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Abstract

This note focuses on ordering two families of rank-dependent poverty measures in terms of their distribution-sensitivity. It has
been proved that a real value, between 1/2 and 1, called orness, which is assigned to every rank-dependent poverty measure, can
be interpreted as a distribution-sensitivity indicator. Therefore, the rank-dependent poverty measures can be classified in terms
of their distribution-sensitivity using the orness value assigned to them. This ranking has already been carried out for numerous
poverty measures. However, two families of poverty measures, the Kakwani and the S-Gini families, which are defined for every
real parameter larger than one, have only been ranked for natural values of their parameters. This note broadens the classification
of these families for every real parameter larger than one, that is, for every member of these two families. It also provides a ranking
between the two families for the same parameter. It concludes that for higher values of the parameter, the families will be more
sensitive to the bottom part of the distribution. Furthermore, for the same value of the parameter, the Kakwani index will be more
sensitive to poor incomes than the S-Gini index. In addition, we will see that the proposed ranking for the two families in terms of
the orness value will be analogous to other distribution-sensitivity criteria existing in the literature.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the literature, it is widely accepted that an income increase of a poor individual should decrease poverty, namely
the monotonicity axiom. In addition, Kakwani [19] argues that a poverty measure should be more sensitive to what
happens among the bottom levels of the distribution and he proposes some sensitivity axioms related with income
increments and income transfers. This means that poverty measures should be more sensitive to income increments
the lower that income is. With respect to income transfers, it is widely accepted that an income transfer from a better-
off poor individual to a worse-off poor one, namely the transfer principle, should decrease poverty, see Sen [23]
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and [24]. In this case, the degree of distribution-sensitivity imposed by the transfer principle is minimal, since the
distributional improvement produced by the transfer does not involve the loss of the mean income, see Chakravarty
[9] and Zheng [30]. Nevertheless, the poverty measures go beyond transfer principle and most of them are able to
tolerate some sacrifices of the mean income in return for a distributional improvement. Moreover, we want to note
that there exist poverty measures that are able to sacrifice higher mean income values than others, for a distributional
improvement. That is, the satisfaction of this property will depend on the amount of the mean loss.

There are numerous papers in the literature that offer poverty measures’ rankings according to their distribution-
sensitivity to income increments/decrements, or to different income transfers, see Zheng [31], Bosmans [8], Aristondo
and Ciommi [2]. More recent papers analyze the distribution-sensitivity of poverty measures using the Shapley
method. Datt [12] studies the case of multidimensional poverty measures and Aristondo [1] offers the ranking of
many poverty measures not only in terms of their distribution-sensitivity but also in terms of their incidence and
intensity sensitivity.

In addition, Urrutia and Puerta [22] propose some new transfers that will be more sensitive to high incomes, that
is, at the top of the distribution.

Zheng [31] was the first to offer a theoretical method and a ranking for the class of subgroup-consistent poverty
measures in terms of their distribution-sensitivity. Bosmans [8] compares rank-dependent poverty measures in terms
of their distribution-sensitivity to two transfers called lossy transfers and lossy equalization transfers, which involve
the loss of the mean income as a consequence of distributional improvement. Aristondo and Ciommi [2] expand
Bosmans’ proposal to welfare functions and they also propose a new ranking criterion based on a mathematical value,
called orness, assigned to every welfare and poverty measure.

The orness value is a numerical value assigned to every ordered weighted averaging, or OWA, operator. The OWA
operators were introduced by Yager [26] as a new aggregation technique and in recent years they have received
great attention, and have been applied in different fields, such as decision making under uncertainty, fuzzy system,
welfare and so on (see Yager and Kreinovich [29], Fodor and Roubens [15], Yager [28], Garcia-Lapresta et al. [16],
Aristondo et al. [5] and [6] and Aristondo and Ciommi [3]). The orness of an OWA operator was also introduced with
the intention of offering a ranking of the OWA operators. This ranking classifies the OWA operators with regard to
their location between two extreme situations, the OR and the AND. The OR value is the maximum orness value,
and it means full compensation among criteria and the last minimum one. The AND means that a higher degree of
satisfaction of one of the criteria can compensate for a lower degree of satisfaction of another.

