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A B S T R A C T

Sign Languages (SLs) are employed by deaf and hard-of-hearing (DHH) people to communicate on a daily
basis. However, the communication with hearing people still faces some barriers, mainly because of the scarce
knowledge about SLs among hearing people. Hence, tools to allow the communication between users of either
sign or spoken languages must be encouraged. A stepping stone in this direction is the research of the sign
language translation (SLT) task, which aims to produce a spoken language translation of a sign language
video or vice versa. By implementing these types of translators in portable devices, we will make considerable
progress towards a barrier-free communication between DHH and hearing people. That is why, in this work,
we focus on reviewing the literature on SLT and provide the necessary background about SLs. Besides, we
summarise the available datasets and the results found in the literature for one of the most used datasets,
the RWTH-PHOENIX-2014T. Moreover, the survey lists the challenges that need to be tackled within the SLT
research and also for the adoption of SLT technologies, and proposes future research lines.
1. Introduction

According to the World Federation of the Deaf, there are about
70 million deaf people and over 200 SLs in the world.1 In the case
of the United States, in 2006, the Survey of Income and Program
Participation projected that fewer than 1 person out of 20 was deaf or
hard of hearing (Mitchell, 2006). In 2011, the British Deaf Association
estimated that 151,000 people used the British Sign Language (BSL)
and 87,000 of them were deaf.2 These statistics reflect that a large
part of the population requires an alternative to the verbal speech
communication. Even more taking into account that we live in an aural
society in which everything is prepared for hearing people, leaving the
DHH suffer from audism and isolation.

SLs are a suitable tool to tackle this issue and allow the commu-
nication between two signers, removing the verbal languages’ barrier.
However, this does not solve the problem when (i) each person com-
municates in a different SL (among the estimated 200 SLs in the world)
and when (ii) someone cannot communicate with signs, creating a
broad barrier among signers and between signers and non-signers. In
many cases, due to audism, DHH people are ignored or forced to use
alternative communication tools with which they may not be comfort-
able. Examples of this are having to write down any message (being
SLs a much quicker and natural way to express themselves) or being
forced to use special gloves for the detection of signs (for computer
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1 https://wfdeaf.org/our-work/.
2 https://bda.org.uk/help-resources/#statistics.
3 https://translate.google.com/.

vision based methods, gloves ease the recognition of hands and, for
hardware methods, special gloves allow obtaining finger keypoint data
with precision). To alleviate this, non-intrusive communication tools
between signers and non-signers must be created. These should adapt
to both type of users, not leaving the DHH with an uncomfortable
alternative.

In this regard, there have been advances in similar tasks, such as
the translation between different spoken languages in the automatic
machine translation (MT) and the speech translation (ST) tasks. These
allowed to translate between different spoken languages (using text or
audio) so that people that do not share a common language can now
communicate. They have been naturally implemented in our lives as
commonly used applications that we carry in our smartphones or that
we can find in the internet, such as Google Translator.3

In fact, thanks to the advances in the MT and ST tasks, automatic
translations between two given languages can be easily obtained with
off-the-shelf models trained by large companies such as Google. These
approaches can be extended to SLs too, by treating them as source
or target languages in such models and trying to translate (i) spoken
language text to SLs, (ii) SLs to spoken language text, (iii) speech
to SLs and/or (iv) SLs to speech in an end-to-end fashion. The SL
to text/speech and text/speech to SL translation corresponds to what
is called Sign Language Translation (see Fig. 1 for a video-to-text
vailable online 13 October 2022
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Fig. 1. Video-to-text and text-to-video translation scheme with an optional intermediate step using glosses. The video and the gloss and spoken language translations are sampled
from the RWTH-Phoenix-2014T dataset (Camgoz, Hadfield, Koller, Ney, & Bowden, 2018) that contains German spoken language and SL sentences. The translation in English
would approximately be ‘‘We can actually be very satisfied with our Easter weather’’.
translation), although in the literature the text/speech to SL is also
known as Sign Language Production (SLP) (Rastgoo, Kiani, Escalera
and Sabokrou, 2021). Translating to SLs implies generating an avatar or
skeleton that reproduces the desired signs, movements and expressions.
As an intermediate step, a transcription of those signs can be generated
from input spoken language text or speech. The most common format
for that in the literature is the use of glosses, a text-based interpretation
of signs. Throughout this document, SLT will be considered as the task
of translating from text/speech to SL or vice versa, also considering the
translation from and to glosses, as they can be used to generate sign
animations.

Tools using the proposed sign MT technology can translate in real-
time videos containing SLs, speech generated by the user or simply
text to one of the other formats (speech, text or SLs). In fact, there
has been research into lightweight models that can be stored and used
from smartphones for SL recognition (SLR) and translation (Davydov
& Lozynska, 2017a; Halawani, 2008; Jin, Omar, & Jaward, 2016; Kau,
Su, Yu, & Wei, 2015; Madhuri, Anitha, & Anburajan, 2013).

As aforementioned, a SL can also be translated to another SL as these
are specific to geographical regions. That is, the SL used in, e.g. France
is not the same as the one used in Germany. Moreover, they may not
be related to the spoken language of the region, as in the case of
English, spoken in United States, United Kingdom and Australia, but
each country having a different SL. An application which implements
such a system would allow the communication between signers from
different regions and also between signers and non-signers, hence
allowing a barrier-free communication. This highlights the importance
of researching methods or algorithms to perform SLT.

On this survey we focus on the literature on SLT as we have
described it. We included a brief section for the SLR task (see Sec-
tion 2.2) due to the contribution it has in the SLT task, although we
will not cover other SL related tasks such as detection, identification
or segmentation that will be explained in Section 2.1 as we deem them
out of the scope of this work. We also consider out of the scope of this
survey works focused on isolated sign recognition (such as recognising
alphabets or a very limited set of words).

The sign MT research started with the use of rule-based systems,
going then to data-driven approaches that required parallel corpora: (i)
the example-based translation at the beginning and the (ii) statistical
translation later. There was a huge jump from those traditional sign
MT systems to what nowadays is employed, the MT based on the
Deep Learning (DL) technology that dominates the Natural Language
Processing (NLP) research (Young, Hazarika, Poria, & Cambria, 2018).
Therefore, the sign MT based on DL is a promising candidate to be the
state-of-the-art technology for the SLT task. That is why in this survey
we propose to categorise the literature into two sections: the traditional
SLT (rule- and example-based and statistical sign MT) and the neural
SLT (NSLT) based on DL.
2

Concerning previous work, there have been various surveys related
to SLs in the literature covering some of the already mentioned topics.
As the golden era of DL had not started, Ong and Ranganath (2005)
did not include neural MT models nor works after its publication.
Meanwhile, Al-Ahdal and Nooritawati (2012), Cooper, Holt, and Bow-
den (2011), Joudaki et al. (2014) and Vijay, Suhas, Chandrashekhar,
and Dhananjay (2012) focused on SLR and not in SLT. Hoque et al.
(2016) only reviewed the state of the art for the Bangladeshi SL (BdSL).
Compared with recent research by Farooq, Rahim, Sabir, Hussain, and
Abid (2021) and Kahlon and Singh (2021), we go deeper into the NSLT
field and provide an extensive list of the available public datasets in the
literature, among others. Kahlon and Singh (2021) and Rastgoo, Kiani,
Escalera and Sabokrou (2021), in contrast, focused on the SLP task.

The rest of the paper is organised as follows: Section 2 introduces
the necessary concepts and details about SLs and the SLT task, Section 3
contains the literature review that this paper contributes, Section 4
reviews the available datasets and, finally, Section 5 provides the
conclusions and some challenges associated to the SLT research. Ad-
ditionally, Appendix A is included to gather all the referenced sign
languages throughout the document while Appendix B provides the
links to the datasets listed in Section 4 (Table 5).

2. Sign language background

SLs are languages on their own, with their own grammar and vocab-
ulary, not just gesture systems (Stokoe, 1960). In contrast to the popular
belief, it is common for each country to have its own SL with its unique
vocabulary, sharing similarities such as the grammar (Stokoe, 1980;
Sutton-Spence & Woll, 1999). In fact, even for countries sharing the
same spoken language (e.g. English), each country may have its own SL.
Consider, for example, the case of the British Sign Language, American
Sign Language (ASL) and the Australian Sign Language (Auslan).

SLs are expressed through articulators, i.e. parts of the body used
to convey information. These can be classified between manual (hand
configuration, place of articulation, hand movement and hand orienta-
tion (Stokoe, Casterline, & Croneberg, 1976)) and non-manual (e.g. face
or body movement). A combination of both of them allows to fully
express ideas. However, a large part of the literature has focused only
on the first cue, the hands, as if they would represent all the information
required to understand SLs. Even though hands are dominant, their
combination with non-manual features allow the signer to convey much
more information. Signers also use the space around them for several
purposes, e.g. positioning an entity at some point in the space to make
later references to it.

Articulators can also be categorise as suggested by Kumar, Wangyal,
Saboo, and Srinath (2018). They defined the set of possible articulators
for which SL recognition systems work as the Gesture Parameter Set
(GPS), including the movement, location, orientation and shape of
hands, and also the orientation and location of the head and facial
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Fig. 2. Examples of the SignWriting notation for the Spanish Sign Language.
Source: Adapted from the SignWriting webpage. (https://www.signwriting.org/
archive/docs5/sw0494-SignoEscritura-Parkhurst-ES-LSE.pdf.)

expressions. Moreover, they distinguished two methods of signing:
fingerspelling and word representation. The first one is way to represent
alphabets of spoken languages, useful to spell out names of people,
places and so on. For example, there may not be a sign for the
name ‘‘Jane’’, but one can reduce it to ‘‘J-a-n-e’’ and finger-spell each
character. The second one allows a signer to convey the meaning of
words using the previously mentioned articulators. They argued that
SL recognition systems should map these last signs to the GPS to
automatically recognise them, i.e. what articulators and how are they
used for each sign.

All the manual and non-manual features are usually recorded in
video (i.e. recording the signer’s utterances), which is one of the most
common representation of SLs. In fact, it is the richest one, allowing
to express all the manual and non-manual features and also the usage
of the space around them as previously explained. In any case, videos
are not the only format available to represent SLs. One of them is
their transcription, morpheme-by-morpheme, as glosses, which is a
text-based representation commonly used for research purposes. For
instance, given the sentence ‘‘Ask the student where he lives’’., the
gloss translation in ASL would be ‘‘ASK-him STUDENT WHERE IX-he
LIVE’’.4 Glosses may not be enough to create suitable sentences and, in
fact, they can become an information bottleneck as they are not able to
accurately represent the information contained in SLs (Elons, Ahmed,
& Shedid, 2014; Zheng, Chen, Wu, Shi, & Kamal, 2021). They were
created for linguistic study, not having the same level of expressivity
as SLs. Nonetheless, they are extensively used in the literature as an
intermediate step in the automatic translation process (usually, SL to
text) to guide the learning of MT systems. This does not mean they
are actually necessary and, in fact, research points out that they may
actually harm the translation quality (Camgoz, Koller, Hadfield, &
Bowden, 2020b).

Other two relevant formats in the literature, among others, are
the Hamburg Notation System (HamNoSys) (Hanke, 2004) and the
SignWriting (Sutton, 1995) formats. The HamNoSys is composed of
language-independent symbols that represent SL features such as hand-
shape, orientation, movement, location and some non-manual features.
SignWriting is a more pictorial format that uses simple drawings and
arrows to represent parts of the body and movement. See Fig. 2 for a
few examples of the SignWriting system.

For more information about SLs, we suggest reading (Bragg et al.,
2019).

2.1. Sign language translation

Related to signing, one can discern various tasks: detection, iden-
tification, segmentation, recognition, translation and production (Yin,
Moryossef, Hochgesang, Goldberg, & Alikhani, 2021). Detection is the
task of identifying whether an SL is being used, while identification is
the task of identifying which SL is used (ASL, BSL and so forth). The
segmentation task consists of distinguishing the temporal boundaries to

4 https://www.lifeprint.com/asl101/topics/gloss.htm.
3

Fig. 3. Video-to-text sign language translation task can be hierarchically divided into
various subtasks: (i) the detection of signing in a video stream, (ii) the temporal seg-
mentation of signs, (iii) the recognition of the specific signs within those boundaries and
(iv) the translation to words of the sign sequence. Notice that the latter sign-to-word
transformation is not trivial.

segment phrases or individual signs. In the literature, the recognition,
translation and production tasks are possibly the ones deserving more
attention due to their difficulty and benefits for the DHH people. In fact,
due to the hierarchical dependence they have among some of them, it
is not possible to exclusively work on, e.g. translation without using the
recognition task. Fig. 3 illustrates this hierarchy idea at different levels,
from the raw video to the translation. Identification of the SL is not
included as it can be considered independent in this specific hierarchy,
although it has dependencies with, at least, the detection task.

The SL recognition is the task of recognising and understanding
the meaning of signs. In other words, a label needs to be assigned
to each sign. This is typically done using glosses, i.e. transcription of
sign languages, having each sign its unique gloss. However, glosses are
imperfect, as they are not able to capture all the information provided
by non-manual cues or by spatial relations, leading to an information
bottleneck if glosses are used as an intermediate representation. The
other formats mentioned in Section 2 are also valid, but there is a lack
of large corpora that include them. Two variations of this task can be
distinguished: the Continuous SLR (CSLR) and the Isolated SLR (ISLR).
The first one deals with a stream of signs and the objective of the
task is segmenting and classifying them. Meanwhile, in the ISLR task,
one receives cropped signs and must individually classify them. This is
specially used for single words or alphabets, but it is out of the scope
of this paper. Throughout the paper, whenever SLR is mentioned, we
will refer to the CSLR.

Going down in the SL translation history, the SLR was the first
challenge to be overcome before SLT was even possible. One of the first
state-of-the-art methods for SL recognition was the use of gloves (Das
et al., 2016; Gaikwad & Bairagi, 2014; Praveen, Karanth, & Megha,
2014), which were expensive and, specially, intrusive for the user.
DHH people were not comfortable with such approach given that
they needed to wear them to be able communicate. Later, when the
necessary technology was developed, vision-based recognition started
being used. In Section 3 we will further explore this topic.

As previously mentioned, transforming SLs to glosses (CSLR) misses
significant information and so, if we would like to produce natural and
fluent spoken language text, it would not be sufficient. First introduced
by Camgoz et al. (2018), the task of SL translation aims to provide
a much more natural output, giving coherence to the interpretation
of signs. Nevertheless, this does not necessarily imply using glosses
midway. Before (Camgoz et al., 2018; Dreuw et al., 2008) called this

https://www.signwriting.org/archive/docs5/sw0494-SignoEscritura-Parkhurst-ES-LSE.pdf
https://www.signwriting.org/archive/docs5/sw0494-SignoEscritura-Parkhurst-ES-LSE.pdf
https://www.lifeprint.com/asl101/topics/gloss.htm
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task automatic sign language recognition (ASLR), presumable deriv-
ing it from the automatic speech recognition (ASR) task’s name. The
translation can also be given in the other direction, i.e. from spoken
language text to signs, generating a sequence of poses or an avatar
animation. However, the latter is also known as SL production, the
task of producing signs (or an SL representation) from spoken language
text.

Given the scope of the paper defined in Section 1, SLP will be
considered within the scope of this paper, as any case in which text,
speech or SLs are translated to SLs can also be considered an end-to-
end system for SL translation. For the sake of simplicity, we will include
SLP within SLT and refer only to SLT throughout the paper. However,
we will not cover avatar generation, see Bragg et al. (2019) for more
information about this topic.

Similar to the SL segmentation mentioned at the beginning of the
section, the tokenisation of SLs also deals with the boundaries used to
separate SL inputs and is specially relevant for NSLT systems. When
working with spoken languages in neural MT (NMT) systems, sentences
can be split in phrases, words, sub-words and so on, normally employ-
ing words or sub-word embeddings to encode sentences (as in the NLP
research field). For the case of SLs this is not straightforward. Orbay and
Akarun (2020) claimed there are three possible tokenisation options: (i)
using glosses as tokens (without video), (ii) using glosses extracted from
videos as tokens and (iii) the frame-level tokenisation. In the case of the
first option, annotating glosses demands an intensive effort and is error
prone, which may lead to a limit in the amount of data available and
also to mistakes in the translation derived from gloss errors. The second
option requires an explicit function to transform videos to glosses and
the overall translation system is still dependant of glosses. The third
case consists of encoding frames (or even short clips) into an embedding
space similar to what is done with word embeddings. This approach
allows to tokenise without requiring a discrete representation. The
authors also suggested that the third approach could allow to inject
extra information, that it can be adapted to different tasks and SLs
(in contrast to glosses, which are specific to each SL) and that their
dimensionality and the number of tokens can be customised to speed
up the training.

