and how input–output pairs are formed.

For the proposed methodology a recent temporal encoding algo-
ithm based on PWM is used (Arriandiaga et al., 2020). It should be
oticed that the ultra-low power consumption advantages of SNN may
e offset by using rate coding algorithms since they introduce long
atency during which many spikes are processed for ensuring decision
5

ccuracy (Xu, Zhang, Liu, & Li, 2020).
The PWM based encoding algorithm is based on the PWM principles
o encode the data emitting spikes when there is any intersection
etween the original signal (time-series signal) and the carrier signal
PWM signal) commonly represented by a saw-tooth. Fig. 1 illustrates
he method for spike encoding data.

.1.1. Normalisation
As explained in Arriandiaga et al. (2020), for the task of forecasting

t is necessary to have one spike at each time-step. In order to ensure
ne intersection at every time-step the original signal must be between
he limits of the carrier signal, i.e. it must be normalised.

In principle it could be thought that both signals (carrier and
riginal) should be within [𝑚𝑖𝑛, 𝑚𝑎𝑥] range. However, as shown in the
irst case of Fig. 2, when two consecutive values of the original signal
re at the extremes of the saw-tooth no intersection occurs and, thus,
o spike is emitted. In order to solve these cases the normalisation of
he original signal is within [𝑚𝑖𝑛, 𝑚𝑎𝑥] range and the normalisation of
he carrier signal is within [𝑚𝑖𝑛 − 𝛥,𝑚𝑎𝑥 + 𝛥] range. The second case

of Fig. 2 shows that this normalisation always ensures the intersections
solving the spike emission for two consecutive extreme values. Notice
that this implies that a spike will never be emitted at the beginning/end
of the carrier. As is common in NN in general [𝑚𝑖𝑛, 𝑚𝑎𝑥] range can be
defined as [0,1].

2.1.2. PWM encoding–decoding algorithm
Once the data is normalised, the encoding algorithm itself can be

applied. The PWM algorithm works based on two hyperparameters. The
first hyperparameter is the number of carriers (nc) straightly related
to the carrier frequency. The value of nc determines the number of
intersections to be produced, in other words, it determines the total
number of spikes (as shown in Fig. 3a). As explained above, for the
task of forecasting it is necessary to have one value at each time-step.
Hence, nc is equal to the number of values of the time-series minus
one (Arriandiaga et al., 2020).

The second hyperparameter is the number of points per carrier (npc)
wave, which is related with the resolution. The more the npc, the
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Fig. 2. Normalisation of the signals.
Fig. 3. Influence of the hyperparameters of the PWM algorithm.
better the accuracy of the reconstruction. However, it also increases
the computational and memory cost. One of the greatest benefits of
the PWM encoding–decoding algorithm is that the value of npc enables
any user to establish a trade-off between the accuracy of the encoding–
decoding and the computational and memory cost. Thus, the value of
this hyperparameter depends on the application requirements.

The encoding process with PWM algorithm is based on two steps.
Firstly, an interpolation of the normalised time-series signal is per-
formed in order to ensure its dimension is the same as the carrier
(𝑛𝑐 ∗ 𝑛𝑝𝑐 𝑝𝑜𝑖𝑛𝑡𝑠). Then, the spikes are obtained by the PWM encoding
6

algorithm.
2.1.3. Input–output pairs
The spike signal after applying the PWM encoding algorithm con-

sists of 𝑛𝑐 ∗ 𝑛𝑝𝑐 values. If this signal is divided according to nc, nc
samples formed by npc values each are obtained. In order to illustrate
how the input–output pairs are formed Fig. 4 shows different samples
with different coloured rectangles. Variable 𝑖 represents the chronolog-
ical index of each sample, being 𝑖 ∈ [1,… , 𝑛𝑐]. It should be noticed that
in Section 2.3 the spike signal will be split into training, validation and
test datasets.

In forecasting it is necessary to have the real information about

the previous values. Thus, if Np samples are used for one-step ahead
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Fig. 4. Input–output pairs formation for the first sample to be forecasted for 𝑁𝑝 = 3.
forecast for the first Np samples of the time-series it is not possible
to make the forecast. In this sense, as shown in Fig. 4, for the case of
𝑁𝑝 = 3 the first sample to be forecasted is i = 4. At the bottom of Fig. 4
it is illustrated for 𝑁𝑝 = 3 and𝑡 = 1 the SNN input (i = 1, i = 2, i =
3) together with its corresponding target (𝑖 = 4). Also notice that the
input–output pairs are created in chronological order as shown in the
table in Fig. 4.

2.2. SNN architecture

The aim of this methodology is to achieve satisfactory forecasting
results with the simplest SNN. Thus, the SNN architecture proposed is
formed exclusively by the input and output layers. This kind of SNN
are known as single-layer SNN and are widely used due to its simple
architecture (Wang, Lin, & Dang, 2020).

At each time-step all the necessary samples have to be fed into the
SNN. This means that the number of neurons in the input layer for the
proposed architecture is equal to 𝑁𝑝 ∗ 𝑛𝑝𝑐.

In the case of output layer the number of neurons is equal to npc
since the scope is one-step ahead forecasting. Fig. 5 shows the outline
of the proposed architecture using the SNN coloured input and target
data of Fig. 4.

Finally, among the well-known spiking neuron models (Han & Lee,
2021) in this methodology the LIF model (Gerstner, Kistler, Naud, &
Paninski, 2014) is used due to its simplicity and low computational
cost. The LIF model and its variants are one of the widely used in-
stances of the spiking neuron model (Yamazaki, Vo-Ho, Bulsara, &
Le, 2022). This model is usually abstracted into a resistor-capacitance
circuit in which the subthreshold dynamic is described by the following
differential equation:

𝜏𝑚 ⋅
𝑑𝑉𝑚
𝑑𝑡

= −(𝑉𝑚(𝑡) − 𝑉𝑟𝑒𝑠𝑡) + 𝑅𝑚 ⋅ 𝐼(𝑡) (1)

where 𝑉𝑚 is the membrane potential, 𝑉𝑟𝑒𝑠𝑡 is the resting potential,
𝑅𝑚 is the leakage resistance, 𝜏𝑚 = 𝐶𝑚 ⋅ 𝑅𝑚 is the time constant or
leaky integrator which determines how quickly the membrane potential
changes, 𝐶𝑚 is the membrane capacitance, and 𝐼(𝑡) is the sum of the
current supplied from the 𝑗th neuron to the 𝑖th neuron which can be
expressed (Wang, Xue, et al., 2020) as:

𝐼(𝑡) =
∑

𝑗
𝑤𝑖𝑗

∑

𝑓
𝛿(𝑡 − 𝑡(𝑓 )𝑗 ) (2)

where 𝑤𝑖𝑗 is the weight between the 𝑗th neuron and 𝑖th neuron, 𝛿 is a
Dirac function and 𝑡(𝑓 ) is the firing time of the neuron j.
7

𝑗

2.3. Training

The proposed training methodology is based on BP with a SG
method. The training is implemented with SpikingJelly framework
(Fang et al., 2023) with the sigmoid function as SG.

Fig. 6 illustrates the training methodology. Firstly, the spike signal
is divided chronologically into training, validation and test sets (SPLIT-
TING). Secondly, the supervised training methodology is carried out,
which is based on an incremental learning strategy under the following
procedure:

1. A SNN input from the training dataset is introduced and prop-
agated throughout the network. In Section 2.3.1 the analytical
equations that govern the forward propagation are explained.

2. An output is emitted at each time-step. In Section 2.3.2 an
extension of the PWM based algorithm is proposed for (a) the
case that the output contains more than one spike, and (b) the
case that no spike is emitted in the output.

3. A loss function is computed between the SNN output and the
target data. In Section 2.3.3 a specific loss function for this
methodology is proposed.

4. The loss function is backpropagated and the SNN parameters are
updated as explained in Section 2.3.4.

5. Steps 1, 2, 3 and 4 are repeated until the last SNN input from
the training dataset is introduced, completing one epoch.

6. At the end of each epoch the SNN with the last updated pa-
rameters is simulated with the training and validation datasets.
The aim is to estimate the training and validation errors for
that epoch based on an Early Stopping fashion as explained in
Section 2.3.5. As a result, the SNN that yields best results is
selected and tested with the test dataset.

2.3.1. Samples propagation
For numerical simulation the dynamics of any spiking neuron

model in discrete time can be described with the following three
equations (Fang et al., 2021):

𝐻 𝑡 = 𝑓 (𝑉 𝑡−1, 𝑋𝑡) (3)

𝑆𝑡 = 𝛩(𝐻 𝑡 − 𝑉𝑡ℎ) (4)

𝑉 𝑡 = 𝐻 𝑡(1 − 𝑆𝑡) + 𝑉𝑟𝑒𝑠𝑡 ⋅ 𝑆
𝑡 (5)

Eq. (3) is related with the charging phase of a neuron. 𝐻 𝑡 is the

value of the membrane potential of a neuron after receiving an external
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Fig. 5. SNN architecture with 0 hidden units.

Fig. 6. Training methodology.
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i

Fig. 7. Conceptual scheme of the LIF neuron dynamics.
nput (𝑋𝑡) and before firing a spike. The value of 𝐻 𝑡 does not only
depend on the external input (𝑋𝑡) at the current time-step 𝑡, but also on
the residual value of the membrane potential 𝑉 𝑡−1 at the previous time-
step 𝑡− 1. The function 𝑓 (⋅) is different for each spiking neuron model.
In the case of the LIF model this function takes the form of Eq. (1) so
as Eq. (3) can be rewritten as:

𝐻 𝑡 = 𝑉 𝑡−1 + 1
𝜏
[−(𝑉 𝑡−1 − 𝑉𝑟𝑒𝑠𝑡) +𝑋𝑡] (6)

Eq. (4) is related with the firing phase of a neuron. In this equation
the value of the membrane potential 𝐻 𝑡 is compared with a firing
threshold 𝑉𝑡ℎ. 𝑆𝑡 represents the output spike at time-step 𝑡: if 𝐻 𝑡 ≥ 𝑉𝑡ℎ
the neuron will fire a spike 𝑆𝑡 = 1, otherwise 𝑆𝑡 = 0. For this purpose
the Heaviside step function (𝛩(𝑥)) is applied:

𝛩(𝑥) =
{

1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

(7)

Eq. (5) is related with the residual value remaining of the membrane
potential from one time-step to the next one. The value of 𝑉 𝑡 depends
on whether the neuron has fired or not at one time-step. In the case
that the neuron does not fire, 𝑉 𝑡 is equal to the load value reached
(𝐻 𝑡) at time-step t. On the contrary, if a spike is emitted, the value of
the membrane potential returns to a resting potential (𝑉𝑟𝑒𝑠𝑡). Eq. (5) is
also called hard reset (Fang et al., 2021).

Fig. 7 illustrates the dynamic of a spiking neuron with the afore-
mentioned equations. Notice that, in terms of Systems Engineering, the
charging phase is the impulse response of a first order system.

2.3.2. One time-step output: PWM based encoding–decoding algorithm ex-
tension for loss function and simulation

Notice that in many application fields such as bioengineering or
industrial sector the final user may need to monitor the real physical
values of the SNN output, i.e. in system units.

In this sense, the PWM based algorithm can also be used to decode
the SNN output. For decoding the same carrier signal used for encoding
is applied so as the intersections between this carrier signal and the
spike emitted at the SNN output signal are detected. This method yields
the SNN output in system units as seen in Fig. 8.

At this point it should be noticed that this algorithm originally was
intended to encode or decode one only spike per saw-tooth (Arrian-
diaga et al., 2020) as shown in Fig. 4, where the input data at each
9

time-step is formed by Np spikes. However, the number of spikes at
the output depends on how many neurons are activated at each time-
step. In this context, three cases can occur according to the number of
spikes present at one time-step output. The three cases and the decoding
process proposed for each of them are the following:

• No spike at the output carrier. If the SNN emits no spike at
a time step, no original discrete point will be reconstructed in
that carrier and the original value reconstructed by the PWM
algorithm will come from the interpolation between the two
closest carriers with spikes as shown in Fig. 9.