Aristondo and Ciommi [3] show that every rank-dependent poverty measure can be decomposed in terms of an
OWA operator, and then, an orness value can be assigned. Therefore, they show that all the rank-dependent poverty
measures can be classified in terms of their corresponding orness value. And following the orness definition, they
show that the orness value will be greater for higher weights applied to smaller income values, that is, the sensitivity
of the measures for low incomes would be higher for higher orness values. Consequently, Aristondo and Ciommi [3]
prove that the orness value assigned to every welfare and poverty index can be interpreted as a distribution-sensitivity
indicator. Additionally, they prove that for some specific welfare functions and poverty measures, those with linear
weights, the orness classification and the classifications offered by Bosmans [8], in terms of lossy transfers and lossy
equalizations, are equivalent.

Two of the poverty families classified according to Aristondo and Ciommi’s [2] orness classification are the Kak-
wani family [19] and the S-Gini family [25]. These two families are defined in terms of real parameters larger than
one. However, Aristondo and Ciommi [3] only provide an orness classification of these two families for natural val-
ues of the parameters. Therefore, the aim of this note is to extend the classification of these two families for all real
parameters greater than one, which is precisely the set where these two families are defined. In addition, we also offer
a ranking between the two families for the same value of the parameter.

With these orderings we will offer a classification of the two families according to the weights assigned to the
bottom of the distribution, that is, the individuals most affected by poverty. This will enable us to choose the most
appropriate measure for any empirical work.

The paper is organized as follows. Section 2 introduces aggregation functions, OWA operators and the orness
value. Section 3 is devoted to poverty measures, and more precisely to rank-dependent poverty measures and the way
they can be rewritten as OWA operators. In section 4 different distribution-sensitivity criteria are introduced and in
section 5 the orness classification for the two families is provided. Finally, section 6 offers some concluding remarks.
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2. Aggregation functions and OWA operators

In this subsection we begin with a brief summary of the basic notations about aggregation functions and OWA

operators.
Consider the [0, 1]" domain with n > 2. Vectors in [0, 1]" are denoted by x = (x1, ..., x,), with 1 =(1,...,1) and
0=(0,...,0). Given x,y € [0, 1]", by x >y we mean x; > y; for Vi € {1,...,n}, and by x >y we mean x >y and

x #y. For x € [0, 11", the non-decreasing and non-increasing form of the vector are denoted as x(1) < --- < x(,) and
X[1] = -+ > X[n], respectively. And the arithmetic mean of x € [0, 1]" is denoted by w(x) = (x1 +--- 4+ x,)/n.
Then, we define an aggregation function.

Definition 1. A function A : [0, 1]* — [0, 1] is called an n-ary aggregation function if it is monotonic' and A(0) =0,
A =12

An ordered weighted averaging operator is a particular case of an aggregation function, hereafter OWA operator,
introduced by Yager [26].

n

Definition 2. Given a vector of weights w = (wy, ..., wy) € [0, 1]" satisfying > w; = 1, the OWA operator associ-
i=1

ated with w is the aggregation function A, : [0, 1]* — [0, 1] defined as follows,

Aw®) =Y w; xp - (1)
i=1

And every OWA operator has an assigned numerical value called orness.

Definition 3. Given an OWA operator A,, associated with a system of weights w = (wy, ..., w,) € [0, 1]" satisfying

n
> w; = 1, the orness of an OWA operator is defined as follows,
i=1

n .
n—i
orness(Ay) = 21: — w; . 2)
=
The maximum orness value is obtained with the weights w = (1,0, - - - , 0), that is orness(w) = 1, while the min-
imum orness value is obtained with weights w = (0,0, --- , 1) and gives orness(w) = 0. The average, orness(w) =
1/2, is obtained with weights w = (1/n, 1/n,---,1/n). The OWA operators with monotonic weights are either or-

like or and-like. Accurately, for non-increasing weights w; > wy > --- > w, we have or-like OWA operators, while
for non-decreasing weights w; < wy < --- < w, we obtain and-like OWA operators.

3. Poverty measures and rank-dependent poverty measures

Firstly, we present some notations, basic definitions and axioms about poverty measures.