2.2. Sign language recognition

Before introducing the SLT literature, we briefly review the recent
and most relevant SLR literature (Agrawal, Jalal, & Tripathi, 2016;
Ariesta, Wiryana, Kusuma, et al., 2018; Cheok, Omar, & Jaward, 2019;
Er-Rady, Faizi, Thami, & Housni, 2017; Kausar & Javed, 2011; Koller,
2020; Pandey & Jain, 2015; Rastgoo, Kiani and Escalera, 2021; Sahoo,
Mishra, & Ravulakollu, 2014; Wadhawan & Kumar, 2021) in this
section. The literature itself can be loosely categorised in multiple
ways: (i) the ISLR and CSLR tasks, as discussed in the previous section;
(ii) sensor-based and vision-based methods; (iii) traditional and neural
algorithms; and so forth. The authors of Rastgoo, Kiani and Escalera
(2021) proposed a more fine-grained taxonomy for further reading.

CSLR is of special interest to this survey due to its tight connec-
tion with the SLT task. Previously, the research interest has been
put on the ISLR task and even nowadays it generates some research
interest (Cerna, Cardenas, Miranda, Menotti, & Camara-Chavez, 2021;
Espejel-Cabrera, Cervantes, García-Lamont, Castilla, & Jalili, 2021;
Jenkins & Rashad, 2022; Katılmış & Karakuzu, 2021; Lee, Jo, Kim,
Jang, & Park, 2021; Lim, Tan, & Tan, 2016; Neiva & Zanchettin, 2018;
Salem, Alharbi, Khezendar, & Alshami, 2019; Sharma & Singh, 2021;
Venugopalan & Reghunadhan, 2021; Verma, Aggarwal, & Chandra,
2013). However, the CSLR task has recently received more attention
from the research community thanks to the publication of datasets
suitable for CSLR such as the RWTH-Phoenix-2014 dataset. In the CSLR
setting, a stream of data contains multiple signs and systems need to
first align or segment the input stream to localise the signs and then
4

recognise their meaning. As there are no frame-level annotations, the
problem must be formulated as a weakly-labelled task. Koller, Ney
and Bowden (2016), for example, proposed using the iterative EM
algorithm to train a Convolutional Neural Network (CNN) and a Hidden
Markov Model (HMM) to generate frame-level labels. An extension of
this approach to the continuous world is found in the work of Ci-
han Camgoz, Hadfield, Koller, and Bowden (2017). They introduced
their SubUNet neural network (see Fig. 4), a system based on a CNN
feature extractor, a Bi-LSTM network and a classification linear layer
with a connectionist temporal classification (CTC) (Graves, Fernández,
Gomez, & Schmidhuber, 2006) loss objective for the weakly-aligned
annotations. They first trained such a network for recognising hand
shapes and temporally aligning them, improving the results of Koller,
Ney et al. (2016). Their final system combined three objectives and
had two inputs: it tried to align and recognise hand shapes as in the
previous case from hand patches and also align and recognise glosses
using a CTC objective for both the hand patches and the full frames.

A CNN-HMM hybrid model was also employed by Koller, Zargaran,
Ney and Bowden (2016), treating the CNN output as a Bayesian pos-
terior of a hidden state give an input. As input to the CNN they fed
cropped right hands (as the authors mentioned, the dominant hand for
SLs). The network also included three different classification heads, one
at the end of the network and the other two at intermediate steps. Mo-
cialov, Turner, Lohan, and Hastie (2017) proposed a more traditional
approach: although the features were extracted using OpenPose (Cao,
Hidalgo Martinez, Simon, Wei, & Sheikh, 2019; Cao, Simon, Wei, &
Sheikh, 2017; Simon, Joo, Matthews, & Sheikh, 2017; Wei, Ramakr-
ishna, Kanade, & Sheikh, 2016), they employed heuristics for the sign
segmentation. Pu, Zhou, and Li (2018) presented a system composed of
a 3D-ResNet for the feature extraction, a stacked dilated convolutional
network and a CTC loss. As it was difficult to train the CNN with
the CTC loss at early stages, they designed a two-stage optimisation
process that alternated between stage one and two. Once the sentence-
level optimisation stage had finished, the predicted labels were used
for the supervision of the fine-tuning of the feature extractor. Koller,
Camgoz, Ney, and Bowden (2019) introduced a multi-stream network
for SLR. Each stream was composed of a CNN-LSTM combination and
a HMM (being the CNN-LSTM the generator of emission probabilities),
having as input the same frame but outputting different information,
namely hand shapes, mouthing and glosses. The task was to label videos
given that they only had weakly-aligned annotations for training. They
employed the EM algorithm in which (i) the maximisation step was
performed with the CNN and LSTM and a random initial alignment
and (ii) the expectation step combined the CNN, LSTM and HMM
to re-estimate the alignment. To handle various streams, the HMM
was synchronised so that each stream had to go through the same
end-of-sign state in the HMM (called synchronisation points). These
recombined the posterior of all the streams (weighted sum) into a single
posterior probability.

In a similar fashion to Koller, Ney et al. (2016), the authors of Cui,
Liu, and Zhang (2019) also employed an iterative algorithm given the
weakly-labelled nature of SLR datasets. Their feature extraction system
was composed of a CNN and a Bi-LSTM as they argued that HMMs
are limited for capturing temporal information. They first trained an
end-to-end alignment system and used this alignment as supervision to
train the feature extraction part. This process iteratively improved the
recognition. Concerning the data, they explored two inputs: RGB and
optical flow images (Brox & Malik, 2010) of the cropped hand region.
To join both, they used a two-stream CNN network in which both fea-
tures were fused by addition at an intermediate stage of the CNN. Wei,
Zhou, Pu, and Li (2019) used a 3D-ResNet combined with a Bi-LSTM for
the feature extraction and temporal modelling, respectively. However,
they applied a global temporal pooling afterwards. Their contribution
were two novel modules: a word-independent classifiers (WIC) module
and an n-gram classifier (NGC) module. WIC is composed of L classifiers
(being L the longest sentence) that try to predict the ith word. As extra

supervision, they suggested using a multi-label classification problem
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Fig. 4. SubUNet network presented in Koller, Ney et al. (2016) for Sign Language Recognition. Data is weakly annotated and, hence, a Connectionist Temporal Classification loss
must be used to align the target gloss sequence and the input frame sequence.
(NGC) taking all the 1-grams, 2-gram sand 3-grams available given the
predicted words. This loss is weighted and added to the previous loss
function and the final sentence is predicted with a greedy strategy.

Guo, Tang and Wang (2019) extracted 2D and 3D features from
videos using ResNet networks. The 2D features were fed to a Temporal
Convolution Pyramid (TCP) network to convolve together adjacent fea-
tures and obtain pseudo-3D features. The latter were concatenated with
the original 3D features and fused with a Multilayer Perceptron (MLP)
network. These features were used as input to three modules for long-
term sequence learning (each with a different loss function): the Con-
nectionist Temporal TRanslation (CTTR), Feature CLaSsification (FCLS)
and Feature CORrelation (FCOR) modules. The CTTR outputted the
gloss-level translations (trained with weakly-annotated labels) which
served as pseudo-labels for the other two modules. Meanwhile, FLCS
and FCOR measured the labelling at word-level: the FCLS evaluated
the feature classification entropy and the FCOR computed a triplet loss
for feature correlation (i.e. modelling similarity among samples from
the same class and from different classes).

There are even recent works dealing with the zero-shot SLR prob-
lem (Bilge, Cinbis, & Ikizler-Cinbis, 2022; Bilge, Ikizler-Cinbis, & Cinbis,
2019). In Bilge et al. (2019), a system took as input visual and textual
features (video frames and textual representations of the sign classes
taken from SL dictionaries). At training time, the system had videos,
text and labels available. At inference time, the goal was to infer
unseen sign classes given the semantic representations of the text.
The authors proposed a 3D-CNN and an LSTM to extract spatial and
temporal features from the full frames and from the cropped hand
regions, concatenating them after the LSTM step. To encode the text,
a BERT model was used. Then, they defined a compatibility function
that took both the spatio-temporal and the text features to produce
a score representing the confidence of the input video belonging to
class c. This work was extended by Bilge et al. (2022) by introducing
two improvements. First, attribute descriptions gathered from a sign
hand shape dictionaries were used in combination with the textual
descriptions, obtaining an empirical improvement. Second, the spatio-
temporal feature extraction was also refined with new temporal shift
modules. Moreover, they contributed two zero-shot SLR datasets by
augmenting two large ASL datasets with sign language dictionary de-
scriptions and attributes. Elakkiya, Vijayakumar, and Kumar (2021)
introduced a novel hyperparameter based optimised Generative Ad-
versarial Network (H-GAN) architecture to classify signs in SL videos.
In a first step, SL videos were passed through a stacked variational
autoencoder and a Principal Component Analysis to get a set of feature
vectors. Then, in the H-GAN, the generator was composed of an LSTM
5

that generated a sequence of signs and the discriminator that had a 3D
CNN and an LSTM to model the spatial information. To get appropriate
hyperparameter values for the HGAN, the authors applied a Bayesian
optimisation with a Gaussian Process. Moreover, to decide when and
how the parameters are changed, they resorted to a deep reinforcement
learning algorithm with Proximal Policy Optimisation.

2.3. Metrics

Evaluating the quality of the translations is of major importance. As
the literature usually tends to divide the process into the recognition of
the glosses and the actual production of text (both can be given in the
SLT task), metrics for each case are identified. The case of evaluating
avatar animations is more complicated and usually requires human
evaluation, a topic out of the scope of this work.

For the case of gloss recognition, we identified three main metrics:
the Gloss Error Rate (GER) (Eq. (1)), the Gloss Recognition Rate (GRR)
(Eq. (2)) and the Word Error Rate (WER). GER estimates the number of
errors made while predicting glosses and GRR the number of correctly
predicted glosses out of the total glosses to be predicted. The WER (Su,
Wu, & Chang, 1992), even though it is an NLP metric for spoken
language text, can also be used for glosses as in De Coster et al. (2021).
The WER metric can also be found renamed as Sign Error Rate (SER)
in the literature for glosses, not to be confused with the Sentence Error
Rate (SER). Almohimeed, Wald, and Damper (2009) also proposed
the Sign Language Error Rate (SiER), a variation of WER in which
manual and non-manual articulators where weighted by a ratio, as each
articulator may have a different impact on the result.

𝐺𝐸𝑅 =
𝑊 𝑟𝑜𝑛𝑔𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑙𝑜𝑠𝑠𝑒𝑠

𝑇 𝑜𝑡𝑎𝑙 𝑔𝑙𝑜𝑠𝑠𝑒𝑠
(1)

𝐺𝑅𝑅 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑙𝑜𝑠𝑠𝑒𝑠

𝑇 𝑜𝑡𝑎𝑙 𝑔𝑙𝑜𝑠𝑠𝑒𝑠
(2)

For the case of the production of text, inspiration is drawn from
the NLP field, from which several metrics have been extracted: the
Bilingual Evaluation Understudy (BLEU) (Papineni, Roukos, Ward,
& Zhu, 2002), the WER, the Position-independent word Error Rate
(PER) (Tillmann, Vogel, Ney, Zubiaga, & Sawaf, 1997), the perplexity,
the translation edit rate (TER) (Snover, Dorr, Schwartz, Micciulla, &
Makhoul, 2006), the Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) (Lin, 2004), the Metric for Evaluation of Translation
with Explicit ORdering (METEOR) (Banerjee & Lavie, 2005) and the
NIST (Doddington, 2002), among others.

BLEU is the most used metric in the literature (similar to what
happens in the MT research) to compare the translation quality of
different models. Each machine translated text is compared with at least
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one reference (human translated text, usually experts on both source
and target languages). The mean score across all the samples is the
usual output of an evaluation process. Its value is always between 0
and 1 (multiplied by 100 in many cases), representing how similar
the translated text is with respect to the references (a value of 1
represents a perfect translation). It finds the n-gram precision between
the prediction and the reference, i.e. for a 1-gram only single words, for
2-grams pairs of contiguous words and so on. When computing BLEU
values, a cumulative weighting (using a weighted geometric mean) of
n-grams of sizes ranging from 1 to 4 is employed, being BLEU-1, BLEU-
2, BLEU-3 and BLEU-4 the corresponding cumulative values up to the
n-gram size specified in the name and BLEU-4 the value known as
‘‘BLEU’’.

The BLEU computation is highly dependant on various factors such
as the tokenisation used. Therefore, it is not a perfect metric for
comparison. That is why (Post, 2018) implemented a more shareable,
comparable and reproducible version of BLEU called sacreBLEU which
is now the standard good practice for sharing results.

The rest of the metrics are also commonly used in the literature. For
more information, refer to Celikyilmaz, Clark, and Gao (2020).

3. Literature review

The state-of-the art of SLT is mainly divided between two ap-
proaches (Jantunen et al., 2021): those using hardware solutions
(gloves, rings, accelerometers and so on) and those using visual (images
and videos) and audio cues. The first type of solutions can be very
intrusive or not comfortable for DHH people as they need to wear a
piece of technology each time they want to communicate (Bragg et al.,
2019). In fact, using gloves (or any special equipment) does not allow to
capture non-manual features. Besides, this approach does not promote
an equal treatment between hearing and DHH people and is, therefore,
not the most desirable approach. Instead, SLT systems based on visual
and audio cues make the communication fluent and natural for both
sides and have become the standard in the recent literature. However,
they introduce a bigger challenge, as processing audio-visual cues is not
trivial. As signs must be recognised within a stream of data, and not just
from static and segmented parts, the SLT task has various difficulties
associated, also shared with the CSLR task, Wazalwar and Shrawankar
(2017):

• Start and end signs may not be clear, as there are shorter and
longer signs.

• Varying speed of signing across subjects.
• How to identify the end of a phrase and the number of signs

within it.
• The use of non-manual features and the emotions poured into

them.

There is another classification for MT systems based on Dorr, Jor-
an, and Benoit (1999) (see Fig. 5 for the original taxonomy), in
hich the literature is divided into three categories: (i) direct, (ii)

ransfer or (iii) interlingua MT systems. Direct systems employ bilingual
ictionaries to translate word-by-word from source to target. Mean-
hile, transfer systems aim at analysing source sentences syntactically
nd semantically to then transfer the syntactic and semantic structure
o the target language. Interlingua representations build a language-
ndependent representation from which target language sentences can
e produced. As mentioned by Morrissey and Way (2006), due to SLT
ystems being developed later than standard MT systems, they are
ainly based on transfer and interlingua approaches. Besides, direct
T approaches are only useful when both source and target languages

re similar, specially syntactically. In the case of spoken and sign lan-
uages, even though they may be lexically similar, the grammars may
ot have enough overlap. Hence, some structure transfer is necessary.

In this section we review the existing works about SLT, dividing the
iterature into two parts: the literature using traditional SLT algorithms
6

(rule-based and statistical MT, for instance) and the one using DL,
usually called Neural Sign Language Translation. The first type of
solutions are mainly within the transfer system category (being also
direct and interlingua approaches), while the majority of NSLT ones
create an interlingua representation. Besides, in both cases vision-based
solutions dominate while there are a few based on hardware solutions.
For the sake of clarity, in each section we arranged the literature
chronologically ordered by the year of publication.

3.1. Traditional sign language translation

Before the rise of the DL as the standard method for MT, non-DL so-
lutions tackled the SLT task applying various separated steps. This was
specially important given the recognition of continuous signs should be
part of the pipeline in case of video inputs. On many cases, videos were
manually annotated by experts and researchers worked on the gloss
to text translation. Statistical MT (SMT) (see Stein, Schmidt, and Ney
(2012) for more information on SMT applied to SLs), rule-based MT
(RBMT) and example-based MT (EBMT) are the three approaches used
for the actual translation. Table 1 classifies the literature within one of
these three approaches or a combination of them (hybrid category).
SMT is applied more often in the most recent literature, producing
translations based on statistical models built from parallel corpora. The
RBMT translate from the source to the target using a set of rules derived
by experts while the EBMT is a data-driven approach that requires a
parallel corpora to store samples in a translation memory (translation
by analogy). Word alignment models such as GIZA++ (Och & Ney,
2003) were also required for the text and gloss/sign correspondences.

Even when DL started becoming popular and the field of NMT
appeared, approaches using traditional SLT were still proposed. One
must also notice that, until the appearance of a standard benchmark
for comparison between SLT proposals such as the RWTH-Phoenix-
Weather-2014 dataset (Koller, Forster, & Ney, 2015), the comparison
between different approaches was difficult: datasets were limited and
few conclusions could be extracted from them. In fact, custom datasets
(in many cases private ones) were proposed in each paper, not allowing
a fair comparison.

