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1

Preliminaries

1.1 Context

Population ageing is one of the pressing social challenges of the 21st century,
affecting not only Europe but also other developed communities. The decline
in fertility rates and the increasing life expectancy have resulted in a rapid
increase in the proportion of individuals aged 65 and above. In Europe, it is
projected that this percentage will rise from 16% in 2010 to 29% in 2060 [67].
Furthermore, this ageing population is expected to be predominantly female,
with a growing number of individuals over 80 years old. Within this context,
numerous social challenges need to be addressed:

• Meeting the high demand for infrastructures and services that cater to
the needs and preferences of the elderly, including addressing the desire
for aging at home while considering cultural factors and the diversity of
societies.

• Adopting a cross-cutting approach that spans various sectors such as
health, housing, support for low-income individuals, and ensuring suitable
living conditions in both urban and rural areas.

• Supporting healthy older individuals in maintaining productivity and inde-
pendent lives within their communities for as long as possible. This entails
the development of a wide range of products and services that facilitate
a certain standard of living and well-being as people age, with technology
playing a crucial role in many innovative solutions.

Despite advances in healthcare and technology, most elder care is currently
provided by informal caregivers, such as friends and family members. However,
predictions suggest that this type of care will decrease in the future. Therefore,
studies encourage society to focus on improving the lifestyles of the elderly,
helping them remain independent for more extended periods.
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The EMPATHIC (Empathic, Expressive, Advanced Virtual Coach to Im-
prove Independent Healthy-Life-Years of the Elderly) project1 has signifi-
cantly advanced technology in this field. The focus of this project is on re-
searching, innovating, and validating new interaction paradigms and plat-
forms for future generations of personalized Virtual Coaches (VC) designed
to promote active aging. Central to this initiative is the development of the
EMPATHIC-VC, an unobtrusive, emotionally expressive virtual coach. Its
primary goal is to engage senior users in adopting healthier lifestyles, encom-
passing aspects of diet, physical activity, and social interactions. By actively
reducing the risk of potential chronic diseases, the VC helps seniors main-
tain an independent and enjoyable life, which, in turn, assists their caregivers.
The main objective of a VC is to establish a connection between one’s phys-
ical state and emotional well-being. To achieve this, it employs multi-modal
face, eye gaze, and speech analytics modules to perceive and identify users’
social and emotional states. Additionally, it learns and comprehends users’
requirements and expectations, responding adaptively to their needs through
innovative spoken dialog systems and intelligent computational models. This
combination of modules facilitates real-time interaction between users and the
coach, promoting empathy and enhancing the user experience.

The EMPATHIC project employs coaching concepts through a VC, imple-
menting coaching strategies designed to induce behavioral changes in users.
Coaching dialogs are structured logically, following a question-answer model,
with the aim of comprehending the user’s needs, limitations, and objectives
(Montenegro et al. [61], Justo et al. [40]). It’s important that the user accepts
these goals, so the coaching dialogs promote self-awareness and offer guid-
ance toward setting realistic and healthy objectives. Each dialog adheres to
a sequential structure based on the GROW framework (Goal, Reality, Op-
tions, and Will of an action plan), a framework developed by health coaching
professionals.

A general overview of the EMPATHIC-VC workflow is depicted in Fig-
ure 1.1. The EMPATHIC-VC takes audio and video inputs, which are then
processed by various modules. The Dialog Manager (DM) is a crucial compo-
nent that orchestrates the coaching session, determining the system’s actions
during each agent’s turn.

Regarding Natural Language Processing (NLP), three modules work in
sequence to provide the DM with a precise description of the user’s dialog
turn in terms of meaning. These modules are the Automatic Speech Recog-
nition module (ASR-M), End-of-turn Detection (EOTD-M), and the Natural
Language Understanding module (NLU-M). The ASR-M transcribes speech
into text as a continuous stream and sends it to the EOTD-M, which iden-
tifies when the user has finished their turn and is awaiting a response from
the EMPATHIC-VC. Once the turn has concluded, all transcribed words are

1 http://www.empathic-project.eu/
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forwarded to the NLU-M, responsible for analyzing the meaning of the user’s
speech and providing processed information to the DM.

Moving closer to the user interaction, once the DM has determined how to
proceed with the coaching session, the Natural Language Generator generates
a response, taking into account both the form and content of the message. This
response also considers additional input sources, such as information extracted
from facial expressions, voice tone, or external resources like weather forecasts
and cultural events. The text-based response is then converted into audible
speech by the Text-to-Speech module and delivered to the User Interface,
ensuring effective communication with the user.

Figure 1.1 illustrates the most important modules in the virtual coach,
and the flow of information as designed.

Fig. 1.1: EMPATHIC architecture modules related to the dia-
log act taxonomy definition.

1.2 Overview of the dissertation

In this dissertation, we present four contributions made during the develop-
ment of the EMPATHIC project. These contributions are divided into two
distinct areas: contributions to NLP and contributions to Hierarchical Classi-
fication.

The dissertation’s first part starts with an introduction to the EMPATHIC-
VC modules within the NLP domain (Chapter 2). The first contribution of this
dissertation introduces an Automatic Speech Recognition simulator (ASR-
SIM) that implements various strategies for the End-Of-Turn detection task
(Chapter 3), specifically designed for scenarios with error-prone input. This
ASR-SIM proves especially valuable for evaluating the impact of ASR-M er-
rors on NLU-M and can aid in training more robust NLU-M systems.
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The second contribution in the first part of the dissertation proposes a
dialog-act taxonomy based on the EMPATHIC project’s requirements (Chap-
ter 4). This taxonomy elucidates two of the NLU-M tasks, namely, Intent
classification and Topic classification.

The taxonomy introduces two Hierarchical Classification (HC) tasks, serv-
ing as the foundation for the subsequent contributions in the field of HC
presented in the second part of this dissertation (Chapter 5). These contribu-
tions extend beyond the scope of the EMPATHIC project and offer potential
applications in diverse domains.

The primary focus of the first contribution is to address labeling deficien-
cies that may arise within HC problems (Chapter 6), resulting in the formula-
tion of Weakly Supervised Hierarchical Classification problems (WSHC). We
demonstrate the advantages of incorporating hierarchical information during
the training process, leading to significant improvements in both performance
and computing time. We conduct a comprehensive comparative analysis of a
designated strategy across three different WSHC scenarios, carefully examin-
ing the implications of integrating hierarchical characteristics into the learning
process.

The second contribution introduces the Multi-Dimensional Hierarchical
Classification paradigm (MDHC) (Chapter 7), inspired by the Intent and
Topic classification tasks of the NLU presented in the dialog-act taxonomy
in the first part of the dissertation. Alongside presenting this paradigm, we
propose specific methods, performance measures, and a procedure for gener-
ating synthetic MDHC scenarios to facilitate future studies and evaluations
in this area.

The dissertation concludes with a chapter dedicated to summarizing the
general findings and outlining potential avenues for future research (Chapter
8).



Part I

Contributions on Natural Language Processing





2

Background

2.1 Natural Language Processing

Natural Language Processing (NLP) is a field of computer science and linguis-
tics concerned with the interactions between computers and natural languages
[44]. The term natural language is used to distinguish human languages (such
as English, Spanish or French) from computer languages (such as C++, Java
or Python). The techniques developed within this sub-field of artificial intel-
ligence aim to provide computers the ability to understand commands given
in natural language and perform according to it.

The ASR-M, EOTD-M and NLU-M present in the EMPATHIC-VC are
framed within the NLP field. Figure 2.1 illustrates the architecture of each of
the modules. In the ASR-M architecture, the feature extraction component
takes as input the raw audio signal, filters noises that do not correspond to
human speech frequencies, and extracts frequency-domain feature vectors that
are used to feed the following acoustic model. The acoustic model, leveraging
knowledge of acoustics and phonetics, estimates one or multiple sets of words
that best align with the given feature vectors and assigns them corresponding
scores. The language model evaluates the correlation between words learned
from a training corpora and estimates scores for each hypothesized sentence.
The hypothesis search component then combines the scores from both models
for each hypothesis, ultimately producing the recognized sentence as the word
sequence with the highest score [125].

The audio signal received by the ASR-M is a continuous stream of audio,
and as a result, the ASR-M outputs a stream of words with timing information,
which could be hundreds of words long in a whole conversation. A conversation
between two humans consists of a turn-taking transference of information, and
replacing one of the humans with a bot requires the detection of the user’s
End-Of-Turn pauses. The goal of an EOTD-M is to detect this change of
turn in a conversation between a human and the system. This triggers the
evaluation of the sentence or sentences received by the NLU-M. The main
task of the NLU-M is to convert these sentences of human language into



8 2 Background

more formal representations, making them easier for computer programs to
interpret. In this case, four characteristics of the sentences are evaluated:

• Topic: Identifying the main subject or theme of the sentence.
• Intent: Determining the purpose or goal behind the sentence.
• Polarity: Assessing whether the sentence conveys a positive, negative, or

neutral sentiment.
• Entities: Recognizing specific named entities or objects mentioned in the

sentence.

Fig. 2.1: ASR-M, EOTD-M, and NLU-M schematic architectures.

As a result of the development of the EOTD-M and NLU-M, in this section
we present two contributions. The first contribution studies how word errors
in ASR-M can affect the performance of the EOTD-M. The second contribu-
tion presents the taxonomy defined for the Topic and Intent characteristics
detected in the NLU-M, which also affects the design of the DM.



3

End-of-Turn detection task

3.1 Introduction

The audio signal received by the ASR-M is a continuous stream of audio. The
system must filter the human voice from ambient noise, and estimate the best
group of words that corresponds to the audio signal. As a result, the ASR-M
outputs a stream of words with timing information, which could be hundreds
of words long in a whole conversation. A conversation between two humans
consists of a turn-taking transference of information, and replacing one of the
humans with a bot requires the detection of the user’s End-Of-Turn pauses.
The goal of an EOTD-M is to detect this change of turn in a conversation
between a human and the system. This triggers the evaluation of the sentence
or sentences received by the NLU-M.

The consequences of failing on the EOTD task are:

1. Anticipation: When the NLU-M receives an incomplete sentence, the
system may potentially answer while the user is still talking, causing over-
lap between the speech of the human and the system. Some systems close
the users microphone [18] when answering, missing all the information
transmitted by the user during the overlap.

2. Excessive delay: when an End-Of-Turn is not detected in time, the
time gap between a real End-Of-Turn and the reply from the system is
too high, and the user experience is harmed by unnatural waiting times
between turns.

Several aspects have to be considered when designing an EOTD-M. Par-
ticularly relevant are the architecture of the spoken dialog (which defines the
input to the EOTD-M) and the features used in the detection problem.

The architecture of a Spoken Dialog System can limit the input resources of
an EOTD-M. Figures 3.1a and 3.1b illustrate how two common architectures
differently condition the input of the EOTD-M. In Figure 3.1a, the EOTD-M
receives information exclusively from the ASR-M, while in Figure 3.1b not
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only can ASR-M information be received, but also raw audio data. We can
find studies in the literature that are based on the architecture of Figure 3.1a,
such as the work by [81], who study the impact of the prediction power of fea-
tures extracted from pause, prosodic, timing, lexical, syntactic and semantic
information. Nevertheless, it is more common to find studies using features ex-
tracted from raw audio data, following the architecture in Figure 3.1b. There
are different features that can be extracted from raw audio data, [18] extracted
40-dimensional log-Mel filterbanks with an upper limit of 4kHz and a frame
step of 10ms using a 25ms window, while [55] and [3] used raw pitch (F0),
smoothed F0 contour, Root Mean Square signal energy, the logarithmized
signal energy, intensity, loudness, MFCC and smoothed pitch.

(a)

(b)

Fig. 3.1: Subfigure (a) shows an architecture where the EOTD-M uses the
output of the ASR-M as input. Subfigure (b) shows an architecture where the
EOTD-M uses the output of the ASR-M as input, but also has access to other
features extracted from raw audio.

These two architectures exploit only the user’s speech information, but
different architectures can offer more sources of information, for example the
architecture presented by [57] uses the user’s utterance in conjunction with
the interlocutor’s utterance.

3.2 Sources of errors in ASR-M

One of the most challenging aspects of ASR-M is the mismatch between the
training and testing conditions, or real life acoustic conditions. During testing,
a system may encounter new recording conditions, microphone types, speak-
ers, accents and different sources of background noise. Furthermore, even if
the test scenarios are seen during training, there can be significant variability
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in their statistics [94]. Without specific noise-robust processing, even state-of-
the-art speech recognition degrades rapidly under decreasing Signal-to-Noise
Ratios [66].

These conditions will produce the following errors in the ASR-M transcrip-
tion result:

1. Confused word (substitutions): Due to the pronunciation, noise, or
even the accent, some words can be mistranslated. This often occurs when
two words are phonetically similar.

2. Missing word (deletion): Sometimes due to noise, accent or other
speech particularities, word sounds can be confused with ambient noise or
unintelligible sounds.

3. Extra word (insertion): Although some ambient sounds can be con-
fused with words, the most common source of word insertion occurs when
the phoneme of a word can be represented by a tuple of words, instead
of the true corresponding word. For example the tuple of words“Join in”
could replace the word “Joining” because they are phonetically similar.