Consider a population of n > 3 individuals. An income vector distribution is defined as x = (xy, ..., x,) where
x; € Ry is the income of the i-th individual and D = | J,.3 R", , represents the set of all distributions. The poverty
line is defined as z € Ry 4; and an individual i € {1,...,n} is defined as poor if x; < z and as non-poor if x; > z.
We denote Q = Q(x;z) ={i € {l,---,n}:x; <z}, and g = g(x; z) the set and the number of poor individuals,
respectively, where n > g > 2. The total distribution mean is defined as @ (x) = (x1 + - - - + x,,)/n. With the intention
of analyzing the individual shortfall, normalized gaps are defined as g; = max { %, 0] and the normalized gap

vector is denoted by g = (g1, ..., g») Which is defined in [0, 1]". Without loss of generality, any x € D is ordered in

1" A is monotonic if x >y = A(x) > A(y), forallx,y € [0; 1]". Given X,y € D,by x>y we mean x; > y; Vi € {1,--- ,n}.
2 In what follows, the n-arity is omitted whenever it is clear from the context.
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a non-decreasing way; x| < --- < x,. Consequently, the normalized gaps of the poor are defined in a non-increasing
way; g1 > - > gq.

Once the poor individuals are defined, we need to aggregate individual poverty values in order to obtain a global
poverty value.

Definition 4. A poverty measure is defined as a non-constant function P(x; z) : D x R4+ — [0, 1] that measures the
poverty level associated with the distribution x and the poverty line z.

A number of axioms are usually assumed for a poverty measure, see other papers [30], [4] and [17].

e Focus axiom (F): P(y; z) = P(x; z) whenevery € D is obtained from x € D by a change to a non-poor individual
that is also non-poor after the change.

e Replication Invariance axiom (RI): P(y; z) = P(x; z) whenever y € D is obtained from x € D by a k replication,

f—f%
thatisy = (x, ..., x) forsome k € N.

o Symmetry axiom (S): P(y;z) = P(x; z) whenever y € D is obtained from x € D by a permutation.

e Monotonicity axiom (M): P(y; z) < P(x; z) whenever y € D is obtained from x € D by a simple increment to a
poor person.

e Normalization (N): P(x;z) =0 iff no one lives in poverty.

o Weak Transfer axiom (WT): P(y;z) < P(x;z) (P(y; z) > P(x; z)) whenever y € D is obtained from x € D by a
progressive (regressive) transfer’ with at least the recipient (donor) being poor with no one crossing the poverty
line as a consequence of the transfer.”*

e Monotonicity Sensitivity axiom (MS): P(y;z) — P(x;z) > P(y’;z) — P(x;z) whenever y,y’ € D are obtained
from x € D by the same amount of decrement to poor incomes x; and x ;, respectively, where x; < x;.

The first poverty measure introduced in the literature is the headcount-ratio, denoted by H = g /n, which is the
percentage of poor people. It captures exactly the incidence of poverty and satisfies F, R/, S and N. However, it violates
M, WT and MS since it does not take into account the intensity and the differences between the poor.

If we compute the mean of the normalized gaps with respect to the population, we obtain another well-known
measure of poverty, named the poverty gap ratio, and defined as

R T
PGR=PGR(x;2)=— =—) g. 3)
n ; Z n ;

It captures the incidence and the intensity of poverty and satisfies F, R, S, N and M. However, it violates WT and
MS since it does not take into account the inequality among the poor. However, in the literature there exist numerous
poverty measures that satisfy the transfer (WT) axiom. In this paper we will focus on two families of rank-dependent
poverty measures.

Rank-dependent poverty measures are those poverty indices for which individuals® weights depend only on their
place in the distribution with respect to the others. The definition is introduced below.

Definition S. A poverty measure P (x; z) : D x R4 — [0, 1] is rank-dependent if for each income distribution x € D
and any fixed poverty line z € R 4, it takes the following expression

q q
7= X
P =) wi———=) wigi, “)
i=1 i=1

where as mentioned, g1 > --- > g4 and x1 < --- < x4. In addition, a poverty measure needs to satisfy w; > wp >
--- > wy and if the weights decrease strictly then the transfer axiom (WT) is satisfied.