• Only one spike at the output carrier. The original PWM based
algorithm is applied (Arriandiaga et al., 2020).

• More than one spike at the output carrier. As explained above the
PWM based encoding algorithm was not intended to decode more
than one spike per carrier. Hence, for this case an extension of
the PWM based algorithm is proposed and two alternatives with
regards to the loss function are considered:

1. Decoding only the first spike emitted at the output, and
then directly applying the PWM based algorithm. In this
case the loss function is the difference between the time
instant of the target spike and the time instant of the first
spike of the output.

2. Decoding all the spikes of the output. In this case the loss
function is the difference between the average of the time
instants of the output spikes and the time instant of the
target spike.

In order to analyse these alternatives the Mackey–Glass Time Series
Dataset (MGTSD) is used. This dataset is available on UCI reposi-
tory (Waheeb, 2016) and defined in Kshirsagar, Balakrishnan, and
Yadav (2020). MGTSD is commonly used in prediction problems as
benchmark dataset. Two SNN are trained following the criteria of both
proposals with the hyperparameters described in Table 2a. For this
study 4 previous values are selected to forecast one-step ahead and the
time-series dataset is splitted into training (70%), validation (20%) and
test (10%) sets.

As shown in Fig. 10, decoding with all the spikes introduces noise
to the decodification, which leads to an increase in the Mean Square
Error (MSE) and Mean Absolute Error (MAE) measures (see Table 2b).
To explain this phenomenon in more detail Fig. 11a is shown: when the
output yields 3 spikes the PWM algorithm provides 3 discrete decoded

points showing that the more number of interpolations, the more noise
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Fig. 8. Spike decoding of the data.
Fig. 9. Decoding process under carriers without spikes.
Table 2
Training hyperparameters in the study to decode with all spike or only one spike.

(a) Training hyperparameters (b) Forecasting measures

Neuron model LIF PWM algorithm Decoded with... MSE MAE

Tau 100 nc N-1 ... the first spike 0.004 0.047
V_threshold 1 npc 64 ... all the spikes 0.005 0.051
V_rest 0
Learning rate 0.001
in the decoded signal. This phenomenon disappears if only the first
spike is considered as shown in Figs. 10 (left graph) and 11b, yielding
lower MSE and MAE (Table 2b). Both MSE and MAE are computed by
considering the normalised original signal and the decoded output SNN
signal.

Since better results are achieved decoding with the first spike of
each time-step carrier an extension of the PWM based algorithm is
proposed in order to handle every time-step SNN output. This extension
is based on applying a masc (𝑚𝑎𝑠𝑐 = [0 0 1 ... 0 0]) to every carrier with
more than one spike detecting the instant in which the first spike is
emitted and removing the rest of the spikes from the carrier, as shown
in Fig. 11b.

2.3.3. Loss function
In time-series prediction the squared difference between the pre-

dicted and the true values is widely used as loss function (Neftci et al.,
2019). Hence, the loss function proposed is based on extracting the time
10

instants of both the first spike of the SNN output and the target and
computing their difference (see Eq. (8)).

𝐸 = (𝛿𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑖𝑟𝑠𝑡 𝑠𝑝𝑖𝑘𝑒
− 𝛿𝑡𝑎𝑟𝑔𝑒𝑡)2 (8)

where 𝛿 is the time instant where the spikes are emitted at each carrier.
The essential aspect of this method is that the time instant of the spikes
is relative to the value of npc. In other words, for each time-step and
signal 𝛿 ∈ [0,… , 𝑛𝑝𝑐 − 1].

Given the extension of the PWM algorithm, which removes the case
of more than one spike in a time-step, at one time-step SNN output
there can only be either no spike or one only spike emitted. Eq. (8)
can be directly applied to the case of one spike. However, in the case
of no spike emitted there is not 𝛿𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑖𝑟𝑠𝑡 𝑠𝑝𝑖𝑘𝑒

. In this case the premise
considered is that the error should be equal to the total distance from
the beginning of the carrier since this is the highest possible error.
This can be interpreted as if one artificial spike is introduced at the
first position of the carrier and then Eq. (8) is applied. Notice that
conceptually speaking this solution should only be possible as long as
in the first position of the carrier a real spike is never emitted. To this

end, and as explained in Section 2.1.1, the PWM algorithm applies a
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Fig. 10. Difference between decoding with the first spike and all the spikes in each carrier.
Fig. 11. Decoding process for carriers with more than one spike.
carrier signal whose lower limit is 𝑚𝑖𝑛 − 𝛥. This makes it not possible
to emit one real output spike at the first position of the carrier. Thus,
with this solution the error can be estimated by Eq. (8) as shown in
Fig. 12.

2.3.4. Backpropagation
Once the loss function is calculated the backpropagation phase

can be performed in order to update the parameters of the SNN. The
weights are updated following the next rule:

𝑤𝑖𝑗,𝑙 = 𝑤𝑖𝑗,𝑙 − 𝜂𝛥𝑤𝑖𝑗,𝑙 (9)

𝛥𝑤𝑖𝑗,𝑙 =
𝜕𝐸

𝜕𝑤𝑡
𝑖𝑗,𝑙

= 𝜕𝐸
𝜕𝑆𝑡

𝑖,𝑙
⋅
𝜕𝑆𝑡

𝑖,𝑙

𝜕𝐻 𝑡
𝑖,𝑙

⋅
𝜕𝐻 𝑡

𝑖,𝑙

𝜕𝑤𝑡
𝑖𝑗,𝑙

(10)

where 𝑤𝑖𝑗,𝑙 represents the weight between the 𝑖th neuron at the layer l
and 𝑗th neuron at the layer l-1 and 𝜂 is the learning rate.