The Word Error Rate (WER)[126] defined below (Equation 3.1):

WER =
S +D + I

N
(3.1)

where S, D, I and N are the number of substitutions, deletions, insertions
and number of words in the reference respectively, is a common metric used
to measure the performance of an ASR-M or machine translation system. The
general difficulty of measuring performance lies in the fact that the recognized
word sequence can have a different length from the reference word sequence
(supposedly the correct one). WER is derived from the Levenshtein distance,
working at the word level instead of the phoneme level, and it is a valuable
tool for comparing different systems as well as for evaluating improvements
within one system. This kind of measurement, however, provides no details
on the nature of translation errors [64].

3.2.1 Speech profiles

The problems exposed above are related with the conversion of sound waves
to phonemes, but there are other characteristics that are useful for communi-
cation and are related to the timing and duration of other language resources.
These characteristics are: pronunciation speed, speaking rate, and pause du-
ration.

Each person has their own way of speaking. And not even a combination
of pronunciation speed, speaking rate, pause length or accent is fixed for a
single person, it also varies depending on their mood or fatigue. Henceforth
we will refer to the measurable set of these characteristics as speech pro-
file. In subsequent sections, we introduce a speech profile representation and
propose a way to obtain realistic values of the speech profile representation
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parameters from the analysis of real ASR-M outputs. For example, in Figure
3.2, the average letter duration of multiple speakers is compared, calculated as
letter duration = word pronunciation time/word length. The figure shows
the average letter duration grouped by word length. The data is extracted
from the Switchboard dataset [25], which has become the de facto standard
experimental testbed for speech recognition, and will be explained in more
detail in Section 3.4. In Figure 3.2 it is possible to observe the profiles of the
speakers that have the maximum and minimum average letter duration, as
well as the profile of another 20 randomly chosen speakers. Figure 3.2 reveals
that the fastest profile is double the speed of the slowest, illustrating how wide
the range of speeds can be in a group of speakers.
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Fig. 3.2: Pronunciation speed profiles

3.3 ASR Simulator

As it is not possible to generate all possible types of noise that an ASR-M can
receive, our goal is to introduce an ASR-SIM that can be controlled in such a
way that the transcribed data exhibits different types and rates of artifacts.
A characteristic feature of our simulator is that, instead of using an audio
file as input, a dialog transcription or a plain text can be used. The ASR-
SIM converts any conversation transcription into an ASR-M output with the
desired probabilities of ASR-M errors, and desired speech profiles.

The ASR-SIM output format is composed of two differentiated parts:

1. Word information: Contains the possible words that the ASR-SIM may es-
timate that correspond to the audio fragment, and their confidence value.

2. Timing information: Indicates the timestamp of the start of the pronun-
ciation of the word, and its duration.
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The transformation from plain text to word and timing information will be
determined by a number of internal parameters of the simulator. These param-
eters can be grouped into two classes: WER probabilities and speech profile
parameters.

3.3.1 WER probabilities

The ASR-SIM allows us to set the probability of each particular error that
makes up the WER (probability of a confused word, probability of a missing
word, probability of an extra word). Given a sentence, for each word the
three error probabilities are evaluated to determine if the word is affected by
one of the defined errors. These errors were introduced in Section 3.2, and
the description of the methods implemented to simulate each type of error
follows:

1. Confused word: the word is substituted by a phonetically similar word.
The phonemes of the replacement and replaced words will have a Leven-
shtein distance smaller than a given threshold. The timing information is
calculated using the information of the substituted word.

2. Missing word: the word is substituted by a token that represents an un-
known phoneme < Unk >. The timing information is calculated using the
information of the substituted word.

3. Extra word: the phoneme of the word is randomly split into two sub-
phonemes, and each one is replaced by a word with a phoneme with a
Levenshtein distance smaller than a given threshold. The timing infor-
mation is calculated using the original word information, proportionally
sharing the word duration between the two replacement words, and with
a pause p = 0 between replacements.

The implementation of the different error methods should mimic the errors
of the ASR-M we want to simulate with the ASR-SIM. Even if an ASR-M
uses a common set of features, the combination of the Acoustic model, the
Language model and the Hypothesis Search make each ASR-M unique, and
therefore the characteristics of the errors generated are unique as well. For
example, for an ASR-M that gives more importance to the Acoustic model
than to the Language model, when making a confused word error the true word
might be replaced by a phonetically similar word, even if it causes an unlikely
semantic error. In this example implementation the phonemes are obtained
using the Refined Soundex algorithm, originated with the implementation of
phonetic algorithms included with the Apache Commons library [24]. We use
the Levenshtein distance [47] to compare word phonemes, as it is commonly
used to compute error rates of ASR-M. We have used the implementation in
the Pyphonetics library1 for these tools, and the English dictionary from the

1 https://pypi.org/project/pyphonetics/
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Nltk library2 has been used as a source of replacement words for the Confused
and Extra word errors.

3.3.2 Speech profile parametrization

The parametrized characteristics of the speech profile used by the simulator
are:

1. Word duration
2. Pause duration

While in theory these parameters could be arbitrarily set, a realistic output
of the ASR-SIM will require a more sensible setting of the parameters. We ad-
dress this issue using a statistical analysis of real ASR-M outputs. As described
in Section 3.2.1, a speech profile can be defined by a set of characteristics. All
these characteristics are measurable, and we can therefore generate a set of
variables to simulate a particular speech profile, or simulate multiple speech
profiles by modifying these variables. In order to perform the experiments that
will be defined in Section 3.4, we will parametrize word duration performing
the study described in Section 3.3.3, and pause duration (Section 3.3.4) based
on [16]. These parameters will directly affect the codification of the sentences,
since some codification methods use pauses between words as input informa-
tion, and pause duration will affect the amount of evaluation points used in
the experiments, as detailed in Section 3.4.1.

3.3.3 Word duration

In order to simulate word duration, we will use the values obtained by calcu-
lating the average and standard deviation of the letter duration of the speak-
ers from the Switchboard dataset (Figure 3.2). The distribution of the values
obtained for the letter duration calculus is illustrated in Figure 3.3. The ASR-
SIM will use this empirical distribution to estimate the duration of each letter
in a word, randomly sampling from the distribution. Although more sophis-
ticated methods could have been used to estimate the pronunciation time of
a particular word, this method maintains simplicity, and it still makes words
last a proportional, but not fixed, amount of time for their length.

3.3.4 Duration of pauses

[16] present a large-scale study of silent pause duration, based on the analysis
of read and spontaneous speech. Although in their study, spontaneous speech
analysis is only performed in French, it does not represent an obstacle for our
analysis since it has been observed that the language differences with respect

2 https://www.nltk.org/
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to gap duration seem to be minor [118]. [16] made the hypothesis that the
observed pause duration distributions are the result of a combination of three
categories of pauses. By using Generalized Reduced Gradient (GRG2), they
obtained a parametrized probabilistic model of the duration of pauses, which
is described by Equation 3.2:

D(x) = k1N(µ1, σ1, x) + k2N(µ2, σ2, x) + k3N(µ3, σ3, x) (3.2)

where D(x) is the distribution of the duration of pauses, N(µi, σi, x) is the
normal law of mean µi, and their standard deviation is σi (duration of pauses
are log-transformed). The parameters k1, k2 and k3 represent the weight of
each component distribution (k1 + k2 + k3 = 1).

Based on this work, we match each of these pause duration distributions
in increasing order of µi, with the pause between words, comma pause and dot
pause respectively. The µ and σ values used for each distribution are shown
in Table 3.1. Although µ values are available in the original study, σ values
were deduced from the figures in [16].

The ASR-SIM will generate pauses according to these distributions when
using plain text inputs. However, if the original pause information is provided,
this information will be used.

Table 3.1: Pause distributions parameters.

i µi σi

Between words pause 1 78 1.3

Comma pause 2 426 1.6

Dot pause 3 1585 1.3
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Algorithm 1 Pseudocode of the ASR-SIM main function

asr output = []
for token in source text do

if is word(token) then
is confused = random() > confused word threshold
is missing = random() > missing word threshold
is extra = random() > extra word threshold
possible errors = [ ]
if is confused then possible errors.append(“confused”)
end if
if is missing then possible errors.append(“missing”)
end if
if is extra then possible errors.append(“extra”)
end if
error = random selection(possible errors)
if error == “confused” then

confused word = get close match(token)
asr output.append(confused word)

else if error == “missing” then
asr output.append(<unk>)

else if error == “extra” then
word1, word2 = generate extra word(token)
asr output.append(word1)
asr output.append(pause between words)
asr output.append(word2)

else
asr output.append(token)

end if
else

if token == “,” then
asr output.append(comma pause)

else if token == “.” then
asr output.append(point pause)

else if token == “ ” then
asr output.append(pause between words)

end if
end if

end for
return asr output
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Algorithm 2 Pseudocode of the generate extra word( word ) function

1: w1 Length = random(1, length(word))
2: w2 Length = length(word) - w1 Length
3: w1 segment = word[:w1 Length]
4: w2 segment = word[w1 Length:]
5: firstWord = get close match(w1 segment)
6: secondWord = get close match(w2 segment)
7: return firstWord, secondWord

3.3.5 ASR Simulator pseudocode

The general procedure to transform a text to the desired ASR-SIM output is
the one described by Algorithm 1. The output of the ASR-SIM contains the
recognized words, and the associated timing information. Any character that
is not a letter is removed from the input text, except for commas and periods
which represent pauses in the speech.

In Algorithm 1, the source text is analyzed token by token (line 2). When-
ever the token corresponds to a word (line 3), for each error type a random
number is generated and compared to the associated threshold value (lines
8-10), the error to apply will be randomly selected between those that exceed
the corresponding threshold (line 11), and the error mechanism is executed
(lines 12-21). On the other hand, if the token is not a word, it will generate a
pause based on the type of token (lines 25-30).

In lines 17-21, the extra word error is generated using an auxiliary func-
tion called generate extra word, which is in charge of generating two words
from one, as explained in Section 3.2 and described in Algorithm 2. The gen-
erate extra word function randomly splits the word (lines 1-4) and finds a
similar word for each segment with the function get close match (lines 5-6).
This function is also used in line 10 to generate the confused word error by
calculating the Levenshtein distance between the phonemes as explained in
Section 3.3.

The source code is available under GNU General Public License v3.0 3 in
it’s source code repository4.

3.4 Experiments

In this section we present the experimental framework we have designed to
evaluate the influence of the different types of errors in the behavior of the
EOTD-M. We conduct this evaluation using the ASR-SIM presented. The
parameters of the simulator are changed to produce different combinations
of errors. The performance of the EOTD-M prediction task is then tested on

3 https://choosealicense.com/licenses/gpl-3.0/
4 https://github.com/CesarMontenegro/AsrSimulator
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this simulated data. The section is organized as follows: Firstly, we describe
the EOTD-M prediction task and the features used as input for the classifier.
Then we describe the characteristics of the classifier, and the metrics used to
evaluate the results. The two sections that follow describe the corpora used
and how errors are generated by the ASR-SIM. Finally, we present and discuss
the results of the experiments.

3.4.1 EOTD-M classification and sets of features

To evaluate the sensitivity of the classifier, we rely on the Prediction at Pauses
task described by [100]. This is a standard turn-taking decision task that takes
place at brief pauses during an interaction. The goal is to predict whether the
user holding the turn is going to continue speaking (HOLD), or swap turns
(SHIFT).

As mentioned in Section 3.1, there are multiple features that can be ex-
tracted from raw audio data, but since we use the ASR-SIM, our features will
be those that can be extracted from transcriptions. Therefore, in this exper-
iment, we compare the sensitivity of the classifier to the use of the following
sets of feature vectors:

• Word Embeddings: multi-dimensional meaning representations of a word.
For these experiments, we use the GloVe (Global Vectors for Word Rep-
resentation [73]) pretrained embeddings5. This is a popular vector repre-
sentation for Natural Language Processing tasks.

• POS Tags: part-of-speech tag for each word is considered to be a good
predictor of turn-switches in the literature [30]. To obtain the tags, we use
the tagger from the Nltk library, and generate a one-hot representation.

• Pauses: duration of time gaps between every pair of consecutive words in
the sentence.

• Combined: a combination of Word Embeddings, POS Tags and Pauses.

3.4.2 Characteristics of the classifier

In the literature, the most frequently used models for EOTD-M are models
based on LSTM Recurrent Networks [55, 3, 84, 50, 96, 56, 34]. Despite being
combined with other layers or algorithms (e.g., [96] add Convolutional Layers
to the architecture), the main differences between them are the features they
use to train the algorithm. Therefore, for our experiments, we will use the
LSTM architectures illustrated in Figure 3.4, with the parameters described
in Table 3.2.

For model validation, each scenario generated in these experiments will
divide the dataset into three subsets. These three divisions will be called
Train, Validation and Test. The algorithm will learn from the Train subset,

5 Available online at https://nlp.stanford.edu/projects/glove/
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(a) Single-feature input architecture
(b) Multiple-feature input architec-
ture

Fig. 3.4: Subfigure (a) shows the architecture of the models that use one of
the three features vectors as input. Subfigure (b) shows the architecture of
the models that use the three types of feature vectors as input.

Table 3.2: Architecture of the models used, Layer(type) is the name of the
units used in each particular layer and Units is the number of units in the
layer.

