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Abstract

Can lifelong bilingualism be robustly decoded from intrinsic brain connectivity? Can

we determine, using a spectrally resolved approach, the oscillatory networks that

better predict dual-language experience? We recorded resting-state magnetoen-

cephalographic activity in highly proficient Spanish-Basque bilinguals and Spanish

monolinguals, calculated functional connectivity at canonical frequency bands, and

derived topological network properties using graph analysis. These features were fed

into amachine learning classifier to establish howrobustly theydiscriminatedbetween

the groups. The model showed excellent classification (AUC: 0.91 ± 0.12) between

individuals in each group. The key drivers of classification were network strength in

beta (15–30 Hz) and delta (2–4 Hz) rhythms. Further characterization of these net-

works revealed the involvement of temporal, cingulate, and fronto-parietal hubs likely

underpinning the language and default-mode networks (DMNs). Complementary evi-

dence from a correlation analysis showed that the top-ranked features that better

discriminated individuals during rest also explained interindividual variability in sec-

ond language (L2) proficiency within bilinguals, further supporting the robustness of

themachine learning model in capturing trait-like markers of bilingualism. Overall, our

results show that long-termexperiencewith an L2 can be “brain-read” at a fine-grained

level from resting-state oscillatory network organization, highlighting its pervasive

impact, particularly within language andDMNnetworks.
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INTRODUCTION

Bilingualism has become a prevalent phenomenon in contemporary

societies, with over half of the world’s population engaging in active

experiences with both a first (L1) and a second language (L2).1 Recent

evidence highlights the brain’s remarkable ability to reorganize its

structure and function in response to lifelong experiences, including

sustained training in cognitive2,3 and sensorimotor4–6 skills. Consider-

ing the central role of language in daily communication, it is unsurpris-

ing that dual-language experience leads to neuroplastic adaptations in

the human brain.7,8

Network-level measures, such as resting-state functional connec-

tivity (rsFC), have proven effective in capturing such neuroplastic

changes in bilingual individuals.9–11 In essence, the acquisition of an

L2 induces experience-dependent neural changes that alter communi-

cation patterns between brain regions, thereby influencing FC. These

studies consistently show rsFC changes within language networks,

including inferior frontal and temporal structures, andwithin cognitive

control networks involving dorso-lateral prefrontal, parietal, supple-

mentary motor, and anterior cingulate hubs, crucial for managing

language interference.12,13 Despiteneuroimagingprogress inunveiling

“re-wiring” patterns in these critical networks, a fundamental question

remains unanswered14: Can lifelong bilingualism be robustly decoded

from rsFC? Moreover, based on novel spectrally resolved connectiv-

ity approaches: Can we determine which oscillatory networks better

predict sustained dual-language experience?

Although functional magnetic resonance imaging (fMRI) has been

extensively employed to study rsFC, it is blind to oscillatory informa-

tion beyond the temporal range (∼1 Hz) of the hemodynamic response

it measures.15 In contrast, high temporal resolution techniques like

magneto/electroencephalography (M/EEG) are better suited for cap-

turing the full spectral richness of brain recordings, thereby adding a

new dimension to rsFC analysis.

Brain oscillations at different frequency bands are believed to serve

distinct functions in network communication.16 In the context of bilin-

gualism,M/EEG research remains scarce,making it challenging to draw

generalizable conclusions. However, available studies emphasize the

prominent role of neural rhythms in explaining dependencies between

variables describing network behavior and factors such as L2 age

of acquisition (AoA) or L2 proficiency. Some studies have reported

enhanced alpha (8–12 Hz) and beta (15–30 Hz) rsFC in bilinguals

compared to monolinguals,17,18 with alpha effects positively correlat-

ing with L2 AoA and proficiency measures. Moreover, evidence from

bilinguals with varying L2 proficiency and AoA suggests that gamma

(30–50 Hz) and beta rhythms can track individual differences in the

extent of dual-language experience.19 Longitudinal studies on L2 learn-

ing after immersive training20–23 also reveal that beta rsFC along the

right hemisphere correlates with post-training L2 learning outcomes.

While evidence for the role of beta oscillations in bilingualism seems

more consistent across studies, research on other brain rhythms like

alpha and gamma calls for further exploration.