In Eq. (10) 𝑆𝑡
𝑖,𝑙 represents the spike generation function for the 𝑖th

neuron at the layer. Notice that Eq. (4) (𝑆𝑡 = 𝛩(𝐻 𝑡−𝑉 )) is the general
11

𝑡ℎ
expression for the spike generation process. If the partial derivative of
this function is developed:

𝜕𝑆𝑡
𝑖,𝑙

𝜕𝐻 𝑡
𝑖,𝑙

= 𝛩′(𝐻 𝑡
𝑖,𝑙 − 𝑉𝑡ℎ,𝑖) (11)

𝛩(𝑥) represents the Heaviside step function, whose derivative (𝛩′(𝑥))
at the time instant where the spike is emitted tends to infinity making
it not possible to use during backpropagation. A BP training with SG is
based on using the function 𝛩(𝑥) during the phase of samples propaga-
tion and a surrogate function 𝜃(𝑥) during the phase of backpropagation.
This surrogate function has a shape similar to 𝛩(𝑥) but it is continuous
in time, removing the problem of the non-differentiability and making
it possible to apply BP. In the proposed methodology the sigmoid
function 𝜃(𝑥) = 1

1+𝑒−𝑥 is applied as surrogate function.

2.3.5. Early stopping
In order to assess and validate this proposal the training stage has

been completed with the addition of an Early Stopping phase in order to



Neural Networks 173 (2024) 106171S. Lucas and E. Portillo
Fig. 12. Loss estimation.
select the best available SNN parameters. At the end of each epoch the
validation set is introduced to the SNN so as to calculate the validation
error of the SNN with the last updated parameters. This error is based
on estimating the MSE between the time instant from the first spike
(𝛿𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑖𝑟𝑠𝑡 𝑠𝑝𝑖𝑘𝑒

) and the time instant from the target (𝛿𝑡𝑎𝑟𝑔𝑒𝑡) at each
time-step. The proposed methodology selects the SNN with the lowest
validation error.

𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =
𝑁𝑣𝑎𝑙
∑

𝑖=1
(𝛿𝑡𝑎𝑟𝑔𝑒𝑡 − 𝛿𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑖𝑟𝑠𝑡 𝑠𝑝𝑖𝑘𝑒

)2 (12)

being 𝑁𝑣𝑎𝑙 the number of validation samples minus Np.

3. Experimental setup

In this section the validation of the proposed training methodology
for SNN is presented. The validation is based on testing the proposed
methodology with datasets from different application fields. In this
sense the following aspects should be taken into account: simulation
design, datasets, hyperparameters assignment and performance metrics
formulation.

3.1. Simulation design

The validation is performed on a 3.8GHZ Intel Core i7 processor
with a 64-bit Windows 10 Operating System and a 35 GB RAM memory.

3.2. Datasets

In order to assess the forecasting performance of the proposed
training methodology for SNN five univariate time-series datasets are
considered. As shown in Table 1 the vast majority of the datasets used
in the literature review are not available due to (a) the lack of infor-
mation provided by the authors, (b) the links provided have expired
or (c) although the dataset is available, the authors have subjected the
datasets to specific changes not explained in detail. In this sense all the
datasets applied in this work are public, available and kept unchanged.
In addition, the five datasets are from different application fields with
different dynamics and characteristics in order to demonstrate that the
methodology is independent of the particularities of any specific field.

The first dataset is a sine-wave signal with the following parameters:
frequency 𝑓𝑜 = 100 Hz, amplitude 𝐴 = 3, sampling frequency 𝑓𝑠 = 60⋅𝑓𝑜
and the number of cycles equal to 20. This dataset is formed by 1200
12
discrete points. The sine-wave signal is chosen in order to validate
the proposed methodology on a periodic dataset without noise whose
characteristics are completely known.

The second dataset is the Mackey–Glass Time Series Dataset
(MGTSD), which is based on differential equations. The dataset is avail-
able in Waheeb (2016) and is formed by 1201 discrete points. MGTSD
is commonly used in prediction problems as benchmark dataset.

Since most of the SNN forecasting works presented in Table 1 are
focused on the energy application field the third dataset is related
to the power consumption of three different distribution networks of
Tetouan City. This dataset is available in Salam and Hibaoui (2021)
and the power consumption of the zone 3 is selected to validate the
methodology. In addition, given the large number of points presented
in the dataset data from 00:00 01/01/2017 to 23:50 31/01/2017 is
used, which is formed by 4464 discrete points.

Another application field where SNN are also widely used for fore-
casting is air pollution. The fourth dataset is the PM10 hourly monitor-
ing dataset for the Greater London Area, which is available in Depart-
ment for Environment Food & Rural Affairs (2023) and it is collected
by the UK network for air pollution. The selected station is London
Bloomsbury, which is part from the Automatic Urban and Rural Moni-
toring Network (AURN). The selected period is from 2016 to 2017. This
dataset is also applied in Macia̧g et al. (2019). However, the samples
employed in that work are selected randomly from the dataset, which
makes it not possible to compare the results. For the validation of the
proposed methodology the period from 10:00 21/02/2017 to 20:00
03/06/2017 is selected since it is the largest period in the dataset
without loss of data and it is formed by 2459 discrete points.

The fifth dataset is a benchmark dataset based on human voice
records from Carnegie Mellon University ARCTIC speech databases,
which are available in Black (2003). The ARCTIC datasets are explained
in Kominek and Black (2003) and each voice is recorded with a sample
rate of 32 kHz. The voice dataset applied in this paper is in the file
‘‘arctic_a0001.wav’’ from the subfolder ‘‘US English bdl (made)’’. Due to
the large number of discrete points presented in this dataset, the set of
samples 11600–14750 is selected.

3.3. Hyperparameters assignment

In this section the hyperparameters for the validation of the pro-
posed methodology are presented. Regarding the LIF model 𝜏 = 100,
𝑉 = 1, 𝑉 = 0 and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.01 are used, which are
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑟𝑒𝑠𝑡



Neural Networks 173 (2024) 106171S. Lucas and E. Portillo
Table 3
Training hyperparameters for the validation of the methodology.

Training hyperparameters

Neuron model LIF PWM algorithm Forecasting Splitting

Tau 100 nc N-1 Np 1–10 Training 70%
𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1 npc 32, 64, 128 H 1 Validation 20%
𝑉𝑟𝑒𝑠𝑡 0 Test 10%
Learning rate 0.001
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common values in the literature (Wei et al., 2021). In the PWM based
algorithm the values studied in Arriandiaga et al. (2020) are applied:
nc is equal to the number values (N) of the time-series minus one,
while npc is varied among 32, 64 and 128. In terms of the forecasting
problem, in view of the state-of-the-art (Section 1.1) and in order not to
increase the computational cost it has been chosen to vary the number
of previous values (Np) from 1 to 10. Every time-series is divided
chronogically into training (70%), validation (20%) and test (10%) sets.
Finally, since the memory of the SNN is controlled from the inputs by
introducing the previous samples in the correct order chronogically,
all the neurons are resetted to 𝑉𝑟𝑒𝑠𝑡 in every time-step (one time-step
solution). In Table 3 all the hyperparameters are summarised.