3 Progressive (Regressive) transfer: y € D is obtained from x € D by a progressive (regressive) transfer if there exists i and j, i < j, such that
yi—Xi=xj—y;>0(<0),y; >x; and y = x forall k #1, j.
4 There are numerous transfer axioms depending on whether they are poor or not before and after the transfer, see Zheng [30].
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The two rank-dependent poverty measures we focus on are the Kakwani family of poverty measures [19], K, and
the S-Gini class of poverty measures, G, ; see Kakwani [19], Donaldson and Weymark [13] and Chakravarty’s [10].
The two families are defined as follows:

q .\ k
1 —
Ki(x;z) =) Q(q—:il) i, k=1, keR. 5)
= nZik
L i=1
9 r S\ O N
1— -
Go(x;2) =) (”‘"n_’> _<”n’> ]g,- ., o>1, ceR. 6)
i=1 &

These two families satisfy F, S, M, N and MS; and WT is satisfied for every Kakwani index and for every S-Gini
index for o > 1. In the literature, it is well known that the parameters k and o are directly related with the measure’s
sensitivity to income transfers at different income positions. That is, for larger values of k£ and o, the measures are
more sensitive for transfers at the bottom of the distribution. In fact, in the literature, the two parameters are considered
as the measures’ poverty aversion indicators.

Now, if we pay attention to the previous section, we can see that the definition of OWA operators and the rank-
dependent poverty measures are very close. In general, rank-dependent poverty measures are not OWA operators, since
they do not fulfill Z?:l w; = 1. However, every rank-dependent poverty measure can be normalized and rewritten as
the product of a normalization factor, invariant to transfers, and its normalized poverty measure, which will be an OWA
operator; see Aristondo and Ciommi [3]. In what follows, we add the prefix N to the name of each rank-dependent
poverty index in order to refer to the normalized rank-dependent poverty measure.

Therefore, we rewrite the K; and the G, measures as the product of a normalization factor and their normalized
poverty index N Ky and NG,:

q N
(g+1-=10)
Kiwo=p. Y| €= ]
i=1 3 ik (7
i=1
=H- -NKi(x;2) , 1<keR.

q LY —(n— i)
P e

i=1

(®)
=<1—(1—H)")-NGU(x;z) . 1<o€eR,

where H = g /n is the headcount ratio. The proof of these two statements, (7) and (8), can be seen in Aristondo and

Ciommi [3].

Now the orness values of the two families, the Kakwani and the S-Gini families, can be computed. For more
information see Aristondo and Ciommi [3].

q
orness(NKy) = ————— Z( i) . 1<keR. 9)
(-1 Y iki=t

i=1

q
_ o o . -
orness(NGy) = 1)(’10 rE— ;‘ ((n F1—i) —(n—1i) )(q i), l<oeR. (10)

From the definition of the rank-dependent poverty measures we know that the weights are ordered in a non-
decreasing way. Consequently, the weights of the corresponding OWA operator will also be ordered in the same
way. Following OWA literature, see Yager [27], the OWA operators with weights ordered in a non-decreasing way are
named or-like operators and those with weights ordered in a non-increasing way, and-like. Liu and Lou [20] show that
the orness value for the or-like operators are always between 1/2 and 1, and between 0 and 1/2 for the and-like ones.

5
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Hence, for the non-dressiness of the rank-dependent poverty measures’ weights, our orness values will be always
between 1/2 and 1.

4. Distribution-sensitivity criteria using the orness values

In this section we will concentrate on the poverty measures’ classification in terms of their distribution-sensitivity.
As mentioned before, the two poverty families presented in the paper satisfy the monotonicity sensitivity axiom. This
axiom states that a poverty measure should be more sensitive to income decrements/increments in a poor person’s
income, the poorer the person is.