3.1.1. The beginning of the SLT (1989–1999)
One of the first works on SLT was the one proposed by Kamata

et al. (1989). They translated spoken language text to signs, starting
by extracting quantifiers and numerals and then word units (due to the
Japanese word formation). The translation was performed by changing
each word unit with the appropriate sign. In case of various possible
signs for a word, the context was analysed to choose the most appropri-
ate one. The previous attempt used a direct approach (explained in the
introduction of Section 3), which is a rather simple way to translate. In
fact, not much time passed until a more sophisticated method arose,
being, to the best of our knowledge, the first published interlingua
system for SLT: the Zardoz system. It was introduced by Veale and
Conway (1994) and defined as a cross-modal MT system, translating
speech and text into SLs (producing an animated sequence). Specif-
ically, it converted English text into Irish, American and Japanese
SLs (ISL, ASL and JSL, respectively). The system was composed of
several steps as described in the paper: (i) processing the input text
with morphological rules and heuristics to discover compound word
constructs, (ii) performing an idiomatic reduction, (iii) parsing with an
unification grammar (producing a deep syntactic/semantic represen-
tation), (iv) composing an interlingua representation, (v) applying an
schematisation (removing metaphoric and metonymic structures from
the source language), (vi) performing an anaphoric resolution, (vii)
using spatial dependency graphs (SD-graphs) and (viii) mapping con-
cepts to signs. The interlingua proposed was a language-independent
representation (instead of a universal grammar) derived from lexeme-
to-concept correspondences. SD-graphs (a collection of weak rules)
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Fig. 5. Original classification of machine translation systems of Dorr et al. (1999). The scheme organises hierarchically the levels of abstraction involved in the understanding or
generation of sentences and the translation between source and target texts. The taxonomy followed in this survey simplifies this by merging the syntactic and semantic structures
and their corresponding links into a single entity, i.e. a level in which the structure is analysed at various levels and there is a transfer from the structure of the source to the
target.
Table 1
Summary of the references included in Section 3.1 categorised by their approach. The hybrid category includes works using various approaches
or even combining them.

Approach References

Rule-based

Bauer, Nießen, and Hienz (1999), Kamata, Yoshida, Watanabe, and Usui (1989), Lee and Kunii (1992),
Ohki et al. (1994), Sagawa et al. (1996), Tokuda and Okumura (1998) and Veale and Conway (1994)
Cox et al. (2002), Grieve-Smith (1999), Sáfár and Marshall (2001, 2002), Szmal and Suszczańska
(2001) and Zhao et al. (2000)
Dangsaart, Naruedomkul, Cercone, and Sirinaovakul (2008), Foong, Low, and La (2009), Halawani
(2008), Huenerfauth (2004), Marshall and Sáfár (2002, 2003) and San-Segundo et al. (2006)
Al-Dosri, Alawfi, and Alginahi (2012), Al-Khalifa (2010), Almasoud and Al-Khalifa (2011), Baldassarri,
Cerezo, and Royo-Santas (2009), Boulares and Jemni (2012) and Mazzei, Lesmo, Battaglino,
Vendrame, and Bucciarelli (2013)
Almeida, Coheur, and Candeias (2015), Davydov and Lozynska (2017a, 2017b), El, El, and El Atawy
(2014), El-Gayyar, Ibrahim, and Wahed (2016), Hoque et al. (2016) and Porta, López-Colino, Tejedor,
and Colás (2014)
Kang (2019), Kouremenos, Ntalianis, and Kollias (2018), Luqman and Mahmoud (2019, 2020),
Nguyen, Phung, and Vu (2018), Oliveira, Escudeiro, Escudeiro, Rocha, and Barbosa (2019) and
Othman and Jemni (2019)
Khan, Abid, and Abid (2020), Pezzuoli, Corona, Corradini and Cristofaro (2019) and Roelofsen,
Esselink, Mende-Gillings, and Smeijers (2021)

Example-based Almohimeed, Wald, and Damper (2011) and Morrissey and Way (2005, 2006)

Statistical

Bungeroth and Ney (2004), Chiu, Wu, Su, and Cheng (2006), D’Haro et al. (2008), Krňoul, Kanis,
Železnỳ, and Müller (2007), Nießen and Ney (2004), Stein, Bungeroth, and Ney (2006) and Stein,
Dreuw, Ney, Morrissey, and Way (2007)
Dasgupta and Basu (2008), Dreuw, Stein et al. (2008), Massó and Badia (2010), Morrissey (2011),
Othman and Jemni (2011), Stein, Schmidt, and Ney (2010) and Su and Wu (2009)
Ebling and Huenerfauth (2015), López-Ludeña, Barra-Chicote, Lutfi, Montero and San-Segundo (2013),
Lozynska and Davydov (2015), Morrissey and Way (2013) and Wazalwar and Shrawankar (2017)
Cate and Hussain (2017) and Othman and Jemni (2019)

Hybrid

Morrissey (2008), Morrissey and Way (2007), Morrissey, Way, Stein, Bungeroth, and Ney (2007),
San-Segundo et al. (2008), San Segundo et al. (2007) and Wu, Su, Chiu, and Lin (2007)
Barberis et al. (2011), Grif, Korolkova, Demyanenko, and Tsoy (2011), López-Ludeña et al. (2014),
San Segundo Hernández, Lopez Ludeña, Martin Maganto, Sánchez, and García (2010) and
López-Ludeña, San-Segundo, Morcillo, López and Muñoz (2013), San-Segundo et al. (2012)
Brour and Benabbou (2019) and Kayahan and Güngör (2019)
were in charge of picking elements from the interlingua and re-ordering
them.

Another common approach in the literature is the use of the transfer
MT approach, as in the case of Lee and Kunii (1992). They performed
a text-to-SL translation in which they first carried out a morphological
analysis to generate a dependency tree that was transformed into the
7

SL dependency tree according to the structural differences between the
spoken and the SL. A sign lexicon was also used to generate the output
sequence of signs.

Smart glove approaches were extensively used at the beginning of
the SLT due to the lack of technology to recognise correctly gestures
in videos. For example, Ohki et al. (1994) presented an SL-to-text
translation system exploiting hand shape and position information

acquired from gloves. They extracted features first and then they used
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a pattern matching strategy applying dynamic programming. Simi-
larly, Sagawa et al. (1996) employed a sequence of hand shapes and
positions (obtained from smart gloves) to recognise signs using dynamic
programming matching. The system could translate from video-to-text
and vice versa.

Once again, the direct MT system was applied in the work of Tokuda
and Okumura (1998), in which they built a large corpus of word-sign
correspondences and implemented the SYUWAN MT system. As the SL
dictionary was quite limited, when an entry was not found in the corpus
they proposed various techniques to deal with it, namely, translate
it (i) to a sign with the same concept identifier, (ii) to signs using
the definition sentence of a concept or (iii) using super-concepts. The
output of the translation was the Sign Language Description Method
(SLDM) they introduced.

The HMMs was a popular machine learning algorithm to model
states and transitions and was used in the work of Bauer et al. (1999)
for the recognition of signs from video with a limited lexicon com-
prising 100 signs. Then, in a second stage, signs were translated into
text using a translation model (composed of a lexical and an alignment
model) and a language model. Limited to the domain of weather
reporting, Grieve-Smith (1999) suggested using a literal orthography to
represent SLs. The translation to spoken language text was performed
using a transfer of the syntactic structure from the source to the target.

3.1.2. Data-driven approaches arise (2000–2009)
Even though rule-based approaches had been extensively used so

far, data-driven approaches started to be used from this point on-
wards, including the EBMT and the SMT. This part starts with a new
transfer MT approach in which (Zhao et al., 2000) proposed a text-to-
video translation system with two steps: (i) building an intermediate
representation using syntactical, grammatical and morphological in-
formation and (ii) producing motion from that representation. The
chosen intermediate representation was based on glosses and they
mapped all the necessary cues to obtain them using a Synchronous Tree
Adjoining Grammar (STAG) (Shieber, 1994; Shieber & Schabes, 1991).
To generate signs, they employed a sign synthesiser that took glosses
as keys for a lookup table to retrieve their associated motion.

Some errors could be given in the translation pipeline, or even
some decisions that needed to be taken and there was not a direct
solution for them. That is why introducing human feedback within
the translation pipeline was also often seen. For instance, Sáfár and
Marshall (2001) presented a two-phase system: (i) the transformation
of the English input text into a semantic representation and (ii) the
production of a graphical representation from the previous step. The
system was prepared to be able to receive feedback from users in any
step, e.g. the user can intervene to manually correct an assignation or
a link between two items. Going into details, first the text was parsed
through the CMU link grammar parser (Sleator & Temperley, 1995).
From that, an intermediate representation was composed in the form of
a Discourse Representation Structure (DRS) (Kamp & Reyle, 1993). For
the morphology and syntax of the generation of signs, the Head-Driven
Phrase Structure Grammar (HPSG) framework was employed.

Another transfer MT approach, and this time limited to the health
domain, was proposed by Szmal and Suszczańska (2001), in a text-to-
SL setting, performing a morphological, syntactic and semantic analysis
of the input sentences. The translation was also limited to a set of
semantic relations. Also constrained to a specific domain, Cox et al.
(2002) developed an application to ease the communication between
deaf people and clerks of post offices by translating the clerk’s utterance
into an animated avatar (as they mentioned, they believed it was the
first time that was done) that the deaf person can understand. They
gathered up to 370 sentences that were commonly used in those situa-
tions and, using a lookup table, they could translate those sentences to
BSL. They argued that this type of system is adequate for the limited
communication of post offices. However, deaf people were unsatisfied
8

Fig. 6. Statistical machine translation system scheme.

with some features of the avatar while clerks thought the system would
be more helpful if the set of utterances was not pre-defined.

An often used intermediate representation in MT systems is the DRS
representation (already used by Sáfár and Marshall (2001)). Marshall
and Sáfár (2002) and Sáfár and Marshall (2002) also applied this
strategy and the user feedback previously mentioned in their work.
They started using the CMU parser to generate various linkages from
which the user had to intervene to choose one. Then, the linkage
was transformed to DRS to represent the intermediate meaning of the
sentences from the source. For the generation of signs, the morphology
and syntax were defined within the HPSG. From this, in order to
generate the animated avatar, the Signing Gesture Markup Language
(SiGML), based on HamNoSys, was employed. Similarly, Marshall and
Sáfár (2003) also made use of the DRS. They implemented a four-stage
pipeline for SLT: (i) a syntactic parsing (using the CMU parser), (ii) a
DRS generation, (iii) a semantic transfer (from spoken language DRS to
SL DRS) and (iv) the generation of HamNoSys symbols. The latter were
used to generate the animation.

With the advance in the MT field, SMT approaches started to be used
in the SLT research field (see Fig. 6 for a scheme of a SMT system). To
the best of our knowledge, one of the first SMT-based SLT systems was
proposed by Bungeroth and Ney (2004). Due to the scarcity of data,
they had to prepare a small dataset to be used as a proof-of-concept. In
fact, the absence of large datasets was an issue hindering successful re-
search on data-driven methods. Nießen and Ney (2004) also had issues
with the amount of data available, so they injected morphological and
syntactic information to reduce the amount of parallel data required by
their system. That is, they took into account the inter-dependencies of
related inflected forms by hierarchically grouping equivalent classes. At
each hierarchy level, features could be combined to create hierarchical
lexicon models that could be used to replace the probabilistic lexicon
used in SMT models. This also helped to disambiguate some words
forms.

Sometimes simple sentences do not require complex interlingua MT
systems, that is why (Huenerfauth, 2004) introduced a multi-path sys-
tem that included a direct, a transfer and an interlingua MT pathway. If
a sentence fell in the interlingua domain it could be processed by that
pathway, otherwise, if the syntactic structure fell within the linguistic
coverage and the transfer rules of the system, the sentence could be
processed by the transfer pathway. If none of the previous cases was
given, the direct pathway was used.

Previously, Nießen and Ney (2004) grouped words by classes. On
this line, Morrissey and Way (2005, 2006), following the Marker Hy-
pothesis (Green, 1979), employed word classes (quantifiers, determin-
ers and so on) to segment spoken language sentences into chunks which
were used to generate flexible templates for an EBMT system. To the
best of our knowledge, this was the first work employing an EBMT
approach for SLT. On the gloss side, these were also chunked using time
divisions and were grouped with other annotations in the same time
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frame within chunks. This allowed them to create a bilingual corpus of
alignable chunks between spoken languages and SLs.

The first addition of morpho-syntactic information (to improve
the translation quality) to a phrase-based SMT system was allegedly
proposed by Stein et al. (2006). The gerCG parser5 was used for a
morpho-syntactic pre-processing step removing irrelevant information,
transforming nouns into their stemmed forms, splitting words at break
points (in German) and omitting German Part-of-Speech (PoS) tags not
used in their SL dataset. They saw improvements from the stemmed
words (to reduce the out-of-vocabulary words) and also from splitting
words to avoid unknown word combinations.

With the objective of easing the communication between DHH peo-
ple and officers in the case of the renewal of the national identification
document and the passport, San-Segundo et al. (2006) built a system
composed of a speech recogniser, a rule-based translator and an avatar
animation module. In a second version, San-Segundo et al. (2008)
extended the previous work with an SMT model. In this case, the rule-
based system performed better than the SMT one due to the restricted
domain. One of the aspects to improve in their first work was the delay
between the speech and the actual animation of the avatar. To solve
that, they provided partial translations with some restrictions (due to
the information conveyed being conditioned on future signs). With this
change, they achieved a 40% delay reduction.

Both Chiu et al. (2006) and Wu et al. (2007) proposed a system
for the Chinese to Taiwan Sign Language (TSL) translation. The first
one computed the optimal alignment between Chinese and the TSL
using a two-pass alignment in both syntax- and phrase-level. The maxi-
mum a posteriori (MAP) was used for the video production. Moreover,
they included a motion transitions database: the optimal sequence of
sign clips among the TSL sequences was found using the maximum
epenthesis score based on the distance and direction of hand’s positions.
Meanwhile, Wu et al. (2007) presented a three stage system. First, sen-
tences were parsed into possible phrase structure trees (PSTs) using the
Chinese probabilistic context-free grammars (PCFGs) computed from
the Chinese Treebank and a parallel corpus. Then, based on the PCFG
derived from the parallel corpus, the source PSTs were transformed
into the target PSTs, which were finally used to generate the target
sentences. Finally, the Viterbi algorithm was applied across the process
to obtain the best possible translation.

The first work of the survey exploiting the HamNoSys symbolic
notation (apart from the use of the SiGML notation by Marshall and
Sáfár (2002) and Sáfár and Marshall (2002)) was the work of Krňoul
et al. (2007), in which they performed text-to-SL (with an animated
avatar) translation. They transformed the text into an intermediate
representation called Sign Speech, i.e. a textual sign representation. This

as based on the previously mentioned HamNoSys symbolic notation
nd was used to animate the avatar. Concerning the actual translation
ystem, a phrase-based SMT system was proposed for the translation
hile they implemented their own decoder: the monotone phrase-
ased decoder SiMPaD. They compared the latter with an off-the-shelf
ecoder such as Moses (Koehn et al., 2007), an SMT toolkit, and
bserved that both obtained similar results, being SiMPaD five times
aster.

Various approaches were evaluated in the work of San Segundo
t al. (2007) for speech-to-SL translation: (i) an RBMT system, (ii) a
hrase-based SMT system and (iii) a stochastic finite state transducer
SFST). The three approaches had to take as input the outputs of a
peech recogniser and deal with its possible mistakes. In fact, even
hough it was obvious, they observed that the sign error rate was higher
hen they used that output instead of the transcribed text. For their

ask, the RBMT seemed to obtain the best results (although it was
lso the most sensitive one to the errors of the speech recogniser).
onetheless, the approach was limited to a specific domain and may

5 http://www.lingsoft.fi.
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have not generalised well to others. The SFST was the system that
performed better among the statistical ones with the advantage with
respect to the RBMT system of requiring low development effort.

Stein et al. (2007) presented the allegedly first sign-to-speech trans-
lation system. A sign recogniser adapted from speech recognition was
employed for the CSLR and, then, an SMT model was used for the
translation from the source to the target. Morrissey et al. (2007) took
the MATREX system (Stroppa & Way, 2006), a combination of SMT and
EBMT systems with a high modularisation (i.e. a highly customisable
and extensible system), and the SMT system developed at the RWTH
Aachen University to apply them for the translation from Irish Sign
Language (ISL) to English and from Deutsche Gebärdensprache (DGS,
the German Sign Language) to German. They concluded that it could
be valuable to combine MATREX’s EBMT chunks and the increas-
ing of the distortion limit of RWTH’s constraint re-ordering. Dreuw,
Stein, and Ney (2007) proposed including the visual features extracted
from the hand and head tracking algorithm into the SMT system
they had, slightly improving the results when sentences included some
pointing (Cormier, Schembri, & Woll, 2013), a special feature of SLs.

In collaboration with DHH people, Morrissey (2008) and Morrissey
and Way (2007) aimed at developing a translation system that fitted the
necessities of the deaf community. For that, they started choosing the
domain for automatic translation that was helpful for them: providing
information about flights in the airport. Their translation system made
use of the MATREX software. Dangsaart et al. (2008) translated from
spoken language text to SL using five stages: (i) segmenting input
sentences, (ii) mapping words to signs or removing words without
correspondences, (iii) choosing the most suitable sign for each word
(if more than one) based on semantic and syntactic relations, (iv) re-
arranging of sentences and (v) obtaining the corresponding gestures
for each sign. As the authors mentioned, the results were improved
by taking into account the semantics and syntax of both the spoken
language and the SL.