Layer (type) Units

LSTM 128

Dense(relu) 128

Dense(sigmoid) 1

while Validation is used to avoid overfitting by stopping the training process
when the validation loss stops improving. The parametrization of this anti-
overfitting mechanism is described by the earlyStopping variables in Table 3.3.
The patience parameter allows the anti-overfitting mechanism to prevent the
training procedure from stopping when it is temporally stuck in a local min-
ima. Nevertheless, for these experiments we have observed that even low values
of patience are enough to avoid local minima and overfitting.

3.4.3 Metrics

The LSTM network will output the probability of a sentence being a SHIFT
pause. Using a threshold value, this output can be binarized, thus allowing
to calculate the accuracy and other metrics. However, the determination of
this threshold can severely affect the result. To avoid this drawback, in these
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Table 3.3: Parameter of the training procedure for the LSTM based model,
n batch samples per gradient update, epochs is the number of epochs to train
the model, learning rate controls how much to modify the model’s parameters
in response to the estimated error after each epoch, pad sequence is the max-
imum length in number of words of a sentence (if the sentence is larger than
this value, the first words in the sentence are discarded until it reaches the
specified length), earlyStopping monitor is the variable monitored that will
trigger the early stopping of the training procedure, earlyStopping patience
is the number of epochs with no improvement after which training will be
stopped, loss function is the optimization score function and optimizer is the
name of the algorithm used to fit the parameters.

Parameter Value #

n batch 1000

epochs 200

learning rate 0.01

pad sequence length 30

earlyStopping monitor val loss

earlyStopping patience 5

loss function binary crossentropy

optimizer adam

experiments the Area Under the ROC Curve (AUC) will be used to evaluate
the performance of the LSTM models.

3.4.4 Dialog data corpora

The experiments will be performed with two datasets. The first dataset will
be based on the Switchboard dataset, for which we will not generate timing
information (word duration and pause duration) since it already has that
information available, and we will only induce the correspondent artifacts.
This dataset is a telephone-speech corpus that consists of approximately 260
hours of speech and was originally collected by Texas Instruments in 1990-
1991, under DARPA sponsorship6. It is a collection of about 2,400 two-sided
telephone conversations among 543 speakers (241 female, 302 male) from all
areas of the United States. In these types of conversations, where there is a lack
of non-verbal communication, backchannel communication is very present. For
End-Of-Turn detection, we are not interested in backchannel turns, we focus
on the speech of the speaker who leads the turn, and is making a statement.
The backchannel communication made by the listener on a turn is ignored,
resulting in a dataset of 35,323 sentences.

6 https://catalog.ldc.upenn.edu/LDC97S62
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The second dataset will be based on the OpenSubtitles en-es corpus7, for
which the ASR-SIM will have to estimate all the timing information based on
the parameters we have defined. The OpenSubtitles en-es corpus contains 61.4
million speech turns from movie scripts. These speech turns do not belong to
real speech, the dialogs are scripted, and therefore the structure and vocab-
ulary vary from natural human-to-human speech. Nevertheless, this dataset
provides a complementary validation benchmark for our study, since each
communication scenario presents a particular problem, such as telephone con-
versations, face-to-face conversations or videoconferences. We will train and
test the EOTD-M on these types of dialogs without trying to export the mod-
els from the scripted-dialog environment to human-to-human speech. For the
experiments, we will use 50.000 randomly selected sentences from this dataset.

According to the EOTD-M problem described in Section 3.4.1, each speech
turn generates a SHIFT-labeled instance, while HOLD instances are gener-
ated from turns containing pauses longer than the specified threshold (δ =
1045ms). This is proposed in [16] as a cut between the distributions that we
have associated with comma and dot pauses. A HOLD instance is the sub-
sequence of tokens that precedes each pause greater than the threshold in a
turn. Illustrative examples of the generation of SHIFT and HOLD instances
can be found in Tables 3.4 and 3.5, where, from a hypothetical transcribed
sentence, we analyze the pause duration to generate HOLD and SHIFT in-
stances. The example in Table 3.4 uses a threshold value of δ = 1045ms, and
the one in Table 3.5 uses δ = 1500ms.

Table 3.4: Example of the generation of SHIFT and HOLD instances with δ
= 1045ms

Hypothetical sentence

Hello, I would like to buy a necklace, a gold necklace.

Pause duration

Hello<1200ms>I would like to buy a necklace<1600ms>a gold necklace

Instances and labels generated from the sentence (δ = 1045ms):

Hello I would like to buy a necklace a gold necklace SHIFT

Hello I would like to buy a necklace HOLD

Hello HOLD

Finally, the datasets are balanced to contain the same amount of SHIFT
and HOLD instances. This is done by randomly sampling from each class.

3.4.5 Word Error probabilities

The probabilities of the ASR-SIM errors used to analyze the impact on the
quality of the LSTM estimator are: {0.0, 0.1, 0.3, 0.5, 0.7} for the three types of
7 [dataset] http://opus.nlpl.eu/OpenSubtitles.php
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Table 3.5: Example of the generation of SHIFT and HOLD instances with δ
= 1500ms

Hypothetical sentence

Hello, I would like to buy a necklace, a gold necklace.

Pause duration

Hello<1200ms>I would like to buy a necklace<1600ms>a gold necklace

Instances and labels generated from the sentence (δ = 1500ms):

Hello I would like to buy a necklace a gold necklace SHIFT

Hello I would like to buy a necklace HOLD

errors. In order to identify which factors influence each feature representation
technique, each error probability is analyzed independently. The threshold
for the Levenshtein distance of Confused and Extra word errors is set to
τ = 3. To evaluate the impact of the different error types and probabilities,
the experiments will be conducted following two strategies: same distribution
and different distribution. The same distribution strategy will apply the same
error probability in train, validation and test sets, given a particular error type
and probability. The different distribution strategy will apply the error to the
test set only, while the algorithm will train with free-from-error data. This
second strategy simulates the scenario in which the training data is generated
in a controlled environment, with a low probability of errors. However, the
evaluation data is generated in a real environment, exposed to the errors
defined in Section 3.2. Therefore, the different distribution strategy will allow
us to investigate how important training with the expected test error rates is.

3.5 Results

Before analyzing how the ASR-SIM transcription errors affect the perfor-
mance of the LSTM based EOTD-M, we have measured how each error type
affects each featurization technique. Inspired on the analysis performed by
[113], where they investigate the effects of word substitution errors (Confused
word error) on sentence embeddings, we have measured how much featur-
ized sentences change under the effect of the different errors generated in the
ASR-SIM.

3.5.1 Effects of the ASR-SIM errors on the featurization
techniques

The errors considered in this work can cause variations in the length of a
sentence, unlike in [113], where only the confusion error is analyzed, which
does not change the number of words in a sentence. Extra word error adds
words to the sentences, and this makes the approach of [113] unsuitable for
this work, since it compares the original and modified sentences word to word.
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Therefore, to overcome this difference, we treat the sentences as time series
of feature vectors, and use the Dynamic Time Warping (DTW) measure [51]
to compare sentences without errors and sentences with the induced errors.
DTW is a measure that finds the optimal alignment between two time series
by stretching or shrinking one of the time series along its time axis [87]. This
warping between two time series can then be used to determine the similarity
between the two time series by means of a defined distance measure. DTW is
often used in speech recognition to determine if two waveforms represent the
same spoken phrase [1].

DTW has been previously used to compare similarity between sentences
[51], and although it does not guarantee the triangle inequality, it provides
an estimation of how the errors affect the vectorized representation of the
sentences. For this evaluation we have used the Python FastDTW library8

based on the work of [87], which is an approximate DTW algorithm that
provides optimal or near-optimal alignments with an O(N) time and memory
complexity.

We have randomly selected 1000 sentences to calculate the average dis-
tance to their modified version for each dataset, the distance is calculated
by the FastDTW algorithm with the Euclidean distance between each pair of
matched words. The distances have been calculated under the effect of the dif-
ferent error probabilities described in Section 3.4.5. This comparison exercise
has been performed 10 times to take into consideration the variability gener-
ated in the ASR-SIM, and averaged to illustrate the results in Figures 3.5 and
3.6. These figures are composed of three plots each, one for each featurization
technique. Each plot contains information on how a particular featurization
technique is affected by the three error types with different error probabilities.
The Y axis represents the average distance between sentences, and the X axis
represents the error probability of the modified version of the sentences.

The first plot from left to right in Figures 3.5 and 3.6 shows that all the
errors affect similarly to the Embedding featurization. Nevertheless, the error
that affects the most is the confused word error followed by extra word error
and missing word error.

The second plot in Figures 3.5 and 3.6 shows how POS featurization is
similarly affected by extra word error and missing word error, and slightly
less affected by confused word error. This result responds to the expectations
since the distance between every pair of one-hotted POS tags is the same, and
occasionally the confused word can have the same POS tag as the original
word.

Finally, Pause featurization seems to be unaffected by confused word error
and extra word error, but it is affected by missing word error. This is also
expected since missing word error and confused word error do not alter the
pause between the duration of words, while extra word error creates a pause
between the two words added.

8 https://pypi.org/project/fastdtw/
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Fig. 3.5: DTW distances between 1000 Switchboard sentences and their mod-
ified versions generated by the ASR-SIM.
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Fig. 3.6: DTW distances between 1000 subtitle sentences and their modified
versions generated by the ASR-SIM.

3.5.2 Effects of the ASR-SIM errors on EOTD-M

We compute the predictions made by the LSTM based classifier given differ-
ent errors in the ASR-SIM transcription, different sentence featurization tech-
niques and different scenarios. The results are shown in Figures 3.7, 3.8, 3.9
and 3.10.

For each dataset, there are two figures displaying the results for the
same distribution and different distribution strategies. Each of the Figures 3.7-
3.10 is composed of three plots, one for each ASR-SIM error type defined in
Section 3.2. Each plot shows the average AUC score obtained from a 10-fold
experiment for each featurization technique and the combination of the three
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techniques, taking into account the variability obtained from randomly gen-
erating dataset splits and error generation.

A first analysis of Figures 3.7-3.10 reveals that the Pause feature represen-
tation obtains the worst AUC results not only for every error probability on
the same distribution experiments, but also for low error probabilities on the
different distribution experiments. This poor performance can be explained by
the fact that pause duration information is very limited and does not capture
semantic aspects of EOTD-M. This seems to be confirmed by the observation
that the Combined features produce the highest AUC values, being the most
complex representation used in this work.
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Fig. 3.7: Results for the Switchboard dataset with equal train-test distribution.
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Fig. 3.8: Results for the Switchboard dataset with different train-test distri-
bution.

Therefore, we focus our analysis on the Combined, Embeddings and POS
features since, as previously discussed, Pauses features do not produce ac-
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curate classifications. Analyzing the effect of the shift of error distributions
between train and test sets (same distribution vs different distribution), Fig-
ures 3.7-3.10 show that the effect of the change of distributions is remarkable
under the effect of the confused word error and missing word error, and, to a
lesser extent, for the extra word error. This effect is similar in both datasets,
and more remarkable in the Combined and Embeddings experiments, which
show fast degradation as the error probabilities grow. The payoff of having
the most complex features is that it is the most sensitive to errors, deterio-
rating to the point of performing worse than other simpler features. This can
be appreciated in Confused and Missing word error of Switchboard results in
Figure 3.8, and on the Subtitles results shown in Figure 3.10.
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Fig. 3.9: Results for the Subtitles dataset with equal train-test distribution.
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Fig. 3.10: Results for the Subtitles dataset with different train-test distribu-
tion.
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On the other hand, POS features, despite achieving a worse performance
than the Embedding features, are less affected by low error probabilities. Nev-
ertheless, missing word errors have a stronger impact than the other errors,
as can be seen in Figures 3.8 and 3.10. We may hypothesize that a confused
word can still keep the same POS tag, and does not alter the vectorized rep-
resentation of the sentence as much as a missing word error. In the same way,
extra word errors generate two words, of which at least one could also have
the same POS tag as the original word, despite having an extra tag from the
other word. This hypothesis is reinforced by the results illustrated in Figures
3.5 and 3.6, and analyzed in Section 3.5.1, where confused word error is the
least severe error in terms of altering the POS featurization of a sentence.

The impact of these induced errors has been also measured in terms of
training time. In figures 3.11-3.12 the training time under each error proba-
bility is illustrated. In each figure, given the featurization technique, we can
compare the training time for each error type. The X axis in this type of plots
(Swarm plots and violin plots) does not correspond to a continuous variable,
it acts as an auxiliary variable that helps to plot multiple instances that have
the same Y value (training time in this case) without overlapping those in-
stances. These figures show how, for both datasets, neither the error type nor
the probability affect the training time significantly. Although the lack of in-
fluence of the errors on the training time could be caused by the 200 epoch
limit by making all the training processes stop at the same epoch, this is not
the case since none of the training processes reached the epoch limit.

Summarizing all the information extracted, we can conclude that missing
word error is the most potentially harmful error an ASR-M can deliver to the
EOTD-M if the classifier is not trained with the expected error probabilities.
Not only it modifies the vectorization of a sentence severely, but it is also
the error that affects the performance of an LSTM based EOTD-M the most.
Another important finding is that representations that are less efficient for
the EOTD-M under low error probabilities can become more efficient for par-
ticular types of errors when the error rate is increased. This is the case of the
POS representation, which can outperform the embedding representation for
high confused word and extra word error probabilities in the different train-
test distribution scenario. Nevertheless, for this to happen in some embedding
and error type configurations, the error probability must reach values of 0.5 or
above, such is the case of Figure 3.8 for confused word error. In other studies
such as [113] and [98], where the effects of confused word error on embed-
dings and NLU-M respectively are studied, the maximum error probability
simulated is 0.5, and real transcription errors, the percentage error was 23%.
Nevertheless, in this study we have covered a wider range of error probabili-
ties, since the amount of errors depend not only on the ASR-M itself but also
the audio conditions, and that is sometimes an uncontrollable factor.