By orness definition, we know that the orness value is greater for higher weights at the top of the normalized gap
distribution. That is, the greater the orness value is, the higher the weights applied to small incomes are. Hence, this
sensitivity at the bottom of the income distribution can be interpreted as a distribution-sensitivity measure. Therefore,
poverty measures could be classified in terms of their orness value. In fact, the concept of orness is defined as a
measure of optimism that lies within the unit interval and between 1/2 and 1 for rank-dependent poverty measures.
This numerical value indicates how close the measure of poverty is to the maximum operator (OR) or the minimum
operator (AND). The maximum orness value, or OR value, is obtained with the weights w = (1,0, - - - , 0) which gets
orness(W) =1 and it is exactly the relative gap of the poorest individual, that is W = g;. While the minimum orness
value in the poverty field is w’ = (1/n--- , 1/n). For these weights we have orness(W’) = 1/2 and the measures ob-
tained is the poverty gap ratio (PGR). Note that the W will only be affected by transfers of increments/decrements to
the poorest individual. On the other hand, W’ = P G R index is not affected by any transfers, and the increments/decre-
ments in a poor person’s income will not have a greater effect on the measure the poorer the person is.

In this paper we focus on classifying the rank-dependent poverty measures in term of their assigned orness value.
Let us see the following definition.

Definition 6. Let P and Q be two rank-dependent poverty measures and N P and N Q their corresponding normalized
measures. Then, if orness(N P) < (<) orness(N Q) is satisfied we will denote P < (=) Q.

In addition, we want to note that there exists a link between the rank-dependent poverty measures’ classification
through the orness value and the classification of these measures in terms of their sensitivity to lossy transfers. That
is, transfers from a better-off poor individual to a worse-off poor individual that involve the loss of the mean income
with the benefit of a distributional improvement.

A minimal transfer axiom considers an income transfer from a better-off poor individual to a worse-off poor
individual where the amount given by the donor is exactly the amount received by the recipient. However, if the donor
gives more than the recipient gets, then only those poverty measures which value sufficiently the redistribution will
approve the transfer. Note that this kind of transfer will also depend on the amount of the mean loss.

Atkinson [7] and Okun [21] were the first to define this type of lossy transfers to measure the relative importance
attributed to the distribution. Since then, lossy transfers have been used to explain the inequality aversion of many
social welfare functions (see [18], [14] and [11]).

For this purpose, we need to define the following two transfers among the poor.

Definition 7. Let x and y be two income distributions in D. Then y is obtained from x by a lossy transfer among the
poorifny =ny,=n,qy=qy=qandy= (x1,x2,...,% +o,....,x; — B,...,Xg,Xg41,...,%,) Wwhere 0 <a < 8
andx; <x; +a<x;—B<x; <z

Definition 8. Let x and y be two income distributions in D. Then y is obtained from x by a lossy equalization among

q
the poorif ny =ny=n,qr =qy=qandy=(9,...,0,x441,Xg42,...,X,) Where g - 0 < > xi.
i=1

Now, we say that a poverty measure P is at least as distribution-sensitive for lossy transfers among the poor or
lossy equalization transfers among the poor as a poverty measure Q, if P registers a poverty increment for each lossy
transfer or lossy equalization transfer among the poor for which Q does. The definitions are shown below:



0. Aristondo and A. Iiiiguez Fuzzy Sets and Systems 466 (2023) 108460

Definition 9. Let P(-;z) and Q(:; z) be two poverty measures and suppose that y is obtained from x by a lossy
transfer among the poor. Then P is at least as distribution — sensitive™ for lossy transfers among the poor as Q if
Q(y;2) = Q(x; z) implies P(y; z) < P(x; 2).

Definition 10. Let P(-;z) and Q(-; z) be two poverty measures and suppose that y is obtained from x by a lossy
equalization among the poor. P is at least as distribution — sensitive™ for lossy equalization among the poor as Q
if O(y: 2) = Q(x; z) implies P(y; z) < P(x; 2).

Moreover, a poverty measure P (-; z) is more distribution-sensitive than P (-; z) for lossy (lossy equalization) trans-
fers among the poor if P(-; z) is at least as distribution-sensitive as P(-; z) and P(-; z) is not at least as distribution-
sensitive as P(-; z) for lossy (lossy equalization) transfers among the poor.

