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A B S T R A C T   

In the present work, a general theoretical analysis is presented and novel mathematical expres
sions are derived to obtain the cohesive law of adhesive joints under mixed-mode loading. 

It is theoretically stated that the mixed-mode truss-like cohesive laws, where the stress vector is 
forced to be parallel to the displacement vector, cannot adequately describe the fracture process 
when the displacement path is non-linear. 

Finally, an experimental proof is given to show that in a Mixed Mode Bending test the dif
ference between the phase angles of the stress vector and displacement differential vector must be 
taken into account when the displacement path becomes nonlinear, so that the cohesive stress will 
no longer be a function only of the magnitude of the displacement.   

1. Introduction 

In layered structures as adhesive joints, composite or sandwich structures, mixed mode fracture is often observed along interfaces 
due to anisotropy of the material or the loading conditions. 

The cohesive zone model (CZM) is an effective tool to describe the delamination and debonding in layered structures. 
Firstly introduced by Dugdale [1] and Barenblatt [2], in the CZM the fracture is modeled as a gradual phenomenon that relies on a 

traction separation law, assumed as the constitutive law of the material, which describes the failure behavior of the material [3]. The 
extension of the damaged zone is called the fracture process zone (FPZ). 

Since Needleman [4] incorporated a mode I CZM in a continuum mechanics numerical model, the use of cohesive laws has been 
widely spread in finite element models to simulate the failure of layered materials and structures [5,6,7,8] and has been generalized to 
account for mixed mode fracture [9,10,11,12,13,14]. 

When accounting for mixed mode fracture, the fracture process zone is subjected to normal and tangential relative displacements. 
Thus, the general idea is that the law that describes the fracture process relates the cohesive stress vectors across the crack surfaces to 
the relative displacement vectors between those surfaces [15]. 

The mixed mode cohesive laws can be classified in different ways [16], for instance: Coupled/Uncoupled cohesive laws depending 
on whether the normal and shear stresses depend only on their corresponding displacement or not, respectively, or; path-indepen
dent/path- dependent depending on whether they can be derived from a potential function or not. 
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For path-independent mixed-mode cohesive laws, the work of the cohesive tractions depends only on the normal and tangential 
separations and not on the history of the relative displacements between surfaces. 

Recently, Goutianos [17] has provided experimental evidences confirming that considering path independence in unidirectional 
composites with large-scale fracture process zones is a reasonable assumption. 

Concerning the experimental determination of the cohesive law in mixed mode, Sørensen et al, [18,19,20] developed the method 
originally proposed by Suo et al. [21] to determine the cohesive laws and extended it to mixed mode I/II [22,23]. The data analysis 
involves a fitting procedure to determine an approximate potential function so that the cohesive stresses can be determined by partial 
differentiation. 

Nomenclature 

Acronyms 
CZM The cohesive zone model 
MMB Mixed-mode bending test 
FPZ Fracture Process Zone 
DIC Digital Image Correlation 
ECL Equivalent Crack Length approach 

Latin alphabet 
B Mixed mode ratio 
b specimen width 
c loading lever length 
D damage variable 
E11, E22, E33 longitudinal, in-plane and out-of-plane elastic moduli, respectively 
G12 in-plane shear modulus 
G13, G23 out-of-plane shear moduli 
g glue line 
2h total thickness of the specimen. 
J fracture resistance (work of cohesive stresses) 
Jc fracture energy 
JI mode I part of the work of cohesive stresses 
JII mode II part of the work of cohesive stresses 
K penalty stiffness of bi-linear cohesive law 
L half-span of specimen 
P applied load at the lever arm 
T Stress vector perpendicular to the integration path Γ 
w Strain energy density 
u Displacement vector. 