The results obtained from the experiments are similar using both datasets,
and the behavior of the classifiers under the influence of the generated errors
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Fig. 3.11: Training time for the Switchboard dataset.

is coherent. This indicates that the ASR-SIM is suitable for the purpose of
simulating ASR-M transcriptions and simulating errors.

3.6 Conclusions and future work

In this work we have proposed a method for investigating the influence of
the ASR-M output errors on the behavior of the EOTD-M of Spoken Dialog
Systems, which has not been addressed before. The ASR-SIM introduced in
this work generates the transcription of a simulated dialog starting from plain
text, with the amount and type of noise specified by the user. This leads to a
realistic simulation of a variety of problems exhibited by ASR-M components.
The code of this simulator will remain available in GitHub 9 for future studies
as a contribution of this work. The absence of comparable simulators in the
literature, is one of the motivations of this work.

Some of the insights from our analysis are the following:

9 https://github.com/CesarMontenegro/AsrSimulator
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Fig. 3.12: Training time for the Subtitles dataset.

1. The ASR-SIM is suitable for the purpose of simulating ASR-M transcrip-
tions and simulating errors.

2. Word embeddings produce the best overall results for the EOTD-M task.
This is consistent with previous reported results.

3. The most influential error across representations is themissing word error.
4. In terms of classifier performance, there is an interaction between types

of errors and featurization techniques.
5. It is more effective to include ASR-M simulated errors in the train and

validation sets in order to make the classifiers more robust.

So far, we have only exploited the capability of the ASR-SIM to vary
the three types of noise exposed. However, further research can be done by
combining noise with the different speech profiles described in Section 3.2.1.
Moreover, in this early version of the ASR-SIM, errors are generated ran-
domly among the words of a sentence, nevertheless there are probably certain
characteristics in some words that make them more prone to errors compare
to others. A study on what word characteristics are more influential on the
probability of a word to be miss transcribed would help to create more re-
alistic scenarios by the ASR-SIM. Also, in order to increase the amount of
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algorithms that can benefit from this simulator, the pause and word duration
simulations can be extended with other simulations, such as tone and other
variables extracted from audio. Doing this, solutions based in the architecture
represented in Figure 3.1b will be able to benefit from the advantages that
the ASR-SIM offers.



4

The EMPATHIC dialogue-act taxonomy

4.1 Introduction

In this section, we focus on an important building block for the conception of
a DM of an intelligent VC: the definition of a dialog-act taxonomy for imple-
menting the communication between the intelligent agent and the user. One
particularity of our virtual agent is that the dialog management implements a
coaching model that is aimed at assisting elder people to keep a healthy and
independent life. Therefore, the dialog-act taxonomy should take into account
the coaching goals of the agent as well as the particular characteristics of this
population segment. Furthermore, in contrast to other applications where the
conversation is guided by the user’s intents, here it is the agent the one that
should guide the conversation to achieve a number of coaching objectives.

A dialog-act taxonomy for this type of systems should provide a robust
platform to capture the semantics of the wide range of aspects involved in the
agent-user interaction: such as providing assistance in daily tasks, suggesting
health improving routines, and promoting social interactions. All these objec-
tives require to carefully select the dialog acts and the way they are organized.

User utterances are classified according to a previously defined set of di-
alog act types, which may consist in a set of semantic units representing the
translation of words into concepts. This is the work of the Natural Language
Understanding (NLU) module shown in Figure 1.1. NLU is used to denote
the task of understanding natural language coming from speech, conversa-
tion or other sources. In this work it is included in a spoken dialog system,
so it denotes the task of understanding the natural language of a human in
a conversational human-machine interaction. Therefore, the definition of the
act tag set or dialog act taxonomy that will serve to label the dialog corpus,
for both the output of the NLU module and the input of the dialog manager,
is a critical step.

Several works have addressed the question of defining dialog act tax-
onomies [46, 109, 12, 101] that will be discussed in Section 4.3. Among them,
the DIT++ taxonomy [10] and the more recent ISO 24617-2 standard [75, 13],
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which is intended to be a development of the previous one, can be considered
the general methodological framework of the taxonomy defined in this work.
In this framework, our aim is to develop a taxonomy conceived for a particular
application: virtual coaching designed to keep a healthy and independent life
as we age [52, 107]. This virtual coach is the main goal of the EMPATHIC
project (Founded by the European Commission H2020-SC1-2017-RIA, grant
number 769872). Studies suggest that attention to the lifestyle of the elderly
can help them to maintain independent life [120]. In this application, the con-
versational agent is expected to guide the subject to pursue short and medium
terms goals to promote healthy life style and social interaction, as well as to
assist the user in the execution of daily tasks. As such, the conversational
agent should be able to behave properly beyond task-specific domains.

We address the conception of such an agent from the perspective of coach-
ing [27] which is a method that consists in accompanying, instructing, or train-
ing a person with the goal of achieving goals, or developing specific abili-
ties. In our framework, coaching is focused on a reduced number of domains,
i.e., nutrition, physical activity and social engagement. These are domains
whose role is critical for keeping a healthy and independent life of elderly.
As a consequence, the NLU system has to understand the user in terms of
the coaching goals, thus, its output needs to be extremely related to these
goals. Moreover, the dialog-act taxonomy has to allow the dialog manager
to implement a strategy according also to the specific goals of the coaching
model, in contrast with classical systems that need the decoding of the user
intents. Additionally, the conversational agent is also expected to participate
of more general conversation, i.e., chit-chat talk.

Thus, in brief, the main contributions of the work include the definition of
a dialog-act taxonomy aimed to represent the user utterances in the particular
human-machine communication framework of the EMPATHIC project, which
develops a coaching model aimed at keeping a healthy and independent life
of elderly. Thus, the taxonomy allows the Dialog Manager to understand the
user in terms of the coaching strategies and goals to be developed and agreed
with the user, which is a challenging and novel approach. In addition, a set of
real human-machine interactions in Spanish between elderly and a simulated
virtual coach, i.e., through Wizard of Oz (WoZ) experiments so that the Wiz-
ard plays the role of a coach, has been annotated and discussed, providing a
preliminary validation of the proposed taxonomy as well as important cues
for future work in the field. All in all resulting in an original contribution
in terms of language (Spanish), framework (coaching) and target population
(Elderly).

4.2 Wizard of Oz Method for data gathering

Various modules of the EMPATHIC VC will require ongoing development and
improvement, e.g. to advance speech recognition and language understanding,
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or foster user experience and acceptance. In order to simulate such modules
while they are being developed, the goal was to build and consequently use a
simulated Wizard of Oz (WOZ) component. WOZ constitutes a prototyping
method that uses a human operator (i.e., the so-called wizard) to simulate
nonor only partly-existing system functions. In language-based interaction
scenarios, like the ones envisioned by EMPATHIC, WOZ is usually used to
explore user responses and the consequent handling of the dialog, to test dif-
ferent dialog strategies or simply to collect language resources (i.e., corpora)
needed to train technology components. In EMPATHIC, however, the goal is
to use WOZ beyond this traditional prototyping stage, and make it a fallback
safety net for situations in which the automated coach may be unable to re-
spond. That is, the goal is to develop a system component, which initially
serves as a prototyping tool supporting the research on language-based in-
teraction and dialog policies, but then becomes an always-on backup channel
dealing with those user requests the system is incapable of handling by itself.
A first version of this tool has been built and consequently used in several
user studies

4.3 Related Work

While the GROW model serves as a conceptual pillar for developing the
dialog-act taxonomy, we also look to previous approaches for dialog-act tag-
ging.

Coding a sentence with a set of labels goes back to speech act theory of
Austin [7], which has been the basis for modern data-driven dialog act theory.
Multiple different dialog act taxonomies have been proposed to solve the task
of assigning dialog act labels to sentences. They not only differ in the precise
set of tags selected, but also in characteristics such as whether the tags are
exclusive, level of detail or structure.

Dialog act taxonomies can be characterized taking into consideration dif-
ferent criteria, such as the following:

• Type of communication (i.e., synchronous vs. asynchronous).
• Activity type and dialog domain.
• Type of corpora (e.g., speech dialogs, videos, chat).
• Types of speech act classification schemes.
• Dimensions (unidimensional versus multidimensional annotation).
• Annotation tools and annotation procedure.

Books, and other written forms of communication, are asynchronous meth-
ods of communication where each message is thought beforehand. This gen-
erally gives written communication a better structure than spoken communi-
cation, where doubts, rectifications, and external factors such as noise or user
speech characteristics, may result into incomplete or fuzzy messages. In this
context, the PDTB [78] taxonomy was designed for annotation of discourse
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relations between sentences, analyzing the conjunctions used to relate them.
The sense tags described in PDTB have a hierarchical structure, but they
would not suit to our coaching problem since they are designed to deal with
asynchronous communication.

In a human to human conversation, these problems are solved by consid-
ering the context of the conversation. Dialog acts need to take into account
whether the communication is synchronous or asynchronous. For instance,
synchronous communications allow the introduction of clarification intents,
where an agent may be instructed to repeat a question or formulate it in
a different manner. Such type of intent tags make no sense for asynchronous
methods. The dialog-act taxonomy introduced in this work has been conceived
for synchronous communication.

While one of the most common applications of act labeling is in the con-
text of human to human or agent to human conversation, there are other
types of activities to which they have been applied [76]; for instance, they
can be used for text summarization [128]. Similarly, there is a variety of plat-
forms and domains of applications to which act labeling methods have been
applied, such as social networks [128], and classification of message board
posts [80]. The proposal we introduce in this work is oriented to represent
spoken communication between an agent and a human.

Another important difference between dialog act-taxonomies are the cor-
pora to which they are applied and from which machine learning models are
commonly learned. The corpus used is, most of the time, strongly related
to the domain in which the dialog act are going to be applied, and there-
fore should be able to capture the particularities of the domain. Initially,
available corpora were mainly created from task-oriented dialogs [5]. More
recently, larger corpora have been proposed for training end-to-end dialog
systems [53, 129]. In general, these large corpora are not annotated.For a sur-
vey on available corpora for dialog systems [93] can be consulted. The corpus
used in this work has as a particular characteristic, the fact of being obtained
from elderly people, a social group for which dialogs are more scarce.

Among the dialog-act models proposed in the literature, the approach in-
troduced in [101] presents a framework to model dialogs in conversational
speech. The dialog act taxonomy was first based on a set of tags that was
used for the annotation of the discourse structure and then modified to make
it more relevant for the target corpus (the Switchboard corpus [26]) and the
task. However, existing dialog act taxonomies were not designed for the sce-
nario described in Section 4.4.1, where a virtual agent is the responsible for
the development of the conversation. DAMSL taxonomy [4] was developed
primarily for two-agent task-oriented dialogs. Nevertheless, the Empathic tax-
onomy has some common features with DAMSL, since the Intent dimension
defined for Empathic taxonomy contains labels related to 3 out of 4 DAMSL
categories (Information level, Forward Looking Function, Backward Looking
Function).
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Our proposal for the Empathic project has aspects in common with
DIT++ [11], although they are designed for different types of interactions.
On the one hand, DIT++ is based on traditional task-oriented conversations,
on the other hand Empathic is based on coaching interactions, where the agent
is an active member of the conversation from the point of view that the coach
guides the conversation throughout the GROW model strategy. Nevertheless,
many of the labels present in the taxonomy of general-purpose functions and
dimension-specific functions defined in [11] can also be found in the intent
label defined for Empathic. Another work relevant for our approach is the one
recently published in [68], where a hierarchical schema for dialog represen-
tation is proposed. Although the introduced scheme is specifically conceived
to support computational applications, it uses a structure of linked units of
intent that resembles the hierarchical structure at the core of our proposal.

The common norm for dialog act annotation is that a single communicative
function is assigned to an utterance. However, some works propose multidi-
mensional dialog act taxonomies in which multiple communicative functions
may be assigned to the utterances. DAMSL considers a set of exclusive group
tags as different dimensions, whereas DIT++ considers a dimension in a mul-
tidimensional system, as independent, and can be addressed independently
from other dimensions. In particular, a 9-dimensional annotation scheme was
defined in [12]. Similarly, we use a multidimensional taxonomy which allows us
to capture richer semantic information from the dialogs. Considering multiple
modes of semantic information is a requirement for implementing an agent
that should be able to embed the coaching objectives as part of the dialog
strategies. Without the rich information provided by multiple types of tags, it
would be very difficult to guide the user to the satisfaction of the objectives,
and to evaluate whether these objectives have been fulfilled. The details of
this multi-modal taxonomy are described in Section 4.5.

Although the multidimension criteria is similar in both taxonomies, DIT++
is designed for turn labeling, and Empathic is focused in subsentence label-
ing. This difference forces DIT++ to separate into two dimensions different
intents that can be found in the same turn as seen in the dialog examples found
in [41]. Labeling subsentences allows the Empathic taxonomy to group aspects
found in the DIT++ dimensions defined in [11] (general-purpose functions,
dimension-specific functions), since a turn will be split into subsentences, hav-
ing only one intent label for each one, avoiding the problem of having two
intent labels in the same turn.

