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and 10 g  l−1 NaCl added) affected the rates of total, 
microbial and detritivore-mediated decomposition, 
in stream microcosms containing leaf litter of Ficus 
insipida and larvae of Chironomus sp. collected from 
tropical streams. Effects of temperature were strong 
and consistent with previous findings: it promoted 
microbial decomposition and reduced decomposi-
tion mediated by detritivores, which showed greater 
feeding activity at 26°C. Salinity was negatively 
correlated with microbial decomposition at 32°C; it 
also had a negative influence on detritivore-mediated 
decomposition, which was nevertheless non-signif-
icant due to the high detritivore mortality at higher 
salinities. Notably, total decomposition was reduced 
with the joint presence of both factors (32°C and salt 
addition treatments, compared to 26°C and no salt 
addition), indicating the existence of additive effects 
and highlighting the relevance of multiple-stressor 
contexts when assessing the consequences of global 
change on stream ecosystems.

Keywords  Detritivores · Global environmental 
change · Salinity · Stream ecosystem functioning · 
Temperature

Introduction

Our planet is going through serious environmen-
tal changes as a result of anthropogenic activities, 
such as forest conversion into agricultural land, 

Abstract  Stream ecosystem functioning is often 
impaired by warming and salinization, but the joint 
effect of both environmental stressors on key pro-
cesses such as leaf litter decomposition is virtually 
unknown, particularly in the tropics. We experimen-
tally explored how increased water temperature (26, 
29 and 32°C) and salinity (no salt addition, 0.1, 1.0 
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urbanization, or industrial development (Sage, 2020). 
These environmental changes act as stressors on 
organisms and ecosystems, which can respond at mul-
tiple levels, from physiological alterations in individ-
uals (Todgham & Stillman, 2013) to shifts in the rates 
of ecosystem processes and their capacity to provide 
services to humans (von Schiller et al., 2017). Within 
this context, multiple-stressor research is becoming 
prevalent because environmental changes often do not 
occur in isolation, and their interactions can challenge 
predictions of their ecological consequences (Jackson 
et  al., 2021). The combined effects of stressors  can 
be antagonistic, additive or synergistic depending on 
whether the result is lower, equal to or greater than 
expected (Fong et al., 2018).

Climate change is the most pervasive environmen-
tal change globally (IPCC, 2018). The rise in mean 
atmospheric temperature (hence in water temperature 
in freshwater ecosystems; Molinero et al., 2015) leads 
to enhanced organism metabolic rates (Brown et al., 
2004) and, often, accelerated ecosystem process rates 
(Boyero et  al., 2011b). On the other hand, changes 
in precipitation intensity and distribution cause the 
intensification of dry seasons in some regions of the 
planet (Park et  al., 2018), which in turn interferes 
with water level and concentrations of pollutants in 
fresh waters (Rose et  al., 2023). Exploring the con-
sequences of stressors associated with climate change 
in freshwater ecosystems is of prime relevance 
because these provide fundamental ecosystem ser-
vices (Richardson & Hanna, 2021) and because they 
are especially vulnerable to environmental changes, 
given that they integrate impacts produced on whole 
catchments (Jackson et al., 2016). Such information is 
particularly lacking for fresh waters located in tropi-
cal latitudes (Cornejo et al., 2019, 2020b).

In particular, stream ecosystems are highly 
exposed to pollutants coming from land, which are 
transported through runoff and can alter ecosys-
tem processes, jointly with changes in temperature 
(e.g., as shown for dissolved nutrients; Ferreira & 
Chauvet, 2011). A type of pollutant that is com-
mon in streams, due to agricultural, industrial and 
mining activities, among others, and intensified by 
climate change, is salt (Cañedo-Arguelles et  al., 
2014). Salinization, however, has received little 
attention compared to other types of stream pol-
lution, such as eutrophication (Cañedo-Arguelles 
et  al., 2018), and its joint effect with warming on 

ecosystem processes is virtually unknown (despite 
some evidence existing for organism physiological 
responses; e.g., Velasco et al., 2018).