3.4. Performance metrics formulation

Two forecasting measures are selected to assess the forecasting
results provided by the methodology. Notice that the precision of the
target used for training will depend on the npc hyperparameter of the
PWM based algorithm. This means that if a low value of npc is selected
to encode the target, the SNN will be trained to learn a signal with less
resolution. Thus, in order to analyse the results of the methodology
MAE is computed: (i) between the original signal and the decoded
SNN output signal (𝑀𝐴𝐸𝑜−𝑑); (ii) between the decoded target signal
and the decoded SNN output signal (𝑀𝐴𝐸𝑡−𝑑). These measures can be
expressed as:

𝑀𝐴𝐸𝑜−𝑑 =
𝑁
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦̂𝑖|| (13)

𝑀𝐴𝐸𝑡−𝑑 =
𝑁
∑

𝑖=1

|

|

𝑦̈𝑖 − 𝑦̂𝑖|| (14)

where 𝑦𝑖 is the value of the original signal, 𝑦̂𝑖 is the value of the
decoded SNN output signal, 𝑦̈𝑖 is the value of the decoded target signal
(influenced by npc), and 𝑁 is the number of total points.

4. Results

In this section the results for each dataset are presented. For each
dataset are shown: (a) the original time-series and its division into
training, validation and test sets; (b) 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 for npc
32, 64 and 128, and Np ranging from 1 to 10. For selected SNNs,
the following results are presented: (c) the weight values distribution;
(d) the test original signal, the decoded target and the decoded SNN
output; (e) input neurons activation for test samples; (f) output neurons
activation for test samples.

4.1. Sine-wave dataset

In Fig. 13 the results for sine-wave dataset are presented. Fig. 13a
shows the training (839 samples up to blue line), validation (240
samples from blue to green line) and test (120 samples from green to
red line) sets. Notice that this layout is the same for the rest of datasets.

As expected, Fig. 13b shows that 𝑀𝐴𝐸𝑡−𝑑 is lower than 𝑀𝐴𝐸𝑜−𝑑 .
The values of both errors decrease when npc value is increased. Notice
that the sine-wave dataset is the only perfectly periodic time-series
without noise. Hence, employing a higher npc involves that SNN is
13

trained with a higher resolution, i.e. more precise values. Another n
important conclusion from Fig. 13b is that the results improve for
higher Np, so as the best result is yielded by Np equal to 5 and npc
equal to 128 with 𝑀𝐴𝐸𝑡−𝑑 equal to 0.

For these hyperparameters 100% of the carriers contain only one
spike. Moreover, Fig. 13c shows that 99.64% of its weights are practi-
cally zero [−0.04, 0.04] and, thus, they can be considered as inactive
weights. The fact that the network has only 0.36% of active weights
suggests that the computational cost of using this SNN is very low. In
addition, the selected SNN offers a very precise forecasting as shown in
Fig. 13d, where the decoded SNN output signal is overlapped with the
decoded target being 0 the maximum error between these two signals
and 0.0094 between the original and the output signal. The fact that
the output signal is overlapped with the decoded target means that the
time instant of every spike emitted by the SNN matches the time instant
of every target. Hence, this SNN achieves a perfect forecasting so as the
only difference between the original and the SNN output is due to the
PWM based algorithm.

Finally, Figs. 13e and 13f show the input and output neurons
activation patterns, respectively.

4.2. MGTSD

Fig. 14 shows the results for MGTSD. As shown in Fig. 14a training,
validation and test sets for MGTSD are formed by 840, 240 and 120
samples, respectively.

In contrast with the sine-wave time-series, Fig. 14b shows that the
best forecasting measures are achieved with Np equal to 1. It can
also be observed that for 𝑁𝑝 = 1 independently of npc value both
𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 achieve the lowest similar values. Regarding
𝑀𝐴𝐸𝑡−𝑑 , similar 𝑀𝐴𝐸𝑡−𝑑 values for different targets (different npc val-
es) suggests that the SNN is capable of learning targets with different
esolutions. Actually, in the case of this time-series the target with the
owest resolution is enough to achieve satisfactory forecasting results.
his can also be observed by comparing 𝑀𝐴𝐸𝑜−𝑑 where the original
ignal is the same one for the three targets.

For Np values higher than 1 the highest 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑
orrespond to npc equal to 128. Actually, it can be observed that
𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 are directly related to (a) the increase in the

umber of carriers that emits more than one spike at each time-step and
b) the distribution of these spikes within the carrier. Fig. 15a shows
hat for 𝑁𝑝 = 1 and for every value of npc the number of carriers that
mits more than one spike is less than 10%. For this value of Np the
umber of carriers that emits only one spike prevails: 92.44% for npc
qual to 32, 98.32% for npc equal to 64, and 99.16% for npc equal
o 128. However, for 𝑁𝑝 > 1 and with independence of the value
f npc the number of carriers that emits more than one spike rises,
hich results in an increase in the values of 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 . In
ddition, in this dataset the higher the Np, the longer the maximum
istance between extreme spikes of every carrier (see Fig. 15b), being
he case of npc equal to 128 the worst case. This means that the spikes
re less concentrated in each carrier around the target time instant,
hich has an important impact on 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 since the less

oncentrated the spikes are in each carrier, the greater the likelihood
or the first spike to be further from the target time instant.

