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A relevant point near the Biscay Marine Energy Platform (BiMEP) has been chosen and data from the ERA5S
reanalysis and CMIP6 datasets in future SSP5-85 scenario (wind and wave data) have been used to analyse the
energy potential and its trends from 2015 to 2100 for wind energy. A 15 MW wind turbine has been chosen
in line with current technological state-of-the-art and needs, and its energy production has been computed
considering the corresponding power curve, and the wind speed at its hub height based on the variation of

sea roughness due to the sea state (wave height and period). The results, although most of them have not
been relevant, have shown a slightly downward trend mostly on winter in all parameters analysed: mean
wave period (T},), significant wave height (H,), corresponding sea roughness (z,), and wind speed at hub
height (U,). The 15MW wind turbine simulation has therefore shown a small decrease in energy production.

Introduction

The ocean renewable energy (ORE) has a huge energy potential to
produce electricity with the different combinations of energy resources
carried by waves, tides, salinity, and ocean temperature differences, to-
gether with offshore wind power. In the last two decades there has been
a growing interest in the ocean’s energy potential, both for the energy
of the waves and for the wind energy, being more laminar and less
turbulent offshore than onshore, although operation and maintenance
can be more complex [1]. These resources could greatly help achieve
the European Union’s decarbonization objectives by 2050. The specific
targets are 40% global reduction and a net domestic reduction of at
least 55% in Greenhouse gases (GHG) emissions by 2030 compared to
1990, and 27% of the total energy production by renewable energy
sources [2], using mainly wind energy [3], and different developments
of solar energy [4,5]. It should be emphasized that climate neutrality
can only be achieved with a boost in renewable energies that also
includes ORE [6]. Furthermore, the Commission aims to increase Eu-
rope’s offshore wind capacity from 12 GW to at least 60 GW by 2030
and 300 GW by 2050 [7], which can be even higher since floating
offshore wind could cover 61.55% of the exploitable area using the
optimal macroscale substructures [8].
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One key issue in grid integration is long term prevision, due to the
fact that the wave and wind energies, as with other types of renewable
energies, are intermittent [9]. The wave energy, in particular, is diffi-
cult to predict because the wave height (H,) and the wave period (7,)
non-linearity combine by multiplying making the error for the energy
flow forecast higher than their forecasts individually, adding to this
issue strong historical seasonal variations from winter to summer in
locations such as Ireland [10], Iceland [11] or Chile [12].

Given these reasons and because of the need for optimal long-
term forecast and investigation in future trends of these intermittent
resources, the OREs are getting more and more attention in the recent
scientific literature [13]. The present study focuses on the long-term
wind and wave parameter trends (2015-2100) at a referential point
near the Basque Coast in a marine energy experimental platform, with
the aim of reaching a suitable projection of future offshore wind energy
production in different climate scenarios in order to take advantage of
it.

This experimental location should be analysed in the context of
maritime space management plan of Spanish government around the
Iberian Peninsula (Bay of Biscay and Mediterranean), and Canary Is-
lands (POEM, Plan de Ordenacién del Espacio Maritimo [14] 1si, show-
ing a strong potential in the Bay of Biscay, mainly in Galicia and
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List of abbreviations

BIMEP Biscay Marine Energy Platform

C3S Copernicus Climate Change Service

CI Confidence Interval

CSIRO Commonwealth Scientific and Industrial
Research Organisation

DTU Technical University of Denmark

EU European Union

ECMWF European Centre for Medium-Range
Weather Forecasts

GHG Greenhouse Gases

IEA International Energy Agency

JAS July, August, September — summer season
months

JFM January, February, March — winter season
months

LCOE Levelized Cost of Energy

MBC Multivariate Bias Correction of Climate
Model Outputs

NREL National Renewable Energy Laboratory

ORE Ocean Renewable Energy

OWC Oscillating Water Column

POEM Plan de Ordenacién del Espacio Maritimo

QM Quantile-Matching

QMD Quantile Mapping and Dressing

SSPs Shared Socioeconomic Pathways

Nomenclature

AEP Annual Energy Production [kWh]

CF Capacity Factor [%]
Water depth [m]
Earth’s gravity force acceleration [9.81
m/s?]