Greek alphabet 
Γ Integration path 
Δn Opening displacement at the crack tip 
Δn0 Opening displacement for damage initiation 
Δnf Opening displacement for complete failure 
Δt Shear-displacement at the crack tip 
Δt F Shear displacement at the crack tip associated with the onset of frictional effects 
Δt0 Shear-displacement for damage initiation 
Δtf Shear-displacement for complete failure 
θ phase angle of the cohesive stresses vector 
Θ rotation angle at A, B, C and D; positive in counterclockwise direction 
λ Displacement at the crack tip 
λlin Limit of the linear region of displacement path at the crack tip 
λF Displacement at the crack tip associated with the onset of frictional effects 
μ Cohesive stress 
σ Cohesive normal stress 
σ0 Peak of the cohesive normal stress 
τ Cohesive shear stress 
τ0 Peak of the cohesive shear stress 
φ Phase angle of the displacement differential vector 
ψ Phase angle of the displacement vector  
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Sarrado et al. [24] applied the direct method to analyze experimentally the effect of the bond configurations on the cohesive laws in 
both pure modes I and II and mixed mode I/II. The cohesive laws were computed assuming that the resulting mixed mode cohesive 
stress is solely a function of the magnitude of the total displacement at the crack tip. 

Recently, Oliveira et al. [25] presented a study that addresses the experimental identification of the mixed mode cohesive law of 
Pinus Pinaster. Assuming the linearity of the displacement path during the mixed mode test and the existence of a potential function, the 
mixed mode cohesive law is directly computed. 

The objective of the present work is to develop a new general approach to experimentally obtain the cohesive law of an adhesive 
layer under mixed-mode loading. The method is based on the J-Integral and it does not require an initial assumption of path linearity or 
data-fitting procedure. 

The paper is organized as follows; in Section 2, the theoretical background is presented and the mathematical expression to obtain 
the mixed mode cohesive law is elicited. In Section 3, the specific case of truss-like cohesive laws is analyzed and the conditions that 
must fulfill are defined. In Section 4, the experimental Mixed Mode Bending Test (MMB) and the data reduction method applied are 
presented to study the cohesive law for mixed mode I/II fracture of different bond configurations. In Section 5, results of the measured 
displacement path, the evaluated J integral and the determined cohesive law are presented and the effects of the path non linearity and 
its source are discussed. Finally, concluding remarks are presented in Section 6. 

2. J Integral and the cohesive law 

The path independent J-integral, developed by Rice [26] can be used to calculate the fracture resistance J during the crack growth. 

J =

∫

Γ

[

wdy − T
∂u
∂x

ds
]

(1) 

In which w is the strain energy density; T is the stress vector perpendicular to the integration path Γ; and u is the displacement 
vector. 

By evaluating the path independent J integral locally around the cohesive zone, yields [22]: 

J =

∫ Δn

0
σdΔn +

∫ Δt

0
τdΔt (2) 

where σ, τ, Δn and Δt are the cohesive normal stress, shear stress, opening and shear displacement at the crack tip, respectively as 
shown in Fig. 1. 

The result of the integral J Eq. (2) is the work per unit fracture area of the cohesive stresses. When the fracture process zone is fully 
developed, Δn and Δt reach critical values and the cohesive stresses are equal to 0, and the J is equal to the work of separation, Jc, called 
fracture energy. 

If it is assumed that the cohesive stress components are derived from the potential function J, what implies that dJ is an exact 
differential, from Eq. (2) it yields, 

∇
→

J = μ→(Δn,Δt) σ =

[
∂J

∂Δn

]

Δt

τ =

[
∂J
∂Δt

]

Δn

(3) 

Eq. (3) implies that the work performed by the cohesive stresses is displacement path independent, i.e. it only depends on the 
current displacement and not on the displacement history. 

Defining μ→ as the cohesive stress vector and λ
→ as the displacement vector at the crack tip 

μ→= σî + τ̂j λ
→

= Δn î + Δt ĵ (4) 

Eq. (2) can be written as the following dot product [27]: 

Fig. 1. Fracture process zone under mixed mode crack tip displacement. A) Definition of normal, tangential and total crack tip displacement. B) 
Integration path for the J integral. 
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J =

∫ λ

0
μ→ ⋅ d λ

→
=

∫ λ

0
μ dλ cos(θ − φ) (5) 

where θ is the phase angle of the cohesive stresses vector and φ is the phase angle of the displacement differential vector as shown in 
Fig. 2, defined as: 

θ = arctan
(τ

σ

)
φ = arctan

(
dΔt

dΔn

)

(6) 

According to Eq. (5), the cohesive stress can be determined as: 

μ(λ, θ,φ) = dJ
dλ

1
cos(θ − φ)

(7) 

According to Eq. (7), it can be concluded that for the magnitude of the cohesive stress, μ, to be a uniquely a function of the 
magnitude of the displacement, λ, the cohesive stress vector and the differential displacement vector should be parallel i. e. θ = φ . 

