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a b s t r a c t

Market liberalization and the expansion of variable renewable energy sources in power
systems have made the dynamics of electricity prices more uncertain, leading them
to show high volatility with sudden, unexpected price spikes. Thus, developing more
accurate price modeling and forecasting techniques is a challenge for all market par-
ticipants and regulatory authorities. This paper proposes a forecasting approach based
on using auction data to fit supply and demand electricity curves. More specifically, we
fit linear (LinX-Model) and logistic (LogX-Model) curves to historical sale and purchase
bidding data from the Iberian electricity market to estimate structural parameters from
2015 to 2019. Then we use time series models on structural parameters to predict day-
ahead prices. Our results provide a solid framework for forecasting electricity prices by
capturing the structural characteristics of markets.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Power pricing in modern, deregulated electricity mar-
ets has become more complex and dynamic, given that
t is driven by factors including day-to-day and seasonal
ariation on the demand and supply sides, seasonal varia-
ion in temperature, the availability of energy sources, and
any others. For instance, price dispersions in the day-
head market range from 6% to 28%, compared to 2% to 3%
or crude oil and 3% to 5% for natural gas (Simonsen, 2005;
areipour et al., 2007). In recent years, growing market
enetration by more intermittent renewable generation
as further increased price volatility concerns in elec-
ricity markets (Baldick, 2012; Brancucci Martínez-Anido
t al., 2016). Price dynamics have become a complex
ssue with serious implications for market participants
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169-2070/© 2022 The Author(s). Published by Elsevier B.V. on behalf of Inte
he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
and market/system operators. Developing more accurate
forecasting methods has become a fundamental task for
investors to plan their bidding strategies with a view to
maximizing their utility from short-, medium-, and long-
term perspectives. It can also help consumers to minimize
the cost of a variety of applications in dynamic pricing
environments and demand responses (Cabral et al., 2020).
Finally, it helps regulatory authorities to ensure the long-
term adequacy and security of supply and the stability of
power markets. For these reasons, there has been growing
interest in the literature in developing better price mod-
eling and forecasting techniques (Nowotarski & Weron,
2018; Taylor et al., 2006; Weron, 2007).

Studies on price forecasting in electricity markets con-
ducted around the world have been many and varied.
They can be differentiated and categorized by a mainly
methodological approach (Hong et al., 2020; Lago et al.,
2021; Weron, 2014). Statistical (econometric) methods
make up one of the largest groups of electricity price fore-
casting methods. Most statistical models use time series
analysis, which seeks to model the temporal structure of
rnational Institute of Forecasters. This is an open access article under
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prices observed in a certain period of time and then pre-
dict their behavior in the future. Most models of this type
are variations of the autoregressive integrated moving av-
erage (ARIMA) family of models (Yang et al., 2017), where
price is modeled as a function of the past realizations of
prices and residuals. These models are further improved
by including exogenous variables in the case of ARIMAX
models (Weron & Ziel, 2019), by studying the behavior
of the residuals (especially when there are price spikes)
in generalized autoregressive conditional heteroskedastic
(GARCH) models (Lago et al., 2018), and by considering
possible correlations between different load periods in
vector autoregressive (VAR) models (Shah & Ghonasgi,
2016). Electricity price forecasting using statistical mod-
els is successful to a degree at modeling the temporal
structure of prices observed in a certain period of time
and predicting their behavior in the future. However,
such models have been criticized in the literature, due to
several limitations. They have difficulty in considering the
market dynamics and operation of electricity markets and
in representing changes in regulations and market struc-
tures (Weron, 2014; Ziel & Steinert, 2016). This means
that they fail to accurately forecast prices in power sectors
where price formation processes are more volatile and
complex than fully regulated ones.

In recent years, the constant increases in computing
ower and in the amount of data collected have resulted
n new forecasting techniques based on artificial intel-
igence (AI) and machine learning (ML). A fundamental
art of these techniques is to find certain patterns or
istributions from historical data, assuming that markets
ill behave in the same (probabilistic) way in the future.
he main types of AI techniques include artificial neural
etworks (Aineto et al., 2019; Catalao et al., 2007; Ortiz
t al., 2016), fuzzy systems (Gao et al., 2018; Itaba & Mori,
017), support vector machines (Cizek et al., 2011), and
volutionary computation (Unsihuay-Vila et al., 2010).
hese models have potential advantages in handling com-
lexity and nonlinearity that provide promising short-
erm predictions, but a number of downsides have also
een reported in the literature. One major disadvantage
s that they are more complex and time consuming than
tatistical methods. They are also so diverse and rich that
t is hard to compare the outcomes of different methods.

Over the last ten years, there has been growing inter-
st in another group of forecasting studies which focus
n probabilistic forecasting techniques. Such techniques
ave also become a necessary tool for trading purposes,
articularly in spot price models, due to their proper rep-
esentation of the volatility and dynamics of spot prices
Hong et al., 2020; Ziel & Steinert, 2016). An important
eature of these models is that they take uncertainty
nto account and provide all the potential outcomes as
robabilities that may occur. Probabilistic forecasts are
xamined in the literature, mainly in the form of prob-
bility distributions (Andrade et al., 2017), quantiles and
ntervals (Nowotarski & Weron, 2015), and parametric
nd nonparametric approaches (Jabot, 2015). These mod-
ls are known to be capable of providing a simplified
et realistic picture of price dynamics and price volatility
Benth et al., 2012), but they often perform poorly at
1254
forecasting, particularly with long-term horizons. They
also fail to consider the structure of the market and the
price formation process, which are fundamental for the
study of price dynamics in today’s deregulated scenarios.

Most of the models used in previous studies of fore-
casting do not incorporate auction data, a fundamental
mechanism for determining the so-called systemmarginal
price in the power sector. In today’s deregulated power
markets, auction data on supply and demand curves can
help to develop new forecasting techniques. Recently,
there have been new advances in the field of modeling
based on auction data that include supply and demand
curves. These approaches have some advantages over
other forecasting models in that they provide an impor-
tant source of information, especially for studying price
movements, which can be captured from the shape of the
sale and purchase curves. The use of such analyses is par-
ticularly appropriate because demand and supply curves
change over time. Many models of these types combine
different techniques, such as time series, regression, and
neural network models, in what are known as ‘‘hybrid
methods’’. Such methods are intended to make the best
use of the advantages of multiple forecasting methods and
improve prediction accuracy. We develop an approach
that combines the fitting of curves to historical hourly
demand and supply data and time series models with the
objective of forecasting electricity prices on the Iberian
electricity market (MIBEL).

Our main contribution to the literature is to use a
curve fitting approach to historical hourly demand and
supply data with the goal of forecasting electricity prices.
We know of several studies in the literature that use
an approach based on the structural modeling of supply
and demand curves, although the main difference is the
way demand and supply curves are obtained.Ziel and
Steinert (2016) propose a nonfunctional model, called
the X-Model, for price forecasting on the EPEX market,
incorporating the properties of both time series and struc-
tural analyses. They forecast the bid volume of each price
class to predict entire day-ahead supply and demand
curves and—with the intersection of the predicted auction
curves—forecast the equilibrium prices and volumes. This
concept was subsequently extended in Kulakov (2020)
with the objective of reducing computation time and im-
proving accuracy. Shah and Lisi (2020) propose a method
for forecasting through a functional prediction of sale
and purchase curves on the Italian electricity market.
They treat each purchase and sales curve as a single
structured object in a functional space. Then, they conduct
a forecast for the entire curves using parametric and
nonparametric autocorrelation functional models with a
control period for model identification and estimation.
A similar functional model is developed by Canale and
Vantini (2016) for the Italian gas market. In another study,
Portela et al. (2017) propose a new functional forecasting
method that seeks to simplify the standard seasonal AR-
MAX time series model to a new functional framework:
L2 Hilbert space. An extension of this model, a double-
seasonal functional SARMAHX model, is developed by
Mestre et al. (2020) to capture the short-term season-
ality of hourly aggregated supply curves in day-ahead
electricity markets.
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Fig. 1. Methodology diagram.
Fig. 2. Frequency of each price-bid in the day-ahead market. (Buyers (red), Sellers (blue)).. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
We proceed in several steps. First, we propose two
odels for demand and supply: the LinX-Model, which
ssumes linear demand and supply functions, and the
ogX-Model, which assumes logistic demand and supply
unctional forms. Second, we fit the supply and demand
urves for each hour based on observed auction data.
hird, we use several time series models to forecast both
odels and to build the predicted linear and logistic func-

ional forms. Finally, forecasted prices are obtained as the
ntersection of the predicted functional forms. Our second
ontribution is an application to the Iberian electricity
arket (MIBEL) for the period from 2015 to 2019.
The rest of the paper is organized as follows: Section 2

xplains price formation and the structure of the Iberian
lectricity market. The methodological part is split into
hree main phases, as shown in Fig. 1. These are described
n the following sections: Market modeling is detailed in
ection 3. Section 4 estimates the LinX-Model and the
og-X Model. Section 5 presents the benchmark time se-
ies price forecasting models and the coefficient forecasts
nder the two models. Section 6 provides the empirical
esults, and Section 7 concludes.