H Significant wave height [m]

L Peak period wavelength [m]

N Number of analysed cases per year [2922
cases]

p Pressure [Pa]

P.ored Nominal power of the turbine [15 MW]

PU) Power based on the wind speed [kW]

t Temperature [K]

T, Mean wave period [s]

T, Peak wave period [s]

U, Wind speed at x height [m/s]

WPD Wind Power Density [W/m?]

z Sea roughness value [m]

At Time period [3 h]

Asturias [15]. The corresponding Figure-S1 of the supplementary mate-
rial, shows the main maritime boundaries of POEM emphasizing Canary
Islands with trade winds [16], the West of Bay of Biscay with the NW
predominant component [17], and the NW of the Mediterranean with
also strong N tramuntana winds around the Gulf of Lion [18]. In the
next section, Fig. 1 shows more specific details of the selected area in
the Basque Country, including bathymetry analysis, where a referential
experimental offshore wind farm area will be constituted.

The main novelty of this article is to apply last coordinated CMIP6
future projections with waves, not only wind speed, for future offshore
wind energy projections. The novel method considers the instantaneous
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roughness of the sea depending on wave period and height for the
application of the logarithmic law that describes the vertical profile of
the wind, and therefore, gives the value of wind speed at hub height of
the selected turbine. This is a pioneering approximation procedure, for
these reasons:

1. The novelty of data: CSIRO offers future data not only with wind
speed, but also with wave data, which is not used in the previous
studies with CMIP5 or CMIP6.

2. The use of 3-hourly data to compute the instantaneous power
using turbine power curve, and the consequent computation of
AEP and CF.

3. The methodological novelty: the use of wave height and period
to obtain sea roughness and apply it to the wind vertical profile.

Recent literature applying global CMIP6 projections found a signifi-
cant decline by 2100 in the mid-latitudes of the Northern Hemisphere.
These changes are highly dependant on future climate scenarios [19].
There is a global increase in the variability of Wind Power Den-
sity (WPD) [20], though there are more references using CMIP5 and
CMIP6 about Europe and North America [21]. A recent work suggests
a reliable and stable horizon for the development of offshore wind
energy [22].

Most of the previous CMIP6 based literature does not consider the
real energy production of the turbine and its capacity factor in the
real power curve using hourly data. These articles only study WPD and
wind speed evolution: [19,20,23-30]; In these cases, monthly data is
used: [26,28,30-32]. That is, previous literature has generally ignored
the translation of natural wind energy to real electrical production in
long-term and future projection studies.

The article is structured as follows: first, the studied area in the
Basque Coast is defined together with the data used from CSIRO
and ERA5 reanalysis to calibrate CMIP6 projections data; then, the
calibration method and also the characteristics of the 15 MW turbine
are described; methodologically, the equations to obtain sea roughness
and the application of the log law for the vertical profile of wind
are specified to compute the energy production and its future trends;
all this combination of data and methods are synthesized in two flux
diagrams to visually clarify all the steps for the reader; after that,
the results show the validation versus ERA5 of the CMIP6 source
and the future wind and wave trends, to finally present the energy
production trends of the 15 MW turbine and extreme event behaviour;
the Discussion section interprets these results with general connections
for global warming and in Conclusions the authors emphasizes the main
results and the future outlook of the presented methods.

Data and methodology
Data

The data used here constitute, as far as we know, an unique
source for future CMIP6 projections incorporating wave data via an
atmosphere-oceanic coupling simulation. According to the original
methodology presented here, as it is shown in the next sections, these
data about wave period and wave height are essential to obtain the
instantaneous roughness of the sea via the Hsu law (Eq. (2)), and to
raise the original wind speed at 10 m to the turbine hub height at 150 m
using the logarithmic law (Eq. (3)) [33].