Beyond the oscillatory properties of brain networks, it is crucial

to understand how these networks become organized to facilitate

efficient information transfer. Graph theory provides a robust frame-

work to study this topological organization,24 offering measures to

quantify properties at global (whole-network) and local (individual

nodes or links) levels. Recent research indicates that global topological

metrics within specific frequency bands effectively trace experience-

dependent individual differences across various domains, including

sensorimotor abilities and language learning outcomes. For instance,

the characteristic path length, a global measure reflecting network

integration, accurately differentiates expert dancers from novices

within the sensorimotor mu range (8–13 Hz).25 Similarly, the leaf

fraction, another measure of whole-network integration, predicts

improvements in L2 fluency following immersive training in the beta

range.26 These findings suggest that global topological properties can

serve as trait-like fingerprints for identifying individuals with varying

neurocognitive profiles.

Here, we aimed to examine the impact of lifelong bilingualism on

intrinsic oscillatory network configuration and its potential for clas-

sifying individuals based on dual-language experience. We computed

graph-theory measures from spectrally resolved magnetoencephalo-

graphic (MEG) rsFCdata and employedmachine learning techniques to

assess their robustness indifferentiatingbetweenbilinguals andmono-

linguals. Additionally, we explored whether these measures could pre-

dict individual variations in L2proficiency.Wehypothesized that global

topological metrics, likely in the beta band, would distinguish individ-

uals based on their bilingual experience, particularly within networks

involved in language processing and/or cognitive control. Furthermore,

we anticipated that these featureswould correlatewith L2 proficiency.

With this approach, we aimed to forge amore fine-grained view of how

bilingualism shapes intrinsic brain organization.

MATERIALS AND METHODS

Participants

The study involved 44 participants, namely: 22 Spanish-Basque highly

proficient bilinguals and 22 Spanish monolinguals. However, four

participants were removed from all analyses as their MEG record-

ings presented substantial muscular and eye-related artifacts. Thus,

the final sample comprised 20 bilinguals (age range: 19–45 years)

and 20 monolinguals (age range: 21–45 years). All participants were
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TABLE 1 Descriptive and inferential statistics for each variable.

Bilinguals (n= 20) Monolinguals (n= 20) p-value

Demographics Sex (M:F) 7:13 9:11 0.51a

Age (years) 29.1(7.57) 28.75 (9.07) 0.89b

Education (years) 16.95 (2.74) 15.45 (2.23) 0.06b

IQ KBIT 108.11 (7.23) 104.75 (26.59) 0.60b

Language BEST Spanish PN (%) 99.76 (0.56) 99.84 (0.47) 0.64b

BEST Spanish INT 5 (0) 5 (0) −

LexTALE Spanish 94.75 (5.43) 92.62 (5.86) 0.24b

BEST Basque PN (%) 90.53 (9.16) 37 (11.37) < 0.0001b

BEST Basque INT 4.95 (0.08) 1.92 (0.87) < 0.0001b

LexTALE Basque 87.5 (8.66) 32.2 (16.21) < 0.0001b

AoA Spanish 0.55 (1.39) 0 0.085b

AoA Basque 1 (1.62) −

Note: Sex data are presented asmales:females. Bold p-values indicate statistical significance.
Abbreviations: AoA, age of acquisition; BEST, Basque, English, and Spanish Test; INT, interview; IQ, intellectual quotient; KBIT, Kaufman Brief Intelligence

Test; PN, picture-naming.
ap-value obtained via a chi-squared test.
bp-value obtained through two-tailed unpaired t-tests.

right-handed as defined by the Edinburgh Inventory,27 and possessed

normal or corrected-to-normal vision. None of them reported past

neurological or psychiatric history. The two groups were matched for

sex, age, years of education, and intellectual abilities via the Kaufman

Brief Intelligence Test.28

All bilinguals had acquired their languages by the age of 5, and

used them both on a daily basis. Conversely, monolinguals used only

Spanish and had little to null knowledge of Basque. Language profi-

ciency was objectively measured with the first and second parts of

the BEST test.29 The first part requires participants to name 65 pic-

tures in their two languages, with scores ranging from 0 to 65. The

second part consists of a semi-structured interview that measures

fluency, lexical resources, grammatical constructions, and pronuncia-

tion via means of a Likert-like scale with scores ranging from 1 to 5.