Given the results for this dataset the selected SNN is the one with
pc equal to 32 and Np equal to 1. For these hyperparameters 92.43%
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Fig. 13. Results for sine-wave dataset: (a) splitting of the time-series; (b) MAE according to Np and npc; (c) weight values distribution; (d) original test signal, decoded target
and decoded SNN output; (e) input neurons activation; (f) output neurons activation.
of the carriers emit only one spike while the rest of the carriers emit
two spikes, being 2 time instants the maximum distance between them.
Thus, although there are carriers with more than one spike they are
highly concentrated around a given time instant and the selection of the
first spike should not influence significantly on the results. In addition,
Fig. 14c shows that only 9.47% of the weights are active, being 2.34%
of the weight values higher than 100. Likewise, in Fig. 14d can be
observed that the SNN output in general follows satisfactorily both the
target and the original signals, yielding a maximum error of 0.1015
between the original and the decoded SNN output signals and 0.1093
between the decoded target and the decoded SNN output signals. Both
maximum errors are achieved in upstream sections of the signal as seen
in Fig. 14d.

Finally, both Figs. 14e and 14f reflect that for the selected SNN
there is always one neuron activated per sample in the input and output
layers.

4.3. Tetouan power consumption dataset

Fig. 16 shows the results for Tetouan power consumption dataset.
In this dataset the training, validation and test sets are formed by 3124,
893 and 446 samples, respectively.
14
Fig. 16b shows that Np equal to 1 provides the best forecasting
measures. Regarding 𝑀𝐴𝐸𝑜−𝑑 for this Np value, npc equal to 64 and
128 offer better results than npc equal to 32. 𝑀𝐴𝐸𝑡−𝑑 achieves similar
values with independence of the npc value. This result suggests that the
SNN is capable of learning different targets, however, the resolution of
the target for npc equal to 32 is not as accurate as those for npc equal
to 64 and 128.

For higher values of Np the lowest values of 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑
correspond to npc equal to 32, followed by npc equal to 64 and 128. As
in the previous dataset, this phenomenon is influenced by the number
of carriers that emits more than one spike and the distribution of the
spikes within the carrier. As seen in Fig. 17a, for Np equal to 2 and 3
the SNN trained with npc equal to 32 emits the lowest percentage of
carriers with more than one spike, which results in the lowest values
of 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 . For 𝑁𝑝 = 4 and for every value of npc the
percentages of carriers with more than one spike are similar, which
leads to similar values of 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 . For higher values of
Np the spikes within the carriers are less concentrated (see Fig. 17b),
specially in the case of npc equal to 128. This fact, together with the
high number of carriers with more than one spike, influences on the
worsening of the SNN results.
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Fig. 14. Results for MGTSD dataset: (a) splitting of the time-series; (b) MAE according to Np and npc; (c) weight values distribution; (d) original test signal, decoded target and
decoded SNN output; (e) input neurons activation; (f) output neurons activation.
Fig. 15. Number of carriers emitting more than one spike and maximum distance between extreme spikes with MGTSD dataset.
Given the forecasting measures of this dataset the selected SNN is
the one with npc equal to 128 and Np equal to 1. For these hyperpa-
rameters 92.81% of the carriers emit only one spike, while 7.19% emit
15
two spikes, being 5 time instants the maximum distance between them.
Since npc is equal to 128 this distance only entails 0.039 in relative
terms, showing a very high concentration of the output spikes around
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Fig. 16. Results for Tetouan power consumption dataset: (a) splitting of the time-series; (b) MAE according to Np and npc; (c) weight values distribution; (d) original test signal,
decoded target and decoded SNN output; (e) input neurons activation; (f) output neurons activation.

Fig. 17. Number of carriers emitting more than one spike and maximum distance between extreme spikes with Tetouan power consumption dataset.



Neural Networks 173 (2024) 106171S. Lucas and E. Portillo
Fig. 18. Results for 𝑃𝑀10 concentration dataset: (a) splitting of the time-series; (b) MAE according to Np and npc; (c) weight values distribution; (d) original test signal, decoded
target and decoded SNN output; (e) input neurons activation; (f) output neurons activation.
the target spike. In addition, Fig. 16c shows that only 3.99% of the
weights are active, which is the smallest value among all the considered
UCI datasets. Fig. 16d shows the forecasting evolution of this SNN, so
as 0.16 is the maximum error between the original and decoded SNN
output signals and 0.1596 between the decoded target and decoded
SNN output signals. Both errors are practically equal and match in an
upstream section of the signal as seen in Fig. 16d.

Finally, both Figs. 16e and 16f show that the SNN activates only
one neuron at each time-step.

4.4. 𝑃𝑀10 Concentration dataset

Fig. 18 shows the results for 𝑃𝑀10 concentration dataset. In this
dataset the training, validation and test sets are formed by 1721, 492
and 245 samples, respectively.

Fig. 18b shows that the best forecasting measures are achieved with
Np equal to 1. Both 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 are slightly lower for the
case of npc equal to 64 such that npc equal to 32 causes information
loss, while npc equal to 128 includes noise in the learning process.
17
Fig. 18b also shows that by increasing Np by only one, both
𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 increase substantially. This result can be ex-
plained by observing Fig. 19a, where for 𝑁𝑝 = 2 the number of carriers
with more than one spike suffers also an important increase for every
value of npc. In addition, for Np equal to 2 and 3 the highest percentage
of carriers with more than one spike corresponds to npc equal to 32,
which leads to higher 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 compared with npc equal
to 64 and 128. For 𝑁𝑝 = 4 the percentages are equal. However, as
shown in Fig. 19b for npc equal to 128 there is a peak in the maximum
difference between extreme spikes that leads to the highest values
of 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 . For Np values higher than 4 𝑀𝐴𝐸𝑜−𝑑 and
𝑀𝐴𝐸𝑡−𝑑 values are coherent with the number of carriers with more
than one spike.

For this dataset npc equal to 64 and Np equal to 1 are selected
to show the rest of the results. For these hyperparameters 97.54% of
the carriers emit only one spike while the rest of the carriers emit
two spikes, being one time instant the maximum distance between
them. Fig. 18c shows that 8.23% of the weights are active. In addition,
Fig. 18d shows that the SNN is able to follow satisfactorily both the tar-
get and the original signals, being 0.3069 the maximum error between
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Fig. 19. Number of carriers emitting more than one spike and maximum distance between extreme spikes with 𝑃𝑀10 concentration dataset.
the original and decoded SNN output signals and 0.1812 between the
decoded target and decoded SNN output signals. Both errors match in
an upstream section of the signal as seen in Fig. 18d.