Aristondo and Ciommi [3] prove that if two poverty measures can be ranked in terms of lossy transfers or lossy
equalization transfers criteria, they can also be classified in terms of the orness value. In addition, they also show that
the classification for the first order rank-dependent poverty measures in terms of their orness value is equivalent to the
classification in terms of their distribution-sensitivity to lossy transfers or lossy equalization transfers introduced by
Bosmans [8].5

In addition, in this paper we will see that the Kakwani and S-Gini indices are ordered equivalently with respect
to their parameter value for the three distribution-sensitivity rankings; lossy transfers, lossy equalization transfers and
orness value.

5. Orness classification

As mentioned, the orness value can be interpreted as a distribution sensitivity indicator of the rank-dependent
poverty measures and they can be ordered in terms of this value. Aristondo and Ciommi [3] classify most of the
rank-dependent poverty measures in terms of their assigned orness value. However, they do not offer a classification
for every member of the Kakwani and S-Gini families. The orness ranking of these two families has only been done
for natural values of the two parameters k and o. In fact, Aristondo and Ciommi [3] prove that Ky < Ky and
Gy <Gyyy forVo,k,gneN,n>g>2,k>1ando > 1.

Nevertheless, both the Kakwani and S-Gini families can be computed for any real value of the parameters, k € R
with k > 1 for K; and o € R with o > 1 for G,. Therefore, in this note we offer an orness classification for these two
families for every real value of the parameters larger than one.

The following propositions show the orness classification for the family of Kakwani indices. Focusing on the
orness value for the members of the Kakwani family we can classify them as follows:

Proposition 1. The members of the Kakwani family of poverty indices, {Ky}r=>1, can be classified with respect to their
orness value as follows:

Ki<Kp, 1<k<m,Vk,meR. (11)
Proof of Proposition 1. See Appendix.

This proposition shows that the larger the k value, the larger the orness value.
The next proposition offers the orness classification for every member of the S-Gini family, that is, every parameter
o eR.

Proposition 2. The members of the Kakwani family of poverty indices, {Gs}o>1, can be classified with respect to their
orness value as follows:

G, <Gg, l1<o<pB,Vo,BeR. (12)

5 First order rank-dependent poverty measures are those for which the weights are linear, that is, their form is w; = e + (i — 1)d, where e and d
do not depend on i.
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Proof of Proposition 2. See Appendix.

Therefore, we have ranked all the members of the K; and the G, families. These results complement the ranking
obtained by Aristondo and Ciommi [3], given that all the rank-dependent poverty measures are ordered.

Now, we will see that the maximum distribution-sensitivity value is obtained for K; when k tends to infinity, and
for G, when o tends to infinity.

Proposition 3. The orness value of the Ky and G, families tend to the maximum orness value 1 when parameters k
and o tend to infinity, respectively. That is,

P<Kysw and P=<Gg (13)

for every rank-dependent poverty measure P since orness(NGoo) = orness(NKoo) = 1.
Proof of Proposition 3. See Appendix.

Consequently, the orness value for the two limit rank-dependent poverty measures Ko, and G is equal to one.
In addition, we know that the maximum orness values are obtained for w = (1,0, - - - , 0) weights. Hence, the corre-
sponding normalized measures of the two poverty measures must be exactly the relative gap of the poorest individual.

NKoo=g1 = NG .

It can be noted that the limit measures have the following form; Koo = H - g1 and NG, = g1.

The Kakwani index has a normalization factor, H, that is invariant to lossy transfers and lossy equalizations.
Hence, their sensitivity to these kind of transfers will be the same. To conclude, the distribution-sensitivity of these
two measures will only focus on transfers that affect the poorest individual.

Finally, we will provide an additional poverty ordering between the members of the two families presented in the
paper for the same value of the parameter. Proposition 4 shows that the Ky poverty index is more distribution-sensitive
than Gy, for every k € N.

Proposition 4. The families {Ki}i>1 and {G}r>1 can be ordered in terms of their orness values for the same param-
eter k as follows:

Gy <Ky for keR. (14)
Proof of Proposition 4. See Appendix.