Information about how the above stressors and 
their interactions affect stream ecosystems is par-
ticularly lacking for tropical latitudes (Cornejo 
et  al., 2019), where climate change projections are 
especially critical and uncertain (Corlett, 2012). 
Besides, some tropical areas (such as our study area 
in Panama) can be susceptible to salinization for 
multiple reasons (Herbert et al., 2015; Castillo et al., 
2018), including their high aridity (Sauer et  al., 
2016); their proximity to the ocean (Chui & Terry, 
2013), with salt being transported by sea breezes 
and seawater intrusions (superficial or through aqui-
fers); and human activities such as agriculture and 
cattle raising (Nack et  al., 2021), with salt being 
used as feed supplement for livestock.

Here, we measured leaf litter decomposition in 
microcosms in order to evaluate the combined effect 
of warming and salinization on stream ecosystems 
from a tropical dry area, the Dry Arc region in Pan-
ama. The process of leaf litter decomposition is a 
useful tool to assess environmental stressor impacts 
on stream ecosystems (Gessner & Chauvet, 2002) 
and it has been used to explore effects of saliniza-
tion (Canhoto et al., 2021). Terrestrial leaf litter rep-
resents the major basal resource in many streams, 
where the riparian canopy restrains primary produc-
tion, and microbial decomposers (mainly aquatic 
hyphomycetes) and some detritivorous invertebrates 
(hereafter detritivores) specialize in processing this 
leaf litter and incorporating it into the aquatic food 
web (Marks, 2019). We used all combinations of 
three temperatures and four sodium chloride (NaCl) 
concentrations, and exposed leaf litter to the action 
of microorganisms and detritivores collected from 
tropical streams for 2 weeks. We hypothesized that 
(1) increased temperature would enhance micro-
bial and detritivore-mediated decomposition, as a 
result of higher metabolic rates (Ferreira & Chau-
vet, 2011); (2) increased salinity would decrease 
microbial and detritivore-mediated decomposition, 
as a result of osmotic imbalances and hence reduced 
rates of biological activity (Canhoto et  al., 2021); 
and (3) effects of salinization would be more evi-
dent at lower temperatures, because the increase in 
decomposition rates at higher temperatures would 
offset the decrease caused by salinization (i.e., both 
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stressors would show antagonistic effects; Jackson 
et al., 2016).

Materials and methods

Collection of biological material

We used leaf litter of Ficus insipida Willd. 
(Moraceae), a species of fig tree that is commonly 
found in the Pacific slope of Panama. Leaves of this 
species have relatively good quality (SLA = 10.7 ± 1.1 
mm2  mg−1; N = 1.09 ± 0.09%; Cornejo et al., 2020b) 
and have been readily used by microbial decompos-
ers and detritivores in previous experimental stud-
ies (Cornejo et al., 2020b; López-Rojo et al., 2020b; 
Pérez et  al., 2021b). We collected recently fallen 
leaves from the forest floor of the Metropolitan 
Natural Park (8° 59′ 36.77″ N, 79° 32′ 46.66″ W) in 
August 2022. Leaves were air dried and stored in the 
laboratory until used.

Larvae of Chironomus sp. (Diptera: Chirono-
midae) were selected as detritivores, as the species 
is the most abundant in the study area (the Tonosí 
river catchment, central Panama) and it feeds on a 
wide variety of types of detritus, including leaf litter 
(Callisto & Gonçalves Jr, 2007; Small et  al., 2011). 
This group of organisms has shown high tolerance 
to alterations related to eutrophication and low con-
centrations of dissolved oxygen (Frouz et  al., 2003), 
being an example of generalist tolerant (Rosin et al., 
2010; Steinberg & Steinberg, 2012), and becoming 
the dominant detritivore in decomposing litter under 
altered conditions (Pérez et al., 2013).