In addition, an important effort has been carried out to define the ISO
24617-2 standard [75, 13, 14] that includes the 9 dimensions defined in DIT++
and reduces the number of communicative functions, which can be specific
for a particular dimension or general-purpose communicative functions that
can be applied in any dimension. In addition, the standard also considers
different qualifiers for the certainty or the sentiment. This approach has also
be included in our proposal, which can be considered, to some extent, as a
reduced and GROW-driven adaptation of main characteristics of DIT++ and
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ISO 24617-2 for the Empathic purposes. An additional aim of the standard
is to produce interoperable annotated dialog resources. To this end, a set of
dialogs from variety of corpora and dialog annotation schemes, such as the
Map task, Switchboard, TRAINs or DBOX, have been re-annotated under
ISO 24617-2 scheme to build a Dialog Bank [13].

Finally, proposals for dialog act taxonomies also differ in the annotation
tools used and annotation procedures. Humans are better than machines at
understanding and annotating dialog utterances in a detailed manner, be-
cause they have more knowledge of intentional behaviour and they have richer
context models [12]. So we rely on human annotation procedures to get accu-
rate annotations instead of using automatic methods. We explain the charac-
teristics of our annotation procedure in Section 4.6.

Regarding the NLU task, having a semantic representation that is both
broad coverage and simple enough to be applicable to several different tasks
and domains is challenging. Thus, most NLU system approaches depend on
the application and the environment they have been designed for. In this way,
targeted NLU systems are based on frames that capture the semantics of a
user utterance or query. The semantic parsing of input utterances in NLU
typically consists of three tasks: domain classification (what is the user talk-
ing about, e.g., “travel”), intent determination (what does the user want to
do, e.g., book a hoter room) and slot filling (what are the parameters of this
task e.g., “two bedroom suite near disneyland”) [111]. The domain detection
and intent determination tasks have been typically treated as semantic utter-
ance classification problems [124, 35]. Slot filling, instead, has been treated as
a sequence classification problem in which semantic class labels are assigned
to contiguous sequences of words [116], which is now addressed by bidirec-
tional LSTM/GRU models among others [33, 114]. A good review of the NLU
evolution is given in [110].

While the NLU employed in this work does perform intent detection and
adds entity recognition, as other approaches do, the taxonomy includes intent
labels specifically conceived for the GROW model, which has to fulfil addi-
tional objectives. For example, the taxonomy has to provide a relationship
among the user utterances and the goals of the GROW model, which has
to be agreed between user and virtual agent, and therefore be established,
during the conversation, as mentioned in Section 4.4.1.

4.4 Dialog Acts for an Empathetic Agent

The conversational agent, as part of the project described in [52], faces several
novel challenges. It will work on real time, the utterances will be automat-
ically extracted from speech using an Automatic Speech Recognition (ASR)
module, and the agent is expected to understand and produce three lan-
guages (namely Spanish, Norwegian and French, abut also English, German
and Italian for research support). But notice that the results presented in this
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work are for experiments conducted in Spanish. In addition, the agent will
perform a variety of tasks to analyze the development of the conversations
with the user.

Figure 1.1 illustrates just some of the main modules in the software,
and the flow of information as designed. The modules Natural Language Un-
derstanding and Dialog Manager, highlighted in blue, are the modules affected
by the dialog act taxonomy definition presented in this work. The dialog act
set has been conceived taking into consideration these challenges and its de-
sign and description is the focus of this paper.

4.4.1 GROW Model Implemented through the Dialog Manager

The Dialog Management (DM) is a fundamental component of any Spoken
Dialog System (SDS). It maintains the state and manages the flow of the
conversation by determining the action that the system has to perform at
each agent turn. For the EMPATHIC project [107, 106], we used an agenda-
based management structure based on the RavenClaw [9] dialog management
framework that separates the domain-dependent and the domain-independent
components of the conversation, unlike previous plan-based dialog managers.
The domain-specific aspects are defined by a dialog task specification defined
by a tree of dialog agents. Then a domain-independent dialog engine executes
any specified task using a stack structure to control the dialog while providing
reusable conversational skills, such as error recovering. This approach is suit-
able for dealing with complex domains while allowing the use of a relatively
unconstrained natural language.

The DM and the involved strategy implement the coaching model chosen
for the project. Coaching has been defined as a result-orientated, systematic
process. Coaching generally uses strong questions in order that people discover
their own abilities and draw on their own resources. In other words, the role
of a coach is to foster change by facilitating a coaches’ movement through a
self-regulatory cycle [28]. There is evidence showing that coaching interven-
tions can be effectively applied as a change methodology [104, 39]. One of
the most common used coaching methodologies is the GROW Model [119].
This model provides a simple methodology and an adaptable structure for
coaching sessions. Moreover, efficiency has been demonstrated in some Theo-
retical Behavior Change Models such as the Trans theoretical Model of Change
(TTM) [71, 70]. As a consequence, this coaching model has been selected for
the EMPATHIC project to be integrated in the DM strategy.

A GROW coaching dialog consists of four phases which give the name
to the model: Goals or objectives, Reality, Options and Will or action plan.
During the first phase, the dialog aims at getting the specification of the ob-
jective that the user wants to achieve, for example, to reduce the amount
of salt in order to diminish the related risk of hypertension. Then, this goal
has to be placed within the personal context in which the user lives, and the
potential obstacles need to be identified. In the next phase, the agent goal
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is to make the user analyse the options he/she has to achieve the objective
within his/her reality. Then the final goal of the dialog is the specification
of an action plan that the user will carry out in order to advance towards
goals. In this framework, the DM strategy also involves achieving the goals
associated with each of the four stages. First, it will try to get a specific goal
from the user, asking something like (“Would you like to improve something
in your eating habits?”). Once the user provides a sentence including his/her
goal, the DM will focus on the next stage. Thus, it will try to get information
about the context in which the goal has to be achieved, asking something like
(“How often do you usually go to the grocery?”). In this way the dialog will
be developed until all the stages are completed. This strategy, differs from
classical task-oriented dialog systems in which user asks something related to
the task, and then the system tries to obtain additional information, if needed,
to be able to provide as accurate a response as possible. In fact, the partic-
ular user goal and related action plan have to be agreed between the virtual
agent and the user during the conversation. However, this strategy can still be
correctly specified by the Ravenclaw domain dependent trees of dialog agents
mentioned above that define the domain specific aspects of the dialog.

The EMPATHIC virtual coach is planned to deal with four coaching sub-
domains: nutrition [91], physical activity [92], leisure [90] and social and fam-
ily engagement.

4.5 Proposed Dialog Act Taxonomy

As discussed in previous section, the characteristics of the taxonomy must be
defined according to the conversational agent needed. In our case, the agent
must maintain conversations in real time about a reduced set of topics, and fol-
low coaching strategies to guide the user. Instead of displaying a passive or
merely reactive attitude, it should be pro-active and assertive, proposing dif-
ferent activities and topics of conversation to the elder user. In order to mit-
igate the difficulties in automatic labeling, due to the reasons explained, we
propose a multidimensional hierarchical taxonomy to represent the relation-
ships between the tags. Four types of labels are used, Topic, Intent, Polarity,
and Entity labels.

The Topic label classifies the utterance in a number of classes relevant to
determine the general context in which the conversation is framed. Tracking
the Topic label will help the conversational agent to detect when the user
is changing the subject of the conversation. Due to the links between the
target topics the conversational agent is designed for, it is common to switch
from one topic to another. Nevertheless, the DM implements a GROW-based
strategy, so in this work the DM has its own goals according to the GROW
model. In this framework the Topic label will assist the DM to associate the
user utterance to both, the user and the DM goals, which have to be agreed
during the interaction.
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The Intent label classifies the utterance in classes related to the user’s
communicative intentions (e.g., question, inform, etc.). Our particular choice
of the Intent labels is based on the GROW model of coaching, which is prob-
ably the best known session structure model [29]. The set of Intent labels
we have defined is aimed to help the conversational agent to detect Goals,
Realities, Obstacles and Ways forward of the particular topics the agent has
been designed to deal with.

The Polarity label aims at representing the sentiment associated to the
semantics of the user turn, which can be very relevant to provide exploitable
information to dialog managers. We distinguish between three levels of polar-
ity: positive, neutral and negative. This label is a product of the analysis of
the text, as topic and intent labels, in contrast with emotions detected from
the spoken language represented in Figure 1.1.

The Entity label is different to those ones previously described in the
sense that it does not serve to classify an utterance. Instead, it is applied to
classify particular elements that provide specific semantic information about
the Intent label. However, since the particular set of entity labels that we have
selected play an important role in the semantic analysis, we consider it as a
fourth modality, together with the other three. Also, entities can be useful to
improve the naturalness of the conversation, when the names of the relatives
are detected, or used to formulate specific proposals.

For Topic and Intent labels we propose a hierarchical structure. This
means that an utterance is labeled by multiple tags that can be ordered from
more general to more specific. Such labeling can be graphically represented
using a tree. In this structure, the closer a label is to a leaf, the more precise
it is, while the further away from the leaves, the more general. Figure .1 in
Appendix shows the topic label tag set organized as a tree. Four main groups
can be recognized: nutrition, sport and leisure, family engagement and other.
Each of these groups further splits into more detailed categories. Similarly,
Figure .2 shows the hierarchical structure for the Intent tags. Finally, in Ta-
ble 4.1, the entities are shown.

The rationale behind the use of hierarchical labels is to allow the agent to
receive more fine-grain information when possible, but still useful less refined
classification when no other choice is available. Hierarchical structures allow
the experts to add more knowledge during the labeling of a dialog corpus.
In addition, when the automatic labeling model is trained, it can be less precise
at the time of making predictions in those situations in which the confidence is
not high enough to discriminate between two labels, selecting the parent label.
This ambiguity, permits the conversational agent to guess depending on what
it is expected and taking into account the other labels available. In addition,
it allows the virtual coach to understand the user in terms of the system goals
and topics, and thus to keep the control of the dialog. Also, it permits the
conversational agent to formulate specific questions to solve the ambiguity.
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Table 4.1: List of Entity categories.

Persons Relatives Objects/Utensils
Actions Nourishment Sport and leisure
Books Cardinal numbers Music/Bands
Quantities Ordinal numbers Films/TV Series
Frequencies Time amount Paintings/Sculpture/Art
Diseases Absolute dates Places, buildings and organizations
Emotions Relative dates Nationalities
Meteorology

In Figure 4.1, a labeling example is illustrated for the Spanish corpus. Its
translation to English is shown in Figure 4.1. This example has been labeled
by a human, and even though we have context information, sometimes it
is impossible to reach the tree leaves. In the ambiguous example, it is not
possible to set a more specific topic label than nutrition, although with context
information, we could deduce that the user is referring to the little amount or
variety of fruit he or she eats.

Fig. 4.1: English conversation example.

4.6 Using the Taxonomy to Get a Labelled Corpus
4.6.1 Annotation Procedure

The proposed taxonomy was applied to label the user turn of the human-
machine set of conversations acquired through the Wizard of Oz technique in
the EMPATHIC project. To this end two scenarios were chosen. The first is
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an introductory and quite open dialog, where the machine presents itself and
asks the user about his or her hobbies. The main goal of this scenario was
to make the participant feel comfortable while interacting with the simulated
virtual agent. The dialogs of the second type implement a coaching session in
the area of nutrition, according to the GROW model. Dialogs were acquired
in three different countries with different language and culture: Spain, France
and Norway. In total, 192 elder participants are interacting with the system,
72 in Spain and 60 in both France and Norway. Every user speaks with the
machine in the two scenarios, and thus the final corpus will consist in 384
dialogs. Each dialog is approximately 10 minutes long, which results in an
average of 30 turns per dialog.

For the moment only the Spanish dialogs have been annotated according
to the procedure shown in this work. To do so, 9 different annotators were
instructed about the labels, the GROW model, and about the context of the
project. Each of the annotators labeled roughly the same number of dialogs.
Each dialog was labeled by only one annotator. Nevertheless, all the anno-
tators worked together to deal with doubts and disagreements, under a close
supervision of the first and the second author of the paper, resulting in a col-
laborative annotation task. Each annotator labeled dialogs corresponding to
both the introduction and the nutrition scenarios. Table 4.2 shows the main
numbers of the annotated corpus.

Table 4.2: Description of the annotated corpus.

Characteristics Number
Number of users 72
Number of dialogs 142
Number of turns 4522

Number of running words 72, 350
Vocabulary size 5543

Number of topic labels 55
Number of intent labels 34

Number of running entities 11,113

Since more than one intent and topic can appear per turn, we asked the
annotators to divide each turn into subsentences that roughly correspond to
uttered clauses, so unique intent and topic labels can be assigned to each of
these subsentences. To do so and to carry out the annotation procedure, we
developed an annotation tool that provides a simple command-line interface.
This tool shows all the user turns in a dialog sequentially. For each of them it
first asks to identify the entities. Then the annotator splits the user turn into
the subsentences. Finally he or she selects, for each subsentence, the topic,
intent and polarity labels. The annotators took around an hour to label each
dialog, on average.
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After the annotation process, each turn was divided into 1.92 subsentences
on average. The left-hand side of Figure 4.2 shows a histogram of the number
of subsentences that resulted from the splitting of turns. On the other hand, it
also shows the distribution of the number of tokens (words and punctuation
marks) per subsentence. These figures show a low number of sentences per
turn as well as a low number of tokens per clause or sub-sentence. These
distributions are consistent to human-machine interactions where there is a
significant number of user turns just consisting on two or three words that
express agreement, i.e., yes, or disagreement, i.e., no.