All highly proficient bilinguals scored above the cutoff for high pro-

ficiency in the first (≥ 70%) and second parts (≥ 4) of the BEST in

both languages, while monolinguals met these criteria for Spanish but

scored below it for Basque (i.e., ≤ 45% and ≤ 2, respectively). Par-

ticipants also completed a Spanish30 and a Basque version29 of the

LexTALE,31 a short lexical decision test that provides good estimates

of vocabulary knowledge in a given language. Briefly, participants were

presentedwith 60 items (i.e., 40words and 20 pseudo-words) and they

were asked to indicate whether the item was an existing word or not.

Descriptive and inferential statistics for each variable are shown in

Table 1.

Before the experiment, all participants provided written informed

consent. The study protocol was approved by the Ethics Committee of

the Basque Center for Cognition, Brain, and Language (BCBL) and car-

ried out in accordance with the Code of Ethics of the World Medical

Association (Declaration of Helsinki).

MEG data acquisition

Figure 1 shows the study’s pipeline. We followed current state-of-

the-art guidelines32,33 for MEG data acquisition, preprocessing, and

analysis. MEG signals were acquired in a magnetically shielded room

using a 306-channel Elekta Neuromag system. Signals were recorded

at a 1 kHz sampling rate and filtered online at a bandwidth of 0.1–

330 Hz. Data were obtained during an eyes-closed 5-min period in

which participants were instructed not to think about anything in

particular while keeping awake and still.

Participants’ head position inside the helmetwas continuouslymon-

itored using five head-position indicator coils. Six electrode pairs were

used to measure horizontal and vertical ocular and cardiac activity.

The standard fiducial landmarks (i.e., left and right preauricular points

and nasion) plus ∼300 additional points registered over the scalp and

eyes/nose contours were digitalized and used to spatially align the

MEG sensor coordinates to the native T1 structural MRI of each par-

ticipant. T1s were acquired with a Siemens 3T Magnetom Prisma Fit

MR scanner in a separate session with the following parameters: echo

time = 2.97 ms, nonswitching time = 2530 ms, flip angle = 7◦ and

field of view = 256×256×176 mm3, number of axial slices = 176, slice

thickness= 1mm, in-plane resolution= 1mm× 1mm.

MEG data preprocessing

Continuous data were preprocessed offline using the temporal exten-

sion of the signal space separation method34 implemented in Max-

filter 2.2 (Elekta-Neuromag). Briefly, this method subtracts external

magnetic noise from the MEG recordings, corrects for head move-

ments, and interpolates bad/noisy channels. Subsequent analyseswere
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F IGURE 1 Preprocessing, data analysis, andmachine learning pipeline. (A) Samples and neuropsychological assessment. Highly proficient
bilinguals andmonolinguals werematched for demographic variables (sex, age, education) and IQ. Language proficiencymeasures were acquired
via means of the BEST test. (B)MEG and structural data acquisition. MEG activity was recorded under wakeful rest. (C) Data processing and
connectivity analysis.We employed a source-based approach to connectivity.We estimatedMEG sources usingMNE and projected activity onto
the 68 anatomical regions of the Desikan–Killiany atlas. Source-based whole-brain connectivity was calculated using the imaginary part of
coherency (iCOH) in the delta (2–4Hz), theta (4–8Hz), alpha (8–12Hz), beta (15–30Hz), and gamma (30–80Hz) bands. Adjacencymatrices were
filtered with the orthogonal minimal spanning treesmethod. Finally, graph theorymeasures were estimated from resting-state data at the
different frequency-bands and fed into amachine learning classifier. (D)Machine learning pipeline. After feature standardization, we used
recursive feature elimination with cross-validation (RFECV) and a grid search scheme for hyperparameter tuning to obtain trained XGBoost
models. Then, we tested classification by employing the ROC-AUC, confusionmatrices, and a feature importance analysis based on SHAP values.
Abbreviations: BEST, Basque, English, and Spanish Test; MEG, magnetoencephalography; OMST, orthogonal minimal spanning trees; RFE,
recursive feature elimination; ROC-AUC, receiver operating characteristic–area under the curve; SHAP, SHapley Additive exPlanations.

performed using the Brainstorm toolbox.35 Signals were down-

sampled offline to 500 Hz. Next, we applied a notch filter to eliminate

powerline signal contamination at 50 Hz. MEG data containing non-

stereotyped artifacts (e.g., jumps) were manually removed by visual

inspection based on their time series and activation spectra. On the

other hand, MEG data containing stereotyped artifacts (e.g., muscular,

cardiac, and blinks) were retained. Independent component analysis36

was applied in order to isolate and remove these physiological arti-

facts. Removed components ranged from one to four per participant.