. Price formation and market curve structure

Price formation in the Iberian electricity market is
tructured into four main segments: the wholesale mar-
et, bilateral contracts, prices for ancillary and balancing
ervices, and, in certain cases, capacity payments.
The wholesale market is structured into a day-ahead

arket and six intraday auctions. Our research focuses
1255
on the day-ahead market because it negotiates the bulk
of the electricity traded. The day-ahead market works as
a uniform price auction and sets the system marginal
price for each hour of the following day, matching the
electricity sale and purchase bids of market participants.
Each day, d − 1, market participants submit bids to the
market operator by 11:00 a.m. for the next 24 hours. Each
participant can submit a maximum of 25 price-quantity
pairs for each unit that it owns. Bids can be either simple
(when no conditions are included) or complex (when
conditions are included). Selling (purchasing) bids are
sorted in ascending (descending) order from the cheapest
(most expensive) to the most expensive (cheapest) to ob-
tain an increasing (decreasing) supply (demand) schedule.
The final price, Pd,h, is determined by the intersection of
complex purchasing and selling bids, so we restrict our
attention here to such bids.1

Our analysis covers the period from January 1st, 2015
to December 31st, 2019 using data published by the Oper-
ador del Mercado Ibérico de Electricidad, OMIE.2 During this
period the price range is from e0/MWh to e180.3/MWh.3
The minimum price difference between orders is

1 For more detailed information, see the market activity rules
published by the market operator, OMIE. The algorithm that determines
the equilibrium price and quantity is called EUPHEMIA. It calculates
day-ahead electricity prices across Europe and allocates day-ahead
cross-border transmission capacity.
2 Publicly available aggregate supply and demand curves for

day-ahead market files are headed with the name curva-pbc.
3 On May 6th, 2021, the National Commission for Markets and

Competition, approved new operating rules for daily and intraday
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Fig. 3. Day-ahead market results on September 12th, 2019 (source: OMIE and own work). (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)
0.01/MWh. Hence, there are at most 18,030 possible
rices on the full price grid P = {0, 0.01, . . . , 180.29,
180.30}. However, in practice, the price distribution used
s not uniform. Fig. 2 plots the histogram for the amounts
f the different prices for each curve, taking a bin of size
00, equivalent to e1 for the period from 2015 to 2019.
It can be seen that the frequency of submitted prices

iffers substantially between buyers (red) and sellers
blue). Among sellers, price-bids at zero are the most
requent. This is because many price-bids are made by
enewable generation units and nuclear plants, which
perate with close-to-zero marginal costs. Thus, most
omplex bids are in the range of e35–55/MWh. For simple
ids, most price-bids are in the range of e40–70/MWh
nd at the price cap of e180/MWh. Among buyers, price-
ids of around e80/MWh are the most frequent, followed
y price-bids at the price cap of e180.3/MWh. This is
ecause retailers and distributors must comply with the

electricity markets to adapt the limits to those in Europe. The new
bid price caps and floors are established for the daily market of
e−500/MWh and e3000/MWh.
1256
security of supply under penalty of fines. Next come
price-bids slightly above the equilibrium price. In general,
the average number of block-bids per hour is higher for
selling bids than for demand bids. This is due to two major
facts: more market participants make selling bids than
purchasing bids, and many purchasing bids are made at
the price cap (e180.3/MWh) to ensure that retailers meet
customer demand.

Fig. 3 presents the market results for the day-ahead
market for September 12th, 2019 as a representative day.
Subfigure (a) shows Pd,h and Qd,h in the day-ahead market
for the representative day. There is transmission conges-
tion between 4:00 p.m. and 6:00 p.m., and coupling for
the remaining hours. Subfigure (b) shows the day-ahead
market under the absence of congestion, with hour 21 as
an example. In the presence of congestion, there is mar-
ket splitting and each country has a different price (see
subfigures (c) and (d) for Spain and Portugal respectively
with hour 16 as an example). In subfigures (b)–(d) the
thick (thin) red line corresponds to the complex (simple)
demand bids, while the thick (thin) blue line corresponds
to the complex (simple) supply bids. Recall that Pd,h and
Q are determined by the complex bids.
d,h
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Fig. 4. Top row OMIE spot price Pd,h in EUR/MWh (left) and kernel density (right) for Spain. Bottom row OMIE spot price Pd,h in EUR/MWh (left)
and density (right) for Portugal.
Finally, Fig. 4 plots the time series of prices (panels a
and c) and the corresponding density plots (panels b and
d) for Spain and Portugal.

Observe that there is seasonality in the prices of both
countries. The fact that prices can fluctuate between 0
and 180.3 prevents large spikes. Density plots show that
most of the density is around e40/MWh to e60/MWh, the
distribution of prices is not symmetric, and there is excess
kurtosis.4

3. Modeling market curves

We propose fitting linear and logistic functional forms
for complex demand and supply bids, respectively. Thus,
there are two structural market models: the LinX-Model,
which assumes linear demand and linear supply curves;
and the LogX-Model, which assumes logistic demand and
logistic supply market curves.5 The market between Spain

4 Table A.3 reports the Jarque–Bera test on prices. The null
hypothesis of normality is rejected at the 1% significance level.
5 We borrow the capital letter ‘‘X’’ from Ziel and Steinert (2016)

to symbolize the intersection of the supply and demand curves. ‘‘Lin’’
stands for linear and ‘‘Log’’ stands for logistic.
1257
and Portugal is integrated, so in the absence of congestion,
a single demand curve and a single supply curve are fitted,
while under congestion, two demand and supply curves
are fitted, one for each country.

Demand function
We propose fitting aggregate (inverse) hourly demand

functions to purchasing bid schedules using the following
specifications:

I. Linear (inverse) demand function:

Pd
t

(
Q d
t

)
=

{
Pmax if Q d

t ≤ Q d
min,t

a0,t + a1,tQ d
t if Q d

t ∈
(
Q d
min,t , Q d

max,t

)
(1)

where a0,t > 0 is the intercept, and a1,t < 0
is the slope. Q d

min,t is a measure of the intensity
of the demand. That is, it is the perfectly inelastic
consumption level for each hour t . Q d

max,t is the in-
tercept of the demand curve with the quantity axis.
It indicates the consumption of electricity when
Pd
t = 0. Pmax is the price cap set by regulation. It

holds that a > P .
0,t
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II. Logistic (inverse) demand function:

Pd
t

(
Q d
t

)
=

⎧⎨⎩ Pmax if Q d
t ≤ Q d

min,t

a0,t +
a1,t

1+e
−a2,t

(
Qd
t −a3,t

) if Q d
t ∈

(
Q d
min,t , Q d

max,t

)
(2)

The slope of the logistic (inverse) demand function
is given by:

∂Pd
t

∂Q d
t

= a1,t a2,t
e−a2,t (Q d

t −a3,t )(
1 + e−a2,t (Q d

t −a3,t )
)2

Thus, to have a negative slope, a1,t and a2,t must
have opposite signs.

Supply function
Recall that aggregate supply schedules are the result

of the horizontal sum of the generators’ bid curves. Since
firms are profit maximizers, the structure of the cost
underlies the bid curves observed. We propose fitting ag-
gregate (inverse) supply functions of the following forms:

I. Linear (inverse) supply function:

P s
t

(
Q s
t

)
=

{
0 if Q s

t ≤ Q s
min,t

b0,t + b1,t Q s
t if Q s

t ∈
(
Q s
min,t , Q s

max,t

)
(3)

where b1,t > 0 is the slope, and Q s
min,t is the

minimum supply to the market where sellers are
willing to bid.

II. Logistic (inverse) supply function:

P s
t

(
Q s
t

)
=

⎧⎨⎩ 0 if Q s
t ≤ Q s

min,t

b0,t +
b1,t

1+e−b2,t(Qs
t −b3,t)

if Q s
t ∈

(
Q s
min,t , Q s

max,t

)
(4)

The slope of the logistic (inverse) supply function
is given by:

∂P s
t

∂Q s
t

= b1,t b2,t
e−b2,t (Q s

t −b3,t )(
1 + e−b2,t (Q s

t −b3,t )
)2

Thus, to have a negative slope, b1,t and b2,t must have
the same sign.