Fig. 4.2: (Left) Number of subsentences per turn. (Right) Number of tokens
per subsentence.

4.7 Analysis and Discussion

In this section we will show the results and statistics related to these anno-
tations. We will first focus on general statistics of the acquired dialogs and
we will then dig into the annotation results. Table 4.3 shows the frequency
of the most frequent topics appearing in the data. The sets of frequent labels
are much more reduced than the sets of all possible labels shown in Figure .1
in the Appendix. The main reason for this is that even though the trees in
Figures .1 and .2 were designed for the whole task of the EMPATHIC Project,
the acquired data corresponds only to the explained two scenarios: the intro-
duction and the nutrition scenario. As a consequence, a significant number
of labels are under the nutrition domain whereas hobbies and travelling are
associated to the welcome or introductory scenario. The label other includes
the less frequent sub-labels as well as clauses that cannot be classified in
terms of topics, such as generic agreement or disagreements. In the same way,
Table 4.4 shows the frequency of the most frequent Intent labels. This ta-
ble shows a significant incidence of the GROW related sub-trees. Thus the
taxonomy proposed to represent the GROW model has demonstrated to be
able to cover real users interactions with a Wizard who plays the role of a
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Virtual Coach. In the same way, the high number of generic communication
tools expressing opinion, as well as agreement or disagreement, depict well
spontaneous human-machine conversations. This table also shows a certain
positive attitude of the participants versus the virtual agent.

Table 4.3: Frequencies of the most frequent topic labels. The sets marked
with the symbol * include all the labels under a given label, and also the
cases where the annotator has not selected any sub-label.

Frequent Topic Labels Frequency
nutrition 16.5%
sport and leisure- hobbies 5.9%
sport and leisure - travelling 5.8%
sport and leisure - * 8.1%
Other 63.7%

Table 4.4: Frequencies of the most frequent intent labels. The sets marked
with the symbol * include all the labels under a given label, and also the
cases where the annotator has not selected any sub-label.

Frequent Intent Labels Frequency
generic - agreement 17.4%
generic - disagreement 4.8%
generic - evaluation/opinion 18.1%
generic - doubt 3.3%
generic - greeting 4.0%
generic - * 6.2%
GROW inform - habit or action 16.7%
GROW inform - objective 2.5%
GROW inform - obstacle 2.9%
GROW inform - * 6.8%
question 3.5%
other 13.8%

Then, the left-hand side of Figure 4.3 contains the distribution of the
polarity labels. As might be expected, the user is often neutral, sometimes
positive and only rarely negative. This table is quite consistent with the out-
comes of Table 4.4. Further analysis will need to be carried out to determine
the correlations between these labels with the valence labels obtained through
the emotion annotations based on speech and also on facial expressions.
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Fig. 4.3: (Left) Distribution of the polarity in each subsentence. (Right)
Distribution of the entities.

The entities were identified at the turn level. An average of 2.6 entities were
labeled per user turn. The right-hand side of Figure 4.3 shows the frequency
of each of the entities. This figure shows a significant occurrence of entities
that correspond to user utterances developing the coaching model proposed
by the Wizard, such as Nourishment and Actions.

In Figure 4.4, we illustrate the relationship between topics and intents,
by means of Sankey diagram (https://en.wikipedia.org/wiki/Sankey_
diagram). In this and the following figures, the most representative labels
(in terms of appearance in the labeled conversations) of two label groups face
each other. The flows that connect the labels from one side with the other,
represent the amount of sentences that are labeled with the two connected
labels. The labels that are not representative enough, are included in the par-
ent label appended with a star. Also, only labels down to the second level of
depth are contemplated, any deeper label is included in its second depth level
parent node. In order to help understanding visually the tree structure, all
the labels pending from a first level node will have the same color.

https://en.wikipedia.org/wiki/Sankey_diagram
https://en.wikipedia.org/wiki/Sankey_diagram
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Fig. 4.4: Relationship between intent and topic labels.

Figure 4.4 also allows us a better understanding of the relation between
both labelling as well. The most frequent Topic label is other with a 63.86%
of the sentences. But it shows that this high percentage corresponds to gen-
eral conversation, greetings, or answers to questions from the Virtual coach
as seen in the flows that connect the other topic label with all the generic
family of labels represented in blue. As the second session was planned to be
about Nutrition, the Virtual coach had to ask about the user’s habits. There-
fore, a 16.69% of the intent labels are GROW inform-habit or action, what
it was not expected was to have as much as nutrition habits explained as
sport and leisure-family habits. Other intent labels share this particularity of
having as much relation with nutrition as with sport and leisure as generic-
evaluation/opinion and the GROW inform label family in light orange.

In Figures 4.5 and 4.6, Sankey diagrams are used to represent the relation
between the entities and the intent and topic labels, respectively. For the
sake of clarity these figures only represent the first level of Intends and Topics
trees. Figure 4.5 shows how sentences that have Nourishment entities are often
GROW inform sentences, what is consistent with the conclusions obtained
from Figure 4.4 about the relationship between the nutrition Topic and the
GROW inform labels. Also other entities are useful to inform about nutrition
habits like Actions, Quantities and Relative dates for example.
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The relations deduced in Figures 4.4 and 4.5, are reinforced with Fig-
ure 4.6, where we can also see the relation of Nutrition topic with Nourish-
ment, Quantities and Actions entities among others.

The analysis presented and discussed in this section shows how a taxonomy
developed from a theoretical coaching model, such as the GROW one proposed
in this work, can be followed by real users interacting with the simulated agent.
The annotated data show that the taxonomy is capable of fully coverage of
the spontaneous utterances of the participants in terms of concepts, topics,
communicative intends that are useful to provide meaningful information to
the DM according to the the goals to be developed by the system, to a certain
level of granularity, but still useful. In the same way, the distribution of the
selected entities seems also to agree the goals of the developed scenarios.
Thus, the outcomes of the data annotation could asses the hierarchy proposed,
to some extent. On the other hand, the positive agreements and opinions,
as well as the polarity distributions, seem to show a relaxed and positive
attitude towards the Wizard, who played well the role of a coach. All in all
these data seem to support the full procedure of the WoZ recordings.

Fig. 4.5: Relation between intent and entities.
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Fig. 4.6: Relation between topic and entities.

4.8 Conclusions

In this work we have introduced a dialog act taxonomy that has among its
distinctive characteristics the capacity for supporting communication based
on a coaching strategy, a hierarchical structure between the tags, and the fact
of being multi-modal.

The coaching strategy is essential within the framework of EMPATHIC
since it directly addresses the need to implement a pro-active agent that pro-
vides assistance and counseling to the elderly users, and drives the dialog with
the intention of reaching coaching goals. This is an important difference to
other approaches such as task-oriented dialog systems and chit-chat imple-
mentations.

The hierarchical structure allows us to capture varying degrees of semantic
information from the utterances. Having different taxonomies for topics and
intents allow the system a very rich semantic representation of the dialogs
that provides more flexibility for the design of dialog managing strategies.
Combined, these characteristics make our proposal significantly different to
previous dialog act taxonomies and a very relevant proposal for the imple-
mentation of virtual agents.
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Another important contribution from our work is to provide one of the first
analysis of an annotated corpus constructed from 142 interactions between
elder people and visual agents. This corpus is precious because it covers a
population usually neglected in similar studies, mainly due to the difficulties
involved in accessing to elderly and face them with the required technologies.
We emphasize that the usefulness of the corpus, and of the obtained anno-
tations, goes beyond the implementation of the virtual coach. Although the
results shown in this work are limited to Dialogs in Spanish, there is ongo-
ing work in the completion of annotated dialogs for the other two languages.
Thus, further language and cultural comparisons will be achieved.

The validation of the introduced taxonomy will require the application of
a classification strategy able to label the dialogs using the introduced sets of
tags. The taxonomy could be indirectly evaluated in terms of the performance
of the dialog manager that uses it. On the other hand, while hierarchical multi-
modal taxonomies, as the one we have introduced, are richer and provide much
flexibility for the implementation of dialog managing strategies, they are also
challenging for typical machine learning methods. For instance, hierarchical
multi-label classification is more difficult that traditional multi-class classi-
fication problems. Similarly, using topic label information for implementing
specialized coaching scenarios and switching between them is not a trivial
task. Nevertheless, we consider that the taxonomy introduced in this work
provides us with a good set of tools to face these challenges.

We foresee a number of ways in which the annotated data can be valu-
able for machine learning applications. While its size is relatively small (4522
turns for the Spanish corpus), this data is sufficient to refine machine learn-
ing models that had been trained using larger, more general, dialog corpora.
In addition, as part of the EMPATHIC there will be annotated data for other
languages. This fact points to the feasibility of obtaining a larger corpus by
translating all dialogs to a base language. Moreover, it opens the possibil-
ity of investigating transfer learning strategies in a multi-lingual framework.
We have already obtained preliminary results on the application of parallel
corpora for training dialog classifiers (Montenegro et al. [63]). Finally, the an-
notated corpora is valuable itself due to the particular characteristics of the
task as well as of the erderly population from which it has been obtained.

Finally, the analysis of the annotation data discussed in this work let to
conclude that the taxonomy developed from a theoretical coaching model, such
as the GROW model, has been able to provide fully coverage of the sponta-
neous utterances of real users interacting with a simulated agent who plays the
role of a Virtual Coach. Moreover, this analysis shows significant frequencies
of GROW related Topic, Intends and Entities labels. All in all, these outcomes
could also provide a preliminary validation of the taxonomy proposed.
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Background

The taxonomy presented in Chapter 4 proposes two hierarchies for the labels
of the Intent and Topic classification tasks. This taxonomy has led to the
research presented in the following chapters, and extend beyond the scope of
the EMPATHIC project and can find applications in other fields.

5.1 Hierarchical classification

HC can be seen as a particular type of structured classification, where the
output of the classification algorithm is defined over a label taxonomy. The
term structured classification is broader and denotes classification problems
where there is some structure (hierarchical or not) among the labels [97].

HC is also a particular case of Multi-label classification [97], where the
labels form a hierarchical structure of Tree or DAG (Direct Acyclic Graph)
type. For instance, consider Figure 5.1, where each label is represented as a
node of the tree. For a set of labels ΩY = {λ1, . . . , λi, . . . , λj , . . . , λL} belong-
ing to a hierarchy, where each λi and λj are possible labels of class Y , if we
represent the relation is-descendent-from as ≺, the labels should fulfill the
following properties:

• Asymmetry: If λi ≺ λj , then λj ⊀ λi, ∀λi, λj ∈ ΩY

• Anti-reflexivity: λi ⊀ λi,∀λi ∈ ΩY

• Transitivity: If λi ≺ λj and λj ≺ λk, then λi ≺ λk,∀λi, λj , λk ∈ ΩY

A HC classifier h assigns each instance x ∈ ΩX1 × · · · × ΩXM
⊂ RM a

vector y of class values:

h : X → PY

x 7→ h(x) = y
(5.1)

where PY is a set of subsets of ΩY , and if λi ∈ h(x), and the function
ancestors(λi) returns the set of ancestor labels from λi to the root node, then
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Fig. 5.1: Example of HC label structure, where nodes closer to the root node
represent more generic characteristics, while the nodes which are closer to the
terminal, also known as leaf nodes, represent more specific characteristics

ancestors(λi) ∈ h(x), which can be understood as if a particular label λi is
part of the output of h(x), then all the ancestors of λi in the hierarchy are
also part of the output of h(x).

These properties are indeed present on every HC label structure, but there
are other characteristics present in HC problems. In Silla and Freitas [97], the
following framework is defined in order to describe not only the characteristics
of HC problems, but also the characteristics of the algorithms used to solve
them. A HC problem is described as a 3-tuple (Υ, Ψ, Φ), where:

• Υ specifies the type of graph representing the hierarchical labels (nodes in
the graph) and their interdependencies (edges in the graph). The possible
values for this attribute are: T (Tree) or D (DAG-Directed Acyclic Graph).

• Ψ : indicates whether a data instance is allowed to have labels associated
with a single path or multiple paths in the class hierarchy. This attribute
can take on two values: SPL (Single Path of Labels) or MPL (Multiple
Path of Labels).

• Φ: describes the label depth of the data instances: FD (Full Depth Label-
ing) or PD (Partial Depth Labeling).

An algorithm designed to solve a HC problem can be described as a 4-tuple
(∆,Ξ,Ω,Θ), where:

• ∆: indicates whether or not the algorithm can predict labels in just one or
multiple (more than one) different paths in the hierarchy. This attribute
can take on two values: SPP (Single Path Prediction) or MPP (Multiple
Path Prediction).

• Ξ: is the prediction depth of the algorithm. It can have two values:
MLNP (Mandatory Leaf-Node Prediction) or NMLNP (Non-Mandatory
Leaf-Node Prediction).

• Ω: is the taxonomy structure the algorithm can handle. It has two values:
T (Tree) or D (DAG-Directed Acyclic Graph).
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• Θ: is the categorization of the algorithm under the proposed taxonomy:
– LCN (Local Classifier per Node): consists of training one binary clas-

sifier for each node of the hierarchy (excluding the root node). The
instances labeled with the particular label of the node are considered
positive samples, while negative samples can be selected following dif-
ferent strategies (one possibility being 1-vs-all).