Next, following standard practice to capture data variance,33 clean

resting-state recordingswere segmented into 4-s segments. After data

cleaning, ∼80% of the segments remained per participant, with non-

significant differences (p = 0.67) between groups (bilinguals: M =

67.65, SD= 5.22; monolinguals:M= 68.6, SD= 8.55).

MEG source modeling

We used a source-based connectivity approach. To estimate the neu-

ral MEG sources, we selected 68 anatomical regions of interest

(ROIs) from theDesikan–Killiany atlas.37 Individual high-resolution 3D

structural T1 MRIs were segmented through Freesurfer software.38

The registration between the participant’s MRI and the MEG was

done automatically using Brainstorm based on the fiducials and the
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additional 300 digitalized head points. The MEG forward model was

computed using the overlapping-spheres approach.39 Next, the noise

covariance matrix was calculated from empty-room recordings (∼3–

5 min), in order to characterize instrument and environmental noise.

The solution space was constrained to the cerebral cortex which was

modeled as a three-dimensional grid of 15,000 fixed dipoles oriented

normally to the cortical surface. Then, the inverse solution was esti-

matedwith theweightedminimumnormestimation.40 Finally, the time

series from the 68 ROIs were estimated as the average of all dipole’s

signals within each area.

MEG functional connectivity

The imaginary part of coherency (iCOH) was used to measure rsFC

between all 68 ROIs in canonical frequency bands, namely: delta (2–

4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma

(30–80 Hz). The use of iCOH was originally proposed41 to overcome

volume conduction problems when estimating FC in MEG data. The

iCOH is sensitive only to the synchronization of two processes that

are time-lagged to each other. Since volume conduction does not cause

a time-lag, the iCOH is insensitive to spurious interactions. Using the

iCOH, the zero-lag effect can be suppressed, because the real part

is the one mostly affected by this aspect. The iCOH was calculated

according to Equation (1):

Ixy (f) =

||||||||
Im

∑k
k=1 Xk (f)Y

∗

k (f)√∑k
k=1 |Xk (f)|2 ∑k

k=1 |Yk (f)|2
||||||||
, (1)

where Ixy(f) is the imaginary coherence between a given pair of ROIs

for each frequency, Im is the imaginary part of the complex produc-

tion, Xk and Yk are the source-based spectrums from the two ROIs,

* denotes the complex conjugate, and K is the number of 4-s length

segments.

Adjacency matrices were filtered using the orthogonal minimal

spanning trees (OMST) algorithm.42 OMST is a novel data-driven topo-

logical thresholding technique that maximizes the information flow

over the network versus the cost. Briefly, this method samples the full-

weighted matrix over successive rounds of minimum spanning trees

that are orthogonal to each other, identifying essential connections via

optimizing the global efficiency of the network constrained by the cost

of surviving connections.43 This method outperforms conventional

approaches in capturing MEG resting-state networks’ most essential

connections.42

Graph-theory metrics

Thearchitectureof participants’ resting-statenetworkswas character-

ized via graph-theory metrics24 in the Brain Connectivity Toolbox.44

Based on previous bilingualism research,45–47 we selected eight mea-

sures broadly capturing global and local aspects of the networks’

organization, each defined in Table 2. Thesemetricswere computed for

each frequencyband (i.e., delta, theta, alpha, beta, and gamma), yielding

40 features per participant.

Machine learning analysis

We employed a binary classification machine learning approach to

distinguish between bilingual and monolingual individuals based on

spectral topological features derived from rsFC. To achieve this, we uti-

lized the Extreme Gradient Boosting (XGBoost) algorithm, a powerful

ensemble method that combines individually weak yet complemen-

tary classifiers to construct a robust estimator.48 This algorithm

incorporates regularization in its boosting process, thus mitigating

overfitting and enhancing the generalizability of the results. Rec-

ognized for its outstanding performance and speed, XGBoost has

become a dominant algorithm in applied machine learning.49 A recent

state-of-the-art comparison of classification algorithms50 underscores

XGBoost’s effectiveness across both small and large training sets—

consistently outperforming more popular classifiers such as support

vector machine and random forest.