In general, assuming that θ ∕= φ, it is necessary to evaluate both phase angles in order to obtain the cohesive stresses, as depicted in 
Fig. 3. 

The displacement fields at the crack tip can be measured [24] or obtained based on a specific data reduction method [29,36–38], so 

the φ = arctan
(

dΔt
dΔn

)
is assumed to be known. 

It should be noted that as shown in Fig. 3, the phase angle of the displacement vector (ψ) and the phase angle of the differential 
displacement vector (φ) are different in general terms. 

On the other hand, since we do not know the explicit function of J as a function of Δn and Δt, i.e. the surface J(Δn , Δt) is unknown, we 
cannot perform the partial derivatives in Eq. (3) to obtain the stress components and consequently the phase angle θ. Being mode I and 
mode II independent fracture modes [28,29], the normal and shear components of the cohesive stress can be obtained from dJ =

dJI +dJII = σdΔn +τdΔt as: 

σ =
dJI

dΔn
τ =

dJII

dΔt
(8) 

Being B the global mixed mode ratio defined as B = JII
J , the following relation can be obtained 

dJII

dJI
=

τ
σ

dΔt

dΔn
=

BdJ + JdB
(1 − B)dJ − JdB

= tanθtanφ (9) 

The relation between the phase angle of the cohesive stress vector and the phase angle of the displacement differential vector with 
the mixed mode ratio evolution shown in Eq. (9) must be satisfied at any point within the cohesive zone. 

If the global mixed mode ratio remains constant during the test, Eq. (9) becomes in: 

dJII

dJI
=

τ
σ

dΔt

dΔn
=

B
(1 − B)

(10) 

Therefore, according to Eq. (6) and Eq. (10), the phase angle of the cohesive stresses can be derived as: 

θ = arctan
(τ

σ

)
= arctan

(
B

(1 − B)
dΔn

dΔt

)

(11) 

Thus the normal and shear components of the cohesive stress vector, Eq. (7), can be derived in terms of displacement path as: 

σ =
dJ
dλ

cos(θ)
cos(θ − φ)

τ =
dJ
dλ

sin(θ)
cos(θ − φ)

(12) 

From the above Eq (10), it follows that, if global mixed mode ratio remains constant, the variation of the phase angles θ and φ are 
inversely proportional. Therefore, even if the stress vector and displacement vector are not parallel, a linear displacement field φ =

Fig. 2. Schematic definition θ and φ, where y is the opening direction and x the shear direction, see Fig. 1.  
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ψwill be the one that provides the minimum difference in phase angles and consequently, the cosine value closest to one. The analysis is 
valid for coupled and uncoupled cohesvie laws, as Eq. (8) is valid for both cases. 

3. Truss-like cohesive law 

The truss-like mixed mode cohesive laws are constructed using energy based interpolation between pure modes I and II according 
to two interaction criteria: one for the initiation of the failure and another for the complete failure. 

According to Goutianos et al [16] for bilinear truss like mixed mode cohesive laws (Fig. 4) that are derived from a potential 
function, the cohesive stress, μ, must be only a function of the magnitude of the displacement, λ 

μ(λ) = dJ
dλ

(13) 

If this assumption is fulfilled, then the phase angle of the cohesive stress vector,θ and the phase angle of the opening displacement 

vector ψ = arctan
(

Δt
Δn

)
must be identical for any point within the cohesive zone, θ = ψ . i.e., the stress vector must follow the crack tip 

displacement vector as: 

σ = K(1 − D)Δn τ = K(1 − D)Δt (14) 

where K is the penalty stiffness and D the damage variable. 
Then, the condition that must be fulfilled for Eq. (7) and Eq. (13) to be equal is that the phase angle of the cohesive stress vector,θ, 

and the phase angle of the crack tip displacement differential vector φ must be identical: 

θ = φ ⇒ tanθ = tanφ ⇒
τ
σ =

dΔt

dΔn
(15) 

Combining Eq. (14) and Eq. (15) yields to 

τ
σ =

Δt

Δn
=

dΔt

dΔn
(16) 

According to Eq. (16), assuming that the evolution of the fracture energy is only dependent on the magnitude of the displacement, i. 
e.cos(θ − φ) = 1, implies the linearity of the displacement path. 