We collected larvae in a tributary near the Tonosí 
Forest Reserve (7° 14′  51.77″ N, 80° 34′  14.93″ W; 
57 m asl), to ensure that they had not been previously 
exposed to high levels of salinity and high tempera-
tures. For larval collection, we placed six artificial 
pools at the stream banks within 2 m from the stream 
for 21 days. The pools consisted of 9-l plastic buckets, 
each filled with stream water [pH: 7.8; conductivity: 
0.351 mS cm−1; salinity: 0.17 PSU; dissolved oxygen 
(DO): 6.1 mg l−1] and containing 3 g of Ficus insip-
ida leaf litter enclosed within a coarse-mesh (10 mm) 
bag. The collected larvae were transported to the 
laboratory and placed in glass containers filled with 
stream water and leaf litter, with constant aeration. 
Larvae were acclimated for 96  h at 26.31 ± 0.01°C, 

fed with F. insipida leaf litter fragments for the first 
48 h, and then fasted for another 48 h before the start 
of the experiment. We used 168 individuals in the 
experiment (2 per microcosm).

Finally, we collected mixed leaf litter at differ-
ent stages of decomposition from natural leaf litter 
deposits in a stream tributary near the Tonosí Forest 
Reserve (7°  14′  51.77″  N, 80°  34′  14.93″  W). This 
leaf litter was incubated in a 2.5-l aquarium filled 
with filtered stream water (100 μm) with aeration for 
48  h, with replacement every 24  h. This water was 
used as microbial inoculum (10  ml per microcosm) 
at the beginning of the experiment (day 0), providing 
the microcosms not only with aquatic hyphomycete 
conidia, but also with other microorganisms (i.e., bac-
teria), which might also play a role in the decomposi-
tion process.

Experimental procedure and sample processing

The experiment was carried out in September 2022, 
at the facilities of the Aquatic Ecology and Ecotoxi-
cology Laboratory (AEEL) of the Gorgas Memorial 
Institute for Health Studies, located at the National 
Institute of Agriculture (INA: 8°  07′  43.4691″  N, 
80°  41′  18.3086″  W). We used eighty-four 500-ml 
glass jars, which were located in a temperature-con-
trolled room set at 25°C, and provided with constant 
aeration and a light:dark regime of 12:12  h, thus 
reflecting natural conditions. The jars were intro-
duced within three 100-l tanks (with 28 microcosms 
per tank; 7 replicates per temperature × salinity com-
bination), which were used as water baths with differ-
ent temperatures (26, 29 and 32°C) that were reached 
using aquarium water heaters (HITOP 300w) and 
turbines (AQUANEAT average 800 GPH) for water 
circulation. This represented basal conditions in the 
study stream and two situations of warming (3 and 
6°C increase) that could result from climate change 
(IPCC, 2018) and/or heat waves (Pérez et al., 2021a). 
Temperatures were monitored with a data logger 
(Thermobutton, model 22L, Plug & Track) placed 
within one microcosm per tank, which took a meas-
urement every 30 min.

Each microcosm contained 400  ml of filtered 
(100  μm) stream water and it was assigned to one 
of four salinity treatments depending on NaCl 
concentration [control (no NaCl added), low 
(0.1 g l−1 NaCl), moderate (1.0 g l−1 NaCl) and high 
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(10.0  g  l−1 NaCl)], with seven replicates per treat-
ment at each experimental temperature. The stud-
ied salinity gradient aimed to represent successive 
increases of one order of magnitude, from the basal 
concentration (0.12–0.27  PSU, 0.15–0.40 TDS 
g l−1) to high salinity stress (2 orders of magnitude 
higher), in order to assess the effects in halotoler-
ant taxa such as aquatic hyphomycetes (Canhoto 
et  al., 2017). We chose to alter concentrations of 
NaCl because sodium represents the major cation 
increasing salinity in fresh waters (Cunillera-Mont-
cusí et al., 2022), especially when the source of salt 
is related to seawater (Cañedo-Argüelles, 2020), 
using high-purity salt (ACS Grade) to reduce con-
tamination by other components (e.g., table salt in 
Panama is always supplemented with iodine). Prior 
to the experiment, we introduced 1  g of air-dried 
leaf litter fragments in each microcosm and kept 
them for 48  h, with water exchange at 24  h. Leaf 
litter was collected (by filtering the water through 
100 μm), oven-dried (70°C, 48 h), weighed to cal-
culate dry mass (DM), incinerated (500°C, 4 h), and 
re-weighed to calculate AFDM. These data were 
used to calculate mass losses due to the leaching 
of soluble compounds (see “Data analyses” below; 
Bärlocher, 2020).