First, we applied feature standardization using the robust scaler

method. This technique involves calculating the median alongside the

25th and 75th percentiles for each feature. Subsequently, the val-

ues of each feature undergo a transformation where the median is

subtracted, and the result is divided by the interquartile range. The

outcome is a standardized variable with a zero mean and median, and

a standard deviation of 1. This robust method ensures the resulting

features remain resilient to the influence of outliers, maintaining their

stability even in the presence of skewed data.

Subsequently, we implemented a nested cross-validation strategy

(outer loop: k-fold = 10; inner loop: k-fold = 5).51 The dataset was

randomly partitioned into different train-test splits, with each run

utilizing nine folds for training and reserving one (hold-out) fold for

testing. Within each outer fold, an inner loop was executed to perform

feature reduction through recursive feature elimination with cross-

validation52,53; and hyperparameter tuning using the Grid Search

method.54 The model was then trained with the best hyperparameters

and the reduced set of features. Importantly, theparticipant-to-feature

ratiomet the recommendedN-1 criterion across all runs (meannumber

of features = 10; range: 5–19), where N denotes the number of sub-

jects used in the training set.55 This dual optimization within the inner

loop ensured that features and hyperparameters were tailored to the

specific characteristics of each training set, preventing overfitting, and

yielding amore generalizedmodel.

In keeping with current guidelines to report machine learning

results,56 classification performance was evaluated using the area

under the curve (AUC) of the receiver operating characteristic (ROC)

curve, accuracy, sensitivity, specificity, and F1-scores. Mean and stan-

dard deviation values across folds were reported for each metric.

To identify the most predictive variables, we calculated absolute

SHAP (SHapley Additive exPlanations) values57,58 and examined the

impact of each feature on the model’s predictions throughout every
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TABLE 2 Global and local aspects of networks’ organization.

Graph theorymetric Definition

Global measures

Characteristic path length

(CPL)

Average shortest path length between all pairs of nodes in the network. This metric captures functional

integration in brain networks.

Global efficiency (GE) Average inverse shortest path length in the network. It captures the efficiency of distant information

transfer in a given network.

Average node strength

(ANS)

Arithmetic average of the strengths of all the individual nodes in the network. It represents the sum of all

incoming and outgoing edgeweights. This metric quantifies global degree of connectivity.

Small-worldness index (Sw) Characterization of a network’s architecture, usually determined by low average path length and high

clustering. Small-world networks are a “middle-ground” between random and regular networks. This

property has the lowest wiring costs, themost efficient information transfer, and the best balance of

local and global information.We computed this index as defined byHumphries andGurney (2008),91 in

which a network is deemed a “small-world” if Sw> 1.

Local measures

Clustering coefficient (C) Number of connections between a node’s nearest neighbors, calculated as a ratio of themaximum

number of possible connections. This metric captures the level of local connectedness of a network.

Local efficiency (LE) GE as computed in the neighborhood of the node. This metric estimates communication efficiency

between a node’s neighbors.

Betweenness centrality

(BC)

Quantification of howmany of the shortest paths between all other node pairs in the network pass

through a given node. This metric showswhich nodes act as bridges between nodes, detecting how

much a node influences information flow in a given network.

Participation coefficient

(PC)

Typically interpreted as an index of a region’s “hubness.” Captures the diversity of a node’s links across

network communities. This metric reveals howwell a node integrates information and coordinates

connectivity between communities.

iteration. These absolute SHAP values were then aggregated across

folds, yielding a comprehensive matrix that captured the nuanced

influence of features on the model’s decision-making. Specifically,

we focused on the top 10 features with the highest mean absolute

importance across folds, providing an insightful summary of the most

influential contributors to themodel’s discriminatoryprowess.All anal-

yses were implemented using the Scikit-learn library (v. 0.22.1) in

Python.

Statistical network analysis

To further characterize differences between bilinguals and monolin-

guals in global network topology, we determined the direction of

between-group effects on the top-ranked features highlighted by the

machine learning analysis using Mann–Whitney U tests (two-tailed).