Study area

Our gridpoint is located in the Bay of Biscay [Fig. 1-a], at coor-
dinates 43.5°N, 2.5°W. This location has been chosen for its good
energetic potential, since it is between Biscay Marine Energy Platform
(BIMEP) and the Mutriku’s Oscillating Water Column (OWC) (both
areas, BIMEP [34] and Mutriku [35] are well studied energetically). It
should be underlined that the seabed of the Basque Coast tends to de-
scend deeply a few kilometres from the shore, which supports the future
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Fig. 1. (a) East Atlantic Sea bathymetry with the studied area in orange. (b) Zoom of the studied area with the most relevant points. (c) Transect from the gridpoint to the

coast [39].

prospect of floating wind power installation since the deployment of
floating wind turbines in deep waters is favoured by several advantages,
such as more stable winds, lower visual impact and flexible acoustic
noise requirements [36]. In fact, part of the objective of this study is to
check the hypothesis that the projections of the energy resource at the
analysed location justifies the installations of such floating wind power
devices. Consequently, the grid point is located about 13 km off the
Basque coast to the north and at a depth of about 120 m, beyond the
prohibitive limit of 10 km imposed by the European Commission [37],
and well within the technical limit of anchoring depth of 1000 m [38].

ERA5 reanalysis

ERAS reanalysis data have been used as a historical base and
validation of future projections [40]. For the preparation of ERA5, the
European Centre for Medium-Range Weather Forecasts (ECMWF [41])
reprocessed all observations using a frozen data assimilation system (its
IFS Earth System model, CY41R2). The data from the reanalysis are
distributed by the Copernicus Climate Change Service (C3S) and they
currently cover the period from 1940 to the present [42].

The ERAS reanalysis is the fifth major global reanalysis produced by
ECMWF, providing hourly data with a spatial resolution of
0.25° x 0.25° (about 30 km) worldwide for the downloaded meteo-
rological data. For atmosphere and wind energy analysis, wind speed
at 10 m (U,), surface pressure (p) and temperature at 2 m (¢,) are used.
However, for wave data, the available spatial resolution is 0.5° x 0.5°
(about 50 km), and the parameters used are significant wave height
(H,) and mean wave period (7,,) or peak wave period (Tp).

CSIRO: CMIP6, wind and wave

The second data source used in this study is Commonwealth Sci-
entific and Industrial Research Organisation (CSIRO), an ocean wave’s
climate simulations dataset with its persistent link to share the col-
lection (link [43]). The dataset has been globally validated against
satellite altimeter and in situ buoy data, showing the ability to repro-
duce the main historical climate signals with statistically robust trends.
The wave climate models compare well to global satellite altimeter
and in situ buoy data. When compared to traditional trend analyses,
these models show that they can reproduce the main historical climate

signals. The long-term datasets used in the study allow for a compre-
hensive description of the wave climate in the 20th and 21st centuries,
and produce statistically significant trends [44]. The dataset is obtained
by coupling the WaveWatch III (v6.07) model with CMIP6 models. The
model is run under two IPCC Shared Socioeconomic Pathways (SSP1-
26 and SSP5-85) [45], two models (ACCESS-CM2 and EC-EARTH3)
and two parametrizations for SSP5-85 scenario (CDFAC1, CDFAC1.08)
and one for the SSP1-26 scenario (CDFAC1.08). For the study, only
the SSP5-85 IPCC representative greenhouse gas emission scenario is
used (highest-end forcing pathway scenario in terms of greenhouse
gas emission than SSP1-26 [46]). Therefore, there are four different
future projections mixed under the worst scenario (see Section “Fluxu
diagram”). This scenario is taken because last climatic data show that
the worst scenario could be the most probable(see Section “Conclu-
sions”). Several authors have investigated the evolution of different
ocean parameters in higher emissions scenarios, e.g. [47] analysed the
change on the wave energy resource potential in the Atlantic Coast of
the Iberian Peninsula over different future time-frames under a high
emission scenario and [48] analysed the climate change impact on
waves in the Bay of Biscay under three potential future scenarios with
a more thorough analysis for the higher emission scenario.

The dataset contains 3-hourly outputs in a global 0.5° x 0.5° spatial
resolution, in the 2015-2100 period, with an added historical period
(1985-2014). The variables used in our study are mean wave period
(T,), significant wave height (H,), and wind speed at 10 metres high
(U,p). These data are computed monthly with a confidence interval
(CD of 95% and Theil-Sen so that the trend computation is more ro-
bust [49], since this technique captures the medians of the signal [50].
Nevertheless, the graphics are plotted in a yearly scale with the Linear
Regression Analysis in order to make trends more visual for the reader
(Fig. 4).