Equilibrium
Market integration through limited interconnection

capacity gives rise to market coupling or market splitting.
In the absence of restrictions in the network, a single
equilibrium price arises in equilibrium, and aggregate
demand (supply) is the sum of the demand (supply) of
the Spanish and Portuguese poles. Therefore, the market
with the lower price exports electricity to the market with
the higher price (Figueiredo et al., 2015). However, under
network congestion, market splitting occurs and different
equilibrium prices arise.
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We first explicitly obtain the equilibrium solution for
the linear demand and linear supply cases. We denote the
two biding zones as A and B. In the absence of congestion,
the linear aggregate demand is:

Pd
t

(
Q d
t

)
=

{
Pmax if Q d

t ≤ Q d
min,t

c0,t + c1,tQ d
t if Q d

t ∈
(
Q d
min,t

, Q d
max,t

)
where c0,t =

aA0,ta
B
1,t+aB0,ta

A
1,t

aA1,t+aB1,t
, c1,t =

aA1,ta
B
1,t

aA1,t+aB1,t
, and Q d

t =

Q A,d
t + Q B,d

t .
The linear aggregate supply is:

P s
t

(
Q s
t

)
=

{
Pmax if Q s

t ≤ Q s
min,t

d0,t + d1,tQ s
t if Q s

t ∈
(
Q s
min,t

, Q s
max,t

)
where d0,t =

bA0,tb
B
1,t+bB0,tb

A
1,t

bA1,t+bB1,t
, d1,t =

bA1,tb
B
1,t

bA1,t+bB1,t
, and Q s

t =

Q A,s
t + Q B,s

t .
Finally, the equilibrium values are:

(
P∗

t ,Q ∗

t

)
=

⎧⎨⎩
(

c0,t d1,t−c1,t d0,t
d1,t−c1,t

,
c0,t−d0,t
d1,t−c1,t

)
if P⋆

t < Pmax(
Pmax,

Pmax−d0,t
d1,t

)
if P∗

t = Pmax

(5)

If zone A is exporting electricity (lower prices) to zone B:

Q A,d
t =

P⋆
t − aA0,t
aA1,t

, Q A,s
t =

P⋆
t − bA0,t
bA1,t

Q B,d
t =

P⋆
t − aB0,t
aB1,t

, Q B,s
t =

P⋆
t − bB0,t
bB1,t

and the electricity trade is: Q A,s
t − Q A,d

t = Q B,d
t − Q B,s

t .
If there is congestion, then there is market splitting

and equilibrium prices are different in the two zones. The
price difference depends on the amount of electricity that
cannot flow to balance prices in both markets. Assum-
ing an interior solution, zone A (the exporting zone) is
characterized by the following linear demand and supply
functions:

PA,d
t = aA0,t + aA1,t (Q

A,d
t − K )

PA,s
t = bA0,t + bA1,tQ

A,s
t

where K is the interconnection size. The equilibrium price
in zone A is given by:

PA
t =

aA0,tb
A
1,t − aA1,tb

A
0,t − bA1,ta

A
1,tK

bA1,t − aA1,t
(6)

Zone B (the importing economy) is characterized by the
following linear demand and supply functions:

PB,d
t = aB0,t + aB1,tQ

B,d
t

PB,s
t = bB0,t + bB1,t (Q

B,s
t − K )

and the equilibrium price in zone B is given by:

PB
t =

aB0,tb
B
1,t − aB1,tb

B
0,t + aB1,tb

B
1,tK

B B (7)

b1,t − a1,t
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Note that under market splitting, the energy traded is
. Obviously, K = Q A,s

t − Q A,d
t = Q B,d

t − Q B,s
t .

By contrast with the linear case, in the logistic case,
it is not possible to obtain closed-form solutions. How-
ever, conditions under which an equilibrium exists can be
provided. Proposition 1 summarizes those conditions:

Proposition 1. When the supply and demand curves follow
logistic functions similar to those in Eqs. (2) and (4) and the
parameters involved meet the following conditions for every
h:

(i) a1,t and a2,t have opposite signs.
(ii) b1,t and b2,t have the same sign.

(iii)

a2,t < 0, a1,t > 0 b2,t > 0, b1,t > 0
⇒ a0,t < b0,t + b1,t

a2,t < 0, a1,t > 0 b2,t < 0, b1,t < 0
⇒ a0,t < b0,t

a2,t > 0, a1,t < 0 b2,t > 0, b1.t > 0
⇒ a0,t + a1,t < b0,t + b1,t

a2,t > 0, a1,t < 0 b2,t < 0, b1,t < 0
⇒ a0,t + a1,t < b0,t

.

(iv) a0,t − b0,t >
b1,t

1+e
b2,t b3,t
2

+
a1,t

1+e
a2,t a3,t
2

there exists a unique equilibrium pair (P⋆
t ,Q

⋆
t ).

Proof. Parameter restrictions (i) and (ii) are needed to
ensure that the demand (supply) curve is decreasing (in-
creasing). The slope of the logistic demand is given by:

dPt
dQt

= a1,ta2,t
e−a2,t(Qt−a3,t)(

e−a2,t(Qt−a3,t) + 1
)2

Therefore, given that sign

⎛⎝ e−a2,t(Qt−a3,t)(
e−a2,t(Qt−a3,t)+1

)2

⎞⎠ > 0,

dPt/dQt < 0 only if either a1,t > 0 and a2,t < 0 or a1,t < 0
and a2,t > 0.
The slope of the logistic supply is given by:

dPt
dQt

= b1,tb2,t
e−b2,t(Qt−b3,t)(

e−b2,t(Qt−b3,t) + 1
)2

Therefore, given that sign

⎛⎝ e−b2,t(Qt−b3,t)(
e−b2,t(Qt−b3,t)+1

)2

⎞⎠ > 0,

dPt/dQt > 0 only if either b1,t > 0 and b2,t > 0, or
b1,t < 0 and b2,t < 0.
Moreover, conditions (iii) and (iv) are required to guar-
antee that the demand curve is above (below) the supply
function when Qt → 0 (Qt → ∞). In the former case
(demand curve above supply curve), note that ai,t ̸= 0 and
bi,t ̸= 0, for i = 1, 2, 3, 4, so the limit prices as Qt → 0
are:

lim
Qt→0

(
a0,t +

a1,t
1 + exp

(
−a2,t

(
Qt − a3,t

)))
= a0,t +

a1,t( )

1 + exp a2,ta3,t
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lim
Qt→0

(
b0,t +

b1,t
1 + exp

(
−b2,t

(
Qt − b3,t

)))
= b0,t +

b1,t
1 + exp

(
b2,tb3,t

)
That is,

a0,t − b0,t >
b1,t

1 + exp
(
b2,tb3,t

) −
a1,t

1 + exp
(
a2,ta3,t

)
In the latter condition (demand curve below supply curve)
the results depend on conditions (i) and (ii).
Consider the demand: If a2,t < 0, given that a1,t >

0, limQt→∞

(
a0,t +

a1,t
1+exp(−a2,t(Qt−a3,t))

)
= a0,t , for any

alue of a3,t . If a2,t > 0, given that a1,t < 0, limQt→∞

a0,t +
a1,t

1+exp(−a2,t(Qt−a3,t))

)
= a0,t + a1,t , for any value of

3,t .
onsider the supply: If b2,t > 0, given that b1,t > 0

then limQt→∞

(
b0,t +

b1,t
1+exp(−b2,t(Qt−b3,t))

)
= b0,t + b1,t ,

for any value of b3,t . If b2,t < 0, given that b1,t < 0,
limQt→∞

(
b0,t +

b1,t
1+exp(−b2,t(Qt−b3,t))

)
= b0,t , for any value

of a3,t .
Therefore, there are four possibilities:

a2,t < 0, a1,t > 0 b2,t > 0, b1,t > 0
⇒ a0,t < b0,t + b1,t

a2,t < 0, a1,t > 0 b2,t < 0, b1,t < 0
⇒ a0,t < b0,t

a2,t > 0, a1,t < 0 b2,t > 0, b1,t > 0
⇒ a0,t + a1,t < b0,t + b1,t

a2,t > 0, a1,t < 0 b2,t < 0, b1,t < 0
⇒ a0,t + a1,t < b0,t

4. Estimation of the LinX-Model and the LogX-Model

We estimate the parameters of the LinX-Model and the
LogX-Model as follows6:

• Fit hourly demand functions as defined in Eqs. (1)
and (2) on purchasing complex offers. The initial
values taken for the intercept comprise the amount
of electricity demanded at the maximum price set by
law P = e180.3/MWh, say Q d

min,t . This is a measure
of the intensity of demand because it is the lowest
possible sale of electricity to end consumers. From
the hourly fits, two sets of parameters emerge: in
the linear case, â0,t and â1,t ; in the logistic case, â0,t ,
â1,t , â2,t , and â3,t .

• Fit hourly supply functions as defined in Eqs. (3) and
(4) on selling complex offers. The initial values taken
for the intercept comprise the amount of electricity
supplied at the minimum price set by law P = 0
e/MWh, say Q s

min,t . This is a measure of the mini-
mum quantity that suppliers are willing to offer in
order to sell on the market. From the hourly fits, two
sets of parameters emerge: in the linear case, b̂0,t
and b̂1,t ; in the logistic case, b̂0,t , b̂1,t b̂2,t , and b̂3,t .