For the experiment, the microcosms were again 
filled with water with the same salinity treatments 
as before. This time, each microcosm received 
700 ± 0.001 mg of free, air-dried Ficus insipida leaf 
litter fragments, attached with a safety pin to prevent 
them from floating; and another 300 ± 0.003 mg of 
leaf litter enclosed in mesh bags (8 × 6.5  cm size, 
0.5 mm mesh opening), so they would not be acces-
sible to detritivores. Water was exchanged after 24 
and 48 h to promote leaching and, after 48 h, 10 ml 
of the microbial inoculum and two Chironomus 
larvae were also added. The body length of each 
larva was measured using a millimetred sheet. The 
experiment lasted 15  days, after which leaf litter 
was collected and processed as above, separately 
for free and enclosed leaf litter. The final status of 
each detritivore (i.e., dead, alive or emerged) was 
recorded and their final body length measured. Dur-
ing the experiment, every 2  days, several physical 
and chemical variables (temperature, pH, DO and 
salinity) were measured with a multiparametric 
probe (model 556 MPS, YSI Inc.).

Data analyses

We explored the variation of the measured physical 
and chemical variables (temperature, pH, DO and 
salinity) through experimental time with general lin-
ear models (GLMs), where temperature treatment, 
salinity treatment and time were fixed factors. Our 
data did not meet the assumptions of normality and 
homoscedasticity required for parametric models 
(i.e. ANOVAs), but general linear models (GLMs) 
included a link function and a variance function that 
improved the fit of the model to the data structure 
(Nelder & Wedderburn, 1972). We used the gls func-
tion on the nlme package in R software, and a model 
selection procedure based on the Akaike information 
criterion (AIC) in order to include or exclude the var-
iance function structure varIdent as appropriate (e.g., 
see López‐Rojo et  al., 2022). Leaf litter decomposi-
tion was measured through (1) the proportion of leaf 
litter mass loss [LML (prop.) = (final AFDM − initial 
AFDM)/initial AFDM] and (2) linear decomposi-
tion rates based on days (bd) and degree-days (bdd), 
the latter to standardize by temperature (Barlochër, 
2020). We quantified total (free leaf litter), micro-
bial (enclosed leaf litter) and detritivore-mediated 
decomposition (difference between free and enclosed 
leaf litter). Initial AFDM was corrected for leaching 
losses, multiplying by the proportion of leaf litter 
mass remaining in the set of leaf litter fragments used 
prior to the experiment. Total and detritivore-medi-
ated decomposition were standardized using the mean 
initial body size (mm) of larvae in each microcosm 
(3.8 ± 0.06 mm; mean ± S.E., N = 168), to avoid vari-
ability due to differences in larval size. Additionally, 
in order to consider effects of detritivore loss (due to 
mortality and/or emergence) on decomposition, we 
corrected the initial body size according to detritivore 
presence at the end of the experiment. Thus, we used 
a correction factor of “1” when both detritivores were 
present at the end of the experiment, “0.75” if only 
one survived, or “0.5” if none of them were present.