Being B the global mixed mode ratio, replacing the condition of Eq. (16) in Eq. (9) yields: 

Fig. 3. Schematic definition ψ and φ.  

Fig. 4. Schematic illustration of truss-like bi-linear cohesive laws (normal and tangential directions).  
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dJII

dJI
=

(
dΔt

dΔn

)2

=
(τ

σ

)2
=

(
Δt

Δn

)2

=
BdJ + JdB

(1 − B)dJ − JdB
(17) 

If the global mixed mode ratio remains constant, Eq. (17) is reduced to: 

τ
σ =

Δt

Δn
=

dΔt

dΔn
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B

(1 − B)

√

(18) 

Being the components of the opening displacement vector: 

Δn =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − B)

√
λ

Δt =
̅̅̅
B

√
λ

(19) 

And the components of the cohesive stress vector: 

σ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − B)

√
μ

τ =
̅̅̅
B

√
μ

(20) 

In summary, Eq. (16) implies that for truss like cohesive laws, the cohesive stress magnitude can be derived from a potential 
function only when the displacement path is linear. Therefore, the subsequent equations will only be valid in the case of a linear 
displacement path. 

From this we conclude, as did Goutianos et al. [16], that if the displacement path is not linear, to assume that the stress vector is 
parallel to the displacement vector is not correct; in other words, the truss-like cohesive laws do not allow to adequately describe the 
fracture process when the displacement path is not linear. 

4. Experimental work 

4.1. Material and specimen configuration 

The specimens tested were secondary bonded joints made of T800S/M21 carbon/epoxy unidirectional prepreg glued by a FM-300 
epoxy adhesive film. An initial 60 mm long artificial crack was created by inserting a Teflon insert at one of the ends. 

All the specimens had the following dimensions: a nominal length of 250 mm and a nominal width b = 25 mm. Specimens with 
different adherend and adhesive thicknesses were tested as shown in Table 1. The elastic properties of the adherends are E11 =

134.7GPa, E22 = E33 = 7.7GPa and G12 = G13 = 4.2GPa [24]. 

4.2. MMB fracture test 

Mixed-mode bending test (MMB) depicted in Fig. 5, was performed to characterize the adhesive under mixed mode fracture. 
The MMB tests were carried out based on the procedure described in the ASTM D6671M-13 test standard [30]. All the tests were 

carried out on a support with a span length of 2L0 = 150 mm, and an initial crack length of 40 mm was set to assess the full development 
of the FPZ before the damaged zone reached the loading point. 

The MMB lever arm was set for each particular test depending on the specimen thickness and the aimed mixed-mode ratio. 
The MMB tests were run under displacement control in a servohydraulic MTS 858 testing machine using a 5 kN load cell. 
The displacement rate was varied from 0.5 mm/min to 2.0 mm/min in order to get a constant strain rate for each specimen 

thickness and to ensure quasi-static crack growth. The displacement refers to the crosshead displacement of the testing machine. 
The specimens were painted with a random black on white speckle pattern in one edge to measure the displacement at the crack tip 

using a Digital Image Correlation (DIC) system with a theoretical spatial resolution of 0.06 μm for the tests performed. 
Four NA3-30 capacitive dielectric liquid-based inclinometers from SEIKA Mikrosystemtechnik GmbH were installed at load 

introduction points (points A, B, C and D in Fig. 5). The measurement range of the inclinometers was of ± 30⁰, and a resolution below 
0.005⁰ [24].The rotations, crosshead displacements and load were continuously recorded while the FPZ was being developed [31]. 

Table 1 
Specimen configurations being g the position of the Teflon insert [24], t is the adhesive thickness and 2 h the total specimen 
thickness.  