Calibration method: CSIRO vs. ERA5

The CSIRO future projections were calibrated using ERA5 data
to improve their accuracy. This calibration is necessary because the
projections lack certain information that reanalysis data already has as-
similated, such as meteorological ocean observations. In this study, the
variables T,,, H,, and U,, were corrected using the Quantile Matching
(QM) technique [51]. This technique derives the calibration transfer
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Fig. 2. Flux diagrams of: (a) Data synthesis, scenario and model selection, area and bathymetry filtration, and selected parameters trends computation; (b) Calibration of the

CMIP6 versus ERAS data set and future projection operations by QM.

function by calculating the percentile differences between the historical
climate model and ERA5 reanalysis data both in the reference period
(1985-2014). Then future projections of the climate model for the
period 2015-2100 are adjusted using the transfer function obtained
above for the reference period (see Fig. 3). The authors have previously
used this technique in studies related to wave energy [52], wave energy
converters [53] and wind energy [54] matching the quantiles in a direct
way or even categorizing directional intervals of waves to obtain a
unique transference function QM for each direction [12].

In this study, the technique was applied using the Quantile Mapping
and Dressing (QMD) function of the Multivariate Bias Correction of
Climate Model Outputs (MBC) R-package: [55]. This methodology is
particularly important for climate change research, as it allows for more
accurate projections of future climate conditions.

IEA 15-MW offshore wind turbine

The wind turbine model selected for the study (see report [56])
is the IEA 15-MW Offshore Reference Wind Turbine, developed by
a collaboration between the National Renewable Energy Laboratory
(NREL), the Technical University of Denmark (DTU) and the Inter-
national Energy Agency (IEA). An important aspect of this turbine is
that OpenFAST-based simulation and analysis using a semi-submersible
platform [57] is supported, which fits the necessity of the location
selected for this study.

This reference wind turbine is a IEC-Class IB direct-drive machine,
with a rotor diameter of 240 m and a hub height of 150 m. The
blade design was driven by the selection of the rotor diameter and a
maximum tip speed of 95 m/s. The rated power is 15 MW and it has a
3 m/s cut-in wind speed, 10.59 m/s rated wind speed, and 25 m/s cut
off wind speed as well as 5 rpm cut-in rotor speed and 7.56 rpm rated
rotor speed [56]. The corresponding turbines power curve is shown in
the supplementary material (Figure-S2).

Methodology

Sea roughness and wind vertical profile

To obtain the sea roughness value (z;), Hsu Eq. (2) is used [58].
Here is the methodological novelty of this article: the use of wave
data (height and period) to obtain the instantaneous sea roughness
and, therefore, the vertical behaviour of wind speed in the atmospheric
boundary layer. In this case, L is the wavelength and H is the represen-
tative wave height (both in metres) [33]. To use the Egs. (1), (2), a deep
water environment is considered where the ratio between the water

depth and the wavelength d/L is bigger than 1/2 and the hyperbolic
tangent is approximately equal to one [59].

2 2 2
L= i tanh dr>d ~ £ 1
2z T?g 27
H A4S
20 _ 00 s 2
H, L

Instead, to get the wind vertical profile, the wind shear or the
variation in wind speed with height over water, the logarithmic Eq. (3)
is used. As the height of the turbine is 150 m, and the available wind
data is at 10 m, it is necessary to extrapolate the values to obtain data
similar to reality in which instantaneous sea roughness (z;) is taken
into account [33].

% _ log(150/z¢) 3)

Uy  log(10/zy)

Annual energy production and capacity factor

As the dataset used in the study has 3 hourly outputs, the 4r will
be 3 h and the number of data in a year will be N = 365.25 -(24/3)
= 2922 data. This will help to calculate the Annual Energy Production
(AEP) (Eq. (4)), and the Capacity Factor (CF) (Eq. (5)). With the first
one (Eq. (4)), the total amount of electrical energy produced over a year
is calculated; and the second one (Eq. (5)) shows the time percentage
over a year that the turbine is running at its nominal or rated power
(P rated )

N

AEP =) P(U)- &t €))
i=1

cr=_—AEP ()

Prated - 8760

P(U) is the function that relates, using the power curve, the pro-
duced power in function of wind speed at the hub height. A linear
interpolation method is implemented in a discrete series of the IEA 15
MW wind turbine’s power curve.