6 In our work, we use Mata-Stata and Matlab sofware.
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• Use the fitted values of the parameters of the LinX-
Model and the LogX-Model to obtain the fitted de-
mand and supply curves.

• Compute the equilibrium prices, named LinX-prices
and LogX-prices, for each model and each market
zone.

5. Forecasting models

5.1. Data transformation and congestion dummy

We control for the seasonality typically observed in
lectricity prices. For each variable, price, or estimated
oefficient, we subtract the median of the monthm, day of
the week d, and hour of the day h (see Ciarreta & Zarraga,
017; Ullrich, 2012).
Logarithm transformation is commonly used to im-

rove the accuracy of forecasting models by reducing
pike severity and consequently stabilizing the variance
see Fig. 4). However the de-median price series record
lose to zero and negative values, so logarithm trans-
ormation is not feasible. Therefore, based on Uniejew-
ki et al. (2018), we apply a normal probability integral
ransformation (NPIT),7 which is constructed using the
mpirical cumulative distribution as an approximation of
he unknown true distribution of the time series.

t = Φ−1 (̂Fz (zt)
)

where z is the (de-median) price or (de-median) esti-
mated coefficient, Φ−1 is the inverse of the standard
normal CDF, and F̂z is the empirical cumulative distribu-
tion of z. Hence, the inverse of the transformation enables
untransformed variables to be recovered:

zt = F̂−1
z

(
Φ
(̃
Pt
))

The purpose of these transformations is to improve the
accuracy of forecasting models.8

As explained above, market integration means that
there is a single price when there are no transmission con-
straints, but there are different prices when there is mar-
ket splitting. A congestion dummy is therefore included
to account for the possibility of market splitting:

Ct =

{
1 if P sp

t ̸= Ppt
t

0 otherwise

}

7 These transformations smooth the time series, improving the
forecast performance. Several other VST transformations can be used,
but the NPIT provides the best results. For markets where there are
many hours with zero or close-to-zero prices, Díaz and Planas (2016)
proposed a new algorithm based on the Nataf transformation that was
validated by numerical results. This was the case for the MIBEL in their
sample period, but for our sample period, this is not the case.
8 As Uniejewski et al. (2018) mention, the NPIT does not re-

quire normalizing the variables. In our study, we applied the NPIT
transformation to deseasonalized variables and original variables. The
results did not change significantly, and we report the results with
deseasonalized variables.
 S
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5.2. Benchmark time series price forecasting models

We estimate several commonly used models of price
forecasting using prices as covariates to check the robust-
ness of our approach. Recall that at 12:00 CET on every
day d of the year, the day-ahead market session is held,
where prices are set at the same time for each hour h of
the next day d + 1.

Based on the structure of price formation in the Iberian
market, we use two forecast approaches. The first consid-
ers the hourly time series (the forecast is one hour ahead)
and the forecasts for day d are computed recursively. The
price forecast for h = 1 is used as an explanatory variable
to make the prediction for hour h = 2, and so on until h =

24; we denote the models estimated using this approach
by Model-t. In the second approach, forecasting is one
tep ahead for the daily time series of each given hour;
hus, the forecast for day d for hour h does not depend on
he previous hourly prices of the same day, and models
stimated accordingly are denoted by Model-d-h.
When agents place their bids, there is no information

as to whether there is market coupling or market splitting.
We build the ad hoc dummy assuming that agents assign
a probability of congestion based on the average observed
over the previous seven days: C̄t =

∑168
i=1

Ct−i
168 for Model-t

types, and C̄d,h =
∑7

i=1
Cd−i,h

7 for Model-d-h types.9
The following models are estimated for the observed

time series of prices, LinX-prices, and LogX-prices, for
Spain and Portugal.

1. Naive model: This is a basic forecast model based
on past realizations of the price where no dummies
are included. Following Nogales and Conejo (2006),
we estimate:

P̃d,h = P̃d−1,h  
One-day lag

+ϵd,h (8)

which we call Naive. The forecast error is given by
the difference between the two prices.10

2. AR models: We follow Ziel and Weron (2018) and
estimate two different standard autoregressive pro-
cess models. A congestion dummy is also included.
First,

P̃t = β0 +

p∑
i=1

βiP̃t−i  
Autoregressive effects

+ βp+1C̄t  
Congestion dummy

+εt (9)

9 This is a useful ad hoc construction. We also constructed the
congestion dummy with different numbers of lags and found that the
results did not change significantly. However, some information was
added when the models were estimated.
10 There are alternative naive models that could be used. One
consists of including as the forecast of Pd,h the price one week
before, Pd−7,h . Another instead uses Pd−1,h for Mondays, Saturdays, and
undays, and Pd−7,h for the other days (Ziel & Weron, 2018). However,
hese two models do not outperform the one proposed in our study.
o we only report forecasts based on Eq. (8).
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which we call AR-t.11 We consider the maximum
order pmax = 168 of the autoregressive parameters
βi, which corresponds to a maximum of one week
in the time series. The selection seeks to balance the
tradeoff between parsimony and goodness of fit.12
We also estimate the following model:

P̃d,h = βh,0 +

qh∑
i=1

βh,iP̃d−i,h  
Autoregressive effects

+ βh,qh+1C̄d,h  
Congestion dummy

+εd,h

(10)

which we call AR-d-h, for each h = 1, . . . , 24.
These models are estimated for each Spanish and
Portuguese price and for the observed price, LinX
price, and LogX price, separately. Optimal lags, p
and qh, are chosen using the Akaike information
criterion (AIC).

3. Vector autoregressive (VAR) models: These are
stochastic process models that capture the linear
interdependencies between multiple time series.
They follow from the fact that the price in Spain
and the price in Portugal are determined simulta-
neously. We estimate a VAR model of order p with
a congestion dummy as an exogenous variable as
follows:

P̃t = B0 +

p∑
i=1

BiP̃t−i + Bp+1Ct + Et (11)

where P̃t is the 2 × 1 vector of prices, B0 is a (2×1)
vector of intercepts, Bi is a time-invariant (2 × 2)
matrix, one for each lag i = 1, . . . , p, Bp+1 is a
(2 × 1) vector of congestion dummies, and εt is a
(2 × 1) vector of error terms. We call this model
VAR-t. We also estimate the following model:

P̃d,h = Bh,0 +

qh∑
i=1

Bh,iP̃d−i,h + Bh,qh+1Cd,h + Ed,h (12)

where P̃d,h is the 2 × 1 vector of prices, Bh,0 is a
(2 × 1) vector of intercepts, Bh,i is a time-invariant
(2× 2) matrix, Bh,qh+1 is a (2× 1) vector of conges-
tion dummies, and εd,h is a (2 × 1) vector of error
terms, for each h = 1, . . . , 24. We call this model
VAR-d-h.

4. ARX model: This model is based on the fARX model
proposed by Ziel and Weron (2018):

11 We also estimated a parsimonious AR model within the class
of Expert models, as suggested in Ziel and Weron (2018) for MIBEL.
However, the model did not outperform the more general AR(p) model.
So we do not report the results for it. Those results are, however,
available upon request as supplementary material.
12 We tested lags of up to one month, but there was overfitting,
and the out-of-sample forecasts were frequently worse. As such, we
decided to restrict the maximum number of lags to seven days.
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P̃d,h = β +

24∑
h=1

p∑
i=1

βh,iP̃d−i,h  
Autoregressive effects

+ βh,24p+1C̄d,h  
Congestion dummy

+εd,h

(13)

Unlike the previous models estimated, this one as-
sumes the existence of interdependencies between
hours. It is estimated using the lasso proposed by
Tibshirani (1996), where the penalty is obtained
using the adaptive lasso proposed by Zou (2006).
In general, the lasso shrinks to zero the coefficients
of those explanatory variables which are redundant
in models that have rich structures, such as (13). In
particular, we chose the adaptive lasso because it is
a sequence of cross-validation lassos, where each is
at least as parsimonious as the previous one.

5.3. Coefficient forecasts of the LinX-Model and the LogX-
Model

We forecast the structural parameters of the LinX-
Model and the LogX-Model to obtain price forecasts. In
this case, prices are forecasted in two stages: first, we
forecast the structural parameters of both models; then,
we obtain equilibrium prices as the intersection of the
demand and supply functions of the LinX-Model and the
LogX-Model. Recall that in the LinX-Model, there are four
parameters for forecasting for each hour and each market:
Y =

(
a0,h, a1,h, b0,h, b1,h

)
. In the Log-Model, there are

eight: Y = (a0,h, a1,h, a2,h, a3,h, b0,h, b1,h, b2,h, b3,h). We
estimate the same family of models as for prices, except
for the Naive model.