Specimen 2h (mm) Layup t (mm) 

A1T1 3.12 ± 0.06 [0]8/g/[0]8 0.21 ± 0.02 
A2T1 4.60 ± 0.08 [0]12/g/[0]12 0.21 ± 0.02 
A2T2 4.80 ± 0.10 [0]12/g/[0]12 0.37 ± 0.01 
A3T1 6.05 ± 0.23 [0]16/g/[0]16 0.21 ± 0.02  
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4.3. Data reduction method 

J, JI and JII are obtained according to the closed form solutions presented by Sarrado et al. [32] based on the measured rotations and 
the load: 

J =
P
b

[(
1
2
−

C
2L

)

ΘA +

(
1
2
+

C
2L

)

ΘB +

(
C
L

)

ΘC −

(

1 +
C
L

)

ΘD

]

JI =
P
2b

[(
3C
2L

−
1
2

)

(ΘC − ΘA)

]

JII =
P
b

(
1
2
+

C
2L

)[

ΘB − 2ΘD +
1
2
(ΘA + ΘC)

]

(21) 

Where b is the specimen width, c is the loading lever length, L is the half-span of specimen and 2 h is the total thickness of the 
specimen. P is the absolute value of the applied load at the lever arm and Θ is the rotation angle at the points A, B, C and D as shown in 

Fig. 5. Schematic of the MMB specimen.  

Fig. 6. Load Displacement curves a) MMB50% and b) MMB75%  
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Fig. 5, being positive the rotation in counterclockwise direction. 
The crack tip displacement was monitored by DIC system at the initial crack tip position. 
Finally, the cohesive stresses without neglecting the phase difference θ-φ were determined according to Eq. (7) 
The cohesive stresses assuming truss-like behavior neglecting the phase difference θ-φ were determined according Eq. (13). 

5. Results and discussion 

Four different specimen configurations have been tested combining two adhesive thicknesses and three adherend thicknesses in 
two mixed mode ratios 50% and 75%. 

The load displacement curves of 8 tests are presented in Fig. 6. As it can be seen, unstable crack propagation was obtained for A3T1 
specimens from the MMB 50% test. It was not possible to obtain the complete cohesive law from these specimens, as the FPZ had not 
been fully generated when a sudden crack propagation occurred. 

The J-λ curves shown in Fig. 7 have been computed as described in section 4.3, where the fracture energy is determined according 
to Eq (21), replacing the applied load at the lever arm and the measured rotation angles at A, B, C and D. The crack tip displacement λ is 
the Euclidean norm of the normal and shear displacements measured by DIC. 

Regarding the crack tip displacement field, Fig. 8 shows the displacement path corresponding to MMB 50% on the left and MMB 
75% on the right. 

As depicted in Fig. 8, the displacement path is nonlinear for all the conducted mixed-mode tests. It is noticeable that fracture is 
shear dominant during the first stages of crack growth and progressively changes to normal as damage grows. A similar evolution of the 
displacement path has already been reported experimentally [33] and numerically [34,35]. 

Furthermore, Fig. 8 shows that the evolution of the crack tip displacement path is significantly dependent on the adherend 
thickness for the MMB 75% test, but not on the adhesive thickness (Fig. 8b). This dependence is practically nonexistent for the MMB 
50% test (Fig. 8a). 

Fig. 7. J vs. crack tip displacements of (a) the MMB 50% tests conducted and (b) the MMB 75% tests conducted.  

Fig. 8. Crack tip displacement path (a) the MMB 50% tests conducted and (b) the MMB 75% tests conducted.  
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Cohesive laws determined by Eq. (13) for MMB 50% and MMB 75% are shown in Fig. 9a and 9b, respectively. 
According to Fig. 9, the effect of adhesive and adherend thickness on the fracture toughness is only noticeable for the MMB 75% 

test, as for the J(λ) curve depicted in Fig. 7b. 
Both mixed mode ratios show a remaining cohesive stress for large crack tip displacement that may be indicative of friction at the 

fractured interface [24] or friction due to the FPZ being extended to the midpoint loading position of the MMB specimens as a result of 
the long FPZ inherent to the adhesive high toughness. The steady value of the cohesive stress is higher for MMB 75%. 

In order to analyze the effect of displacement path nonlinearity on the cohesive law, Figs. 10 and 11, show the evolution of Cos− 1(θ- 
φ) corresponding to MMB 50% and MMB 75%, respectively, for all the tested configurations. 

At a first glance, Figs. 10 and 11 show two regions clearly differentiated. 

Fig. 9. Cohesive laws for applied mixed-mode ratio of a) 50% and b) 75%.  

Fig. 10. Evolution of Cos− 1(θ-φ) for applied mixed-mode ratio of 50%, being the dashed lines the trend curves.  
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• The first 0 < λ < λlin , where θ ~ φ and Cos− 1(θ-φ) ≅ 1, corresponds to the linear part of the displacement path. This region arises at 
the first stage of the test and extends up to a limiting value of the crack tip displacement λlin.  