Future trends computation
Different visualization strategies and numerical values are used to
show the trends:

1. All the trend figures are shown using yearly means, consider-
ing all the models equiprobable, given the importance of an-
nual analysis for techno-economic issues in wind energy. This
visualization is approximated via linear regression lines in Fig. 4.
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Fig. 3. T,, H, and U,, validation boxplots, in pairs of the same colour, before (left side of the pair) and after (right side) calibration against ERAS5.

2. For the exact numerical values of the trends and the correspond-
ing tables, Theil-Sen method is applied on seasonal anomalies
for monthly mean data. This technique offers more robust values
with a CI of 95%. Annual and seasonal trends are computed by
means of this method (see Tables 1,2).

3. Boxplots of 30 years (tridecades: 2011-2030; 2031-2060; 2061-
2100) are also shown in some cases such as the Capacity Factor
to avoid the interference of climatic patterns in the overall
analysis [60], considering a equiprobable mix of the original
models (see Fig. 5).

Flux diagram

The Fig. 2 shows the diagrams of how the data was managed.
Firstly the calibration and bias correction was made by QM method.
After that, the SSP5-85 pathway was selected as well as the two global
climate models with two different parametrizations each one. Both
selected models are on the top models with the most grid points
statistically similar to ERA5-time series in Europe and North America.
EC-Earth3, EC-EARTH-CONSORTIUM (Europe) [61], top 1 in Europe
(67% similar) and top 3 in North America (64% similar); and ACCESS-
CM2, Commonwealth Scientific and Industrial Research Organisation



H. Ezpeleta et al.

Table 1

Sustainable Energy Technologies and Assessments 65 (2024) 103776

Summary of the Fig. 4, S3 and S4 trends, and their variation in 30-yr periods.

Parameter Bottom CI slope (2.5%)

Central slope (50%)

Top CI slope (97.5%)

Mean variation
per 30 yr (%)

T, (s/10 yr) —-0.0037 —0.0542 —-0.0411 —1.94%*
T,, winter +0.0057 —-0.0148 —-0.0517 —0.45%
T,, summer +0.0052 —-0.0839 -0.1163 —-3.50%
H, (m/10 yr) +0.0010 -0.0115 —-0.0234 -2.75%
H winter —-0.0036 —-0.0067 —-0.0242 -1.17%*
H_ summer +0.0049 —-0.0062 —0.0558 -1.95%
Uy, (m s7'/10 yr) +0.0014 -0.0137 —-0.0349 —-0.86%
U,, winter —-0.0097 -0.0279 -0.0111 —1.42%*
U,, summer +0.0046 +0.0152 —0.0402 +1.19%
zy (m/10 yr) +1.314E-09 +8.194E-08 -1.915E-06 +5.89%
z, winter —6.957E-10 —7.002E-08 -3.471E-06 —3.08%*
z, summer +8.626E—09 +2.001E-07 -1.116E-06 +19.99%

* Means that the slope is significant at a 95% CI.

(Australia) [62], top 8 in Europe (52% similar) and top 6 in North
America (59% similar) [23]. Finally, the parameters were analysed in
one legally possible grid-point limited by bathymetry and EU law as
mentioned in Section “Study area”.

Results
Validation vs. ERA5

The validation focused on the boxplot diagrams, which allow com-
paring different parameterizations and models with reference data
ranging from 1985 to 2014 (see Section “Calibration method: CSIRO
vs. ERA5”) on the same graph. The results indicate similarity across the
three initial variables analysed in this study, U, T,, and H,. Note that
the forth variable, z, is obtained by applying previous Eq. (2). The bias
error [63] has been improved in all cases especially in the wind speed
which is shown in the boxplot below (Fig. 3). The boxplot contains dia-
grams in pairs of the same colour (non calibrated on the left, calibrated
on the right) for each of the simulations including parametrization that
take part in the final data mix analysed in this paper. As it is shown, the
calibrated boxplots show a significant improvement, mainly for the bias
which is reduced to null in all the non-historical simulations, compared
to the grey ERADS first referential boxplot.

Future wind and wave trends

Fig. 4 shows the trends of parameters H, and U,, in the future
scenario, SSP5-85 IPCC, with period 2015-2100 for annual (a), winter
(b) and summer (c) trends with its 95% CI. The corresponding figures
of T,, and z,, are shown in the supplementary material (Figures S3 and
S4). The blue line is the 2.5% quantile, the grey and black one is the
50% quantile, or the median, and the red one is the 97.5% quantile.