So far, no other research had improved the language models used in
the translation. That is the novelty proposed by D’Haro et al. (2008) in
a text-to-sign setting. Due to the scarcity of SL data to build a SL model
(SLM), they computed web frequencies of n-grams and used the phrase-
based translation matrix (from the SLM), fusing both counts using
the MAP method. Dasgupta and Basu (2008) presented a text-to-gloss
system. They started with the parsing of input sentences using a lookup
table to identify various expressions and built a dependency structure
that was used to construct their lexical functional grammar (LFG)
f-structure. The latter encoded the necessary grammatical relations
while higher syntactic and functional information were represented by
a dictionary of keys (grammatical symbol or syntactic function) and
values (features of the corresponding element). Using transfer rules
and a bilingual lexicon, the f-structure for the spoken language was
transformed into the f-structure of the SL.

HMMs and Gaussian Mixture Models (GMMs) were used in the
work of Dreuw, Stein et al. (2008) to model video features (extracting
manual and non-manual features from the head and hand tracking)
and transforming them into glosses as an intermediate representation.
The latter was fed to a SMT model to perform the translation to
spoken language text. To improve the translation quality, the authors
proposed to include visual cues from the recognition part for the
translation as extra knowledge, experimenting with them to see the
effect they had on the WER metric. Halawani (2008) described an
SLT system, the Arabic Sign Language Translation System (ArSL-TS),
implemented on mobile devices for the Arabic language. Su and Wu
(2009) suggested extending the translation memory (a database of
translated pairs) of a structural SMT (SSMT) model with thematic role
templates, i.e. language-independent labels that described the relation-
ship between siblings in a grammar rule. The synchronous context-free
grammar (SCFG) was employed to convert the Chinese structure into
the TSL structure, i.e. to build a target structure by parsing the source,

possibly alleviating the data sparseness problem. Moreover, merging
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grammar rules by thematic roles could help with the variation of gram-
mar rules. Foong et al. (2009) proposed a speech-to-SL system in which
the speed recogniser was based on a template matching recognition.
The system then mapped the recognised speech to the corresponding
sign that was previously stored in a database. Baldassarri et al. (2009)
presented a text-to-SL RBMT system which considered morphological
and syntactical characteristics and the semantic meaning. Glosses were
used as an intermediate representation.

3.1.3. Data scarcity is acknowledged (2010–2015)
Thus far, data scarcity continued being an issue. With this problem

in mind, Stein et al. (2010) trained a language model with the SRI
toolkit6 and prepared both a phrase-based and a hierarchical phrase-
based (using the JANE software (Vilar, Stein, Huck, & Ney, 2010))
decoder, sometimes even combining them using a weighted majority
voting on a confusion network. They used gloss data as input (already
obtained from videos by experts) and aimed to translate it to text.
They compared their model with a simple lowercase transformation of
glosses, leading to the conclusion that their system performed better
than this simple baseline. After experimenting with various solutions,
their final system was a combination of three hierarchical and three
standard phrase-based system. For the former, they included (i) the
grow-diag-final-and baseline system (Koehn, Och, & Marcu, 2003),
(ii) the soft-syntax system and (iii) a system with five word- and
phrase-clusters; for the latter, they had (i) the grow-mono-final-and
system (Och & Ney, 2003), (ii) a triplet enhanced system and (iii) a
DWL system (an acronym not specified by the authors). In the end,
their system was a combination of many tools that had to exploit small
datasets.

A sliding window approach and a direct MT system for a mobile-
device-oriented applications were presented in the work of Al-Khalifa
(2010). The sliding window covered two words to check word pairs.
Using a sign dictionary, if there was a sign corresponding to the
compounding word composed by those two words, then that was out-
putted. Otherwise, it may had happened that the first word was in the
dictionary and its sign equivalent was extracted. If no correspondence
was obtained, that word was finger-spelled. To save some space, they
applied various grammar rules to turn nouns and verbs into their root.

There was an increase in the interest towards data-driven ap-
proaches, although these solutions required large parallel corpus. Due
to the limited amount of samples, researchers found that including
morpho-syntactic information could be a solution to deal with the
problem. For spoken languages it was easier to obtain this information;
however, this was not the case for SLs. In their work, Massó and Badia
(2010) analysed two methods to included these extra cues: (i) consid-
ering morphemes as independent tokens (with the added information
being the category name) and (ii) attaching morphemes to glosses
(with the added information being the lemma, the plain gloss). From
their results, they showed that the latter was the best option, while
the former generated more syntactic errors. For the spoken languages,
the extra information added were the lemma and the PoS tags. For
the language model they employed Moses. San Segundo Hernández
et al. (2010) contributed a text-to-SL and a SL-to-text translator. The
first one used a speech recogniser to generate sequences of words,
then the following approaches were combined: EBMT, RBMT and SMT
(considering a phrase-based SMT and a finite state transducer). These
translators were applied hierarchically, following some rules to apply
the next one or not. For the SL-to-text case, the user inputted a sequence
of signs and the same hierarchical approach was applied again to
translate the sequence into spoken language text. Grif et al. (2011)
developed a system that took the input text, analysed it syntacti-
cally and semantically to extract its structure and transformed into a

6 https://www.sri.com/case-studies/srilm/.
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language-independent structure (interlingua). Finally, the translation
was synthesised from that representation.

A SMT system based on Moses and a traditional RBMT system were
employed in the work of Barberis et al. (2011). Input sentences were
interpreted using ontology-based logical representation. The output
was used to generate a sequence of glosses that was enriched with
syntactic information. The sentence was defined using a formalism they
introduced called ATLAS Written LIS (AWLIS), being LIS the Italian
Sign Language. They also had a semantic-syntactic interpreter helping
in the production of signs; this interpreter used an ontology of the
domain of weather forecasting. This last module was in charge of
performing the analysis of the syntactic tree. In case of multiple word-
sign correspondences, they resorted to WordNet to look for synonyms
and depended on user inputs to choose the most appropriate ones. Al-
masoud and Al-Khalifa (2011) performed a text-to-SL translation using
an RBMT system and an ontology of a closed domain (jurisprudence
of prayer). The output of the system was presented in the SignWriting
format so that it could be easily used to generate an avatar animation.

Arguing that there was a lack of studies on Arabic Sign Language
(ArSL), Almohimeed et al. (2011) proposed using an EBMT approach
over a RBMT one. As they had a small corpus, they also included
syntactic and semantic information using a morphological analyser and
a root extractor, increasing the performance of the system. Othman
and Jemni (2011) presented a SLT system based on Moses that used
glosses as an intermediate representation and whose output was used to
produce an avatar animation using WebSign (Jemni & Elghoul, 2007).
They contributed the idea of adding a string matching improvement to
their SMT system. Specifically, due to the similarity of English words
and ASL glosses, they used the Jaro–Winkler distance (Jaro, 1989) to
model the similarity between two given strings.

Glosses have been so far often used as an intermediate represen-
tation; in few cases other formats of depicting or transcribing SLs
(mentioned in Section 2) have been exploited. In this case, Morris-
sey (2011) explored other ways to encode SLs in a text format for
sign MT. The first one was created using identifiers corresponding to
each sign in the HamNoSys notation, the second one were English
glosses (lowercased) and the third one used the SiGML notation to
obtain HamNoSys tags. The MATREX software was used for the SMT.
The results showed that the format created using the SiGML codes
performed the best, being the identifier format the one performing
the worst. However, the authors pointed out that, given the auto-
matic evaluation used, it was not clear which was the best format
and that experiments should be accompanied by human evaluation to
ascertain the translation quality. Following this idea of using different
intermediate representations, Boulares and Jemni (2012) implemented
a mobile device SLT system in which the Sign Modelling Language
(SML), a descriptive language based on XML, was used to codify signs.
A text was introduced in the application and an SML description of
each sign was returned and processed by a 3D animation rendering to
create the virtual avatar. Al-Dosri et al. (2012) contributed a software
package with a translator and a chat application. The translator was
based on a direct MT system, using a lookup table. San-Segundo et al.
(2012) presented a system to translate speech into sign videos. In
intermediate steps, speech was converted into text and the latter into
a sequence of glosses used to produce the 3D avatar. For the text-
to-gloss step, three proposals were evaluated and combined (using a
hierarchical structure): (i) an EBMT strategy, (ii) a RBMT method and
(iii) a SMT. The first one was translation by analogy, meaning that if
two sentences were similar, the output should also be similar. Hence,
an heuristic to measure distances between sentences was proposed in
this approach. For the second method, each word was classified into
various syntactic-pragmatic categories and then a rule-based system
was applied. The third method comprised two methods: a phrase-based
translator and a SFST. The evaluation carried out with users concluded
that the generated avatar was not good enough, as people thought the

avatar was not very natural and they had to ask for a repetition of the

https://www.sri.com/case-studies/srilm/


Expert Systems With Applications 213 (2023) 118993A. Núñez-Marcos et al.
recording or reading the sequence of glosses when the message was not
understood.

A new pre-processing step to improve the translation quality of SMT
systems was introduced in the work of López-Ludeña et al. (2012),
i.e. the proposed step was located after processing the input speech and
before the SMT module. The novel step consisted of changing words
by tags (a sequence of words connected by dashes) with a one-to-one
mapping of words and tags. There was a tag for non-relevant words
(those without a corresponding sign) and those words without tags
were simply kept untouched. To generate tags, a lexical model was pro-
duced from the alignment of words and signs (glosses) using GIZA++.
The pre-processing step was evaluated using two SMT systems, namely,
a phrase-based system and a SFST, and the data was limited to the topic
of the renewal of identity documents and the driver’s license. In both
cases, the improvement in terms of BLEU was quite significant.

In the speech-to-sign pipeline, López-Ludeña, San-Segundo et al.
(2013) mentioned that three steps were given: (i) the speech recogni-
tion, (ii) the translation and (iii) the avatar generation and they aimed
at improving the three of them to enhance the model presented by San-
Segundo et al. (2012). Starting with the speech recogniser, which was
based on a HMM, they included (i) an acoustic adaptation module, (ii)
a module to reduce the out-of-vocabulary words by taking into account
various variants (formal/informal way of speaking, synonyms and re-
ordering sentences) and (iii) training the language model using word
classes, i.e. vehicles names (car, bus, train and so on) may be grouped
under the class ‘‘vehicles’’, helping the model to train better. For the
translation, thanks to the new pre-processing step (López-Ludeña et al.,
2012), they could change the RBMT they had by an SMT model,
removing the necessity of hand-engineering rules. The SMT model was
combined with an EBMT model whose heuristic distance was changed
by a Levenshtein distance (LD) (Levenshtein et al., 1966). Finally, the
avatar animation step was improved with a new editor that introduced
new customisation options to reduce the sign specification time.

Using a clustering algorithm, Schmidt, Koller, Ney, Hoyoux, and
Piater (2013a) distinguished several face patterns using an active ap-
pearance model (Edwards, Taylor, & Cootes, 1998; Matthews & Baker,
2004). These were used to enrich glosses with non-manual features
in a text-to-SL pipeline so that the produced avatar was also capable
of expressing information through non-manual articulators. Schmidt,
Koller, Ney, Hoyoux, and Piater (2013b) proposed to implement a
viseme recogniser (performing lip reading) into the translation system,
i.e. they used mouthing features as input to the translation system so
that they were aligned with the recognised spoken language words.
They alignment of spoken language words and glosses (for the signs)
was carried out first; when the sequence of recognised visemes was ob-
tained, they compared it with that alignment, discarding those visemes
that did not follow it. Morrissey and Way (2013) made use of the
MATREX system to build a translation system. The latter performed
word and phrase alignments using GIZA++ and a system based on
Moses, respectively. For the phrase-based SMT decoder, they also used
Moses. Mazzei et al. (2013) chained several steps: (i) starting by parsing
the input sentence to obtain a dependency tree, (ii) then the interpreter
(using an ontology) built a semantic network for the interpretation
of the sentence, (iii) a SL generator constructed a tree for the lexical
elements and a syntactic structure and, finally, (iv) the animated avatar
for the produced sign was generated. López-Ludeña, Barra-Chicote et al.
(2013) presented LSESpeak, a SLT to spoken language translator for
LSE. The system had a interface to input a sequence of signs and a
phrase-based SMT system. There is also a text-to-speech module based
on Hidden Semi-Markov Models.

A RBMT system was used by Porta et al. (2014) to translate Spanish
to Lengua de Signos Española (LSE), the Spanish Sign Language. A
dependency tree was computed from text, then a lexical and struc-
tural transfer was performed to obtain a LSE dependency tree from
which glosses were generated. The latter could be used to generate
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an animated avatar. For this last step, a bilingual lexicon and rules
specific to the language-pair were used. In El et al. (2014), the input
sentences were parsed to segment them into sequences of words. After
cleaning the text, several rules were applied to obtain the sequence of
words that could be directly translated into signs using a lookup table.
Synonyms could be used if a given word was not found in the table.
If no correspondence was found, the word was finger-spelled. López-
Ludeña et al. (2014) collected LSE data and proposed two systems for
translating from speech to SL and from SL to speech. The speech to
SL system was composed of the following parts: an ASR module for
speech-to-text transformation, a natural language translator for text-to-
gloss translation and an avatar generator. The second component mixed
an EBMT and an SMT system. For the SL to speech translation, the SL
was first inputted by selecting a sequence of signs (no video recording),
then the translation was performed by a hybrid EBMT and SMT system
as in the previous translation direction and the speech was generated by
Hidden Semi-Markov Models. Their overall system was constrained to
the domain of hotel utterances but it was tested by end-users, i.e. deaf
customers and receptionists of a hotel.

Many works in the literature focused on the use of hands (manual
features) to distinguish signs. That is why (Ebling & Huenerfauth, 2015)
stressed the importance of non-manual features, given that, according
to the authors, these have rarely been considered in the literature. They
trained a system to infer glosses and proposed a sequence-to-sequence
classification in which head and eyebrow (non-manual articulators)
information was predicted from the sequence of glosses. This avoided
introducing them in the translation, with the risk of increasing the
vocabulary and generating out-of-vocabulary words after the training.
They also analysed predicting both articulators individually and pre-
dicting one of them using the other one as an extra cue. The latter
strategy was called cascading approach and they observed that it was
more promising than using a non-cascading approach. Almeida et al.
(2015) employed a dictionary to associate the meaning of the input
sentences’ words with glosses. The ordering of glosses depended on
a grammar structure transfer. Lozynska and Davydov (2015) used a
grammatically augmented ontology (GAO) for parsing input sentences
(spoken language and SL sentences) and an affix PCFG (APCFG) parser7

for the translation. They argued that, according to their results, the use
of the GAO improved the performance of the APCFG parser.

3.1.4. Recent traditional SLT literature (2016-present)
For the BdSL, a speech/text-to-SL and SL-to-text was introduced

by Hoque et al. (2016). In the first translation direction, input sentences
were processed through a BdSL grammar (re-arranging them as needed
for the conversion) and signs were extracted from a database. For
the other translation direction, they detected signs using devices such
as the Kinect camera (only hands were used for sign detection) and
extracted features from them. A training and evaluation data split was
proposed to train and evaluate a system that generated text or speech;
nevertheless, details about specific features or training were not speci-
fied. El-Gayyar et al. (2016) implemented an application for automatic
translation that returned signs according to the physical location of the
user (obtained through the user or using the GPS module), taking into
account the geographical variability. The input sentences (from images
captured with the mobile phone or from speech) were pre-processed by
spell-checking them and colloquial spoken language was transformed
to a standard one to reduce the vocabulary size. A sliding window was
then used to change words by signs. When searching for words and
replacing them, compound words were prioritised. Meanwhile, entity
names were sliced into characters for finger-spelling.

The work of Wazalwar and Shrawankar (2017) was divided into
two phases: first the SL utterances were converted to spoken language
text and then NLP techniques were used to create natural and fluent
sentences (this was restricted to English). In the first part, from a

7 https://github.com/mdavydov/UkrParser.
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set of sub-sampled frames, hands were segmented and tracked using
the Camshift algorithm (Nadgeri, Sawarkar, & Gawande, 2010). For
the continuous recognition of signs, a Pseudo-2D HMM was proposed,
taking into account that the input hands were 2D images. Finally, a
Haar Cascade classifier was employed for the classification. Samples
with different skin colours and lighting conditions and varying hand
shapes were considered in the training stage. The output of this phase
was text in a format similar to glosses, being the second phase in charge
of producing spoken language text from these sets of words. PoS tagging
was performed on these words and a rule-based grammar was built.
This information was used for the bottom-up parsing to finally build
English sentences. Apart from only using English, the vocabulary was
quite limited and the sentences used were very short. Cate and Hussain
(2017) introduced a generative approach to translate SLs to spoken
language text. They adapted the IBM word-alignment model 1 (Collins,
2011) and created two language models: one for spoken language text
and the other one for glosses. Their aim was to generate a translation
such that the posterior probability of those models was maximised.