1. AR models: These models involve estimating each
structural parameter separately, so for each param-
eter y ∈ Y , we estimate the following models:

ỹt = γ0+

p∑
i=1

γĩyt−i  
Autoregressive effects

+ γp+1C̄t  
Congestion dummy

+εt (14)

which we call AR-Coef-t. We also consider the
same maximum order of p to be 168. This selection
is based on the similar time structure of prices and
coefficients.

ỹd,h = γh,0 +

qh∑
i=1

γh,ĩyd−i,h  
Autoregressive effects

+ γh,qh+1C̄d,h  
Congestion dummy

+εd,h

(15)

which we call AR-Coef-d-h, for each h = 1, . . . , 24.
Optimal lags are chosen using the AIC.

2. Vector autoregressive (VAR) models:
The VAR model differs depending on what assump-
tions are made on the interaction between demand
and supply. Based on the theoretical model, we
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estimate the demand and supply parameters sepa-
rately for each market. That is, we use the informa-
tion contained in previous values of the structural
parameters estimated to forecast future values. The
vector autoregressive (VAR) model to be estimated
for every t and number of parameters J is:

ỹt = Γ0 +

p∑
i=1

Γĩyt−i + Γp+1Ct  
Congestion dummy

+Et (16)

where Γ0 is a (J × 1) vector of intercepts, Γi is
a time-invariant (J × J) matrix, one for each lag
i = 1, . . . , p, Γp+1 is a (J × 1) vector of congestion
dummies, and Et is a (J × 1) vector of error terms.
We call this model VAR-Coef-t.

ỹd,h = Γh,0 +

qh∑
k=1

Γh,ĩyd−i,h + Γh,qh+iCd,h  
Congestion dummy

+Ed,h

(17)

where Γh,0 is the (J × 1) vector of intercepts, and
Γh,i is a (J × J) and Ed,h is a (J × 1) vector of error
terms, for each h = 1, . . . , 24. We call this model
VAR-Coef-d-h.

3. ARX model:
This model has the same structure as (13) but for
coefficients.

ỹd,h = β
Constant

+

24∑
h=1

p∑
i=1

βh,ĩyd−i,h  
Autoregressive effects

+ βh,24p+1C̄d,h  
Congestion dummy

ϵd,h

(18)

We call this model ARX-Coef. Eq. (18) is also esti-
mated by adaptive lasso for each coefficient.

.4. Accuracy metrics

We measure the accuracy of all the models using
he mean absolute error (MAE), root mean square error
RMSE), and Theil’s U statistic (Theil’s U). These scale
easures are useful when comparing different forecasting
ethods applied to data with the same scale. The RMSE is
ased on the square root of the weighted daily difference
n the squared deviation between the observed price and
he predicted price:

MSE =

√ 1
T

T∑
t=1

[
1
H

H∑
h=1

(
Pt,h − P̂t,h

)2]
. (19)

The RMSE has the benefit of penalizing large errors. The
MAE is based on the weighted daily difference in the
deviation in absolute value between the observed price
and the predicted price:

MAE =
1
T

T∑[
1
H

H∑⏐⏐Pt,h − P̂t,h
⏐⏐] (20)
t=1 h=1
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This measure fails to punish large errors in prediction.
Theil’s U statistic can be considered the RMSE of the fore-
cast model divided by the RMSE of the naive model, given
by P̃t,h = Pt−1,h. It takes a value of 1 if the forecasting
ethod is no more accurate than a naive forecast. If it is

ess than 1, the forecasting method is more accurate than
naive forecast, and vice versa:

heil′s U =

√∑T
t=1

((
Pt,h − P̂t,h

)
/Pt,h

)2∑T
t=1

((
Pt,h − P̃t,h

)
/Pt,h

)2 (21)

inally, we perform the Diebold–Mariano test (Diebold
Mariano, 1995) to determine whether forecasts differ

ignificantly between pairs of models. We anticipate the
ossibility that different models may have similar values
n the selected error measures, in which case it cannot be
oncluded that one model is superior to the other. Given
he observed series of prices, Pt,h, and two competing
redictions, P̂1

t,h and P̂2
t,h, we select the mean absolute

error as the loss criterion.13 The null hypothesis is that
the two forecasts have the same accuracy.

6. Empirical results

We carry out our analysis for the period from January
1st, 2015 to December 31st, 2019 using data published by
(OMIE, 2015–2019) . We begin with the in-sample prop-
erties of the structural parameters estimated, in order to
test the goodness of fit of each model. Then, we forecast
prices using a rolling window approach.

6.1. LinX-Model and LogX-Model estimation

Before estimating the model, we summarize the extent
of market coupling/splitting during the sample period, be-
cause this affects the forecast of the structural parameters.
Table 1 reports yearly average prices and the percentage
of the hours of the year, %H, at which there is either mar-
ket coupling or market splitting (with standard deviations
reported in parentheses).

Throughout the sample period, there is market cou-
pling in around 94.13% of the trading hours. Market in-
tegration has increased greatly thanks to an increase in
interconnections that has reduced congestion between
two nodes.14 In 2007, the transaction capacity from (to)
Portugal to (from) Spain was in the range of 250–1700
MW (0–1600 MW), but by 2019, it had increased to 2400–
3200 MW (3400–3600 MW). Moreover, for the whole
sample, when there is market splitting, there are more
hours in which the price is higher in Spain (3.1%) than
in Portugal than vice versa (2.4%). This is the result of
the differences in the cost structures of the generation
systems in each country.

13 Other loss criteria, such as squared error or mean absolute
percentage error, could be used. In this paper, we restrict our analysis
to the mean absolute error.
14 In Fig. A.1, Appendix, we plot the time-varying correlation
coefficient between PSP and PPT during the sample period, where a
strong positive correlation in most time intervals becomes evident.
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Table 1
Market coupling and market splitting.
Year Coupling Splitting Splitting

%H PSP
= PPT %H PSP > PPT %H PSP < PPT

2015 97.58 50.67 0.14 53.96 51.89 2.28 35.14 39.78
(12.00) (8.16) (7.86) (17.71) (16.38)

2016 91.80 39.83 6.98 40.10 36.03 1.22 25.13 29.57
(14.97) (12.30) (12.84) (15.67) (15.00)

2017 93.31 52.83 2.19 62.67 59.77 4.50 34.81 41.57
(11.37) (11.84) (11.21) (15.44) (13.01)

2018 94.79 57.99 1.97 60.82 57.02 3.23 34.77 41.93
(12.06) (8.10) (9.35) (15.35) (10.89)

2019 94.83 47.89 0.99 44.45 42.53 4.18 43.64 48.59
(10.61) (22.21) (22.16) (12.01) (11.04)

%H: Percentage of hours of the year. PSP : Price in Spain. PPT : Price in Portugal.

Standard deviation in parentheses.
Fig. 5. Demand and supply fits. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)
ource: Own work.
We fit linear demand and supply functions (Eqs. (1)
nd (3)) and logistic demand and supply functions (Eqs.
2) and (4)) for each hour. There are hours where it is
ot possible to fit functional forms because there are not
nough block-bids in the selling bids, in the purchasing
ids, or in both. In particular, in the linear case, there
ust be at least two observations, and in the logistic case,

here must be at least four. This is not a problem in the
ase of market coupling, but in market splitting for the
ortuguese pole, there are 278 hours in which there are
ore than two but fewer than five block-bids. In those
ases, we use the linear fit rather than the logistic fit.
Fig. 5 plots observed complex demand bids (thin red

ines) and observed complex supply bids (thin blue lines)
gainst the linear and logistic fits (thick lines) at 9:00 p.m.
n September 12th, 2019 as a representative time and day
ith no transmission congestion. Recall that our goal is to

orecast prices in the day-ahead market, so only complex
ids are used in the estimation.
According to market activity rules, the method of con-

ection for both ascending and descending orders is
tairstep-up first. Given the estimated coefficients, we
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substitute the maximum total quantity for each bid price
in either functional form. As shown in Section 2, on
average there are fewer demand bids than supply bids.
In this particular example, there were 63 different prices
on the demand side and 228 on the supply side. This
explains the shape of the fitted curves in Fig. 5. The
observed price is e44.07/MWh, the price using the lin-
ear fits is e51.66/MWh (a difference in absolute value
of e7.59/MWh), and the price using the logistic fits is
e41.11/MWh (a difference in absolute value of
e2.96/MWh). To assess the goodness of fit for the whole
sample, Table 2 summarizes the estimated demand co-
efficients for each functional specification, Akaike infor-
mation criterion (AIC), and Bayesian information criterion
(BIC).15

Under the AIC and BIC, the linear demand fit outper-
forms the logistic demand fit for SP, PT, and MI, while the
logistic supply fit outperforms the linear fit. Recall that

15 Appendix, Table A.1 reports descriptive statistics of the complex
demand and supply bids. Summary statistics of the estimated demand
and supply coefficient fits under each functional specification are
available in Appendix, Table A.2.1 and Table A.2.2, respectively.
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Table 2
Goodness of fit.