The graphics trends are plotted using linear regression to make
trends more visual. However, the tabular results are computed monthly
with CI 95% and Theil-Sen in order to make trends more robust and
reliable.

Table 1 shows, with a 95% CI, the top (97.5% quantile), the median
(50% quantile) and the bottom (2.5% quantile) ramp values per decade,
and, as can be seen in the last column, the relative change that this
represents in a tridecade. The parameter with the major variation
through a 30-year period (last column) is the sea roughness (z), giving
its maximum change in summer. This is given the fact that the sea
roughness values are barely noticeable for the human sight (it has
values up to the order of 1E-7 m). Therefore, a small absolute change
brings with it a large relative change. But this case is not very relevant
because of the variation between positive and negative trends in the
bottom and top CI slopes.

The main tendency of the parameters is to decrease. Despite the fact
of the increasing trends of the bottom CI slope, its absolute values are
about ten times less than the negative slope values of the top CI slope.

Table 2
Seasonal Theil-Sen analysis for each selected model in the worst greenhouse emission
scenario (SSP5-85). NA value means that there is not any significant trend.

Model Season Generation power trend [kW/yr]

2.5% CI 50% CI 97.5% CI
ACCESS_1 -12.8085 -8.2169 —4.9280
ACCESS_108 Winter -12.7651 -8.3043 —4.9432
EARTH_1 -2.7819 NA 5.1955
EARTH_108 —2.7548 NA 5.2080
ACCESS_1 —0.1464 NA 3.9233
ACCESS_108 Sprin —0.1480 NA 3.9432
EARTH_1 Pring ~4.4030 NA 0.2219
EARTH_108 —4.4115 NA 0.2224
ACCESS_1 1.3420 3.8900 4.3063
ACCESS_108 Summer 1.3317 3.8615 4.3082
EARTH_1 4.7930 6.4995 7.4592
EARTH_108 4.7646 6.4799 7.4346
ACCESS_1 —7.8521 -4.1635 —0.8485
ACCESS_108 Autumn —7.8838 -4.1901 —-0.8591
EARTH_1 —12.4398 -9.2734 -5.9179
EARTH_108 —12.4475 -9.2655 -5.9168

Therefore, the negative trends except for the z, have more influence.
The reason for that z;, positive change is the reduction of wave period
(T,,) which also reduces the wavelength (L, (1)), increasing the wave
slope (H/L) and therefore the roughness. Besides, it looks like the
possibly most extreme events (Top CI values) are going to decrease
during the 86 years time period prediction. This case is discussed in
Section “Discussion”. Overall, all the significant slopes are negative and
the most of them are winter trends.

Future CF and AEP evolution

Fig. 5-a shows that the CF obtained is around 28%-29%. This is in
agreement with a previous study of the authors [64], which shows a
map of the Iberian Northern Coastline, with a potential CF of between
20%-28%. In the case of the present study, the CF is slightly higher
due to the fact that, apart from having more advanced forecasting tech-
nology, the wind is analysed at a higher altitude (150 m), having higher
wind quality and energy potential. Furthermore, it is in agreement
with wind potential values given by Global Wind Atlas at that location
(https://globalwindatlas.info/en) [65].

Having taken the mean annual CF values year by year for the
boxplot, it can also be seen that the median and the upper end of the
CF decrease slightly every 30 yr. The first tridecade or thirty years
period is the period from 2011 to 2030; the second from 2031 to 2060;
and the third and last from 2061 to 2100. If we analyse the annual
evolution in the future, we obtain that the change for 2100 will be
—1.9% of CF. In terms of energy generated, it is estimated that the
AEP will decrease by —2.5 GWh by then.
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its trends.

On the other hand, if we divide the CF analysis on the basis of
the most influential seasons, winter [JFM] Fig. 5-b and summer [JAS]
Fig. 5-c, in the future SSP5-85 IPCC scenario, the winter tridecades
show that, as in the calculation of the global annual CF, it is reduced

but obtaining much better results, 40%. In summer, on contrast, the
CF increases as the tridecades go by, from 14% in the first tridecade
to 15% in the third tridecade. Analysing the annual evolution in turn, in
winter, the CF will decrease up to —2.9% by 2100 and in summer it will
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Factor tridecadal boxplot.

increase by +1.6%. Concerning energy, AE P, it will decrease by around
—1 GWh in winter and increase by 0.5 GWh in summer respectively in
the period of years analysed.