Davydov and Lozynska (2017a, 2017b) proposed a system to trans-
late from the Ukrainian spoken language to the Ukrainian SL (USL). The
method was once again separated into several steps. A small vocabulary
was used due to the interest of the authors in implementing their system
in lightweight devices such as smartphones. Following the same idea,
a light rule-based grammar was proposed, including word abstraction
rules by means of an ontology. In a first step, a weighted ACFG
parser was used for tagging, obtaining a constituency tree that needed
to be converted into a dependency tree in a second step using the
algorithms proposed by the authors. This could be used for SLT using
the transformation rules proposed by Lozynska, Davydov, Pasichnyk,
and Veretennikova (2019).

Focused on helping professional translators, Kouremenos et al.
(2018) aimed at creating language models for the Greek SL (GSL). In
particular, the glosses were derived from spoken language text using an
RBMT system. The authors stressed the importance of language models
due to their absence in the scientific literature. Nguyen et al. (2018)
also proposed an RMBT system for the Vietnamese SL (VSL), translating
spoken language text to a representation similar to that of glosses.
Their method was based on (i) reducing prepositions, conjunctions
and auxiliary words, and on (ii) replacing synonyms. Lozynska et al.
(2019) argued that the absence of large corpora of data for the USL
hindered the research and forced the authors to propose an alternative:
the use of concepts and their relations. According to the authors,
concepts are a notion given in sign or spoken languages that represent
an idea (process, action, sign), i.e. a concept may be a word in spoken
language than can be translated to one or various signs that have the
same message content or vice versa. To exploit this idea, they used
concept dictionaries and proposed the rule-based approach mentioned
for the case of Davydov and Lozynska (2017a, 2017b). The drawback of
their approach was that they only had 360 sentences and 60 concepts,
limiting the conclusions that could be extracted unless a larger test set
was employed.

A combination of an EMBT system and a rule-based interlingua
was proposed by Brour and Benabbou (2019). If the input sentence
did not exist in their database, the latter approach was applied. For
the second approach, a pre-processing based on a morphological and
syntactic analysis and a re-ordering of the sentence was applied. After
that, a set of rules was used to generate a sequence of signs. Kayahan
and Güngör (2019) employed both a SMT and an RBMT system in
combination. First, sentences were parsed by the The Boun Morpholog-
ical Analyser for the morphological analysis. Then, the RBMT system’s
rules were applied to transform sentences to glosses. The output of
this step was fed to a SMT system based on Moses. For the speech-
to-SL translation, Kang (2019) started converting speech to text using
Google’s speech recognition library to be then processed by Standford’s
CoreNLP tool. This processed text was transformed into signs using a
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lookup table and the whole sequence was used to animate an avatar.
The VirtualSign platform (Escudeiro et al., 2013), a tool to translate
bidirectionally SLs and text, was employed in the work of Oliveira
et al. (2019) to perform text-to-sign and sign-to-text translation. Within
the platform, the VirtualSign Studio Online (VSSO) application was in
charge of actually translating from the source to the target using a
SL lexicon. The text-to-sign translator (TTS) was another application
within VirtualSign that employed gloves and the Kinect camera to
record gestures. For the text-to-sign case, grammar rules were used
to transform the input sentence into the target one, then using a
sign database to obtain the corresponding signs. For the sign-to-text
direction, they built a transition graph using the VSSO. Each time a
movement was captured, a jump in the graph may have been performed
if the possibility to jump existed. When reaching a leaf node, the word
was recognised. Othman and Jemni (2019) presented a method to
create bilingual corpus with an XML representation of spoken language
text (source) and glosses based on more than 52 relations of gram-
matical dependencies, allowing them to generate even non-manual
components. The approach they followed was featured in the VisiCast
project (Bangham et al., 2000). The corpus was later used as input to
a SMT system optimised by implementing the Jaro–Winkler distance.
This step was aimed at creating a statistical memory translation used
later to implement a decoder for spoken language to SL translation.

Constrained to the domain of health, Luqman and Mahmoud (2019,
2020) implemented a rule-based translation model for Arabic to ArSL,
using glosses as the representation or transcription of the ArSL. For
the translation, the authors performed a morphological, syntactic and
semantic analysis of the source sentences. Pezzuoli, Corona, Corradini
and Cristofaro (2019) introduced their Talking Hands application for
smartphones that required smart gloves to acquire sign data (sent via
Bluetooth to the mobile device). Their system only allowed to use man-
ual features, being signs recognised using a distance function. A speech
synthesiser was used to produce the actual translation. The authors
argued that their system had some limitations as it was more oriented
to being user-friendly. They later improved it in terms of hardware,
software and design in Pezzuoli, Corona and Corradini (2019).

More recently, Khan et al. (2020) proposed their own rule-based
translation system from English text to the Pakistan Sign Language
(PSL). They even contributed a small dataset of 2000 samples for their
evaluation. Focused on the health domain and restricted to the text-to-
sign translation direction, Roelofsen et al. (2021) proposed to transform
the input sentences first into glosses and then into the SiGML format to
be later used to generate an animated avatar.

3.2. Neural sign language translation

With the rise of the DL technology, researchers started applying
it to the MT task, achieving promising results. There was no longer
any need to look for word alignments, nor to create ad-hoc rules for
each individual language and so forth. Neural networks allowed to
combine the alignment and translation to and from multiple languages,
even creating multilingual models (see Fig. 7). Nevertheless, they came
with a high price, as the need for data incremented significantly,
making small datasets unusable. That is why, until larger datasets were
published (such as the RWTH-Phoenix-Weather-2014), research was
hindered in this aspect. In fact, there is still a need for larger datasets,
as SL datasets cannot compare with, e.g. image classification datasets
such as Imagenet (Deng et al., 2009). And not only in terms of size,
but also in terms of variety as, e.g. SL datasets tend to be bilingual,
i.e. for a given SL, the translation is performed from the regional spoken
language corresponding to that SL or vice versa. With the birth of
transformers (Vaswani et al., 2017), new possibilities arose, such as
the transfer learning to employ the knowledge acquired with spoken
languages for the SL modelling (Miyazaki, Morita, & Sano, 2020). Even
techniques to alleviate the data scarcity such as data augmentation
(for instance, back-translation) developed in the NLP field are being

explored in the NSLT task.
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Fig. 7. Multilingual neural system based on an encoder–decoder architecture. The
alignment is learnt by the model itself.

Nevertheless, before the rise of transformers, Recurrent Neural Net-
works (RNNs) were the base of NSLT architectures. More specifically,
the most used architecture was the encoder–decoder one. An encoder
took an input sequence (usually video frames), transformed it into an
intermediate continuous representation (interlingua) and then the de-
coder constructed the new, translated sentence. For instance, Fang, Co,
and Zhang (2017) presented DeepASL, a system based on a hierarchical
bidirectional deep recurrent neural network (HB-RNN) and a CTC loss,
performing word- and sentence-level translation. Skeletal data from
the signer was obtained using an infrared light-based sensing device
called Leap Motion. The HB-RNN took left and right hands’ shape and
movement. In case of single-handed signs, only half of the network
was used (the part corresponding to the hand used). Their desired
application was composed of a wearable device that translated signs
into speech and smart glasses that translated speech into text. Both
items were worn by DHH people, which does not promote an equal
treatment between signers and non-signers, i.e. only the signer was
required to use wearables while the non-signer did not need to make
an effort. Moreover, the deaf or hard of hearing person was forced to
read spoken language text instead of receiving a sign translation, which
would have been the most appropriate way for them to receive the
translation instead of being forced to use a spoken language translation.

Following authors that employed traditional algorithms (not using
an end-to-end approach), Kumar et al. (2018) also divided their method
into two stages: the first one was identifying the ASL glosses (SLR)
and the second one was transforming these into English sentences.
Hands and faces were segmented from videos; as mentioned by the
authors, the first one allowed them to recognise glosses and the second
one, including the head and facial expressions, provided details for
those glosses. This process of recognising the region of interest was
accomplished using the combination of Gaussian Blur filter and Otsu’s
Binarization (Otsu, 1979). Active Contours (Kass, Witkin, & Terzopou-
los, 1988) were used to segment the boundaries in images. To make
the system agnostic to the signer’s position, they contributed the novel
Angular Hashing method. For the classification of the sequence of
signs, a many-to-many Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997), a kind of RNN, was employed with an output
that had the size of the ASL gloss vocabulary. A slight modification was
introduced as there was no indicator of the beginning or end of glosses:
a learnable parameter was used as threshold of the softmax to indicate
if a prediction could be given or not (depending on the confidence).
Finally, to transform ASL glosses into English text, the authors proposed
an encoder–decoder architecture with attention (using LSTM as the
backbone RNN). Given the two step procedure (recognising glosses and
obtaining text), two type of evaluations were applied: for the first case,
the GER and GRR metrics were used while, for the second case, BLEU,
WER, PER and perplexity.
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A combination of a hierarchical LSTM (HLSTM) encoder–decoder
model for SLT with a C3D (Tran, Bourdev, Fergus, Torresani, & Paluri,
2015) network to extract visual features was presented by Guo, Zhou,
Li, and Wang (2018). To reduce the number of non-relevant frames,
they included an online adaptive key clip mining method follow-
ing Wang, Chai, Zhou, and Chen (2015). To improve even more in
this aspect and to reduce the importance of less-relevant frames, three
pooling strategies were proposed. Furthermore, an attention-aware
weighting function was included in the encoder part, which used word
embeddings as the representation of input and output words. Wang,
Guo, Zhou, Zha and Wang (2018) introduced a deep hybrid neural
architecture comprising a temporal convolution module (TCOV) (Lea,
Vidal, Reiter, & Hager, 2016), a bi-directional Gated Recurrent Unit
(BGRU) (Cho et al., 2014) and a fusion layer (FL) with a MLP network.
A connectionist temporal fusion (CTF) mechanism was added on top
to translate the visual input to the text output. This consisted on the
CTC loss applied to the output of the three blocks: the TCOV, BGRU
and LF. Their results for the video-to-text translation are presented in
Table 4. Camgoz et al. (2018) advised using encoder–decoder archi-
tectures for SLT. Given that the usual outputs of such architectures are
word embeddings and that for SLT the inputs are videos, they suggested
creating a frame-wise spatial embedding using CNNs. Tables 3 and 4
show their results for the gloss-to-text and video-to-text translations.

A three-step process to go from spoken language text to producing
video was proposed in the work of Stoll, Camgöz, Hadfield, and Bowden
(2018). In the first stage, they trained an encoder–decoder architecture
with Luong attention (Luong, Pham, & Manning, 2015) to generate
glosses from text. Then, they built a lookup table to map glosses to
motion (sequences of skeletal poses). OpenPose was used to extract
skeletal data from signing videos and a representative mean skeletal
sequence was employed for each gloss. In the third step, to actually gen-
erate the video, they made use of a DCGAN (Radford, Metz, & Chintala,
2015) with an image encoder to encode the representation of the base
pose of the signer, without signing. Then, the generator took the latter
representation and the skeletal information obtained in the second
step to generate the video with the original sentence translated to
signs. They shared their results for the text-to-gloss (shown in Table 2)
and gloss-to-text (shown in Table 3) translations. Guo, Wang, Tian
and Wang (2019) introduced a dense temporal convolution network
(denseTCN) for SLT. The network learnt short-term features, extending
them hierarchically, i.e. at a higher level the receptive field increases,
capturing longer-term features. A CTC loss was applied on top for the
translation learning, in which each layer of the denseTCN was used
as input to take into account all the different viewpoints. Arvanitis,
Constantinopoulos, and Kosmopoulos (2019) assumed they had glosses
extracted from videos and presented an encoder–decoder architecture
for gloss-to-text translation using the Gated Recurrent Unit (GRU) layer
and Luong’s attention. They argued that using transformer layers would
improve the results. He (2019) employed a Faster R-CNN (Ren, He,
Girshick, & Sun, 2015), an object detection neural network, to detect
hands and a combination of a 3D CNN and an LSTM encoder–decoder
architecture for the feature extraction and sequence-to-sequence mod-
elling, respectively. Furthermore, global and local visual information
was included by using the original sequence of images (global) and the
sequence of recognised signs (local).

In order to cope with the temporal boundaries of signs, Guo, Zhou,
Li, Li and Wang (2019) introduced their hierarchical deep recurrent fu-
sion (HRF). The inputs were videos and skeletal data, being the former
processed through a 3D CNN. Both inputs were fed to a hierarchical
recurrent architecture (layer by layer, it progressively learnt features
from frames, clips and, finally, visemes/signemes). A viseme can be
defined as a visual sub-word while a signeme is considered information
on the same hierarchical level as visemes but for skeletal data. The
encoder adaptatively captured the visemes and signers’ skeleton using
the Adaptive Clip Summarisation (ACS) scheme. This module was

mainly composed of three strategies: (i) the variable-length key clip
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Table 2
Development and test set results for the RWTH-PHOENIX-2014T dataset in the text-to-gloss task. The best column-wise results are highlighted in bold.

Approach Development Test

BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ WER ↓ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ WER ↓

Stoll et al.
(2018)

50.15 32.47 22.30 16.34 48.42 – 50.67 32.25 21.54 15.26 48.10 –

Stoll,
Camgoz,
Hadfield, and
Bowden
(2020)

50.15 32.47 22.30 16.34 48.42 4.83 50.67 32.25 21.54 15.26 48.10 4.53

Saunders,
Camgoz, and
Bowden
(2020b)

55.65 38.21 27.36 20.23 55.41 – 55.18 37.10 26.24 19.10 54.55 –

Egea, McGill,
and Saggion
(2021)

– – – – – – – – – 53.52a 46.70b –

aBLEU-4 computed at character-level.
bMaximum value obtained, not final value.
Table 3
Development and test set results for the RWTH-PHOENIX-2014T dataset in the gloss-to-text task. The best column-wise results are highlighted in bold.

Approach Development Test

BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ METEOR3↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ METEOR3↑

Stoll et al.
(2018)

44.64 31.71 24.31 19.68 44.91 – 44.47 31.00 23.37 18.75 43.88 –

Camgoz et al.
(2018)

44.40 31.83 24.61 20.16 – – 44.13 31.47 23.89 19.26 – –

Yin (2020)
and Yin and
Read (2020b)

49.05 36.20 28.53 23.52 47.36 46.09 47.69 35.52 28.17 23.32 46.58 44.85

Ensemble
(Yin, 2020;
Yin & Read,
2020b)

48.85 36.62 29.23 24.38 49.01 46.96 48.40 36.90 29.70 24.90 48.51 46.24

Yin and Read
(2020a)

– – – – – – 48.80 36.90 29.70 24.90 48.51 46.24

Camgoz et al.
(2020b)

50.69 38.16 30.53 25.35 – – 48.90 36.88 29.45 24.54 – –
mining (obtaining the most relevant frames/clips following Wang et al.
(2015)), (ii) the temporal pooling (to weaken the effect of the less
relevant frames/clips) and (iii) the attention-aware weighting mecha-
nism (as mentioned by the authors, it was used to balance the effect
of active visemes/signemes). Then a decoder employed both channels
features (RGB and skeletal data) to generate spoken language text. Ko,
Kim, Jung, and Cho (2019) showed how human keypoints (extracted
from the face, hands and body parts) could be exploited to translate
sign videos to spoken language text. These keypoints were extracted
using the OpenPose library and normalised before being fed as input
to an encoder–decoder architecture. They experimented with various
backbones for the latter: the vanilla system (Sutskever, Vinyals, & Le,
2014), the system with Bahdanau attention (Bahdanau, Cho, & Bengio,
2014) and with Luong attention, and also a system with transformer
layers. They also performed several ablation studies taking into account
the set of human keypoints, the mini-batch size, the number of frames
sampled and various normalisation strategies (being the object 2D
normalisation the one that obtained the best results).

As claimed by Duarte (2019), the translation from spoken language
text to SLs had not been widely explored. The authors suggested two
alternatives: one was an end-to-end system and the other one had an
intermediate step in which glosses were predicted. For both cases, the
authors proposed to learn a mapping between words or sentences to
the sequence of human poses that represented the target signs using
transformers. Finally, to produce signs, they explored two methodolo-
gies: generating a sequence of frames or animating an avatar. The
latter was an easier approach given that off-the-shelf tools could exploit
the sequence of poses obtained in the previous step to generate the
avatar. Following the idea of including local and global information
14
as in the case of He (2019) and Song et al. (2019) designed a Parallel
Temporal Encoder (PTEnc) for learning the complementary global and
local features from sign videos. This module was based on two steps:
(i) the extraction of features using a C3D-ResNet (He, Zhang, Ren, &
Sun, 2016) and (ii) computing local and global features. The latter step
was given separately: local features were extracted using CNNs while
global features were extracted using bi-directional LSTMs. When both
global and local information were fused, a decoder with a CTC loss
was used for the sentence generation. For improving the results, they
also proposed a reconstruction loss. They included an LSTM layer to
reconstruct the original video features, adding a Mean Square Error
(MSE) loss to compute the distance between the predicted and the origi-
nally computed ones. Table 4 presents their results for the video-to-text
translation.