Finally, both Figs. 18e and 18f show that for the selected SNN
always yields one spike per time-step.

4.5. ARCTIC dataset

Fig. 20a shows the ARCTIC dataset. The training, validation and test
sets are formed by 2204, 630 and 315 samples, respectively.

Fig. 20b shows that the best forecasting measures are achieved with
Np equal to 1 so as npc equal to 64 yields the lowest 𝑀𝐴𝐸𝑜−𝑑 followed
by npc equal to 32 and 128.

For Np values higher than 1 the lowest 𝑀𝐴𝐸𝑜−𝑑 is achieved for
npc equal to 32 except for Np equal to 5 and 6. In the latter cases the
lowest 𝑀𝐴𝐸𝑜−𝑑 is achieved for npc equal to 64. This circumstance can
be explained by Fig. 21a, where for Np equal to 5 and 6 there is a lower
number of carriers that emits more than one spike for the case of npc
equal to 64 than for npc equal to 32. In addition, on the whole the
highest values of 𝑀𝐴𝐸𝑜−𝑑 and 𝑀𝐴𝐸𝑡−𝑑 are achieved for npc equal to
128. As seen in Fig. 21b the spikes are less concentrated for npc equal
to 128, worsening the forecasting performance.

In the case of this dataset 𝑁𝑝 = 1 and 𝑛𝑝𝑐 = 64 are selected as the
hyperparameters for the rest of the results. For those values 100% of
the carriers emit only one spike. In addition, 11.86% of the weights are
active, which is a higher percentage than in previous datasets. The more
randomness of this time-series may have influence on this phenomenon.
In spite of this, Fig. 20d shows that this configuration of SNN provides
satisfactory forecasting results, yielding a maximum error between the
original and decoded SNN output signals of 0.0634 and between the
target decoded and decoded SNN output signals of 0.0739. Both errors
match around a local minimum as seen in Fig. 20d.

Finally, both Figs. 20e and 20f show the neurons activation of the
input and output layer, respectively. Notice that there is always one
spike per carrier at the output with these hyperparameters.

5. Discussion

This methodology has demonstrated its generality yielding satisfac-
tory results to 5 datasets from different application fields with different
dynamics and characteristics.

Regarding the best achieved results, for periodic time-series without
noise whose characteristics are completely known (sine-wave dataset)
the methodology is sufficiently robust to achieve perfect forecastings.
For the 3 UCI and the available real-world datasets it can be concluded
that the SNN performance is directly related to the number of output
carriers that emits only one spike. An increase in the number of the
18
carriers that emits more than one spike entails a decrease in the SNN
learning performance.

The main hyperparameter that enhances the increase in the number
of carriers that emits more than one spike is Np. Concerning the sine-
wave time-series, it is the only dataset whose best results have been
achieved by increasing Np. For the rest of datasets when Np is equal to
1 the number of carriers with more than one spike are less than 10% for
every value of npc, while for 𝑁𝑝 > 1 these percentages are increased
above 80% as seen in Fig. 22a. Thus, the optimal value of Np for these
datasets is 1. This phenomenon may be related with the dynamics of
the time-series. Given the results of the sine-wave time-series, which
presents a periodic comparatively slow dynamic (𝑓𝑜 = 100 Hz) with
absent of noise, and the results of the ARCTIC time-series, which is
characterised by a much faster dynamic (𝑓𝑜 = 32 kHz), it has been
observed that time-series with slower dynamics require more Np since
more historical data influence the next value to be forecasted. On the
contrary, for faster dynamics only 1 Np is enough to adjust to the
changes in the time-series.

Another aspect that influences on to the SNN learning performance
is the dispersion of the spikes emitted within the carrier. Except for
sine-wave, not only the number of carriers with more than one spike
becomes higher when Np is increased, but also the maximum difference
between the first and the last spike emitted within the carrier is com-
monly increased. Fig. 22b shows the mean of the maximum difference
between extreme spikes within the carrier for these datasets. It can be
observed that the mean increases more than double when Np increases
from 1 to 2. In addition, for higher values of Np the mean is in general
increasingly higher especially for npc equal to 128. This circumstance,
together with the fact that the methodology uses the first spike emitted
in each carrier, influences on the forecasting measures (𝑀𝐴𝐸𝑜−𝑑 and
𝑀𝐴𝐸𝑡−𝑑).

Shannon entropy (H) is a statistical measure of the degree of ran-
domness in time-series (Gan & Learmonth, 2015) and it is defined as
follows:

𝐻 = −
𝑛
∑

𝑖=1
(𝑝𝑖 ⋅ 𝑙𝑜𝑔(𝑝𝑖)) (15)

where 𝑝𝑖 is the discrete distribution of each of the values of the time-
series. Table 4 shows the Shannon entropy of the time-series ranked
from lower to higher degree of randomness such that sine-wave is
the lowest while ARCTIC is the highest. Regarding the PWM based
encoding–decoding algorithm, it can be concluded that the value of
the hyperparameter npc depends on the particular characteristics of the
time-series, especially the degree of randomness. For sine-wave dataset,
which possesses the lowest degree of randomness, the best results are
achieved with higher npc since the values used for training are more
precise. Nonetheless, for time-series with more noise and degree of
randomness, increasing npc does not imply necessarily an improvement
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Fig. 20. Results for ARCTIC dataset: (a) splitting of the time-series; (b) MAE according to Np and npc; (c) weight values distribution; (d) original test signal, decoded target and
decoded SNN output; (e) input neurons activation; (f) output neurons activation.

Fig. 21. Number of carriers emitting more than one spike and maximum distance between extreme spikes with ARCTIC dataset.
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Fig. 22. Mean of the number of carriers emitting more than one spike and maximum difference between extreme spikes with MGTSD, Tetouan power consumption, 𝑃𝑀10
oncentration and ARCTIC datasets.
Table 4
Shannon entropy.

Datasets Shannon entropy

Sine-wave 6.59
MGTSD 7.09
Tetouan energy 7.29
𝑃𝑀10 concentration 7.69
ARCTIC 7.82

in the learning performance of the SNN as it may result in learning
noise and, thus, increasing overfitting. In this sense, in these cases the
best solution is to choose a npc that provides a trade-off between the
computational cost and the precision required in the problem at hand
or in the specific application field.