A more robust method based on Theil-Sen trend analysis within
seasonal anomalies monthly for each model shows the following gen-
eration power trends, which are coherent in comparison with the
previous 30 yr boxplots. There are some NA values in the table because
there are not any significant values since the top and bottom slopes
trends differ.

As seen in the tri-decades boxplot Fig. 5, the generation power
significant trends on winter are negative and in summer positive. On
the other hand, except for summer season, all the bottom CI (2.5%)
values are decreasing trends whereas nothing relevant can be deducted
with the top CI (97.5%) values. It is also remarkable that there are
decreasing trends on autumn which may mean a smoother change
between seasons.

Extreme waves and winds

Another important result for future projections is the behaviour of
extreme events, which can be related to higher fatigue and loads in
the future for different floating structures [66], and a reduction of the
life cycle of the wind turbines. Given the lack of general definition
of extreme event, the 99% quantile has considered here as a first
approximation. Fig. 6 show these projections computing the CI of the
slopes for 99% quantile events in both wave and wind, the two main
parameters when it comes to energy flux and structure loads. In each
parameter, the blue line encompasses the 99% quantile of the annual
winter events, the red line the 99% quantile of the annual summer
events and the grey line the 99% quantile of the total annual events,
considering 99% quantile as a definition of extreme.

As seen in Fig. 5, the phenomenon of extreme events defined at 99%
quantiles mostly tends to decrease. The most affected parameter is the

summer significant wave height which is predicted to decrease more
than a 8% in a thirty years period. As the summer season is not such a
extreme season in the scope of the H|, the diminution of the extreme
events will not be noticed as in other seasons. The U, winter trend
remains practically constant but always tending to increase (+0.03% in
a tridecade) being the only one with positive changes; the same occurs
to H; on winter which in this case tends to decrease (—0.86% in a
tridecade).

Discussion

The results confirm what other papers have already shown: the
expected slight negative changes in the north Atlantic [67] and Bay
of Biscay [68] in the parameters analysed for future decades. This
annually negligible and small reduction for winter projected for the
21th century in wind energy production is a paradigmatic result, since
previous investigations in the Iberian Peninsula for historical offshore
wind energy production using ERA5 (1950-2010) show relevant incre-
ments in wind energy [54]. This increments are even higher for wave
height and wave energy if 20th century is taken into account calibrating
ERA20C reanalysis in the Bay of Biscay [52], the West of Ireland [10],
Iceland [11], or even South Hemisphere in Chile [12].

As mentioned, the novelty of the methodology is in the deter-
mination of the sea state according to the instantaneous roughness
(depending on wave height and period) to raise the wind speed at
10 m to the hub height of the turbine with the corresponding vertical
profile. The significant increments of 10%-15% created in the past a
gradually rougher sea condition, which would reduce the wind speed
at hub height of wind turbines. The authors show that this effect of
hypothetical rougher seas due to global warming will not be the case in
the future evolution of the Bay of Biscay. Other global studies, mainly
given by the changes in the frequency of extreme weather events or
the hemispheric asymmetry can detect other locations where the future
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variations are stronger [69,70]. The climatic and physical explanation
of this phenomenon is out of scope of this paper.

This future small or negligible variations are repeated for extreme
wind and waves, but the positive trend for extreme wind speed at 99%
quantile together with the reduction of extreme waves, implies that
the influence of local winds is weakening in the future in favour of
swell waves. This implies a more regular wave frequency and control-
lable floating turbine [71], which, together with a constant roughness,
would not affect the fatigue loads of the structure like in the past
projections [72].