Subsequently,we investigatedhub regionswithin thesenetworksusing

individual nodal strength. For each participant, nodal strength was cal-

culated as the sum of the weights of its connections with the rest of

the nodes. This metric serves as a robust indicator of the influence or

communicational importance of individual regions within a network.59

The 68 anatomical ROIs of the Desikan–Killiany atlas were used as

nodes. We then employed Mann–Whitney U tests to compare differ-

ences between groups, considering each node separately and applying

false discovery rate (FDR) correction for multiple comparisons,60 at

an alpha level = 0.05. Specifying influential nodes provides a more

fine-grained understanding of key regions driving whole-brain effects,

thereby improving the interpretation of the canonical networks that

could be involved (e.g., salience, default-mode network [DMN]). Impor-

tantly, the use of both global and nodal metrics is a well-established

practice in network analysis.25,61–63

Correlation analysis

Weemployed a correlational analysis to further test for the robustness

of our data-driven approach. Using the Robust Correlation Toolbox64

in MATLAB R2012B, we examined potential associations between

top-ranked features and bilinguals’ L2 proficiency (i.e., BEST and Lex-

TALE scores inBasque).Weemployedpercentage-bend correlations,65

known for providing an accurate estimate of the true relationship

between two variables, while protecting against marginal outliers.

RESULTS

Machine learning results

Themachine learning classifier yielded anAUCof 0.91 (±0.12), with an

accuracy of 84.8% (± 5%), a sensitivity of 83.3% (± 25.8%), a specificity

of 76.7% (± 32%), and an F1-score of 0.78 ± 0.19 (Figure 2). Estimates

of feature importance using SHAP values highlighted ANS in beta and

delta as the top-ranked features determining compound classification

in our model.
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F IGURE 2 Machine learning results. (A) Area under receiver operating characteristic (ROC) curve (AUC) and (B) confusionmatrix of the
classificationmodel. (C) List of the top 10most predictive features across folds (in order of importance), using absolute SHAP values. (D) Output
scores based on the two top-ranked features revealed excellent detection of bilingual andmonolingual individuals using a decision boundary of 0.5.
Final output score per participant was obtained after averaging it over 1000 iterations. Abbreviations: ANS, average node strength; BC,
betweenness centrality; C, clustering coefficient; GE, global efficiency; LE, local efficiency; PC, participation coefficient; SHAP, SHapley Additive
exPlanations; SW, small-worldness index.

Statistical network results

ANS in beta (U = 102, Z = 2.63, p = 0.007; RBC = −0.49) and delta (U

= 104, Z = 2.58, p = 0.009; RBC = −0.48) rhythms were significantly

lower for bilinguals compared to monolinguals (Figure 3A). When

considering individual node strength (Figure 3B), influential regions

differing between groups in the beta band involved the left middle

frontal gyrus (MFG); the left temporal pole (TPO), middle (MTG), and

superior temporal gyri (STG); and the right insula (INS), posterior cin-

gulate cortex (PCC), postcentral gyrus (PoCG), parahippocampal gyrus

(PHG), and inferior parietal lobe (IPL). The delta band spanned the

bilateral fusiform gyri (FFG) and orbitofrontal cortices (OFC); the left

PCC and superior parietal lobe (SPL); and the right anterior cingulate

(ACC) and supramarginal gyrus (SMG).

Correlation results

This analysis yielded significant negative correlations between ANS in

beta and LexTALE L2 scores (Bend r = −0.53, p = 0.01) and between

ANS in delta and BEST L2 scores (Bend r = −0.46, p = 0.04). Scatter-

plots showing associations between these features with LexTALE and

BEST scores in Basque are provided in Figure 3C.

DISCUSSION

Can lifelong bilingualism be robustly decoded from the organization

of oscillatory resting-state networks? To answer this question, we

recoded task-free MEG activity from highly proficient bilinguals and

monolinguals, derived topological network properties in canonical fre-

quency bands, and trained a machine learning classifier to predict

individuals’ dual-language experience. Overall, the model achieved an

excellent performance (AUC: 0.91 ± 0.12) in distinguishing between

individuals at aprobabilistic subject-level. The classificationwasmainly

driven by network strength in the beta (15–30 Hz) and delta (2–

4 Hz) bands, involving temporal, cingulate, and fronto-parietal hubs.

These features also correlatedwith L2 proficiency in bilinguals, further

validating our automatedmultivariate approach.