Orbay and Akarun (2020) argued that the work of Camgoz et al.
(2018) could not pay sufficient attention to body parts and that the
amount of data used was not sufficient to make it fully functional. To
alleviate this, the authors suggested focusing on the tokenisation part
of the system. More precisely, this study proposed two solutions. In
the case of the first one, given that hand shapes were the same across
different SLs, only varying their meaning (e.g. a closed fist is the same
for any SL but the meaning of the sign may change), learning from
hand shapes may have been beneficial to build a generic tokeniser.
Hands were extracted from each frame using OpenPose’s hand cropper
while a 2D CNN pre-trained for hand shape recognition was used for
the tokenisation. To solve the problem of data scarcity, the authors
employed a multitask setting and a domain adaptation strategy. The
second solution presented by the authors was a system based on a 3D

CNN pre-trained for the action recognition task. In their experiments,
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Table 4
Development and test set results for the RWTH-PHOENIX-2014T dataset in the video-to-text task. The best column-wise results are highlighted in bold.

Approach Development Test

BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ METEOR↑ WER↓ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ METEOR↑ WER↓

Wang, Guo et al. (2018) – – – – – – 37.9 – – – – – – 37.8
Camgoz et al. (2018) 31.87 19.11 13.16 9.94 – – – 32.34 19.03 12.83 9.58 – – –
Song, Guo, Xin, and Wang
(2019)

– – – – – – 38.1 – – – – – – 38.3

Multitask (Orbay &
Akarun, 2020)

– – – – – – – 37.22 23.88 17.08 13.25 36.28 – –

+FSDC+TC−DHBG (Zheng
et al., 2020)

31.43 19.12 13.40 10.35 32.76 – – 31.86 19.51 13.81 10.73 32.99 – –

Camgoz, Koller, Hadfield,
and Bowden (2020a)

– – – 19.51 45.90 – – – – – 18.51 43.57 – –

Yin (2020) and Yin and
Read (2020a, 2020b)

48.27 35.20 27.47 22.47 46.31 44.95 – 48.73 36.53 29.03 24.00 46.77 45.78 –

Ensemble (Yin, 2020; Yin
& Read, 2020a, 2020b)

50.31 37.60 29.81 24.68 48.70 47.45 – 50.63 38.63 30.58 25.40 48.78 47.60 –

Sign2Text (Camgoz et al.,
2020b)

45.54 32.60 25.30 20.69 – – – 45.34 32.31 24.83 20.17 – – –

Sign2(Gloss+Text)a

(Camgoz et al., 2020b)
46.56 34.03 26.83 22.12 – – 24.61 47.20 34.46 26.75 21.80 – – 24.49

Sign2(Gloss+Text)b

(Camgoz et al., 2020b)
47.26 34.40 27.05 22.38 – – 24.98 46.61 33.73 26.19 21.32 – – 26.16

Single (𝑤 = 12) (Li et al.,
2020)

– – – – – – – 32.52 20.33 14.75 11.61 32.36 – –

Sequential (Li, Xu et al.,
2020)

– – – – – – – 35.65 22.80 16.60 12.97 34.77 – –

Joint (Li, Xu et al., 2020) – – – – – – – 36.10 23.12 16.88 13.41 34.96 – –
S2G2T (Zhou, Zhou, Qi, Pu
and Li, 2021)

49.33 36.43 28.66 23.51 49.53 – – 48.55 36.13 28.47 23.51 49.35 – –

S2T (Zhou, Zhou, Qi et al.,
2021)

51.11 37.90 29.80 24.45 50.29 – – 50.80 37.75 29.72 24.32 49.54 – –

Zhou, Zhou, Zhou and Li
(2021)

47.60 36.43 29.18 24.09 48.24 – – 46.98 36.09 28.70 23.65 46.65 – –

BERT2RND (De Coster
et al., 2021)

– – – 22.47 – – 36.59 – – – 22.25 – – 35.76

BERT2BERT (De Coster
et al., 2021)

– – – 21.26 – – 40.99 – – – 21.26 – – 39.99

mBART-50 (De Coster
et al., 2021)

– – – 17.06 – – 40.25 – – – 16.64 – – 39.43

Zhao et al. (2021) 35.85 24.77 18.65 15.08 38.96 – – 36.71 25.40 18.86 15.18 38.85 – –
Multi-stream (Zheng et al.,
2021)

– – – 10.76 34.81 – – – – – 10.73 34.75 – –

Multi-region (Zheng et al.,
2021)

– – – 10.94 34.96 – – – – – 10.89 34.88 – –

Rodriguez and Martínez
(2021)

– – – – – – – – – – 9.56 – – –

Rodriguez and Martínez
(2021)

– – – – – – – – – – 9.56 – – –

Li and Meng (2022) – – – – – – – 49.61 36.52 29.05 22.52 – 23.2 –
Fu et al. (2022) 50.47 37.54 29.62 24.31 – – – 51.29 38.62 30.79 25.48 – – –
Cao et al. (2022) 52.35 39.03 30.83 25.38 48.82 48.40 – 52.77 40.08 32.09 26.5 49.43 49.36 –
Chen, Wei, Sun, Wu, and
Lin (2022)

53.95 41.12 33.14 27.61 53.10 – 21.90 53.97 41.75 33.84 28.39 52.64 – 22.45

aBest Recog.
bBest Trans.
they tried including target domain knowledge, although this did not
improve the translation quality. However, they concluded that the
frame-level tokenisation had the potential to outperform the gloss-level
tokenisation. Their final results for the video-to-text translation are
shown in Table 4. Li, Xu et al. (2020) aimed at analysing video signals
at various temporal scales with their temporal semantic pyramid net-
work (TSPNet), an encoder–decoder architecture. This strategy allowed
them to mitigate the issue of inaccurate video segmentations. Each
video was divided into segments with different granularities (using
sliding windows of different sizes), enforcing a local semantic consis-
tency. The authors proposed to model the latter using an inter-scale
attention that aggregated the features within a semantic neighbourhood
in the encoder. To alleviate the local ambiguity (similar signs with
different meanings depending on the context), they also introduced an
intra-scale attention for the re-weighting of local features to take into
account non-local context. Regarding the feature extraction, these were
15

extracted locally using a I3D network (Carreira & Zisserman, 2017)
and a Shared Positional Embedding was used to denote their position.
Table 4 presents their video-to-text translation results. A supervised
(transformer) and an unsupervised (following Lample, Ott, Conneau,
Denoyer, and Ranzato (2018)) MT systems were proposed by Moe,
Thu, Thant, Min, and Supnithi (2020) for SLT with 4 different dataset
variations. They started with glosses instead of videos as their input
data. Surprisingly, the unsupervised system performed better than the
supervised one when translating from Myanmar spoken language to the
Myanmar Sign Language (MSL). For the other direction of translation,
no improvement was observed.

In contrast to approaches that only took into account manual fea-
tures or that used global visual cues, Camgoz et al. (2020a) proposed
a multi-channel encoder–decoder transformer architecture, process-
ing each articulator separately at the input stage, e.g. hands, mouths
or poses were different inputs used in their work (although more

non-manual features could be used). The multi-channel layer they
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Fig. 8. Neural network used by Camgoz et al. (2020b). Transformer-based encoder–decoder architecture from signs to text: frames are encoded by a spatial embedding (Convolutional
eural Network), a Connectionist Temporal Classification loss is used to match video frames with glosses and text is generated by the decoder.
ontributed mixed information from all channels, maintaining channel-
pecific information thanks to some anchoring losses used in the en-
oder part. These losses were added to the token-level cross-entropy
oss used for translation in the decoder part, being both terms weighted
y two factors (both hyper-parameters). Camgoz et al. (2020b) argued
hat the use of glosses as an intermediate learning–guiding signal could
ctually be harmful. In contrast, Camgoz et al. (2018) stated that they
ould help to improve the results drastically. Camgoz et al. (2020b)
ypothesised that this negative effect could have two explanations: (i)
he lower number of glosses compared to the number of input frames
nd (ii) the lack of guidance in the learning, as understanding sentences
reated with signs may more difficult than expected. That is why the
uthors proposed to introduce a multi-tasking strategy and presented
heir Sign Language Recognition Transformer (SLRT), a transformed-
ased encoder–decoder that included a CTC loss in the encoder side.
his approach allowed them to benefit from the guidance of glosses
ithout relying on them as an intermediate step. Their results for the
loss-to-text and video-to-text translations are shown in Tables 3 and
, respectively. Fig. 8 illustrates the described architecture.

As stated by Zheng et al. (2020), as current NMT algorithms rely
n CNNs and encoder–decoder architectures for the translation, new
pproaches have aimed at improving one of them for a performance
ain. In the case of CNNs, they have to cope with redundancy due to the
imilarity of frames within a close neighbourhood. This entails a large
esource consumption and issues to model long-term dependencies.
o make the model lighter and more interpretable, they proposed a
ovel SLT model. Their first contribution for that was the frame-level
rame stream density compression (FSDC) algorithm, an unsupervised
ethod to compare frame-neighbourhoods and discard frames with a
igh similarity to alleviate the redundancy. The structural similarity
ndex measure (SSIM) (Wang, Bovik, Sheikh, & Simoncelli, 2004) was
sed as the similarity metric. This shortened input videos, reducing
he amount of frames, and eased the modelling of the context of the
nputs. Second, the encoder was composed of a temporal convolution
T-Conv) layer, which convolved in the time axis, and a dynamic
ierarchical bi-directional GRU (DH-BiGRU). In between both steps,
ositional encoding vectors were aggregated to the features. Finally, for
he decoder, Bahdanau attention was employed. The results are shown
n Table 4, in which it can be seen that the system performed worse
han other models using an encoder–decoder architecture, possibly due
o the absence of glosses as a supervision signal.

Transfer learning from spoken languages to SLs had not been given
nough attention. That is why (Mocialov, Turner, & Hastie, 2020) anal-
sed the benefits from pre-training a stack of LSTMs and a feed-forward
etwork (FFN) with English text before translating BSL to English.
hey were able to reduce by more than a half the perplexity after
re-training both networks. Zhou, Zhou, Zhou et al. (2021) introduced
he Spatial–Temporal Multi-Cue (STMC). This network was comprised
16
of (i) a spatial module (Spatial Multi-Cue or SMC) that decomposed
spatial features of visual cues for each frame and (ii) a temporal mod-
ule (Temporal Multi-Cue or TMC) that explored the relation between
different cues having an intra- and an inter-cue path. The SMC started
extracting features using a CNN to then divide its objectives. First, the
pose estimation objective used a deconvolutional neural network with
the features obtained from the first CNN and a point-wise convolution
to extract 7 body keypoint feature maps from the latter. Second, body
parts were cropped (the face and both hands) from the output of the
first CNN and were fed to separate CNNs to extract a feature vector per
body part, following both hands’ CNN’s a weight sharing strategy. All
these were transformed into feature vectors. After the SMC, the TMC
was initially branched into the intra- and inter-cue paths. The former
extracted features from each specific cue using temporal convolutions.
The latter learnt to combine features at different temporal scales. Two
of such TMC blocks were used with temporal convolutions in-between.
The output of each path were fed to different bi-directional LSTMs (the
encoder), each having an associated CTC loss. Both paths were finally
concatenated with a linear layer. In the decoder side, a CTC was used to
predict gloss sequences and another bi-directional LSTM (with the first
state being the concatenation of the intra- and inter-cue paths) with
a novel segmented attention (SA) module predicted spoken language
sentences. The SA module was used to separately weigh each of the
inter-cues. The optimisation was done in two stages, first the network
was trained for SLR using the CTC objective (for glosses and, with the
pre-trained network, the training for SLT was performed using the SA
module and the bi-directional LSTM. Table 4 presents their results for
the video-to-text translation.

With the introduction of encoder–decoder architectures, using
glosses as an intermediate supervision objective to improve the trans-
lation results became a popular solution (Kumar et al., 2018; Zhou,
Zhou, Qi et al., 2021). This could be considered the SLR part of SLT
models, which could also be seen as the tokenisation of signs. However,
as mentioned by Yin (2020) and Yin and Read (2020b), this may not
lead to better results and, in fact, many works focused on improving
that part of the system. That is why they presented their STMC
transformer (based on the original STMC of Zhou, Zhou, Zhou et al.
(2021)) model to perform video-to-text translation, revealing that using
glosses can actually be harmful. The model was composed of spatial
multi-cue (SMC) and temporal multi-cue (TMC) modules: the first one
decomposed videos into various visual cues (face, hand, full-frame and
pose) and the second one (or better said, a stack of them) computed
temporal correlations for each cue and also between cues. This module
was similar to the one proposed by Camgoz et al. (2020a), as they
aimed to process several cues at once separately and jointly, preserving
their unique features while these were also being intertwined. These
cues were then processed by a bi-directional LSTM and a CTC loss. Their
results for the gloss-to-text and video-to-text translations are presented
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in Tables 3 and 4, respectively. Miyazaki et al. (2020) claimed that SL
datasets were very small and, therefore, they proposed to initialise the
encoder side of an encoder–decoder architecture with a pre-training
with spoken languages. From they results, they found out that a major
challenge in the translation is the pointing. They used a pre-trained
BERT (Devlin, Chang, Lee, & Toutanova, 2018) for the encoder and
another transformer architecture for the decoder; the idea is that,
as the input was text, the encoder could understand the input and
would benefit from being pre-trained, while the output were glosses.
As glosses could be the used to create avatars or skeletal data for
video production, this idea could be extended for SLT with ease. After
the experiments, they concluded that using a pre-trained encoder was
better than learning from scratch, specially when few samples were
available. Moreover, their experiments about the usage of pointing
did not had a clear conclusion, but the authors suggested that it is
important to take the long-term context into account. Another work
concerned with the pre-training of models was (Albanie et al., 2020).
In their work they researched about some pre-training alternatives
compared to the baseline (training from scratch). Both the sign and
action recognition objectives boosted the performance considerably,
being only surpassed by the solution proposed by the authors: the video
pose distillation, i.e. having as objective predicting human keypoints.

The majority of the authors proposed to output glosses or sign repre-
sentations from their text-to-sign systems. In their first work, Saunders
et al. (2020b) went one step further and proposed an end-to-end SLT
approach from spoken language text to a sequence of 3D sign poses
that could be directly used to animate an avatar. Two approaches were
presented in their work: (i) a text-to-pose model with an intermediate
gloss objective (T2G2P) and (ii) a text-to-pose model without gloss
supervision (T2P). They also included a back-translation approach from
poses to text. Going into details, the T2G2P included what they called
symbolic transformer for the text-to-gloss translation. The gloss output
was used as input to the novel progressive transformer (PT) module
they introduced. The output were sign poses, represented as continuous
vectors of the 3D joint positions. As poses were also fed as input to the
PT’s decoder, they passed them through an embedding layer (not the
usual position embeddings) to allow poses representing similar content
to be close in the embedding space. They also had a counter embedding
layer that acted as a temporal embedding, giving a value (the counter)
between 0 and 1 to each frame to represent their relative position in the
sequence. The counter was used in replacement of the end-of-sequence
token, i.e. when it reached a value of 1, the sequence of poses was
completed (this strategy was called counter decoding). The results for the
ext-to-gloss translation for this proposed model are shown in Table 2.

Later, following the same idea of producing sign poses in an end-
o-end fashion, Saunders, Camgoz, and Bowden (2020a) introduced
heir Adversarial Multi-Channel approach (a generative adversarial
etwork). This new approach alleviated two of the problems found in
heir first work, namely, the effect of the regression to the mean and
he prediction drift. The generator, based on the PT architecture, was
resented with the input sentences and it had to produce a pose capable
f deceiving the discriminator. Non-manual features were included
n the sign poses to produce mouthing and facial expressions. Yin
nd Read (2020a) presented a STMC-transformer model (a pair of
ransformer layers on top of the STMC) and, presumably, experimented
ith the first usage of weight tying, transfer learning and ensemble

earning. Tables 3 and 4 present their results for gloss-to-text and video-
o-text translations, respectively. Zelinka and Kanis (2020) focused on
keletal data generation in an end-to-end system without any explicit
ranslation. Skeletal data was extracted using OpenPose, although, due
o the errors that could be produced in this step, they had to apply a
orrection process. They proposed training a neural network to estimate
D joint poses from 2D data using a MSE loss. Their bone representation
as based on vectors that have their origin in the chest, reducing the
imensionality with respect to absolute positions and also removing
17

he absolute position of the speaker. Concerning the system itself, they
introduced a linear trainable layer to produce a sequence of skeleton
without using RNNs and a translator with a structure similar to that
of the transformer without the self-attention, only including 1D con-
volutional layers. However, this translator was constrained to output
sequences of the same length as the input as it did not have an encoder–
decoder shape. Nevertheless, their feed-forward translator could be
transformed into a recurrent one by changing 1D convolutional layers
by RNN layers. Thanks to this, even though datasets were small, the
system could be trained in an end-to-end fashion in contrast to data
hungry methods such as transformers. They also explored both word-
and characters-level models (for inputs). At the loss level, as there
was not a correspondence between spoken language sentences and
videos, alignment methods such as Dynamic Time Warping (DTW) were
applied, being the combination of the non-monotonic soft attention and
DTW’s hard monotonic attention the option that performed better.