The influence of the hub height in future power production trends
should be also discussed, given that turbines of 5 MW and 100 m
hub height have shown even smaller production variations. According
to error theory, and considering the Wind Power Density (W PD)
proportional to U3, the relative error of WPD, dW PD, = dWPD _

3U%dU b
U3

= 3dU,, is three times the relative error of wind speed dU,, that
is, a variation of 1% of wind speed during decades means a variation
of 3% for natural wind power. This is the main theoretical reason why
small variations or insignificant variations of wind speed can affect the
real production of the wind turbine, mainly between the cut-in speed
and rated wind speed of the turbine [33] (see Section “IEA 15-MW
offshore wind turbine” or Figure-S2 of the supplementary material),
the part of the power curve governed by the cubic behaviour between
power and wind speed. Thus, the most robust analysis in the Table 2
for power in kW and for each future model, shows more relevant
trends for all the seasons, with exception of Spring. This seasonal long-
term variation emphasizes the need of ocean energy harvesting to
regulate the electricity output, mechanically [73], or using triboelectric
nanogenerator arranged longitudinally under water [74].

The studied period for CF is 30 yr (one tridecade), as shown
in Fig. 5, that is, the database includes ~90,000 3-hourly cases for
each model. For the climatological standards, this reference period
corresponds to the current guidelines by the World Meteorological

Organization [75], or institutes such as the Copernicus Climate Change
Service [76]. Only the median in the boxplot of the last tridecade
shows for winter a relevant reduction, constituting a climatically more
significant information than the typical slope computation of variation
per decade. Anyway, this tridecade analysis is coherent with the main
trends per decade computed using Theil-Sen method and correspond-
ing uncertainties. This uni-parametric estimations can be improved in
the future using multi-parametric uncertainties [77,78].

Similarly, the economic losses generated by the main negative
winter trends have been calculated since the changes in energy pro-
duction are seasonal and the negative winter trends are significant
as seen in Table 1. For this purpose, it has been taken into account
that the Levelized Cost of Energy (LCOE) is currently higher than 160
EUR/MWh on the Cantabrian Coast according to [79] with any floating
and anchoring method. Maintaining this value until 2100, despite the
fact that some experts report that by 2050 the LCOE will decrease
around 35%-41% [80], and without taking inflation into account, by
the year 2100 it would reduce generation during winter season, the
most productive season, between 100,000-200,000 EUR.

Conclusions

CMIP6 is the last configuration of the global climate models de-
signed to estimate future climate projection. CSIRO offers pioneering
metocean data, in which a worldwide atmospheric-oceanic coupling
model has been run to estimate the corresponding wave data, in a way
consistent with the wind and wave data from the global climate model.
Here is the methodological novelty of this approach: wave period and
height determines the instantaneous sea roughness which establishes
the behaviour of the wind vertical profile at the hub height of the
turbine.

The selected gridpoint and its surrounding area, with similar char-
acteristics, have an adequate but decreasing energy potential just vi-
sualizing the descending trends of T,,, H,, Uy, zy, and the AEP and
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CF of the wind turbine using its real power curve in future SSP5-85
IPCC scenario with the highest CO2 emissions by 2100. The plotted
linear regressions have shown the slightly decreasing tendency of the
parameters in winter and the mainly decreasing trends of the most
extreme events.

For the energy production of the turbine, although the variations
for turbines smaller than 5 MW has been found insignificant even at
the worst scenario [81], this reduction for the 15 MW turbine implies a
corresponding statistically significant reduction in annual C F of around
—2% by 2100 for SSP5-85. This reduction is insignificant for the middle
and low emission scenarios, but last climatic data show that the worst
scenario considered here could be more probable than the middle one.
The most likely climate scenario is that global temperatures will rise
by about 2.7 °C by 2100. This is the middle of the road scenario, also
known as SSP3-7.0, near SSP5-85, outlined in the Intergovernmental
Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) [82].

Under this scenario, greenhouse gas emissions continue to increase
throughout the century, reaching a peak around 2080 before slowly
declining. This leads to a steady increase in global temperatures, with
the possibility of reaching 3 degrees Celsius (5.4 degrees Fahrenheit)
by the end of the century.

Given the universal nature of the presented methods, it would
be possible to perform the same analysis in other marine regions
around the world to analyse the offshore wind energy potential fu-
ture evolution. Future work can also analyse the energy production
of a wave energy converter since wave data are available, and even
the evolution of the hybridation of both marine sources, wind and
wave [83], considering co-location indexes [84], covariance analysis
and the algebra of index decomposition developed by the authors
for other energetic applications and also in the analysis of poverty
and energy poverty [85]. Solar-wind-wave energy hybridation can be
another approximation in this sense [86].
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