Linear Logistic

Splitting Coupling– Splitting Coupling

SP PT MI SP PT MI

Supply

AIC 772.0 198.1 1052.0 547.5 192.9 822.8
BIC 777.3 200.4 1058.1 558.2 198.2 835.2

Demand

AIC 462.4 149.6 443.4 523.4 162.4 517.2
BIC 466.8 151.3 447.8 532.4 166.2 526.1

AIC: Akaike information criterion. BIC: Bayesian information criterion.
SP: Spain.
PT: Portugal. MI: Mibel. Mean values reported. Standard deviations in
parentheses.
Fits under market splitting (coupling) include 2427 (41,397) h.

the AIC and BIC penalize the inclusion of more parameters
to be estimated; the values of both criteria also depend
on the sample size, with BIC penalizing the inclusion of
parameters more than the AIC if the sample is large.16

Finally, Fig. 6 shows the time series of the coefficients
estimated under each specification. The first four figures
correspond to the coefficients of the LinX-Model, and
the following eight correspond to the coefficients of the
LogX-Model.

In short, these figures show time dependency in the
estimated coefficients no matter what functional speci-
fication is used. The dynamic nature of the coefficients
follows that of the prices (see Fig. 4).

Table 3 summarizes the yearly average observed prices
and average estimated prices using the LinX-Model and
the LogX-Model, respectively. The extent to which these
two specifications replicate market outcomes accurately
using goodness-of-fit measures is also assessed.17

Table 3 reveals differences in the fitting performance
of each model. Overall, the MAE and RMSE criteria indi-
cate that the LogX-Model outperforms the LinX-Model in
terms of price prediction. Observe that the standard de-
viations are lower for the LogX-Model than for the LinX-
Model. According to Theil’s U statistic, the logistic fit for
both poles and the linear fit for the Portuguese pole out-
perform the benchmark naive model as defined in (21).
Thus, in-sample analysis indicates that the LogX-Model
performs better than the LinX-Model.

6.2. Forecasts

Accuracy in forecasting electricity prices is critical to
reduce the risk of under- or overestimating revenue from
generators for power companies and costs for end-demand

16 These results hold at the hourly level. That is, on average, the
linear fit outperforms the logistic fit complex demand bids under both
criteria and, by contrast, the logistic fit outperforms the linear fit for
complex supply bids under both criteria. The results are available upon
request as supplementary material.
17 Table A.4 in Appendix reports the results of Kolmogorov–Smirnov
tests of the equality of distributions. For both functional form spec-
ifications, the null hypothesis of an equal distribution of prices is
rejected.
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providers, which in turn makes for better risk manage-
ment. Forecast errors have significant implications for
profits, market shares, and shareholder value in the short
run, and for regulatory dynamics in the longer term.

We use a two-year rolling window forecast approach.
January 1st, 2015 to December 31st, 2016 is the training
period for the models presented in Section 5.18 We then
forecast the prices for the period from January 1st, 2017
to December 31st, 2019 by adding one future observation
and removing the initial one until the end of the sample.19

Table 4 reports the forecasting performance of the
models using MAE and RMSE criteria for one-day-ahead
forecast of prices in Spain and Portugal. These two criteria
enable us to set up a ranking of the models. Panels (A)–(C)
refer to the time series models for the observed prices,
LinX-Model prices, and LogX-Model prices, respectively
(see Section 5.2). Panels (D) and (E) show the values when
prices are obtained as the intersection of the predicted
functional forms after forecasting the coefficients of these
models (see the models in Section 5.3).

We look first at the performance of the models in
panels (A), (B), and (C). We find that the family of naive
models for P, LinX-P, and LogX-P perform worse than
the rest of the models for the same variables. Note that
this is particularly true for the Naive LinX-P model. Naive
models do not capture price dynamics accurately. The
forecast performance of the models for P outperforms the
same model for LogX-P, which in turn outperforms that
for LinX-P. Under the MAE criterion, the best forecasting
model for prices in both poles is VAR-t P. However, the
RMSE criterion selects ARX P for the Spanish pole and
VAR-t P for the Portuguese pole.

A comparison of the forecast performance of the mod-
els in panels (D) and (E) shows that the LogX-Model
outperforms the LinX-Model. We therefore concentrate
our analysis on the models in panel (E). The MAE crite-
rion selects the VAR-Coef-d-h to forecast prices in the
Spanish pole and the ARX-Coef for the Portuguese pole.
The RMSE criterion selects instead VAR-Coef-t as the best
forecasting model.20

A comparison of panels (A) and (E) under the MAE and
for the Spanish pole shows that the VAR-Coef-d-h, where
the forecast is on the coefficients of the LogX-Model,
outperforms the other models. On average, the forecasting

18 We previously conducted augmented Dickey–Fuller (ADF) and
Phillips and Perron (PP) stationarity tests on the observed prices
and estimated parameters, respectively. Both tests rejected the null
hypothesis of a unit root. The results are reported in Table A.5.1 and
Table A.5.2 in Appendix.
19 There are determinants in the short-run functioning of the market
that can induce structural breaks. For instance, De Marcos et al. (2020)
show that the most significant dataset in the episodic, recurrent nature
of electricity dynamics may not be the most recent. We did not
implement their approach because it departs to a large extent from the
goal of the paper. Instead, we tried different window sizes (one year,
and six months) and found that the results did not change qualitatively.
We take this point for future research.
20 We apply the eigenvalue stability condition after estimating the
parameters of the different VAR models, as per Lütkepohl (2005). All
the eigenvalues lie inside the unit circle, so the models are stable
and the impulse-response functions can be interpreted. The results are
available upon request as supplementary material.
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Fig. 6. Time series of the Lin-X and Log-X models’ estimated coefficients.
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Table 3
Descriptive statistics for prices.

Observed LinX LogX

PSP PPT PSP PPT PSP PPT

2015 50.32 50.43 50.90 51.17 48.89 49.24
(12.37) (12.22) (14.98) (14.99) (12.59) (12.48)

2016 39.66 39.44 42.59 42.51 42.51 38.33
(14.90) (14.90) (15.32) (15.39) (14.73) (15.08)

2017 52.24 52.48 53.75 54.25 49.79 50.32
(12.28) (11.73) (15.11) (14.41) (12.58) (12.45)

2018 57.29 57.45 59.46 59.94 55.10 55.77
(12.80) (12.31) (17.45) (16.75) (12.25) (13.18)

2019 47.68 47.87 49.93 50.46 46.30 46.51
(10.88) (10.81) (14.14) (14.00) (10.61) (11.41)

RMSE 7.94 7.93 3.32 5.16
MAE 5.28 5.11 2.54 2.91
Theil-U 1.98 0.69 0.05 0.01

SP: Spain. PT: Portugal. MI: Mibel. LinX: Linear Fits. LogX: Logistic Fits.
RMSE: Root Mean Square Error. MAE: Mean Absolute Error.
Mean values reported. Standard deviations in parentheses.
Number of observations: 43824.
error is e2.51/MWh, compared to e3.36/MWh for VAR-
t P. In the case of the Portuguese pole, the ARX-Coef is
selected with the logistic fit and dominates the rest of the
models, with an average forecasting error of e2.89/MWh,
ompared to e3.71/MWh for VAR-t P. The RMSE criterion
esults are consistent with those of the MAE. Therefore,
ifferences in the performance are obtained with respect
o models that use only observed prices as covariates.
rom this criterion, our results favor using information
ontent on bid data to forecast electricity prices one day
head.
We perform the DM test, choosing the MAE as the

oss function for the null hypothesis of the same accuracy
f the different pairs of competing forecast models. We
ocus our discussion by presenting the results for the best
odels that use prices as covariates and those that use
oefficients as covariates. We then determine the best
rice models in panels (A), (B), and (C). In this case, under
he DM, the models selected are VAR-t P, VAR-d-h P,
nd ARX P. From the coefficient models in panels (D)
nd (E), VAR-Coef-t LogX-P, VAR-Coef-d-h LogX-P, and
RX-Coef LogX-P are selected. Tables 5 and 6 report the
tatistics (p-values in parentheses) for Spain and Portugal,
espectively. Note that a negative test result means that
he model in the row performs better than the model in
he column.

Our results support the superiority of the LogX-Model
ith respect to the rest of the models. To forecast electric-

ty prices in the Spanish pole, the VAR-COEF-t LogX-P, the
VAR-COEF-d-h LogX-P, and the ARX-COEF-d-h LogX-P are
the preferred models. For the Portuguese pole, there are
no significant differences in forecasting ability between
the VAR-COEF-d-h LogX-P and the ARX-COEF-d-h LogX-P
models.

Finally, we provide accuracy results for the whole fore-
casting period from January 1st, 2017 to December 31st,
2019, showing how the different models perform on an
hourly basis. We select the best models (green in Table 4):
VAR-t P, VAR-d-h P, ARX P, VAR-Coef-t LogX-P, VAR-Coef-
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Table 4
MAE and RMSE for the considered models.