We used general linear models (gls function, 
nlme package) to explore variation in the response 
variables (total, microbial and detritivore-mediated 
LML) with temperature treatments (26, 29 and 32°C), 
salinity treatments (control, low, moderate and high) 
and their interactions, with both factors being fixed. 
Again, model selection based on AIC  was used for 
varIdent inclusion or exclusion. Differences among 



2409Hydrobiologia (2024) 851:2405–2416	

1 3
Vol.: (0123456789)

treatment levels were explored with Tukey tests (ghlt 
function, multcomp package). When the interaction 
between temperature and salinity resulted significant, 
we further explored their joint effects on LML with 
Tukey tests of all possible combinations. Finally, to 
help visualize these combined effects, we examined 
relationships between LML and physical and chemi-
cal variables (temperature, pH, DO and salinity) at the 
different temperature and salinity treatments and for 
all treatments combined, using Pearson correlations.

Results

Average temperature was 26.2, 28.55 and 31.67°C 
respectively, in the different temperature treat-
ments, and average salinity was 0.18, 0.28, 1.21 and 
10.42  mg  l−1, respectively, in the different salinity 
treatments (Table  1). All variables showed variation 
with time (Table  S1), but temperature and salinity 
mostly remained constant throughout the experiment 
(Fig.  S1). Larval mortality was 54% overall, and it 
tended to increase with salinity (26%, 57%, 55% and 
100% in the control, low, moderate and high salin-
ity treatments, respectively) but not with temperature 
(64%, 50% and 66% at 26, 29 and 32°C, respectively). 
The 40% of surviving larvae emerged during the 
experiment, and emergence tended to decrease with 

salinity (19%, 10%, 10% and null in the control, low, 
moderate and high salinity treatments, respectively) 
and to increase with temperature (9%, 17% and 14% 
at 26, 29 and 32°C, respectively). Considering these 
relatively high frequencies, our design prevented dis-
cerning between lethal and sublethal effects in the 
subsequent results.

Total decomposition varied with temperature and 
salinity and the interaction was significant (Table 2; 
Fig.  1), with Tukey tests indicating that decomposi-
tion was higher at the lowest temperature and control 
salinity than at the highest temperature and low, mod-
erate and high salinities (Fig. S2). Microbial decom-
position, however, was enhanced by temperature 
(26°C < 29°C < 32°C) but did not vary among salini-
ties, and detritivore-mediated decomposition also dif-
fered only among temperatures (26°C > 29°C = 32°C). 
Linear decomposition rates showed similar paters in 
terms of time (% d−1) or accumulated heat (% dd−1), 
featuring the same trends as LML in relation to stress-
ors (Fig. S3). Decomposition rates corrected by detri-
tivore loss showed similar trends in response to stress 
factors (Fig. S4).

Overall, total and detritivore-mediated decompo-
sition were positively correlated with DO and nega-
tively with temperature, and microbial decomposition 
showed the opposite pattern (Fig. 2). When examined 
separately for different temperature treatments, total 

Table 1   Average values (± SD) of water physical and chemi-
cal variables [temperature, °C; pH; conductivity, mS cm−1; 
salinity, PSU; total dissolved solids (TDS), g l−1; dissolved 
oxygen (DO), mg l−1)] measured in microcosms subjected to 

different temperature (26°C, 29°C and 32°C) and salinity treat-
ments [control (C), no NaCl addition; low (L), NaCl concen-
tration 0.1 g l−1; moderate (M), 1 g l−1; and high (H), 10 g l−1)]

Treatments Physical and chemical variables

Temperature 
(°C)

Salinity Temperature pH Conductivity Salinity TDS DO

26 C 26.08 ± 0.05 8.30 ± 0.02 0.37 ± 0.01 0.18 ± 0.00 0.19 ± 0.00 7.26 ± 0.08
L 26.13 ± 0.01 8.25 ± 0.02 0.58 ± 0.01 0.28 ± 0.00 0.29 ± 0.00 7.20 ± 0.04
M 26.17 ± 0.02 8.26 ± 0.01 2.31 ± 0.03 1.18 ± 0.02 1.19 ± 0.04 7.12 ± 0.03
H 26.15 ± 0.02 8.20 ± 0.02 17.24 ± 0.15 10.15 ± 0.09 8.60 ± 0.09 6.80 ± 0.05