Finally, we want to focus on the measures’ classifications in terms of lossy transfers and lossy equalization trans-
fers. Aristondo and Ciommi [3] prove that the orness classification is equivalent to the two classifications when
weights are linear. The weights of the Kakwani and the S-Gini families are not linear and the equivalency can not be
directly concluded. The measure rankings presented in this paper in terms of the orness value are exactly the same
rankings as those in terms of the distribution-sensitivity of the measures to lossy transfers and lossy equalization
transfers. In fact, Bosmans [8] proves that distribution-sensitivity for lossy transfers and lossy equalization transfers
increases with k and o for the Kakwani and the S-Gini families, respectively.

6. Concluding remarks

We provide an easy-to-check criterion which is able to order rank-dependent poverty measures in terms of their
distribution-sensitivity using a real value between 1/2 and 1, called orness. Most of these indices have been ranked
in terms of this criterion. However, the classifications provided for the Kakwani and the S-Gini families of poverty
indices are incomplete since only the rankings for natural values of the index parameters have been provided. In this
note, we provide the orness classification for all the members of the two families in terms of their family parameter.
We conclude that the Kakwani and the S-Gini families are more sensitive to the lower part of the distribution for higher
values of the parameter. In addition, we have been able to rank the two families for the same value of the parameter,
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concluding that for this value the Kakwani index is more sensitive to increments or transfers the lower the income is.
Given a fixed poverty line, this ranking will allow poverty results to be compared for different measures depending
on their sensitivity to lower incomes values. Alternatively, it will also allow a choice between the appropriate poverty
measures taking into account their distribution sensitivity.
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Appendix A

Proof of Proposition 1. We prove this proposition by mathematical induction on q.

2
For g =2, we find orness(NKy) = Z - 121 ('k‘H — ik) = 1+2k We need to prove 1-2+2’< < lizy , or equivalently,
1
kA +25) <2 (1+ 2") which is true for every | <k <s.
Let us assume that it is true for g:
1 1 1 I
_— Z (ik+l _ l«k) < Z (is+l _ is) .
(g—1 Y ik = (g—1) i i=l

i=1 i=1
Analogously,

q q q q
Zis _Z<ik+1 _l-k) - Zik ) Z<is+1 _l-s)_
i=1 i=1 i i

We need to show that it is true for ¢ + 1. That is,
q+1 qg+1 g+1 q+1

Zis ] Z (l-k-H _ l-k) - Zik ) Z (l-s+l _ l-s) .
i=1 =l i=1 =l

Again, operating we have,

q q q q
(Zﬁ +(g+ 1)S> : (Z(z"‘“ —iH+a@+ 1)") < (Zik +(g+ 1)") : <Z(z‘““ — ") +qg + 1>S>;
i=1 i=1

i=1 i=1
which simplifies to,

i i(lkﬂ )+q(q+1) Z’ +(@+D° Z(k+1 ik>

i=1 i=1 i=1
q

; * Xq:( )—q(q+1)SZq:ik—(q+1)"2(?“—iS)<0.

i=1 i=1 i=1
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Using the induction step, it reduces to show that

Zz Z (ik“ — ik) +q(g + 1)"Xq:i5 +@+1)° i (ik+‘ - ik>

i=1 i=1 i=1
=(q+ 1)"21”((1’” — @+ Hg+1-i)<0;
i=1

which is trivial to prove since i* ¥ — (g +1)* * <O0andg+1—i >0forl <i<g+1landl1<k<s. O

Proof of Proposition 2. We define the following function
o) ‘ ((n+1—i)"—(n—i)">(q—i)
o) =
(g = D@ —(n—q))

We need to prove that it is an increasing function in o for every o > 2. Equivalently, we will see that the derivative of
f (o) is positive for o > 2. Once derived, we obtain,

for o>2.

, -2
'@ = (=D nn -0 -7 e - 9)) (@ = DO = 0= ))

q
x (Z((n+1—i)°—(n—i)”)(q—i)) +

i=1
q -1
+ (Z ((n F 1= I+ 1—i)—(n—i) In(n — i))(q - i)) ((q DR —(n— q)"))
i=1
Since g,n € N and n > g > 2 then (n — ¢) > 1. Consequently we have that for any 0 > 2 n° — (n — ¢)° >0,
(n”lnn—(n—q)"ln(n—q)) >0,(n+1—-)°Inn+1-i)—m—i)°Inn—i)>0,(n+1—-i)° —(n—i)° >0
and (g —i)>0Vi=1,---,¢q
Hence, f'(o) > 0, and consequently f (o) is an increasing function in 0. O
Proof of Proposition 3. For the K family, we need to prove
lim orness(NKy)=1.
X—>00
Substituting the orness value,

e ST -H))

i=1

lim orness(NKy) = lim ——
X—00 X—00 . X—00 g g ; k
G-y it 1y (3)
= q q
For the G, family, we also need to prove

lim orness(NGy)=1.