Previous evidence indicates that L2 acquisition has a significant

impact on the organization of intrinsic brain networks. However,

most existing studies rely on fMRI rsFC, which is blind to the full
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F IGURE 3 Resting-state network differences between highly
proficient bilinguals andmonolinguals. (A) Violin plots showing total
weight (ANS) significant differences between groups in beta
(15–30Hz) and delta (2–4Hz) frequency bands. Straight lines within
the violin plots indicate themedian and dotted lines the interquartile
range. (B) Spatial distribution of the brain network nodes showing
maximal strength difference between groups in beta and delta
rhythms. Only significant (FDR-corrected p-values< 0.05) nodes are
plotted. (C) Scatterplots showing relationships between top-ranked
resting-state oscillatory features (ANS in beta and delta) and
measures of L2 (Basque) proficiency. Abbreviations: ACC, anterior
cingulate cortex; ANS, average node strength; FFG, fusiform gyrus;
INS, insula; IPL, inferior parietal lobe;MFG,middle frontal gyrus;MTG,
middle temporal gyrus; OFC, orbitofrontal cortex; PCC, posterior
cingulate cortex; PHG, parahippocampal gyrus; PoCG, postcentral
gyrus; SMG, supramarginal gyrus; SPL, superior parietal lobe; STG,
superior temporal gyrus; TPO, temporal pole.

spectral richness of brain signals. By using a spectrally resolved decod-

ing approach, we show that global strength in beta and delta rhythms

robustly classified individuals based on their dual-language back-

ground. These findings align with previous studies conducted in other

domains of expertise, such as the acquisition of sensorimotor skills in

elite gymnasts66 and professional dancers,25 where global measures

successfully classified participants based on prior experience. Notably,

in these studies, global topological properties were lower in experts as

compared to nonexperts, a finding that mirrors our results and likely

reflects a greater level of automaticity and efficiency resulting from

long-term training or exposure in a particular domain. Similarly, in bilin-

guals, critical hubs become more selectively coupled with a subset of

other brain regions, albeit at the expense of lower (unspecific) coupling

at the whole-brain level.67 Overall, this suggests that lifelong expe-

rience with sociocognitive skills consistently shapes the brain across

individuals, underscoring the significance of beta and delta oscillations

in capturing these effects within the bilingual domain.

Consistent with our hypothesis, global beta strength emerged as

the most influential feature in distinguishing bilinguals from mono-

linguals. This aligns with prior evidence showing that rsFC in this

specific frequency band is modulated by the degree of dual-language

experience17,19 and can successfully predict (∼60%) the variability in

L2 learning rates following intensive training.20,21 Additionally, the

node-based analysis identified key regions exhibiting greater connec-

tivity differences in the beta network, primarily involving language-

specific nodes in the temporal lobe. Thesenodes include themiddle and

superior temporal gyrus, the temporal pole, and the parahippocampal

gyrus, which have beenwidely implicated in lexico-semantic processes,

including lexical access and the retrieval of conceptual knowledge from

long-term memory.68–70 Moreover, there is evidence indicating that

beta rhythms support the reallocationof linguistic functions inbilingual

patients with brain damage.71 Thus, this finding suggests that bilin-

gual experience impacts the topological organization of brain networks

dedicated to language-specific functions.

Whole-network delta strength emerged as the second most influ-

ential feature in distinguishing individuals within each group. Slow

delta oscillations play a crucial role in the brain’s ability to integrate

information across large-scale networks,72 facilitating macroscale

interactions. Synchronous delta activity in fronto-parietal and cin-

gulate cortices has been linked to cognitive control in the general

population73 and to language switching in bilinguals.74,75 This aligns

with the significant nodes captured by our node-level analysis, includ-

ing bilateral parietal cortices, anterior and posterior cingulate areas,

and orbitofrontal regions. Notably, several of these nodes also over-

lap with central hubs of the DMN,76 a set of regions that deactivate

during tasks and have been recently proposed to orchestrate the

recruitment of different brain systems that underpin cognition.77,78

Additional support for this interpretation comes from studies show-

ing a strong link between rsFC in the DMN and delta oscillations,79,80

with variations in intrinsic DMN connectivity being significantly

explained by synchronization in this slow brain rhythm. Hence, this

top-ranked feature may reflect the influence of bilingualism on a net-

work that forms the backbone for global brain communication at

 17496632, 2024, 1, D
ow

nloaded from
 https://nyaspubs.onlinelibrary.w

iley.com
/doi/10.1111/nyas.15113 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [29/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