29 C 28.73 ± 0.05 8.26 ± 0.02 0.38 ± 0.01 0.18 ± 0.00 0.19 ± 0.00 6.31 ± 0.16
L 28.74 ± 0.03 8.26 ± 0.03 0.56 ± 0.01 0.27 ± 0.00 0.28 ± 0.00 6.64 ± 0.12
M 28.69 ± 0.03 8.28 ± 0.02 2.26 ± 0.01 1.15 ± 0.03 1.13 ± 0.03 6.60 ± 0.08
H 28.66 ± 0.03 8.26 ± 0.02 17.25 ± 0.14 10.22 ± 0.06 8.63 ± 0.08 6.40 ± 0.06

32 C 31.78 ± 0.08 8.23 ± 0.04 0.41 ± 0.01 0.19 ± 0.01 0.21 ± 0.01 5.54 ± 0.25
L 31.84 ± 0.05 8.32 ± 0.03 0.60 ± 0.01 0.29 ± 0.01 0.30 ± 0.01 6.19 ± 0.08
M 31.79 ± 0.05 8.34 ± 0.02 2.52 ± 0.04 1.29 ± 0.02 1.26 ± 0.02 6.10 ± 0.10
H 31.77 ± 0.08 8.31 ± 0.02 18.49 ± 0.27 10.89 ± 0.13 9.22 ± 0.11 5.94 ± 0.05
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and detritivore-mediated decomposition were posi-
tively correlated with pH and DO at the lower tem-
perature, and microbial decomposition was negatively 
correlated with pH at the lower temperature and with 
salinity at the higher temperature (Fig. 2). When exam-
ined separately for different salinity treatments, total 
and detritivore-mediated decomposition were mostly 
positively correlated with DO (only at some salini-
ties for total decomposition and at all salinities for 
detritivore-mediated decomposition), and the same 
occurred with temperature with negative relationships; 

detritivore-mediated decomposition was positively 
related to pH and negatively to salinity at some salini-
ties; and microbial decomposition was negatively 
related to DO and positively to temperature at all salini-
ties, and positively related to pH and salinity in some 
cases (Fig. 2).

Table 2   Results of linear models testing the effects of temperature (26, 29 and 32°C), salinity (0, 0.01, 0.1 and 10 g l−1) and their 
interaction on total, microbial and detritivore-mediated decomposition

We show the degrees of freedom (df) of the numerator (denominator df = 71), F-statistic and P-value
Significant ones (P < 0.05) are highligted in bold

Response variable Factor df F P

Total decomposition Temperature (T) 2 6.52 0.003
Salinity (S) 3 3.66 0.016
T × S 6 2.74 0.019

Microbial decomposition T 2 29.01  < 0.001
S 3 0.94 0.427
T × S 6 1.98 0.080

Detritivore-mediated decomposition T 2 39.62  < 0.001
S 3 2.41 0.074
T × S 6 1.98 0.081

Fig. 1   Total, microbial and detritivore-mediated decomposi-
tion (proportion of leaf litter mass loss, LML) in microcosms 
exposed to different temperature (26°C, 29°C and 32°C) and 

salinity treatments [control (C), no NaCl addition; low (L), 
NaCl concentration 0.1 g l−1; moderate (M), 1 g l−1; and high 
(H), 10 g l−1)]
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Discussion

Freshwater ecosystems are highly vulnerable to cli-
mate change (Woodward et al., 2010) and pollutants 
(Carpenter et  al., 2011). In particular, streams flow-
ing through agricultural catchments receive runoff 
that often contains organic nutrients and pesticides, as 
well as high levels of salinity (Schafer et  al., 2012). 
However, while joint effects of climate warming and 
eutrophication on streams have received considerable 
attention (e.g., Ferreira & Chauvet, 2011), the effects 
of salinization in combination with other stressors 
are virtually unknown (Canhoto et al., 2021). This is 

especially true for tropical regions, where water tem-
peratures are high and detritivore assemblages differ 
substantially from those of temperate zones (Boyero 
et  al., 2011a, 2021). In our microcosm experiment, 
we explored how warming and salinization in tropi-
cal streams jointly affected the key process of leaf lit-
ter decomposition, which often is a good indicator of 
how stream ecosystem integrity is impaired (Gessner 
& Chauvet, 2002).