– LCL (Local Classifier per Level): creates a model for each level of the
hierarchy. It is the least used strategy in the literature.

– LCPN (Local Classifier per Parent Node): creates a multiclass classifier
for each node that has child nodes, using only instances labeled with
labels belonging to the child nodes.

– GC (Global Classifier): a model that learns the whole class hierarchy,
and makes a prediction for all nodes at once.
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Weakly Supervised Hierarchical Classification

WSC is an umbrella term encompassing various classification problems in
which the focus is on learning from incomplete, inexact, and inaccurate su-
pervision, in contrast to supervised classification. A supervised classifica-
tion problem [60] is formally described by a set of m predictive variables
X = (X1, · · · , XM ) and a class variable C. Each predictive variable Xi can
take a value from its own set of possible values ΩXi and an instance is a vec-
tor x ∈ ΩX1

× · · · ×ΩXM
⊂ RM . Specifically, the set of values that the class

variable can take, a.k.a. class labels, forms the label space of class variable
C. Assuming the existence of an unknown target function G : ΩX → C that
individually categorizes each instance with a single label, the objective of su-
pervised classification techniques, is to build a classifier Ĝ that approximates
the real function G from a set of fully labeled instances {(x1, c1), · · · , (xn, cn)}
of the problem.

WSC problems involve samples that are not described by instance-label
pairs, and considering the characteristics of the instance-label relationship
highlights the distinctions from other standard supervised classification prob-
lems. Solutions proposed for learning from various types of partially labeled
data have given rise to the field of WSC.

6.1 Weakly Supervised Hierarchical Classification

Generally, HC problems in the literature predominantly fall into the category
of full supervision. Nevertheless, there are instances where alternative super-
vision models come into play, as exemplified by Santos and Canuto [89]. In
their work, they tackle semi-supervised classification utilizing two datasets
pertaining to gene functions in a fungus commonly employed in sugar fermen-
tation for ethanol production. Another distinct supervision model is explored
by Xiao et al. [123], where they develop a hierarchical text classification model
trained on a dataset with noisy labels.
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In this paper, we address three WHC scenarios based on three WSC sub-
categories presented below.

6.1.1 Candidate labels

In a problem of learning from Candidate Labels (CL) [19], instances are pro-
vided with a set of possible labels, which includes the true label. A classifier Ŵ
aims to approximate the real function W based on a set of weakly labeled in-
stances, denoted as {(x1, Lx1), · · · , (xi, Lxi), · · · , (xn, Lxn)}. Here, Lxi ⊆ C
represents a set of candidate labels associated with instance xi. It is assumed
that Lxi includes the true label ci, and an instance xi is considered ambiguous
if |Lxi| > 1. It’s worth noting that while this definition encompasses scenarios
like fully supervised (|Lxi| = 1) and unsupervised (|Lxi| = L), we typically
refer to CL when 1 < |Lxi| < L. When the labels of the class to predict are
organized hierarchically, we denote this problem as WHC-CL.

6.1.2 Label proportions

In the context of Learning from Label Proportions (LLP) [37], instances are
presented without individual labels and are instead grouped into mutually
exclusive bags, with each instance belonging exclusively to one bag. Although
the labels for these instances are known, the specific pairing of labels to in-
stances has been lost for some reason. Consequently, each bag comprises two
unpaired groups of equal size, a group of instances and a group of labels. The
group of labels can be presented as the proportion of instances that belong
to each class label. Note that these label proportions do not indicate a belief
(probability) in the number of instances that belong to each class but the real
exact number.

The dataset D of a LLP problem is composed of n unlabeled instances
{x1, . . . ,xn}. The instances are provided grouped into b bags, D = B1∪B2∪
· · · ∪ Bb where Bi ∩ Bj = ∅,∀i ̸= j. Each bag Bi groups ni instances, where∑b

i=1 n
i = n, and nij denotes the number of instances in Bi which has the

label cj . These nij values, called counts of the bag Bi, sum up to ni; i.e.,∑L
j=1 n

ij = ni. Similarly, bag class information can be provided in terms of

proportions, P ij = nij/ni ∈ [0, 1] with
∑L

j=1 P
ij = 1. When the labels of

the class to predict are organized hierarchically, we denote this problem as
WHC-LLP.

6.1.3 Mutual label constraints

In a problem of learning from Mutual Label Constraints (MLC) [45], the
instances are provided unlabeled, but some information in the form of con-
straints between labels is given. Similarly to the WHC-LLP problem, instances
are grouped into bags, and for a given bag, we do know that (i) all labels are
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different, or (ii) all labels are the same. Therefore, although the true label
corresponding to each instance is not known, for each given bag there is a
limited number of possible label assignments.

The dataset D of a MLC problem is composed of n unlabeled instances
{x1, . . . ,xn}. The instances are provided grouped into b bagsB = {B1, . . . , Bb},
where D = B1 ∪ B2 ∪ · · · ∪ Bb and Bi ∩ Bj = ∅,∀i ̸= j. Each bag Bi groups
ni instances, where

∑b
i=1 n

i = n. Let ∆ be the property that determines if all
the elements of a group have the same label, or different labels, for any ele-
ment of Bi. We use the function ∆ : B → {False, True} that maps each bag
Bi ∈ B to either False or True based on whether the labels of the group are
all the same or different, respectively. When the labels of the class to predict
are organized hierarchically, we denote this problem as WHC-MLC.

6.2 Training with a Top-down learning approach

The defining characteristic of WSC is the presence of uncertainty in label
assignment. For example, in the WHC-CL framework, as the number of can-
didate labels increases, uncertainty correspondingly grows. Similarly, in the
WHC-LLP and WHC-MLC scenarios, larger bag sizes result in higher levels
of uncertainty.

As expected, the WHC scenarios presented are also subject to this un-
certainty. However, employing a Top-down learning approach, inspired by the
hierarchical approach introduced by Koller and Sahami [43], can help mitigate
this uncertainty.

The top-down learning approach starts by constructing a new dataset,
departing from the original dataset, that contains weak label information for
the labels associated with the child nodes of the root node. This dataset is
then utilized to train a classifier for the root node, positioned in the first tier
of the hierarchy. Upon completing the classifier’s training, it infers a label for
each instance based on the acquired knowledge. Transitioning to the second
tier, a similar procedure is executed for each parent node within this tier. For
every parent node in the tier, a dataset is generated containing weak label
information for the labels corresponding to the child nodes of that parent node.
However, this dataset exclusively includes instances that received labels in the
preceding tier corresponding to the current parent node-associated label. This
process continues for each parent node in each subsequent tier until every
instance possesses a complete hierarchical set of inferred labels, extending
from the root to the leaf nodes.

This approach results in varying dataset sizes for different parent nodes.
Specifically, the training dataset size for parent nodes closer to the leaf nodes
tends to be smaller compared to those closer to the root node. However,
this imposes the challenge of effective processing of weak information while
maintaining its validity across different tiers and dataset sizes.
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Figure 6.1 illustrates the application of this approach to a WSC problem
based on the hierarchical structure illustrated in Figure 5.1. In the first step,
we create a dataset for the root node, where weak information for labels A1
and A2 has to be deduced from the weak information of the leaf nodes. Then in
the second step, a classifier is created for the parent node A, which belongs to
the first tier of the hierarchy and is also known as the root node. This classifier
learns from the dataset created in the first step, containing weak information
about labels A1 and A2. Once the model is trained, inference is performed on
the dataset, assigning labels to each instance. In the third step, a classifier is
created for the parent node A1, the first parent node of the second tier of the
hierarchy. This classifier learns from a dataset that contains only instances
labeled with the A1 label by the model from the previous tier and performs
inference on this filtered dataset. The fourth step involves creating a classifier
for the parent node A2, which is the last parent node of the second tier of
the hierarchy. Similar to the third step, it learns from a filtered dataset, but
in this case, the dataset contains instances labeled with the A2 label by the
model from the previous tier. It also performs inference on this filtered dataset,
resulting in a fully labeled dataset at the end of the top-down strategy. The
pseudocode for our Top-down learning approach is outlined in Algorithm 3.

Algorithm 3 Top-down learning approach for Weakly Supervised Hierarchi-
cal Classification

Require: H: hierarchy, D: set of training instances with labels information
Ensure: M: a set of models, one for each parent node in the hierarchy

M ← {∅}
for tier in H do ▷ Iterating from more generic to more specific

for parentNode in tier do
filteredDataset← filter Data(D, parentNode)
model← train Model(filteredDataset)
M.append(model)
D ← infere Labels(model, filteredDataset)

end for
end for
return M

The Top-down learning approach offers an advantage in handling large and
complex classification problems by decomposing them into smaller and more
manageable subproblems. The pseudocode of this approach is elaborated in
Algorithm 3, and can applied on any of the scenarios presented. However,
the filter Data function implementation varies depending on the supervision
model used. For the three formally described supervision models, the corre-
sponding filter Data function is described in the following sections.
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Fig. 6.1: Illustration of the top-down strategy, applied to the hierarchy in
Figure 5.1. The process unfolds in four steps. First a dataset is created for
the parent node, deducing weak label information for labels A1 and A2, from
the weak information of the labels corresponding to the leaf nodes. Next,
a classifier is trained for parent node A using the dataset generated in the
first step, and inference is performed on this dataset, assigning labels to each
instance. In the third step, a dataset is created by filtering instances that
are not labeled with the A1 label. Subsequently, a classifier for the parent
node A1 is created and trained using this newly filtered dataset to perform
inference on the filtered dataset. Finally, we create a classifier for parent node
A2, following a similar process to the previous step.
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6.2.1 Update weak information in WHC-CL

Instances in WHC-CL are represented as tuples (xi, Lxi), where xi denotes
the instance features, and Lxi contains a set of labels that includes the true la-
bel. These candidate labels can be converted into probabilistic labels, assigning
an equal probability to each candidate label. Although these candidate labels
are initially associated exclusively with leaf nodes, we can calculate the prob-
ability of labels associated with internal nodes by considering the hierarchical
structure.

For example, suppose an instance has candidate labels Lxi = (A1.1, A1.2).
In this case, it is certain to be labeled with both label A and label A1, resulting
in a vector of label probabilities (P (A1), P (A2), P (A1.1), P (A1.2), P (A2.1),
P (A2.2)) with values (1, 0, 12, 12, 0, 0).

The Top-down learning approach entails learning from new datasets that
contain information derived from these probabilistic labels associated with
child nodes. For instance, considering the hierarchy shown in Figure 5.1, if
an instance has candidate labels Lxi = (A1.1, A1.2, A2.1) with probabilities
(P (A1.1), P (A1.2), P (A2.1)) = (13, 13, 13), during the first stage of the Top-
down learning approach, we can reduce the labels to Lxi = (A1, A2) with
probabilities (P (A1), P (A2)) = (23, 13), effectively reducing uncertainty.

As we progress through the Top-down learning approach, subsequent tiers
refine candidate labels by considering only those that are descendants of
the assigned node, creating a new filtered dataset. For instance, if the la-
bel assigned to an instance in the first tier of the hierarchy is A1, the next
tier will restrict the candidate labels to Lxi = (A1.1, A1.2) with probabil-
ities (P (A1.1), P (A1.2)) = (12, 12). Similarly, if the assigned label is A2,
the candidate labels are narrowed down to Lxi = (A2.1) with probability
(P (A2.1)) = (1), resulting in a significant reduction in uncertainty.

6.2.2 Update weak information in WHC-LLP

During the initial steps of the Top-down learning approach, label proportions
can be dynamically recalibrated, considering only the child nodes stemming
from the parent node currently under processing. This streamlined approach
significantly reduces the number of potential labels in play. To illustrate,
we refer to the hierarchy depicted in Figure 5.1. Imagine we have a bag
containing 10 instances with label proportions (pA1.1, pA1.2, pA2.1, pA2.2) =
(0.6, 0.1, 0.2, 0.1). At the first stage of the Top-down learning approach,
we exclusively focus on labels A1 and A2, resulting in revised proportions
(pA1, pA2) = (0.7, 0.3).

After successfully resolving the first step while adhering to these pro-
portions (i.e., class value is assigned), subsequent steps delve into sub-bags
containing instances exclusively labeled with A1 or A2, and label propor-
tions are recomputed accordingly. These sub-bags are: BA1 (with a bag
size of 7) and BA2 (with a bag size of 3). The proportions for the former
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would be (pA1.1, pA1.2) = (0.857, 0.143), and for the latter, they would be
(pA2.1, pA2.2) = (0.666, 0.333). This cascading process leads to a substantial
reduction in both the pool of available labels and bag sizes at each stage of
the Top-down learning approach.

6.2.3 Update weak information in WHC-MLC

During the initial step of the Top-down learning approach, similarly to WHC-
LLP, labels for each group undergo recalibration with a focus solely on the
child nodes originating from the currently processed parent node. This stream-
lining yields a notably reduced set of potential labels. For example, consider
a bag denoted as Bi with a size of 4 and ∆(Bi) = False. In this scenario, the
available labels to be assigned, which originally included (A1.1, A1.2, A2.1,
A2.2), when processing root node A, can be simplified to just (2×A1, 2×A2).
Conversely, if ∆(Bi) = True, the label must be chosen from among (A1.1,
A1.2, A2.1, A2.2), and this set can be simplified to (A1, A2). This reduction
in the number of label choices streamlines decision-making and diminishes
uncertainty.