Spain Portugal

MAE RMSE MAE RMSE

Naive P 5.33 7.87 5.11 7.38
AR-t P 3.88 5.23 3.72 6.12

(A) AR-d-h P 4.27 6.18 4.44 6.01
VAR-t P 3.36 5.11 3.71 4.98
VAR-d-h P 4.16 5.76 4.23 6.07
ARX P 3.57 5.07 3.82 5.98

Naive LinX − P 8.69 11.3 8.37 10.85
AR-t LinX − P 5.36 6.23 5.21 7.11

(B) AR-d-h LinX − P 6.11 7.49 6.14 7.03
VAR-t LinX − P 5.12 6.99 5.19 6.89
VAR-d-h LinX − P 5.98 6.98 6 7.23
ARX LinX − P 5.26 6.11 5.23 6.27

Naive LogX − P 6.06 8.37 6.21 9.12
AR-t LogX − P 4.67 5.97 4.98 6.52

(C) AR-d-h LogX − P 5.55 7.1 5.46 6.46
VAR-t LogX − P 4.38 6.03 4.88 5.97
VAR-d-h LogX − P 5.21 6.02 5.34 6.89
ARX LogX − P 4.49 5.89 4.96 6.23

AR-Coef-t LinX − P 6.88 9.73 7.23 7.77
AR-Coef-d-h LinX − P 6.05 8.92 5.29 7.28

(D) VAR-Coef-t LinX − P 5.99 8.65 4.57 6.23
VAR-Coef-d-h LinX − P 4.94 6.12 4.48 6.01
ARX-Coef LinX − P 4.98 6.09 4.12 5.89

AR-Coef-t LogX − P 4.89 5.73 5.03 6.01
AR-Coef-d-h LogX − P 3.98 6.31 3.81 4.91

(E) VAR-Coef-t LogX − P 2.79 3.38 3.97 3.29
VAR-Coef-d-h LogX − P 2.51 3.44 2.90 3.81
ARX-Coef LogX − P 2.73 3.49 2.89 3.76

d-h LogX-P, and ARX-Coef LogX-P. In Fig. 7, panel (a) is
for the Spanish pole, and panel (b) for the Portuguese
pole.

To summarize, we found that the LogX-Model im-
proves price forecasting with respect to time series mod-
els of prices. That is, fitting hourly logistic curves as de-
fined in Eqs. (2) and (4) and then forecasting coefficients
using several time series models to obtain equilibrium
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Table 5
DM for Spain.

Naive P VAR-t P VAR-d-h P ARX P VAR-Coef-t LogX-P VAR-Coef-d-h LogX-P ARX-Coef LogX-P

Naive P 18.25 10.12 13.41 22.32 26.42 21.98
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

VAR-t P −5.12 −2.16 7.36 11.22 8.14
(0.000) (0.031) (0.000) (0.000) (0.000)

VAR-d-h P 4.32 8.91 9.12 8.33
(0.000) (0.000) (0.000) (0.000)

ARX P 5.96 6.08 5, 65
(0.000) (0.000) (0.000)

VAR-Coef-t LogX-P 1.68 0.96
(0.093) (0.337)

VAR-Coef-d-h LogX-P −1.12
(0.263)

ARX-Coef LogX-P
Table 6
DM for Portugal.

Naive P VAR-t P VAR-d-h P ARX P VAR-Coef-t LogX-P VAR-Coef-d-h LogX-P ARX-Coef LogX-P

Naive P 12.26 8.98 10.11 8.67 21.23 18.77
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

VAR-t P −4.43 −2.28 −1.46 11.22 12.14
(0.000) (0.023) (0.144) (0.000) (0.000)

VAR-d-h P 4.32 3, 98 8.12 8.43
(0.000) (0.000) (0.000) (0.000)

ARX P −1.59 10.12 8, 65
(0.112) (0.000) (0.000)

VAR-Coef-t LogX-P 3.04 3.75
(0.002) (0.001)

VAR-Coef-d-h LogX-P 0.62
(0.535)

ARX-Coef LogX-P
Fig. 7. MAEs for each of the 24 h.
prices is an accurate alternative approach to price fore-
casting.

7. Conclusions

In recent years, electricity price forecasting using de-
mand and supply curve-based methods has become a hot
topic in the literature because of the significant economic
implications of developing more accurate models. There
1267
are several advantages to using such approaches. One
of their main strengths is that they reflect the mecha-
nism of the so-called system marginal price, connecting to
basic market principles and enabling real market behav-
ior to be captured, with complicated dependencies and
nonlinear properties that are hard to observe in other
model approaches. Considering that the demand and sup-
ply curves change over time, this information may help to
capture price movements from the shape of these curves.
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Such methods in price forecasting are also becoming in-
creasingly popular because of the availability of auction
data.

Our research revisited the topic of price forecasting
ased on real auction data from sale and purchase curves
n electricity markets. The main novelty of this work was
o propose a curve fitting approach to historical hourly
emand and supply data in order to forecast electricity
rices on the Iberian electricity market. The use of linear
nd logistic functions for the demand and supply curves
or each hour replicated equilibrium prices accurately.
hese fits performed well at replicating observed data and
apturing the linear and nonlinear characteristics of elec-
ricity prices to estimate prices. The out-of-sample fore-
asting study showed that these models are useful tools
or forecasting prices; in particular, the logistic model
utperformed the more simple linear approach.
Our study can be further expanded in several direc-

ions. The proposed methodology can be applied to other
lectricity markets with similar market designs. This is
articularly evident for those markets involved in the
rice Coupling of Regions initiative. Structural models
pecific to those markets can be estimated thanks to the
ncreasing availability of data published by the respective
arket operators.
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ppendix

.1. Descriptive statistics of complex bids, prices, and fitted
rices

Table A.1 summarizes information on the structure of
emand and supply offers. Dh measures the mean (stan-

dard deviation) demand at hour h at the price cap of
e180.3/MWh. This is a measure of price-inelastic demand.
Dh measures the mean (standard deviation) equilibrium
demand at hour h. Sh measures the mean (standard de-
iation) supply at hour h at e0/MWh, i.e. the minimum
illingness to make supply offers. Sh measures the mean
standard deviation) equilibrium supply at hour h. Market
ules do not set a price cap for supply offers, but the
emand price cap works as an effective cap on supply
1268
Table A.1
Descriptive statistics of complex bids.
Source: OMIE and own work.

SP PT MI

Demand Dh
15183.5
(3286.8)

6027.5
(1810.6)

20335.1
(4375.6)

Dh
21564.9
(3399.7)

6726.9
(1576.8)

26871.1
(4740.1)

Dh/Dh 0.70 0.90 0.76

Block-bids 73
(16)

18
(7)

71
(14)

Supply Sh
12885.2
(2047.6)

3326.9
(1343.7)

15583.8
(2614.3)

Sh
21564.9
(3399.7)

6726.9
(1576.8)

26871.1
(4740.1)

Sh/Sh 0.60 0.49 0.58

Block-bids 120
(54)

27
(20)

174
(64)

Fig. A.1. Rolling correlation between PSP and PPT .

offers. Finally, we report the average number (standard
deviation) of complex block-bids because these are used
to set the equilibrium price.

When there is market splitting, the average number
of block-bids is lower in Portugal than in Spain. This is
related to the market size effect. Regardless of whether
there is market coupling or market congestion, the av-
erage number of supply block-bids is higher than the
average number of demand block-bids because there are
substantially fewer purchasers than suppliers of electric-
ity. The ratio of the intensity of demand to the maximum
potential demand is high, at close to one in Portugal,
which means that demand is quite inelastic.