Overall, we found a strong effect of temperature, 
which altered leaf litter decomposition driven by 
microorganisms and detritivores separately, as well 
as total decomposition. As previously mentioned, we 

Fig. 2   Graphical representation of Pearson (r) correlations 
between rates of total, microbial or detritivore-mediated 
decomposition and several physical and chemical variables 
measured in microcosms (temperature, pH, dissolved oxygen 
and salinity) for all microcosms and separately for different 

treatments of temperature and salinity. Green and red circles 
represent positive and negative correlations, respectively; cir-
cle size indicates the strength of the correlation, as shown in 
the legend, and the values inside the circles indicate significant 
P-value (P < 0.05)
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were unable to distinguish between lethal and suble-
thal effects, both of which were most likely respon-
sible for the observed effects on the decomposition 
process, as occurred in other studies (e.g., Cornejo 
et  al., 2020a; López-Rojo et  al., 2020a). Impor-
tantly, our results remained the same when we cor-
rected our data based on detritivore loss as a result 
of mortality or emergence. Microbial decomposition 
rates increased with temperature, reflecting the well-
known direct relationship between temperature and 
metabolic rates (Brown et al., 2004), which has been 
shown in many other decomposition studies (e.g., 
Boyero et al., 2011b; Ferreira & Chauvet, 2011; Foll-
stad Shah et  al., 2017). In contrast, our results con-
tradicted the generally positive relationship between 
DO and microbial decomposition (Medeiros et  al., 
2009), possibly in relation to the inverse relation-
ship between DO and water temperature. Detritivore-
mediated decomposition decreased with temperature, 
being higher at 26°C than at higher temperatures. It is 
well known that the role of detritivores on decomposi-
tion in tropical areas tends to be of minor importance 
compared to microbial activity (Boyero et al., 2011b), 
as most typical leaf litter consumers (i.e., shredders) 
are adapted to colder conditions (Danks, 2007; Strick-
land et al., 2015). There is, however, little information 
about leaf litter feeding rates of Chironomus species, 
which is a facultative leaf litter-feeding detritivore in 
tropical and temperate streams (Callisto & Gonçalves 
Jr, 2007; Pérez et  al., 2013), acting as leaf-miners 
(Boyero et al., 2020). Other leaf litter consumers have 
shown different patterns of variation in their feeding 
activity with temperature. For example, the caddisfly 
Sericostoma vittatum Rambur, 1842 showed higher 
feeding rates at 10°C than 15°C (Landeira-Dabarca 
et  al., 2018), while the amphipod Gammarus pulex 
(Linnaeus, 1758) showed higher rates at 24°C than at 
lower temperatures (Foucreau et al., 2016). These dif-
ferences could be related to species-specific require-
ments or to the different temperature treatments used 
in experiments, or to a combination of both factors.

Effects of salinity were more variable than those 
of temperature, and non-significant for microbial 
decomposition, as some bacteria and aquatic hypho-
mycetes are highly tolerant to salt (Canhoto et  al., 
2021). Also, microbial decomposer assemblages 
can be resilient to salinization due to species func-
tional redundancy (Canhoto et  al., 2017). However, 
it is known that aquatic hyphomycete sporulation can 

be supressed and biomass reduced and, as a conse-
quence, microbial decomposition can decrease with 
salt addition, although this is not always the case 
(Canhoto et  al., 2021). For example, an experiment 
using Eucalyptus camaldulensis Dehnh. leaf litter 
observed a significant reduction in microbial decom-
position when conductivity was increased from 1 to 
10 mS cm−1 (Sauer et al., 2016). In contrast, micro-
bial decomposition rates of Quercus robur L. were 
not affected by increased salinity in two experiments 
(Gonçalves et al., 2019; Martínez et al., 2020). These 
inconsistent results could be partly related to dif-
ferences in leaf litter traits; this hypothesis was not 
supported by a study conducted with Q. robur and 
Castanea sativa Mill., but these two species do not 
differ greatly in their nutrient contents and toughness 
(Almeida Júnior et al., 2020), so the influence of leaf 
traits cannot be discarded.