• The second region λlin < λ, where θ ∕= φ and Cos− 1(θ-φ) > 1, corresponds to the nonlinear part of the displacement path. A closer 
look at this region shows that for a given value of λF, the evolution of Cos− 1(θ-φ) varies for both the MMB 50% and 75% tests. 

Analyzing the early stages of the test and the λlin for both MMB 50% and 75%, it can be seen that for MMB 50%, the cohesive law 
behaves a truss like at a crack tip displacement magnitude λlin = 0.03–0.04 mm while for MMB 75% this phenomenon occurs for λlin =

0.04–0.05 mm, regardless of the specimen configuration. 
In order to analyze the effect of the adhesive thickness and the adherend thickness on the evolution of Cos− 1(θ-φ) in detail, Fig. 12a 

Fig. 11. Evolution of Cos− 1(θ-φ) for applied mixed-mode ratio of 75% being the dashed lines the trend curves.  

Fig. 12. Evolution of Cos− 1(θ-φ) for MMB75 a) Adhesive thickness effect b)Adhered thickness effect.  
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shows the evolution of Cos− 1(θ-φ) for different adhesive thicknesses corresponding to the specimens A2T1 and A2T2 for MMB75%. In 
Fig. 12b the evolution of Cos− 1(θ-φ) for different adherend thicknesses corresponding to the specimens A1T1, A2T1 and A3T1 for 
MMB75% is depicted. Similar results have been obtained for MMB50%. 

According to Fig. 12a and 12b, the adhesive and adherend thickness effect on λlin is either nonexistent or small enough to fall 
within the experimental accuracy. 

This lead to the hypothesis that the loss of linearity in the displacement path may be an inherent effect of the MMB test that takes 
place when the tested material system exhibits a large Fracture Process Zone or high plastic deformations at the crack tip. 

In order to develop this idea, the model based on the Equivalent Crack Length approach (ECL) is considered [36,37,38]. 
ECL is a beam theory based method that assumes that every effect associated to the damage development is included in the 

equivalent crack length obtained based on the compliance variation. 
According to this approach, the normal component of the displacement at the crack tip Δn is a cubic function of the equivalent crack 

advance (Δae) [36] while the shear component of the displacement at the crack tip Δt is a quadratic function [36,37]. 
Assuming as damage parameter the equivalent crack advance, in a first stage, when the equivalent crack advance is small Δae 

3,2 

≪<≪Δae, both the normal and the shear component of the crack tip displacement are first order functions of Δa , thus according to the 
ECL, the displacement path is linear, giving rise to Cos− 1(θ-φ) = 1 and a truss-like behavior. 

However, as damage develops, the failure process zone increases, which according to ECL model gives rise to a large Δae that causes 
the two functions of different order Δn and Δt to vary differently, giving rise to the φ variation and accordingly to Cos− 1(θ-φ) > 1. 

To support the conclusion in the previous paragraph, Fig. 13 shows the lever displacement compliance with respect to the crack tip 
displacement magnitude for the specimen A1T1 for MMB75. 

According to compliance based methods [36 37 38], the equivalent crack advance is directly related to the variation of the 
compliance. Fig. 13 shows that the compliance undergoes a slight variation in the early stages of the test, which implies a small 
equivalent crack advance, up to a crack tip displacement value matching with the aforementioned limit of the linear displacement path 
λlin. It can be seen that from this point onwards, the variation of the compliance increases, which implies a larger crack advance and the 
consequent nonlinearity of the displacement path. 

Therefore, when the tested material system presents a Fracture Process Zone or plastic deformations at the crack tip that exceed a 
certain size associated with a Δae , the displacement path will lose linearity once the threshold is exceeded, regardless the final size of 
the FPZ that depends on the specimen configuration (eg. different adherend or adhesive thickness). Taking a look at the evolution of 
Cos− 1(θ-φ) in the nonlinear region, the curve shows a change of trend for a value λ = λF which can be explained by the presence of 
friction. According to Figs. 10 and 11, for a mixed mode ratio of 50%, λF = 0.06–0.07 mm while for a mixed mode ratio of 75% this 
phenomenon occurs for λF = 0.07–0.08 mm, regardless of the specimen configuration. 