Aiming to reduce the amount of samples required to train a neural
system, Stoll et al. (2020) divided their system into various steps. In
the first one they used an NMT system combined with a motion graph
(the Text2Pose module). The sequences of poses obtained as output
were used to condition a generative model, the Pose2Video Generative
Adversarial Network (GAN) (Goodfellow et al., 2014), to produce sign
videos. The NMT system was an encoder–decoder network with Luong
attention employed to get a sequence of glosses from spoken language
text, the former being used later in the motion graph (a Markov
process), i.e. a sequence of poses were generated for a given sequence
of glosses. The benefit of their system was that they only required text
and gloss annotations to train it. Their avatar generation system (a
generative model) was also much easier to use than animating an avatar
and was able to generate various signers with different appearances.
They published their results for the text-to-gloss translation as shown in
Table 2. Kim et al. (2020), in an encoder–decoder transformer network,
proposed to normalise the human keypoints extracted from videos and
fed to the encoder using the length of the neck-shoulder bone. This
makes the model robust against the variability in height of the person
and arm length.

Both SLT and MT suffer from the scarcity of parallel data (Zhou,
Zhou, Qi et al., 2021). That is why MT researchers proposed some
ways to alleviate it. One of them was the text-to-text back-translation
proposed by Sennrich, Haddow, and Birch (2015), allowing them to
create synthetic parallel data. Precisely, Zhou, Zhou, Qi et al. (2021)
proposed to extend this strategy to the SLT task, creating the SignBT
algorithm. Due to the difficulty of back-translating from sentences to
videos or from sentences to features of videos, the authors presented
a two-stage back-translation, similar to the one applied in encoder–
decoder approaches for SLT: (1) from text to gloss and (2) from gloss
to video. For the first objective, a monolingual text-to-gloss system was
trained. The second one was more complicated given that the task of
producing video or video features from signs was difficult to formulate.
That is why the authors resorted to creating a gloss-to-sign bank (a
lookup table that returned video features). First, they pre-trained the
sign embedding (i.e. the network in charge of extracting features from
videos) with glosses as the objective labels. The objective used in the
latter was the CTC loss to match video features and glosses. Then,
for the gloss-to-sign bank, they found the most probable path from
the sequence of input video features from the sign embedding to the
glosses. This allowed them to segment the sequence of sign features
into gloss pieces, i.e. segments corresponding to a gloss, where each
gloss may had multiple features assigned. Finally, the SignBT became
a text-to-text problem, going from text to glosses and, thanks to the
lookup table of the sign-to-gloss bank, glosses could be transformed
into features. With this, new samples could be synthesised and could
be added to the original dataset. Their experiments’ results (for the
video-to-text translation) are summarised in Table 4.

In the same direction as Moryossef, Yin, Neubig, and Goldberg
(2021) and Zhou, Zhou, Qi et al. (2021) also presented a data augmen-

tation technique for gloss-to-text translation. They argued that glosses
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were usually lexically similar and syntactically different from spoken
languages. They exploited this by using two rule-based heuristics to
produce pseudo-parallel gloss-text samples from monolingual spoken
language text. Specifically, they transformed the text by lemmatising
it, by doing some deletions depending on the PoS tag and also by ran-
domly permuting the order. For each language, they also built a list of
rules for the syntax transformation. They saw consistent improvements
on two language pairs applying this strategy. Nunnari, España-Bonet,
and Avramidis (2021) argued that the work of Camgoz et al. (2020a)
(an encoder–decoder transformer to translate from video to text) had
some limitations, namely: (i) the constrained resolution of the input
video, (ii) the bound to the recording setting of the dataset and (iii)
also the physical characteristics and dress-code of the signers of the
dataset. According to the authors, due to the usage of CNNs, the system
may have not generalised correctly to different settings. Even though
that problem could be overcome with more data, SLT datasets were
quite limited. To solve this, they proposed a method to make the signing
more agnostic to the scenario and the signer, i.e. instead of using the
raw video, they suggested extracting skeletal data (skeletal motion and
the displacement of the key points of the skin) to create a 3D virtual
human. In fact, this opened the possibility of augmenting the data
by taking the signer’s movement from different angles or distances.
Besides, they also estimated that the new skeletal data would only
suppose the 4% of the space needed for videos, thus making the neural
network lightweight. The drawback of this approach, just like with
the use of glosses, was that any error in the skeletal data or facial
expressions would be extended to the translation part.

Following other approaches related to the pre-training of mod-
els (De Coster & Dambre, 2022; De Coster et al., 2021; Miyazaki et al.,
2020; Mocialov et al., 2020) suggested making use of a pre-trained
model to improve the results on the video-to-text translation. They
adapted a BERT2RND and a BERT2BERT from Rothe, Narayan, and
Severyn (2020) and also an mBART-50 model (Tang et al., 2020) by
pruning them, adapting them to the size of the available SL datasets.
The BERT2BERT had a cross-attention module (trained from scratch)
attached to the decoder and the mBART had a pre-trained decoder
for German (target language) to see if the pre-training improved the
translation quality. The cross-attention was also added in the lat-
ter decoder but frozen, with a linear layer preceding it to better
align the features going from the encoder to the module. The training
strategy of Camgoz et al. (2020b) was followed, i.e. glosses were
used as an intermediate objective to guide the learning. Using the
RWTH-PHOENIX-2014T dataset, they found that BERT based models
(BERT2RND and a BERT2BERT) performed better than mBART-50,
which suffered from overfitting, and that they improved the results
obtained by the baseline models (without pre-training) by 1–2 points
of BLEU-4. In fact, BERT2RND was the one which obtained the best
results, suggesting that training from scratch or fine-tuning is necessary
at least in the decoder side. They concluded that (i) SLs benefit more
from the pre-training than spoken languages (at least in the encoder
side in their experiments) and that (ii) frozen pre-trained transformers
(FPT) (Lu, Grover, Abbeel, & Mordatch, 2021) are appropriate to avoid
overfitting with low-resourced SL datasets. Table 4 summarises their
results in the video-to-text translation task.

As argued by Zheng et al. (2021), current sign MT systems suffered
from mistakes derived from ignoring non-manual features (which may
be of major relevance for the correct understanding of the message
behind a sentence); in fact, they were specially interested in facial
expressions. In the encoder–decoder architecture, they implemented
a module called Semantic Focus of Interest Network with Face Highlight
Module (SFoI-Net-FHM) before the encoder to solve the aforementioned
issue. This module had two proposed implementations: (i) the non-
independent multi-stream architecture and (ii) the Region of interest
(RoI)-based multi-region architecture. Their results for the video-to-text
translation task are presented in Table 4. Qin et al. (2021) started pre-
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training a spatio-temporal feature extractor based on the two-stream
approach with ISLR data. Each stream was called Video Transformer
Net (VTN) and was composed of an encoder (ResNet-34) and a decoder
(transformer). Concerning the data, one of the streams took RGB frames
while the other one took RGB differences (for the motion encoding).
Both streams were fused for the initial ISLR classification. Then, the
feature extractor was reused for SLT, being a Bi-LSTM in charge of the
temporal modelling.

On the one hand, the multi-stream architecture was composed
of a network based on Simonyan and Zisserman (2014) with two
branches: one for non-facial features and the other one for facial
features. The latter was divided into a face proposal network (FPN),
a network pre-trained for human face sentiment analysis, that cropped
faces from images and extracted their features. The non-facial branch
was comprised of their Local Processing Network (LPN) to capture
global information from videos. They proposed three possible inputs to
this network: (i) raw images, (ii) images with the face area masked and
(iii) human-pose features. To fuse the information from both streams
(the facial and the non-facial streams), four strategies were presented:
(i) concatenation, (ii) various convolutional layers, (iii) a non-local
block (Wang, Girshick, Gupta and He, 2018) and (iv) a multi-head
attention module from transformer layers.

On the other hand, the multi-region architecture was aimed at
solving possible problems from the multi-stream architecture such as
the error propagation or the low performance. Motivated by Wang
and Ye (2018), they used the object detection paradigm to localise the
face and the body (mainly the hands) using a Faster R-CNN network.
After the training, the backbone CNN employed by the latter network
was used to initialise the network that extracted features within the
multi-region architecture. The results showed that the multi-region
architecture was performing better than the multi-stream architecture.

Recently, Egea et al. (2021) proposed to inject syntax-aware infor-
mation in an encoder–decoder architecture using transformer layers in
their text-to-gloss translation. They argued that, as the transformation
of text into glosses was based on word permutations, stemming and
deletions (e.g. determiners being removed), introducing word depen-
dency tags may have aided the model. These tags were represented
with their own embedding table. During the feed forward pass, these
embeddings were aggregated to the word embeddings. Their results
for the text-to-gloss translation can be seen in Table 2. Rodriguez
and Martínez (2021) argued that signs are given in a spatio-temporal
pattern and, hence, the motion is very relevant to understand the
whole message and the grammatical structure of SLs. However, this
feature has been poorly treated in the literature. To exploit it, the
authors proposed an encoder–decoder architecture that was fed with
optical flow images instead of raw RGB frames. This allowed a more
appearance agnostic feature extraction, more focused on the actual
movement. Features were extracted from these images using a 3D CNN
to capture long-term dependencies. The output of this network was a
feature cube composed of 𝐾 filters that were flattened and used as
input for the encoder. The latter had bi-directional LSTM layers while
the decoder had simple LSTM layers. At different levels of the stack of
RNNs of the decoder, there was an attention mechanism that used the
information coming from the encoder. For the video-to-text translation
task, their results are shown in Table 4.

Zhao et al. (2021) took a different approach with respect to the
translation. First, features were extracted from videos with a combina-
tion of a CNN and a transformer. Then, they checked the existence of
words in the video (not taking into account the order). For that, they
trained a logistic regression for each word. For the actual translation
they employed a transformer encoder–decoder network in which the
inputs were the detected words. As they did not follow any specific or-
der, no positional embeddings were used. Moreover, as the transformer
only used text it could be pre-trained with larger datasets. As a set of
unordered words could represent more than one sentence, a re-ranking
step is taken to correlate the video features with the text. For that, BERT

features were extracted from the candidate words and, for each text
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fragment and video, their cosine similarity was computed. Then, a term
was added in the loss function to minimise the difference between the
predicted similarity and the ROUGE-L metric.

As discussed by Cao et al. (2022), the literature focuses on the SLR
part of the SLT task and pays less attention to the translation itself. That
is why they introduced a task-aware instruction network called TIN-
SLT. At each transformer layer, external information from a pre-trained
network was introduced and fed to an adaptative layer to transform
general gloss features into task-aware features. This information was
fused with the one originally fed to the transformer layer using a
learnable fusion module. Due to the discrepancy between glosses and
text, they also contributed a data augmentation strategy using data
upsampling. Taking into account the trade-off between augmentation
and overfitting, they showed various ways to determine how much to
upsample. Specifically, they proposed strategies to see the difference
between glosses and text at token-, sentence- and dataset-level, com-
bining and weighting them. Their results can be found in Table 4. Li
and Meng (2022) showed their proposal based on transformers and
graphs to solve the SLT task. Their system was divided in three parts:
the multi-view spatio-temporal embedding network (MSTEN), the CSLR
network (CSLRN) and the sign language translation network (SLTN).
The MSTEN was a two-stream network that was applied clip-wise to
obtain a sequence of feature vectors. One of the streams took RGB
data, passed it through a ViT network (Dosovitskiy et al., 2020) and
then through a transformer encoder network. A global average pooling
and a linear layer were applied to extract a feature vector for each
clip. The other stream took skeleton data and fed it to an Adaptive
3D-GCN. The latter included a Spatial–Temporal Attention Network
to make the network more robust. A global average pooling and a
linear were applied afterwards to get the feature vector for that stream
and clip. Both streams’ feature vectors were concatenated and fed to
another linear layer and a ReLU function before being sent to the
CSLRN module. This was composed of an encoder transformer network
and a CTC loss to align the input feature with the gloss ground truth.
The final part was the SLTN, a decoder transformer network to generate
the predicted translation. The test results for this system are shown in
Table 4.

To alleviate the scarcity of SLT data, Fu et al. (2022) presented
ConSLT, a token-level contrastive learning framework for SLT. They
divided their method into two stages: the SLR and the SLT. For the SLR
they took the network of Zhou, Zhou, Zhou, and Li (2020), the STMC, to
generate a sequence of glosses. For the SLT they used a 2-layer encoder–
decoder transformer and a cross entropy loss. To apply contrastive
learning at token-level, they passed each token twice through the
network. Due to the usage of dropout, each pass generated different
representations. These were considered positive samples, while the
negative ones were sampled from the weight matrix of the output layer
of the decoder, taking tokens that were not in the current sentence. As
the distance metric, they employed the Kullback–Leibler divergence.
Finally, the training was performed by adding both the cross entropy
and the constrative loss. The results they obtained are summarised in
Table 4.

With the same objective as the previous work, Chen et al. (2022)
proposed a progressive pre-training strategy to fine-tune a neural MT
system starting from general domain datasets and going towards the
target domain. Their system was divided in three parts: the visual
encoder, the visual-language mapper and the language model. The
visual encoder extracted features from raw frames using a S3D net-
work (Xie, Sun, Huang, Tu, & Murphy, 2018). A temporal convolution
block allowed them to reduce the temporal length of the video to a
quarter of the original. Then, a gloss prediction head was included
using a CTC loss. The visual-language mapper took the output features
and passed them through an MLP. These were used as input for the
language model, an mBART network. Concerning the progressive pre-
training applied, the visual encoder was first pre-trained in a human
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action recognition task with the Kinect-400 dataset (Kay et al., 2017),
then in the ISLR task with the WLASL dataset (Li, Rodriguez, Yu and
Li, 2020) and finally in their SLT dataset in the sign-to-gloss task. The
language model was initialised with the mBART pre-training, followed
by a pre-training in the gloss-to-text task in their SLT dataset. Both the
visual encoder and the language model were independently pre-trained
and then fine-tuned together with the visual-language mapper. Their
video-to-text results are summarised in Table 4.

Given the large body of literature on SLT it is difficult to compare
the performance of all the systems. Even more taken into account the
limited amount of datasets that are appropriate for the task and have
enough samples. That is why we contribute a summary of the works
that provide their results using the RWTH-PHOENIX-2014T dataset,
as we believe it is possibly the most standardised dataset available.
Tables 2–4 summarise the results for the text-to-gloss, gloss-to-text and
video-to-text configurations, respectively, using the aforementioned
dataset.

The text-to-gloss translation is seen as a simplification of the spoken
language text (Egea et al., 2021). Table 2 shows the results found
in the literature for this task. By a large margin, the best results are
obtained by Saunders et al. (2020b). They proposed to learn glosses in
a multitask setting, as their true aim was to infer poses from spoken
language sentences. This may have helped the network learn a better
inner representation of glosses in contrast to other solutions. The trans-
lation in the opposite direction (gloss-to-text) does not have a clear best
solution. For the development set, Camgoz et al. (2020b) obtained the
best BLEU values with their encoder–decoder transformer that learnt
glosses midway in the encoder side as a learning sub-objective. Again,
a multitasking approach seems to be beneficial. In contrast, in the test
set, the STMC network of Yin (2020) and Yin and Read (2020a, 2020b)
was the one that obtained, by a small margin, the best results (except
for the BLEU-1).

The case of the video-to-text translation of Table 4 is more extensive
and, compared to the previous two tables, more works can be found.
Once again, there is not a clear best solution. For the validation set, the
S2T approach of Zhou, Zhou, Qi et al. (2021) obtained the best BLEU-1
and BLEU-2 values. Their proposal was also based on an encoder–
decoder transformer but they implemented a back-translation strategy
for data augmentation, even improving the results of their S2G2T, a
model using glosses to guide the learning. For BLEU-3 and BLEU-4 the
best results have been achieved by the work of Yin (2020) and Yin
and Read (2020a, 2020b) (the STMC network). Similarly, in the test
set, Zhou, Zhou, Qi et al. (2021) obtains the best BLEU-1 while for
BLEU-2, BLEU-3 and BLEU-4 the best approach was that of Yin (2020)
and Yin and Read (2020a, 2020b).

4. Public datasets

In this section we introduce, to the best of our knowledge, the
available public SL datasets, summarised in Table 5. The majority of
them were created specifically for SLR (they only contain video and
glosses), while a few of them can be used for SLT (they contain at
least videos and translations in spoken language text or audio). The
datasets are shown ordered by their publication year, specifying the
SL, the number of signs in their vocabularies and the number of signers
that took part in their creation.