Detritivore-mediated decomposition did not vary 
with salinity in our experiment, but their activity 
tended to decrease; P-values were only slightly above 
the α = 0.05 threshold, and the lack of significance 
was most likely due to the high mortality of Chirono-
mus sp. at higher salinities (which was total at the 
10  mg  l−1 treatment). Previous studies have found, 
again, inconsistent results, with reduced feeding rates 
due to increased salinity for some detritivores such 
as the tipulid Tipula abdominalis (Say, 1823) and the 
caddisfly Schizopelex festiva (Rambur, 1842), and the 
opposite pattern for others such as the isopod Lirceus 
sp. (Tyree et al., 2016; Martínez et al., 2020). These 
differences could be due to the different salts and 
salinity gradients used, but also to intrinsic differ-
ences among species. Increased salinity may affect the 
osmoregulatory capacity of invertebrates (i.e., their 
ability to actively regulate osmotic pressure), and the 
required energy expenditure may become too high, 
or osmoregulatory mechanisms may collapse result-
ing in cellular damage and death (Cañedo-Arguelles 
et  al., 2013). In agreement with this, we observed a 
trend towards less survival of Chironomus sp. with 
increased salinity, being the highest salinity treatment 
lethal for all the individuals tested. However, we did 
not anticipated such lethal effects on Chironomus sp. 
given the known cross-tolerance of this group (Gama 
et al., 2014), being common in multi-stressed ecosys-
tems (Popović et al., 2022). The inconsistent negative 
values in detritivore-mediated decomposition might 
be the result of a promoted biofilm accrual in absence 
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of detritivores, as previously suggested (Pérez et al., 
2021a).

When total decomposition was quantified alto-
gether, salinity influenced the process and interacted 
with the effect of temperature: decomposition was 
higher in microcosms exposed to the lower tempera-
ture and control salinity than in those exposed to the 
higher temperature and any of the salt addition treat-
ments. Previous experiments have also found reduc-
tions in total decomposition with high (but not with 
moderate) salinity treatments; e.g., at 15 mS cm−1 for 
Populus nigra L., with no effect at 5 and 10 mS cm−1 
(Cañedo-Arguelles et al., 2014); or at 15.3 mS cm−1 
for Alnus glutinosa (L.) Gaertn., with the opposite 
effect at 3.3 and 5.5 mS  cm−1 (Abelho et al., 2021). 
Our results agree with their findings, but they fur-
ther show that temperature can modulate the effect 
of salinity, with additive effects of both factors: total 
decomposition was reduced by 39% due to high salin-
ity, 21% due to high temperature and 60% due to 
both factors simultaneously. The effect was probably 
driven by detritivores, which might be more vulner-
able to salt toxicity at high temperatures, as observed 
for other invertebrates in acute toxicity tests (Jackson 
& Funk, 2018). Despite the limitations of our analy-
ses and others (Piggott et al., 2015; Tekin et al., 2020) 
to explore interactions between stressors, we provide 
evidence suggesting that such interactions should be 
taken into account as much as possible in experimen-
tal studies.

Conclusions

Our experiment demonstrates that the simultane-
ous presence of warming and salinization can inter-
act to inhibit leaf litter decomposition in streams. 
This novel result supports those of previous experi-
ments showing positive interactions between different 
environmental stressors, such as the joint presence 
of warming and eutrophication enhancing microbial 
decomposition (Ferreira & Chauvet, 2011). Overall, 
our results reinforce the idea that a multiple-stressor 
context should be prioritized when examining effects 
of global environmental change on stream ecosystem 
functioning.
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