One of the greatest advantages of the proposed SNN training
methodology is the low model complexity. The model complexity in
neural networks is usually measured in terms of the topology and ar-
chitecture of the neural network, the neuron model and the parameters
of the learning algorithm itself. Notice that one of the main premises of
this proposal is using the simplest model: (i) a feedforward topology;
(ii) no hidden layer is used; (iii) LIF model is applied which is a first
order system characterised by its simplicity. In addition, all the selected
SNN yield a low percentage of active weights, being the worst case the
ARCTIC dataset with 11.86% of active weights. A low percentage of
active weights further reduces the complexity of the model and boosts
the computational cost advantages of the SNN.

It has been observed that the difference in percentage of active
weights is directly related to characteristics of the time-series. Table 5
shows the percentage of active weights of every SNN trained with Np
equal to 1. Notice that the sine-wave, which is the time-series with
the lowest degree of randomness, possesses the lowest percentage of
active weights independently of npc value. On the contrary, for time-
series with faster dynamic and degree of randomness such as 𝑃𝑀10
concentration and ARCTIC datasets the SNN need 10% more active
weights in order to achieve satisfactory forecasting results.

Moreover, it should be highlighted that in this proposal inference is
performed in a single forward pass, i.e. one time-step latency, bringing
the advantage of (a) avoiding the memory access cost of accumulated
membrane potentials (Chowdhury, Rathi, & Roy, 2021); (b) low-power
efficiency since long latency during which many spikes are processed
increases the energy costs, i.e. the accumulation of membrane poten-
tial over a large number of time-steps results in higher number of
operations (Chowdhury, Rathi, & Roy, 2022; Xu et al., 2020); (c) real-
time applications friendliness (Chowdhury et al., 2022). In addition,
this methodology apply a temporal spike sparsity of 1∕𝑛𝑝𝑐. Temporal
20

sparsity is a desirable feature in a spiking model since a lower number
Table 5
Shannon entropy and percentage of active neurons for every dataset with 𝑁𝑝 = 1.

Datasets Shannon
entropy

Percentage of active weights

npc=32 npc=64 npc=128

Sine-wave 6.59 5.27% 1.37% 0.36%
MGTSD 7.09 9.47% 5.57% 2.80%
Tetouan energy 7.29 11.03% 6.69% 3.99%
𝑃𝑀10
concentration

7.69 15.34% 8.23% 4.31%

ARCTIC 7.82 19.34% 11.86% 6.08%

of spikes means a lower consumption of energy (as a non-activated
neuron will consume no energy) (Dudek et al., 2022).

Another advantage of the proposed methodology is its robustness.
As well-known, ANN training is repeated multiple times using different
sets of initial conditions in order to expand the search space and
achieve the best possible solution. Table 6 shows the 𝑀𝐴𝐸𝑜−𝑑 measure
repeating the training for all the selected SNN 10 times with different
randomly initialised weights. It can be observed that for the time-
series with less degree of randomness, i.e. sine-wave, MGTSD and
Tetouan energy consumption datasets, the proposed methodology is
robust enough to converge on the same results, being zero the standard
deviation. For 𝑃𝑀10 concentration and ARCTIC datasets, despite its
higher degree of randomness the standard deviations of the results are
practically zero, being 0.00013 for 𝑃𝑀10 concentration time-series and
0.00017 for ARCTIC. Hence, the proposed methodology improves SNN
advantages related with computational and energy costs since only one
weights initialisation is enough to achieve satisfactory results. Also,
for all the selected SNNs the number of carriers that emits no spikes
is 0%. This means that in every time-step the methodology provides
always one predicted value, which is an essential aspect in forecasting
problems.

6. Conclusions

In this paper the design of a new supervised training methodology
for univariate time-series forecasting with SNN is presented. This
methodology is based on the combination of PWM based encoding–
decoding algorithm, which surpasses its predecessor algorithms in
terms of precision, and a SG based method, which allows the im-
plementation of the supervised training in SNN. In order to validate
the generality of the presented methodology sine-wave, 3 UCI and 1
available real-world datasets have been employed.

Different from the state-of-the-art, the proposed methodology is
addressed to any application field with independence of its characteris-

tics, achieving very satisfactory forecasting results in all the considered



Neural Networks 173 (2024) 106171S. Lucas and E. Portillo

A

B

B

Table 6
𝑀𝐴𝐸𝑜−𝑑 measure training the selected SNN 10 times with different weight initialisations.

Initialisation 𝑀𝐴𝐸𝑜−𝑑

Sine-wave MGTSD Tetouan consumption PM10 concentration ARCTIC

1 0.0047 0.0318 0.0134 0.0312 0.0112
2 0.0047 0.0318 0.0134 0.0312 0.0112
3 0.0047 0.0318 0.0134 0.0316 0.0112
4 0.0047 0.0318 0.0134 0.0312 0.0112
5 0.0047 0.0318 0.0134 0.0314 0.0112
6 0.0047 0.0318 0.0134 0.0312 0.0112
7 0.0047 0.0318 0.0134 0.0312 0.0116
8 0.0047 0.0318 0.0134 0.0312 0.0116
9 0.0047 0.0318 0.0134 0.0312 0.0112
10 0.0047 0.0318 0.0134 0.0312 0.0112
Mean 0.0047 0.0318 0.0134 0.03126 0.01128
Standard deviation 9.1428E−19 0 1.82856E−18 0.00013499 0.00016865
F

G

G

G

H

datasets. Despite the simplicity and generality of this methodology, an
important advantage is that depending on the application requirements
the user can easily adjust a trade-off between the accuracy of the
results and the computation cost by the selection of the hyperparameter
npc of the PWM based encoding–decoding algorithm. In addition, the
proposed methodology is characterised by ultra-low latency and high
robustness in the train phase, enhancing the SNN advantages in terms
of computational and energy costs.

Given that the vast majority of works in the literature are focused on
applying SNNs to classification problems, the presented methodology
is proposed with the aim of being a step-forward in the design and
development of SNN for forecasting.
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