The RWTH-Phoenix-Weather-2014 dataset (see Fig. 9) is probably
the most used dataset for benchmarking SLT models, as seen in Tables 2
(text-to-gloss translation), 3 (gloss-to-text translations) and 4 (video-to-
text translations). Due to its extended usage, we recommend using this
dataset when presenting new models to be able to correctly compare
them with the literature; at least until a bigger and more varied dataset
arises and starts being extensively used. Concerning the variance, it is
specially noticeable that the majority of datasets only consider one SL
(see Fig. 10 for the distribution of SLs in the datasets listed in this
section). We hope that in the future we will see more multilingual

datasets.
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Fig. 9. Subsampled sequences from the RWTH-Phoenix-Weather-2014-T dataset. The top sequence, originally composed of 53 frames, is labelled with the sentence ‘‘liebe zuschauer
guten abend’’ and the glosses ‘‘LIEB ZUSCHAUER ABEND’’. The bottom one, originally with 47 frames, is labelled with the sentence ‘‘am mittwoch wird es auch noch sehr windig’’
and the glosses ‘‘MITTWOCH VIEL WIND’’.
.

Table 5
Summary of all the available public dataset for Sign Machine Recognition and Translation, ordered by publication year. Acronyms for sign languages are summarised in Appendix A

Dataset Year SL Video Glosses Text Audio Signs Signers

Purdue RVL-SLLL (Wilbur & Kak, 2006) 2002 ASL ✓ ✓ ✗ ✗ N/S 14
RWTH-BOSTON-50 (Zahedi, Keysers, Deselaers, & Ney, 2005) 2005 ASL ✓ ✓ ✗ ✗ 50 3
GSLC (Efthimiou & Fotinea, 2007) 2007 GSL ✓ ✓ ✗ ✗ N/S 4
SIGNUM (Von Agris & Kraiss, 2007) 2007 DGS ✓ ✓ ✗ ✗ 450 20
Corpus NGT (Crasborn & Zwitserlood, 2008) 2008 NGT ✓ ✓ ✗ ✓ N/S 92
RWTH-BOSTON-104 (Dreuw, Neidle, Athitsos, Sclaroff and Ney, 2008) 2008 ASL ✓ ✓ ✗ ✗ 104 3
ASLLVD (Athitsos et al., 2008) 2008 ASL ✓ ✓ ✗ ✗ 3000 4
IIITA-ROBITA (Nandy, Mondal, Prasad, Chakraborty, & Nandi, 2010) 2010 ISL ✓ ✗ ✗ ✗ 23 N/S
Auslan dataset (Johnston, 2010) 2010 Auslan ✓ ✓ ✗ ✗ N/S 100
RWTH-Phoenix-Weather (Forster et al., 2012) 2012 DGS ✓ ✓ ✓ ✗ 911 7

Dicta-Sign (Matthes et al., 2012) 2012 BLS, DGS,
✓ ✓ ✗ ✗ N/S 14-16/SLGSL, LSF

BSL Corpus (Schembri, Fenlon, Rentelis, Reynolds, & Cormier, 2013) 2013 BSL ✓ ✓ ✓ ✗ N/S 249
PSL Kinect 30 (Oszust & Wysocki, 2013) 2013 PJM ✓ ✗ ✗ ✗ 30 10
ASLG-PC12a (Othman & Jemni, 2012) 2013 ASL ✗ ✓ ✓ ✗ N/S N/S
S-pot (Viitaniemi, Jantunen, Savolainen, Karppa, & Laaksonen, 2014) 2014 Suvi ✓ ✓ ✓ ✗ 1211 5
CUNY ASL (Lu & Huenerfauth, 2014) 2014 ASL ✓ ✓ ✗ ✗ N/S 8
Devisign-G (Chai, Wang, & Chen, 2014) 2014 CSL ✓ ✓ ✗ ✗ 36 8
Devisign-D 2014 CSL ✓ ✓ ✗ ✗ 500 8
Devisign-L 2014 CSL ✓ ✓ ✗ ✗ 2000 8
RWTH-Phoenix-Weather-2014 (Koller et al., 2015) 2015 DGS ✓ ✓ ✓ ✗ 1081 9
LSA64 (Ronchetti, Quiroga, Estrebou, Lanzarini, & Rosete, 2016) 2016 LSA ✓ ✗ ✗ ✗ 64 10
RWTH-Phoenix-2014T (Camgoz et al., 2018) 2018 DGS ✓ ✓ ✓ ✗ 1231 9
USTC CSL dataset (Huang, Zhou, Zhang, Li, & Li, 2018) 2018 CSL ✓ ✓ ✗ ✗ 178 50
MS-ASL (Joze & Koller, 2018) 2019 ASL ✓ ✓ ✗ ✗ 1000 200

WLASL (Li, Rodriguez et al., 2020) 2019 ASL ✓ ✓ ✗ ✗
100, 300 97, 109
1000, 2000b 116, 119b

ASL-100-RGBD (Hassan et al., 2020) 2020 ASL ✓ ✓ ✗ ✗ 100 22
DGS Korpus (Hanke, Schulder, Konrad, & Jahn, 2020) 2020 DGS ✓ ✓ ✓ ✗ N/S 330
BosphorusSign22k (Özdemir, Kındıroğlu, Camgöz, & Akarun, 2020) 2020 TÍD ✓ ✓ ✗ ✗ 744 6
AUTSL (Sincan & Keles, 2020) 2020 TÍD ✓ ✓ ✗ ✗ 226 43
K-RSL (Imashev, Mukushev, Kimmelman, & Sandygulova, 2020) 2020 KSL/RSL ✓ ✓ ✗ ✗ 600 11
The GSL dataset (Adaloglou et al., 2020) 2020 GSL ✓ ✓ ✓ ✗ 310 7
How2Sign (Duarte et al., 2021) 2021 ASL ✓ ✓ ✓ ✓ 16,000 11
CSL-Daily (Zhou, Zhou, Qi et al., 2021) 2021 CSL ✓ ✓ ✓ ✗ 2000 10

aRule-based generation of glosses.
bDepending on which version of the dataset is used, i.e. WLASL100, WLASL300, WLASL1000 or WLASL2000.
20
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Fig. 10. Distribution of the sign languages listed in Table 5.

. Conclusions

In this paper we have contributed a survey on the topic of the Sign
anguage Translation (SLT) task. SLT is defined as the transformation
rom sign languages (SLs) to spoken languages, e.g. from American
ign Language (ASL) to English or even to French. We considered
he opposite translation direction also valid as SLT, i.e. from spoken
anguages to SLs, even for different input/output modalities such as
peech instead of spoken languages text. As SLs can be transcribed
nto a text format, such as glosses (one of the most popular formats
n research that can also be used to produce avatar animations), we
lso considered this format to be valid for the inputs and outputs of an
LT system.

The paper provides some basic information about SLs, such as how
re them structured into two types of features: the ones using hands and
he remaining ones using other parts of the upper body. It also contains
review about the possible tasks related to SLs, the metrics used for the
enerated glosses and spoken language text and a summary of all the
vailable public datasets and whether they are suitable for the SLT task
r not.

The literature review contributed in this paper is divided into
wo parts: the traditional SLT and the neural SLT that has recently
ominated the research field, just like neural architectures have done
he same in the Natural Language Processing (NLP) field. Encoder–
ecoder neural architectures, and specially transformers layers, have
ecome the standard to tackle this task. They also offer the possibility
o create multilingual systems, although they are rare for the case of
Ls. Besides, datasets are very limited, and specially more for the case
f SLT, as annotating SL videos with spoken language text translations
s very costly. This also hinders the ability of neural models to learn.

The use of glosses as input, output or even as intermediate step is
ery extended. When translating from SLs to spoken language text or
ice versa, glosses provide a learning guidance. Otherwise, it is difficult
or a neural model to do the mapping, specially taking into account that
he number of input frames is usually higher than the amount of output
ords. Nevertheless, the use of glosses has some limitations, as Camgoz
t al. (2020b) argued that they may hurt the learning. In contrast, not
sing them worsens the performance very significantly, meaning that
n alternative intermediate supervision objective must be proposed (see
or example the one proposed by Murtagh (2019)). Due to the absence
f alternatives (a limitation of current datasets), glosses are still used.

On the other hand, neural models are data hungry, i.e. they require
housands of samples for the learning phase. In this direction, more
echniques to alleviate this issue have been proposed recently for SLT,
.g. data augmentation and back-translation. In fact, they are well
nown in the NLP community, but they must be adapted to SLs first.
or example, Zhou, Zhou, Qi et al. (2021) used a back-translation
pproach to increase the number of samples they had. The model not
sing glosses outperformed the one using glosses to guide the learning,
21
Table A.1
Sign language acronyms or abbreviations used throughout the paper. The left col-
umn contains acronyms and the right column their full name. Entries are arranged
alphabetically by the acronym/abbreviation.

Acronym/abbreviation Sign Language

ArSL Arabic Sign Language
ASL American Sign Language
Auslan Australian Sign Language
BdSL Bangladeshi Sign Language
BSL British Sign Language
CSL Chinese Sign Language
DGS German Sign Language (Deutsche Gebärdensprache)
GSL Greek Sign Language
ISL Indian Sign Language
ISL Irish Sign Language
JSL Japanese Sign Language
KSL Kazakhstan Sign Language
LIS Italian Sign Language (Lingua dei Segni Italiana)
LSA Argentine Sign Language (Lengua de señas argentina)
LSF French Sign Language (langue des signes française)
MSL Myanmar Sign Language
NGT Netherlands Sign Language (Nederlandse Gebarentaal)
PJM Polish Sign Language (Polski Jȩzyk Migowy)
PSL Pakistan Sign Language
RSL Russian Sign Language
Suvi Finnish Sign Language
TSL Taiwan Sign Language
TÍD Turkish Sign Language (Türk İşaret Dili)
USL Ukrainian Sign Language
VSL Vietnamese Sign Language

meaning that, when sufficiently large datasets are available, there may
be no need for glosses as an intermediate learning objective.

The SLT research field still needs to develop in terms of better
and/or more appropriate models and bigger and more diverse datasets,
as so far models are borrowed from the NLP research and datasets are
tiny compared to image classification or spoken language datasets. Jan-
tunen et al. (2021) argued that building a robust and cost-effective
model that can include both spoken languages and SLs is not realistic.
However, research should continue and this should be adapted to the
DHH community’s needs.

5.1. Challenges for SLT

In this section we enumerate the challenges found in the literature
and others identified by the authors of this survey.

Limited datasets. The datasets available that are appropriate for
LT (due to the annotations or the data formats) are scarce, which may
ffect the generalisation abilities of neural models. Besides, datasets are
ecorded under controlled settings, limiting their usefulness for real-
orld applications. In fact, this may also lead to wrong conclusions due

o the biased learning. There is also a need for variety within datasets,
.e. to include novice or non-native signers alongside native signers, to
onsider variety across subjects: age, gender, ethnicities, varying body
ypes, physical traits, clothes, or even the lighting conditions of the
ideo, which may be controlled and, thus, not be realistic. Furthermore,
L datasets usually only include a spoken and a sign language pair
e.g. German and German Sign Language). While multilingual models
re common in the NLP research field, they are still rare in the SLT
ask. We would also like to see multimodal datasets that include video,
ext, speech, glosses and so on to be able to build models that can
ccept as input and output different modalities, allowing researchers to
rain multilingual and multimodal automatic SL and spoken language
ranslators.
Multi-signer scenario. Current approaches only deal with a single

igner. What would happen if two people would appear in the scene?
ven if one of them is not signing at all. Body keypoint extraction may
ail or may not be robust enough, feature extraction from videos could
ave lots of noise and so forth. To starting working on this issue, the
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Table B.1
Links to the public datasets of Table 5.

Dataset Link

Purdue RVL-SLLL https://engineering.purdue.edu/RVL/Database/ASL/asl-database-front.htm

RWTH-BOSTON-50 https://www-i6.informatik.rwth-aachen.de/aslr/database-rwth-boston-50.php

GSLC http://metashare.elda.org/repository/browse/greek-sign-language-corpus/
08f7d4e460ac11e288b0842b2b6a04d7354a41556d0e4e05abd5fc261c20c188/

SIGNUM https://www.phonetik.uni-muenchen.de/forschung/Bas/SIGNUM/

Corpus NGT https://www.ru.nl/cls/our-research/research-groups/sign-language-
linguistics/corpus-ngt-researchers/
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DGS Korpus https://www.sign-lang.uni-hamburg.de/dgs-korpus/index.php/welcome.html

BosphorusSign22k https://ogulcanozdemir.github.io/bosphorussign22k/

AUTSL https://chalearnlap.cvc.uab.cat/dataset/40/description/

K-RSL https://krslproject.github.io/krsl20/

The GSL dataset https://vcl.iti.gr/dataset/gsl/

How2Sign https://how2sign.github.io/

CSL-Daily http://home.ustc.edu.cn/~zhouh156/dataset/csl-daily/
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previous challenge must be addressed first, i.e. a multi-signer dataset
must be published to let researchers experiment.

Non-representable signs. Signs do not have a perfect mapping to
exemes. In some cases, there are signs that cannot be mapped without
mbiguity and, thus, the SLT cannot be perfect. Jantunen et al. (2021)
entioned that approximately the 30% of the signs tokens are within

his category and cannot be represented unambiguously. The reason is
hat they visually represent linguistic content that is highly dependant
n the context. This situation worsens with the extended use of glosses,
s there may not be a specific transcription of those signs to glosses.
sing pictorial formats of SLs such as HamNoSys may alleviate the

ssue, but the scarcity of datasets annotated with this format and/or
heir size limits their usefulness. It is possible that improving in this
spect may help creating better SLT models.
The animated avatar’s customisation and expressivity. It is im-

ortant that the avatar that is animated to perform the signs predicted
s output of a SLT system is adapted to the user of the tool. That is, the
ser must be comfortable with the avatar in terms of gender, ethnicity,
hysical traits, clothing and so on. Otherwise, the user may decline
r will not be motivated to use it. Moreover, the avatar must have
nough expressivity to use both manual and non-manual articulators
n a realistic way. Often, avatar technology is rejected by users due to
he artificial avatar that is not able to fully express a message because
f these limitations.
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Technologically illiterate citizens. Usually tools that implement a
LT system are dependant on technology such as smartphones. For the
ase of technologically illiterate citizens this may suppose a barrier to
se such systems and is, therefore, a challenge that must be overcome
ith education and offering training sessions so that SLT system can be
sed by anyone.
An appropriate intermediate representation or objective.

hroughout the survey, it has been mentioned that glosses are not a
uitable intermediate representation for video-to-text translation and
ice versa. However, not guiding the training also hurts the perfor-
ance. Hence, new strategies for an intermediate representation or

bjective are needed. We believe that novel proposals such as the Sign_A
ntroduced by Murtagh (2019) are needed to advance the research
Portability of solutions and their adequacy for real-world uses.

he communication between a user of SLs and someone who does not
nderstand SLs should be fast, otherwise it will not be appropriate for
eal-world situations. In fact, if the time to infer a translation is very
ong, users may lose interest in the application and quickly abandon
t. Moreover, SLT solutions should also be lightweight to be used in
mall, portable devices such as smartphones. This implies that systems
elying on heavy computations, pre-processing of features and so on
re not suitable, the research should focus on having light models if
LT systems want to be deployed.
Engagement of the deaf community. As mentioned in Farooq

t al. (2021), the deaf community should be engaged for developing
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and testing SLT systems. For example, a crowdsourcing platform to
annotate new signs or new data samples, to evaluate a video and its
corresponding text translation and so forth.

5.2. Future roadmap

The future of the SLT may be steered by new datasets just like what
happened in the Computer Vision community with the introduction
of Imagenet. As explained in Section 5.1, SLT datasets are still tiny;
it is difficult to extract conclusions from few samples of data. A huge
dataset may become the key to enable further research and to explore
novel model ideas. Another topic that is not covered in the literature
is the use of multilingual models, again an issue derived from only
having datasets with a single pair of spoken language and SL. The
publication of multilingual SLT datasets may ignite the research interest
on multilingual models and pre-training on monolingual datasets as it
has happened in the NLP research field.

Up until that moment, glosses were considered valuable assets in
the SLT performance. Nevertheless, removing them from SLT models to
guide the learning could suppose a relevant contribution, as it would
eliminate the dependency on gloss annotations and move the field
towards a learning based on raw data (video and text).

Concerning methodologies, multi-channel inputs (information from
multiple sources and modalities) are gaining strength and may become
an essential standard in future systems. The same goes for introducing
external knowledge. In contrast, it is also possible that researchers put
their efforts into achieving the same results or even better ones using
the least possible data, i.e. just videos as input, as mentioned in the
previous paragraph. Both research directions should coexist to inspire
each other.

There is also future for the zero-shot paradigm. As seen in Sec-
tion 2.2, dealing with signs never seen during training (what is called
out-of-vocabulary words in NLP) is possible with other knowledge
sources such as SL dictionaries that describe signs. Is it possible that
these kinds of proposals may lead to solve the problem with signs/
glosses never seen during training? It is interesting to research on this
direction given that there are few works about SLs dealing with the
zero-shot paradigm.
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Appendix A. Sign language acronyms

Table A.1 summarises the SL acronyms or abbreviations used
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throughout the paper.
Appendix B. Sign language datasets

This appendix presents a summary of the available SL datasets in
the literature in Table B.1.
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