In a uniform-price auction system, the intersection
between demand and supply offers (X-Model) determines
the equilibrium price and the equilibrium quantity for
each hour, under either market coupling or market split-
ting (see Section 3 on modeling market curves). In the
former case, the equilibrium price is the same in both
markets, and in the latter, it is different. The level of inte-
gration over time between the two markets can be illus-
trated by plotting the rolling window correlation between
observed system marginal prices in Spain and Portugal
(see Fig. A.1). The choice of the window is W = 168,
equivalent to seven days, rolling every hour.
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Table A.2.1
Summary statistics of demand fits.
Coefficient Linear Logistic

Splitting Coupling Splitting Coupling

SP PT MI SP PT MI

â0 361.4 1537.2 409.0 24.78 36.68 34.52
(55.48) (1274.6) (74.67) (26.01) (33.19) (24.73)

â1 −0.0154 −0.2134 −0.0138 194.85 1518.0 182.5
(0.0034) (0.1632) (0.0034) (49.86) (1172.9) (45.29)

â2 . . . −0.0004 −0.0024 −0.0004
(0.0018) (0.0932) (0.0161)

â3 . . . 16069.8 5889.2 19889.6
(4143.5) (2186.6) (7054.2)

PT: Portugal. MI: Mibel. Mean values reported. Standard deviations in parentheses.
Fits under market splitting (coupling) include 2427 (41,397) h.
Table A.2.2
Summary statistics of supply fits.
Coefficient Linear Logistic

Splitting Coupling Splitting Coupling

SP PT MI SP PT MI

b̂0 −103.8 −80.2 −110.0 0.0875 −9.0915 −1.7998
(64.92) (241.45) (49.64) (4.66) (18.72) (5.97)

b̂1 0.0072 0.0219 0.0027 44.16 55.28 51.95
(0.0042) (0.0526) (0.0027) (13.38) (27.69) (16.96)

b̂2 . . . 0.0020 0.0128 0.0013
(0.0016) (0.0382) (0.0011)

b̂3 . . . 18275.4 4538.8 21909.7
(2596.03) (1774.07) (3681.95)

PT: Portugal. MI: Mibel. Mean values reported. Standard deviations in parentheses.
Fits under market splitting (coupling) include 2427 (41,397) h.
Table A.3
Jarque–Bera normality tests statistics on de-median variables.
Variable ES PT MI
P 2989∗∗∗ 2594∗∗∗ 2884∗∗∗

a0 3.2e+04∗∗∗ 1.3e+07∗∗∗ 3.8e+05∗∗∗

a1 1.6e+04∗∗∗ 6.8e+06∗∗∗ 2.1e+04∗∗∗

b0 4.9e+05∗∗∗ 3.7e+09∗∗∗ 5.4e+06∗∗∗

b1 3.2e+05∗∗∗ 9.1e+09∗∗∗ 6.6e+06∗∗∗

α0 3552∗∗∗ 1.1e+04∗∗∗ 9662∗∗∗

α1 4232∗∗∗ 2.6e+10∗∗∗ 1.6e+5∗∗∗

α2 1.1e+04∗∗∗ 1.2e+07∗∗∗ 1.3e+05∗∗∗

α3 882.2∗∗∗ 5537∗∗∗ 2215.2∗∗∗

β0 1.7e+06∗∗∗ 8.8e+06∗∗∗ 2.2e+06∗∗∗

β1 1.5e+04∗∗∗ 3.2e+04∗∗∗ 1.8e+04∗∗∗

β2 4.5e+05∗∗∗ 2.0e+10∗∗∗ 6.5e+06∗∗∗

β3 666.6∗∗∗ 3.0e+04∗∗∗ 1.1e+04∗∗∗

*** 1% critical value.

Table A.4
Kolmogorov–Smirnov test results.

Linear Logistic

D p-value D p-value

PPT 0.123 0.000 0.001 1.000
EPPT

−0.007 0.462 −0.101 0.000
Combined K-S 0.123 0.000 0.101 0.000

PSP 0.099 0.000 0.001 0.982
EPSP

−0.046 0.000 −0.085 0.000
Combined K-S 0.0996 0.000 0.085 0.000

D: Difference between the distribution functions.
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Table A.5.1
ADF stationarity test, Z(t).
PSP

−8.422∗∗∗

PPT
−8.030∗∗∗

Linear Logistic

SP PT SP PT

a0 −9.393∗∗∗
−17.963∗∗∗

−7.282∗∗∗
−7.451∗∗∗

a1 −13.085∗∗∗
−18.615∗∗∗

−8.247∗∗∗
−24.018∗∗∗

a2 −18.868∗∗∗
−21.180∗∗∗

a3 −7.649∗∗∗
−8.429∗∗∗

b0 −15.079∗∗∗
−16.699∗∗∗

−15.557∗∗∗
−16.563∗∗∗

b1 −14.855∗∗∗
−21.405∗∗∗

−8.369∗∗∗
−8.320∗∗∗

b2 −15.746∗∗∗
−21.792∗∗∗

b3 −14.210∗∗∗
−16.634∗∗∗

1% critical value: −3.960. 5% critical value: −3.410. 10% critical value:
−3.120.

Observe that the correlation coefficient is close to one.
The minimum is 0.7 and the maximum is 1. Moreover, in
31,294 of the 43,657 windows, the correlation is strictly
greater than 0.99, which means strong positive correla-
tion in most time intervals.

A.2. Summary statistics of demand and supply fits

See Tables A.2.1 and A.2.2.

A.3. Normality tests

We perform a goodness-of-fit test of whether the data
have skewness and kurtosis that match those of a normal
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Table A.5.2
PP stationarity tests, Z(p) and Z(t).
PSP

−1183.192∗∗∗
−24.523∗∗∗

PPT
−1148.485∗∗∗

−24.155∗∗∗

Linear Logistic

SP PT SP PT

a0
−6789.6∗∗∗

−59.2∗∗∗

−41336.0∗∗∗

−151.1∗∗∗

−25308.3∗∗∗

−113.7∗∗∗

−34441.1∗∗∗

−132.7∗∗∗

a1
−3461.1∗∗∗

−42.2∗∗∗

−39903.6∗∗∗

−148.4∗∗∗

−54666.9∗∗∗

−167.6∗∗∗

−31487.6∗∗∗

−152.5∗∗∗

a2
−53027.9∗∗∗

−177.8∗∗∗

−62852.3∗∗∗

−196.0

a3
−1051.1∗∗∗

−23.1∗∗∗

−8813.3∗∗∗

−67.1∗∗∗

b0
−31238.3∗∗∗

−127.3∗∗∗

−33796.3∗∗∗

−133.5∗∗∗

−61606.0∗∗∗

−180.4∗∗∗

−70322.6∗∗∗

−206.7∗∗∗

b1
−29879.2∗∗∗

−124.5∗∗∗

−22793.4∗∗∗

−112.6∗∗∗

−13258.9∗∗∗

−82.3∗∗∗

−21722.1∗∗∗

−105.4∗∗∗

b2
−16185.2∗∗∗

−92.2∗∗∗

−46902.0∗∗∗

−172.8∗∗∗

b3
−3503.7∗∗∗

−42.5∗∗∗

−20192.3∗∗∗

−103.5∗∗∗

1% critical value for Z(t): −3.960. 5% critical value for Z(t): −3.410. 10% critical value for
Z(t): −3.120.
A

B

B

istribution. It is a joint hypothesis of the skewness being
ero and the excess kurtosis being zero.
Conclusion: According to the Jarque–Bera test, the

ull hypothesis that prices and estimated parameters
re drawn separately from normal distributions can be
ejected.

.4. Kolmogorov–Smirnov test of the equality of prices and
itted prices

The goal is to determine whether prices, LinX prices,
nd LogX prices are the result of the same distribution
unction, so the Kolmogorov–Smirnov two-sample test of
he equality of distributions is performed, where the null
ypothesis is the equality of distributions.21 Table A.4
eports the results of this Kolmogorov–Smirnov test.

The first line tests the hypothesis that the system
arginal price contains lower values than the estimated

inear or logistic figures. The largest difference between
he distribution functions is 0.123 with a p-value of 0.000
n the linear case, which is significant, and 0.001 with
p-value of 1.000 in the logistic case, which is not sig-
ificant. The second line tests the hypothesis that the
ystem marginal price contains higher values than the
stimated linear or logistic figures. The largest difference
etween the distribution functions in this direction is
.007 with a p-value for this small difference of 0.462 in
he linear case, which is not significant, and 0.101 with a
-value of 0.000 in the logistic case, which is significant.
inally, the approximate p-value for the combined test is
.000 in both cases. The p-value is lower than the chosen
ignificance level of 0.01, so the null hypothesis of the
qual distribution of prices is rejected.

21 We also performed (Goldman & Kaplan, 2018) equality of distri-
bution tests. The results did not differ significantly from those of the
Kolmogorov–Smirnov tests, and are available upon request.
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A.5. Stationarity test

Augmented Dickey–Fuller (ADF ) test: The null hy-
pothesis is that there is a unit root (non-stationary) and
the alternative hypothesis is no unit root (stationary). The
null hypothesis is rejected for a given significance level
when the test statistic is lower than the corresponding
critical values. The Bayesian information criterion (BIC)
determines the optimal lag-length.

Conclusion: According to the ADF, the prices and es-
timated parameters are stationary. Therefore, the VAR
methodology can be used.

Phillips and Perron (PP) test: The null hypothesis is
that the variable contains a unit root, and the alternative
is that a stationary process generated the variable. The
PP test also involves fitting the previous model equation,
so the results are used to calculate the test statistics.
Phillips and Perron propose two alternative statistics. The
PP test statistics are seen as a Dickey–Fuller-type statistic
robust to serial correlation by using the Newey and West
(1987) heteroskedasticity- and autocorrelation-consistent
covariance matrix estimator.

Conclusion: According to PP, the prices and estimated
parameters are stationary. The VAR methodology can thus
be used.
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