X—> 00
Substituting the orness value,
m+1-0D°—m—1i0)°

q
hm orness(NGy) —Xh Z - D" — (=) (g—1i).

Operating,

q n+1 —i\? _ (n—=i\°
llm orness(NGy) = lim Z ( ) ( ) (g —
= 1(q—1)(1—( 1))

H=1. O

Proof of Proposition 4. In order to prove Proposition 4, we need two auxiliary Lemmas.

10
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Lemma 1. The orness(N Gy) is a decreasing function in n.

Proof of Lemma 1. Let us define f(n) a continuous function on n € R:

I (m+1=DF—m—*) (g —1i)
—(n—q)k '

In order to show that f(n) is a decreasing function in n, we will prove that f'(n) < O:

(k1= — k(= )*) (g = D" = (n = )"
(nk — (n — q)k)?

L (a+1=Df == )%) (g — DHkn* " —k(n — )" ")
(nk — (n — ¢)b)? '

Hence, equivalently we need to prove that

fn)=

flin) =

q
Y (a+1-i == @ - et - -9
i=1
q
Y (n+1-df — =) @ - D" — - <0.

i=1
Operating we have,
(nk —(n— q)k) (nk_1 —(n— q)k_l) (g — 1) (orness(NGg—1) —orness(NGy)) <0,

which is true from Proposition 2. Hence, if it is a decreasing function for real values, it is also decreasing for natural
values. O

Lemma 2. For every g € N and k € R the following inequality is satisfied:
(q + 1>’< ~d*\ §
(q+ 1" - ( Z

1 k _ k
Proof of Lemma 2. Let us define f(q) = (¢ + 1)* — w> a 1 ik, for some k € R.
q

It will suffice to show f(g + 1) > f(g) and f(1) > 0, for any k € R.
Forg =1,

fh=2k-@F-1n=1>0.
Now, we will see that f(g + 1) > f(q) forany g € N and k € R.

k k _ q
f(q+1)_f(q):(q+2)k_((q+2(1]+1<§zk+1> )Z gDkt <W)Zlk

i=l1
_ (@) — @@+t

O’
q*(q + DF

i=1

which is true since ¢, (¢ + 1) >0and (¢ + 1)> > g(g+2) foranyg e N,k eR. O

Hence we can now prove Proposition 4.
We need to prove that fork e R, g,n e N andn > g > 2,

orness(NKy) —orness(NGg) = 0.
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That is,

R N S A (G e A G D L)) .

?:1 ik nk — n— q)k

From Lemma [, we know that orness(N Gy) is a decreasing function in n. Hence, it will suffice to prove for n = q.
That is, we need to prove the following:

R Gl VD Y L (C Rl et el Al W LUl I
ik gk =

i=1

0.

0.

Operating, we have that,

4 ck+1 _ ik k+1 _ N4k

i=11! l q =1t 0
4k o k ="
i:ll q

Hence, we need to prove the following:

q q 2 q
quik+1+(Zik> —(q—i—l)quikzO.
i=1 i=1

i=1

We proceed by induction on g. Firstly, we will see that it is true for ¢ = 2:
2

(1424 4 (1424) = @2t (1425) =120,

Now suppose that is true for ¢,
q q 2 q
quikH n (Zik> g+ 1)qkzik >0.
i=1 i=1 i=1

Now computing it for g + 1:
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@+ D[R] @@+ D)
i=1

i=1 i=1

q q 2 q q
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Using the inductive step for ¢,

q q 2 q q
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X q q 2
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And operating we have that

q q 2 q q
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(

2 q q
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which holds from Lemma 2. O
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