In order to prove the assumption of frictional effects, the shear stress component vs. the shear displacement component curves are 
depicted in Fig. 14 comparing results of MMB50% and MMB 75% with the pure Mode II ENF test results [24]. 

All the curves in Fig. 14 show a change in the softening tendency with the emergence of a remanent stress, which can be related as 
mentioned above, with the presence of friction in the fractured interface or friction because of the extension of the FPZ to the midpoint 
loading position, which increases with increasing the mode II ratio. 

The values of λ corresponding to those values of Δt shown at Fig. 14 at which the effects of friction arise, coincide with the λF defined 
above for all the tested configurations. 

Fig. 13. Lever displacement compliance (mm/N) vs crack tip displacement magnitude for the specimen A1T1 for MMB75.  
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Fig. 14. Shear stress component for applied mixed-mode ratio of 75%, 50% and Pure Mode II. a) A1T1 upper left; b) A2T1 upper right; c) A2T2 
bottom left y d) A3T1 bottom right. 
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Fig. 15. Evolution of the displacement path of A1T1 for MMB50 on the left and A1T1 for MMB75 on right.  

Fig. 16. Cohesive laws for applied mixed-mode ratio of 50%, results based on Eq. (7) in orange and results from Eq. (13) in blue for the following 
specimens: Upper left: A1T1; Upper right: A2T1; Bottom Left: A2T2; Bottom Right: A3T1. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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In order to give confirmation evidence, the displacement paths of the specimens A1T1 MMB 50% and A1T1 MMB 75% are plotted 
in Fig. 15. Three regions delimited by the experimentally determined λlin y λF displacement values are fitted to linear and quadratic 
polynomial curves, respectively. 

According to Fig. 14a the stress steady value arises at Δt = 0.042 mm for the MMB50 and Δt = 0.055 mm for the MMB 75 and the 
corresponding λF values are λF = 0.066 mm and λF = 0.074 mm, respectively. 

On the other hand, the λlin values of the specimens A1T1 are λlin = 0.038 mm for the MMB50 and λlin = 0.048 mm for the MMB75. 
The fitting equation and the corresponding correlation parameter R of each region are shown in Fig. 15. The correlation is excellent. 
Finally, the cohesive laws determined by Eq. (7)and Eq. (13) for the mixed mode ratio of 50% and 75% are compared in Figs. 16 and 

17, respectively. 
Figs. 16 and 17 show that, as deduced theoretically, the assumption of truss-like behavior is valid at the early stages of damage, 

where FPZ is still small and the displacement path is linear. It is noticeable that, for both MMB 50% and MMB 75%, and for all the 
tested configurations, the cohesive laws determined from Eq (7) and Eq (13) are identical up to λlin. Beyond this value, as the fracture 
zone develops, the displacement path becomes nonlinear and the difference between the phase angles θ and φ increases. Consequently, 
the behavior moves away from truss-like. As regards the remaining stress associated with friction, although it does not tend to the same 
value in both cases, the effect appears for the same λF values. 

Fig. 17. Cohesive laws for applied mixed-mode ratio of 75%, results based on Eq. (7) in orange and results from Eq. (13) in blue for the following 
specimens: Upper left: A1T1; Upper right: A2T1; Bottom Left: A2T2; Bottom Right: A3T1. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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6. Concluding remarks 

It is theoretically set that truss like cohesive laws, where the stress vector is forced to be parallel to the displacement vector, cannot 
describe appropriately the fracture process when the displacement path is not linear. 

An experimental proof is given to show that in a MMB test the assumption of truss like behavior is valid at the early stages of the 
damage, where FPZ is still small and the displacement path is linear. Beyond this value, as the fracture zone develops, the displacement 
path becomes nonlinear and the difference between the phase angles θ and φ increases, consequently the behavior moves away from 
truss-like. 

The main implications are twofold: the first one is that truss-type cohesive laws, although advantageous due to their simple-to- 
apply formulation, can lead to differences in the predicted overall maximum load even under Linear Elastic Fracture Mechanics 
conditions, due to the non-linearity of the displacement path. 

The second one is related to the experimental determination of the mixed mode cohesive law. It is concluded that if the 
displacement path becomes nonlinear, the difference between the phase angles of the stress vector and the displacement differential 
vector must be taken into account, so that the cohesive stress will no longer be a function only of the magnitude of the displacement. 
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