114 ANNALSOF THENEWYORKACADEMYOF SCIENCES

rest. This finding holds particular relevance as previous M/EEG stud-

ies investigating rsFC in bilinguals have systematically neglected the

analysis of delta rhythms due to artifact-related issues during data

acquisition.17,19,20

Moreover, the correlation analysis demonstrated that the top-

ranked features, namely, beta and delta global strength, explained

interindividual variability in L2 proficiency among bilinguals. Specifi-

cally, lower beta and delta strength were associated with higher L2

proficiency in vocabulary knowledge (LexTALE) and language produc-

tion (BEST) measures, respectively. These findings are consistent with

previous evidence indicating that higher rates of vocabulary learning

correlate with beta power modulations.81 Additionally, better per-

formance in picture-naming negatively correlates with rsFC in the

DMN,82,83 as indexedherebydelta dynamics. Furthermore, in thebilin-

gual domain, beta20,21 and delta84 connectivity have been shown to

correlate with L2 learning proficiency. Importantly, our study extends

this evidence beyond early (transient) training effects to sustained life-

long experience with an L2, suggesting that the impact of bilingualism

on beta and delta networks persists throughout continuous language

use.

Our findings have important theoretical implications and introduce

a new (spectral) dimension to current models of bilingualism, which

traditionally focused on rsFC differences between brain regions. First,

by delving into oscillatory topological signatures, we offer insights

into how these brain regions bind together and communicate within

specific frequency bands—an approach proven fruitful in modeling

lifelong expertise in other domains.25 Second, unlike prior studies over-

looking interindividual variability in spectral profiles, our multivariate

approach demonstrates that dual-language expertise can be robustly

decoded from connectome-like MEG information at the probabilis-

tic subject level. This allows for predicting an individual’s bilingual

status solely from intrinsic brain activity, underscoring that the resting-

state dynamics of the bilingual brain consistently differ from those

of monolinguals. This perspective aligns well with the spontaneous

trait reactivation hypothesis,85 wherein the organization of the human

brain at rest provides insight into the individual’s distinctive traits

and abilities.86 Third, our findings contribute to characterizing the

direction of bilingual experience effects on rsFC—a topic of inter-

est due to contradictory findings.87 We show that bilinguals exhibit

decreased connectivity strength in specific oscillatory networkswithin

the beta and delta bands, and that this reduction correlates with

higher proficiency in the L2. This association may indicate a more

efficient and automatic recruitment of brain functions in bilinguals

resulting from sustained learning, as observed in other expertise

domains.25,66,88

Overall, our results suggest that the compound classification

between bilinguals and monolinguals is probably rooted in neuroplas-

tic changes occurring within two key networks: the language network,

characterized by beta patterns; and the DMN, characterized by delta

patterns. These networks play a central role in lexico-semantic pro-

cessing and in orchestrating cognition. Thus, our study provides valu-

able insights into the neural effects of bilingualism on high-level human

functions, addressing the call for a more nuanced understanding of

these phenomena.

Nevertheless, there are some limitations to the current study. First,

our sample size was relatively small, although comparable to those

reported in similar studies using oscillatory features for binary classifi-

cation of individuals with varying degrees of sociocognitive skills25 and

learning styles.89 Second, our findings are restricted toSpanish-Basque

bilinguals and future studies should investigate whether they can be

generalized to speakers of other languages. Lastly, the age range of our

sample was restricted to young adults, while it is known that FC can

be altered by aging.26,90 Consequently, it is crucial to explore in future

research whether our findings can be extended to other age cohorts.

CONCLUSION

Our study provides compelling evidence that lifelong bilingualism

involves reconfigurations of specific oscillatory networks, leaving a

pervasive imprint that can be robustly decoded even at rest.Moreover,

we show that beta and delta strength can serve as potential markers

of L2 proficiency, effectively capturing interindividual differences in

dual-language experience. Overall, these findings underscore the sig-

nificance of frequency-specific oscillatory networks in unraveling the

neural signatures of bilingualism.
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