6.3 Experimental framework

We have designed a series of experiments with three primary objectives: (1) to
assess the advantages of integrating hierarchical information into the learning
process, (2) to evaluate the precision of our proposed strategies, (3) to assess
the performance of our proposals under diverse experimental scenarios.

The classification tasks performed in the Top-down learning approach re-
quire the completion of missing label information for each instance. In this
paper, we employ three distinct implementations of the Expectation Maxi-
mization (EM) algorithm [21], each tailored for a specific supervision model.
As observed in several other works [23, 37, 99, 122], the utilization of tech-
niques grounded in the EM strategy is common. The approach adopted for
these experiments is based on the PMEM method presented in Hernández-
González et al. [37] (where P indicates that this is a probabilistic version of the
EM, and M refers to a Markov Chain Monte Carlo (MCMC) procedure used to
obtain an approximate probabilistic completion in the data-completion stage
of the EM).

In our experiments, we adhere to the values for the parameters proposed
in the work of Hernandez et al. (2013) [37]. For the EM approach, which will
learn Bayesian network classifiers (naive Bayes), we employ a threshold to
ascertain parametric convergence. This threshold halts the iterative process
when the relative difference between the maximum likelihood estimates of two
consecutive models falls below 0.1%, as the default setting. Additionally, the
maximum number of iterations is fixed at 200. The MCMC-based versions of
our methods necessitate two additional parameter values: 1,000 samples for
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the burn-in phase and 10,000 samples to approximate the label probability
expectation.

To evaluate the advantages of integrating hierarchical information into the
learning process, we also conduct training on a flat version of the HC scenarios
employing the same algorithms. The flat strategy disregards the hierarchical
structure and exclusively considers the leaf nodes of the hierarchy. Specifically,
in the case of WHC-MLC, we undertake a reassignment of the predicted la-
bels to eliminate any ambiguity in the label name assignment, given that the
model lacks access to this hierarchical information during training. This com-
parative analysis enables us to assess the performance of both hierarchical
and non-hierarchical approaches across the three synthetic scenarios, thereby
elucidating the added value of incorporating hierarchical information.

6.3.1 Synthetic scenarios

To evaluate the effectiveness of the proposed strategies on WHC datasets,
we conduct simulations based on the supervision models we have described.
We follow the methodology outlined in Montenegro et al. [62] to generate HC
scenarios. These HC scenarios are then modified to fit the weakly supervised
settings, aligning them with each of the three formalized supervision models
we have introduced.

6.3.1.1 HC synthetic scenarios

Hierarchical datasets in the real world, such as the TieredImageNet Dataset
[83], often feature intermediate nodes that share similarities with their sibling
nodes. Figure 7.7 provides a visual representation of the hierarchical label
structure within this dataset. Here, musical instruments are descendants of a
parent node labeled ”Instruments” since they all share the common attribute
of producing music. Furthermore, intermediate nodes can group instruments
based on their shared characteristics, such as whether they belong to the
categories of string, wind, percussion, or electric instruments.

To create synthetic datasets that faithfully capture the characteristics of
real hierarchical datasets, it is essential to generate instances that encompass
not only the attributes of a leaf node but also those of its ancestor nodes.
Consequently, an instance generated through this process comprises a con-
catenation of attributes associated with all the nodes linking the root node
to the specific leaf node to which the instance belongs. The root node itself
is excluded from this concatenation since it is a universal attribute common
to all leaf nodes, offering no discriminatory power. Figure 7.8 visually illus-
trates this principle, representing attributes as colored shapes, and showcasing
instances formed by concatenating these attributes.

The instance generation process is outlined in Algorithm 5. For a given leaf
node, this algorithm iterates through the nodes that form the path from the
root node of the hierarchy to the leaf node. The set of nodes constituting this
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images/tieredDataset.png

Fig. 6.2: A simplified hierarchical structure of the labels of the TieredImageNet
dataset illustrated in [83]. The image shows some of the nodes that are part
of the hierarchy as an illustrative example of the scope of the dataset.

path is obtained through the function genPath(LN), where LN represents the
specific leaf node. During this iteration, features are sampled from each node
along the path, and these sampled features are concatenated to create the
instance. To perform the sampling, the algorithm relies on the function gen-
RandomVariable(node), which draws random samples from the distribution
assigned to the respective node.

Algorithm 4 Generation of a HC instance

Require: LN: leaf node for the instance to be created, DS: distributions assigned
to each node (internal and leaf nodes)

Ensure: instance
instance ← {∅}
for node in genPath(LN) do

instance.concatenate(genRandomVariables(DS[node]))
end for
return instance
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images/InstanceComposition.png

Fig. 6.3: Illustration of the method followed to generate synthetic scenarios
for a HC problem. Each coloured symbol represents the properties that an
instance must have to be labeled with a particular label. Note that, being a
hierarchy, instances labeled with a label associated with a terminal node must
have not only properties of the leaf label, but also all the ancestors (Extracted
from Montenegro et al. [62]).

In our experiments, we utilize the make classification1 function provided
by scikit-learn [Guyon] to generate the required distributions for each node in
the hierarchies. This function enables us to sample from clusters of normally
distributed points (std=1) around the vertices of an n-dimensional hyper-
cube (n refers to the number of features). By adjusting the Class separation
(classep) parameter, it becomes possible to modify the length of the sides of
the hypercube, thereby varying the complexity of the classification task. Im-
portantly, the Class separation parameter maintains the same value across all
the distributions assigned to each node and dimension within each experimen-
tal scenario. This allows us to create scenarios where all classification problems
exhibit uniform complexity, while also enabling us to generate scenarios with
varying levels of overall complexity across all classification problems.

The conducted experiments incorporate the default value for the classep
parameter (classep=1.0) within the make classification function. In addition,
the hierarchies are defined with depths of 4 and 6, resulting in a total of 8
and 32 leaf nodes, respectively. Within the WHC-CL and WHC-MLC scenar-
ios, the number of candidate labels spans from 2 to the maximum possible
value, determined by the total number of leaf nodes present in each hierarchy.

1 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make classification.html
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Furthermore, the WHC-LLP scenarios encompass varying bag sizes, ranging
from 2 to 100.

Each parameter configuration generates a HC dataset containing 150 in-
stances per class. Subsequently, the dataset is divided into train and test sets,
with a test proportion of 33%. The train set is then transformed into the
three WHC scenarios presented in this study. To ensure the robustness of
the results, this entire process is repeated 10 times, and the reported results
represent the average performance across these 10 repetitions.

6.3.1.2 WHC-CL setup

To simulate a WHC-CL dataset, we begin by creating a label set for each
instance that initially contains only the true label. Following this, we aug-
ment each label set by randomly selecting additional leaf node labels. The
probability of adding a label is determined in proportion to its hierarchical
distance from the true label. This approach prioritizes candidates that share
more characteristics with the true labels, thus creating a labeling scenario
that better mimics real-world conditions.

6.3.1.3 WHC-LLP setup

The WHC-LLP setup is generated by assembling bags of the desired size of
randomly selected instances. These bags are then used to determine label
proportions. The instance labels within each bag are replaced with the cor-
responding bag label proportions, representing the relative frequency of each
label type found within the bag.

6.3.1.4 WHC-MLC setup

To construct each bag on WHC-MLC, two parameters are required: bag size
and ∆(B). When ∆(B) = True, a label is randomly chosen, and instances
with that label are sampled at random until the target bag size is reached.
When ∆(B) = False, the bag is formed by randomly selecting instances
with a label not yet included in the bag. This process continues until the
desired bag size is attained or no additional instances from the desired label
are available. Note that, when ∆(B) = False, the bag size is constrained by
the total number of leaf nodes in the hierarchy since each instance in the bag
must have a distinct label.

6.4 Results and discussion

The results obtained from the experiments are analyzed separately for each
supervision model used in the study. A thorough examination of the perfor-
mance of each model is presented, allowing us to gain valuable insights. Based
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on these individual findings, we draw a comprehensive conclusion that under-
scores the overall effectiveness of the proposed strategy in comparison to the
flat strategy.

6.4.1 Results for WHC-CL

Figures 6.4 and 6.5 display the results of the experiments conducted. Each
figure presents the results for a set of experiments using different depth pa-
rameter values. Each figure comprises two graphs. The graph on the left shows
the average accuracy and the standard deviation in a scenario when the num-
ber of extra candidate labels increases, while the graph on the right displays
the average computational time required for these experiments.

Fig. 6.4: Performance comparison of the hierarchical and flat strategies on
WHC-CL scenarios with a depth of 4. The X-axis represents the number of
additional candidate labels added to each instance, while the Y-axis indicates
the corresponding accuracy and computational time.
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Fig. 6.5: Performance comparison of the hierarchical and flat strategies on
WHC-CL scenarios with a depth of 6. The X-axis displays the number of
additional candidate labels added to each instance, while the Y-axis represents
the corresponding accuracy and computational time. For improved clarity, it
is recommended to view the figure in color.

An analysis of Figures 6.4 and 6.5 reveals that as the number of candidate
labels increases, both strategies experience a decline in performance due to the
introduction of more uncertainty. While the performance of the two strategies
is comparable at a depth of 4, at a depth of 6 we can find small differences on
performance depending on the total number of candidate labels per instance.
However, the computational time advantage of the hierarchical strategy in-
creases as the hierarchy depth grows, significantly favoring the hierarchical
approach in terms of computational efficiency.

Therefore, the hierarchical strategy emerges as a notably efficient and scal-
able approach, particularly in scenarios with a substantial number of labels
where training the flat strategy might be impractical. While it may yield
slightly lower accuracy in certain specific scenarios, the hierarchical approach
presents a distinct advantage in terms of computational efficiency, especially
when confronted with extensive hierarchies.

6.4.2 Results for WHC-LLP

Similarly to the previous section, Figures 6.6 and 6.7 show some of the results
of the experiments performed for WHC-LLP scenarios.
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Fig. 6.6: Performance comparison of the hierarchical and flat strategies on
WHC-LLP scenarios with a depth of 4. The bag size is shown on the X axes,
while the Y axes represent the corresponding accuracy and computational
time.

Fig. 6.7: Performance comparison of the hierarchical and flat strategies in
WHC-LLP scenarios with a depth of 6. The X-axis represents the bag size,
while the Y-axis corresponds to the accuracy and computational time. For a
better viewing experience, it is recommended to view the figure in color.

An analysis of Figures 6.6 and 6.7 suggests that the performance of both
strategies deteriorates as the number of elements per group increases, resulting
in increased uncertainty in the predictions. While both strategies perform
similarly at a depth of 4, the hierarchical strategy outperforms the flat strategy
as the depth increases. However, it is essential to note that the computational
time advantage of the hierarchical approach for small bags is reversed for
larger bags. In these cases, slightly more computational time is necessary, but
the hierarchical strategy yields significantly superior results, whereas the flat
strategy produces notably poor performance results.

It is expected that the hierarchical strategy will require more computing
time for scenarios with larger bags. As the total number of instances remains
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fixed for all scenarios within a given hierarchy, an increase in bag size leads to
a decrease in the total number of bags, affecting each strategy differently. In
the worst-case scenario, a flat strategy performs an MCMC process for each
existing bag. In contrast, a hierarchical strategy, in the worst-case scenario,
performs a number of MCMC processes equal to the total number of internal
nodes in the hierarchy (internal nodes = 2d−1 for a hierarchy with depth d
and 2 children per node). While the hierarchical strategy benefits from faster
convergence of MCMC processes due to the simplifications outlined in Section
6.2.2, it is important to note that as the bag size increases, there is a higher
likelihood of requiring a greater number of MCMC processes. Additionally,
these processes may require extra time to reach convergence. The presence of
an upper limit on the total number of iterations for the MCMC process, which
consequently imposes a cap on the allocated computing time for each MCMC
process, results in a scenario where the hierarchical strategy, depending on
the bag size, may require more computing time compared to the flat strategy.
This occurs because the hierarchical strategy resolves fewer MCMC processes
that reach the predefined upper limit.

Despite the increased computing time associated with the hierarchical
strategy in scenarios with larger bag sizes, it remains substantially lower than
the maximum computing time required by the flat strategy in scenarios with
smaller bags. This remarkable difference highlights the computational effi-
ciency of the hierarchical strategy, particularly when compared to the com-
putationally demanding nature of the flat strategy in scenarios characterized
by small bag sizes.

6.4.3 Results for WHC-MLC

Similarly to the previous sections, Figures 6.8 and 6.9 show some of the results
of the experiments performed for WHC-MLC scenarios.

Fig. 6.8: Performance comparison of the hierarchical and flat strategies on
WHC-MLC scenarios with a depth of 4. The bag size is shown on the X axes,
while the Y axes represent the corresponding accuracy and computational
time.
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Fig. 6.9: Performance comparison of the hierarchical and flat strategies on
WHC-MLC scenarios with a depth of 6. The bag size is shown on the X axes,
while the Y axes represent the corresponding accuracy and computational
time.

An analysis of Figures 6.8 and 6.9 suggests that the performance of both
strategies slightly deteriorates as the number of elements per group increases.
The hierarchical strategy exhibits comparable or slightly superior performance
compared to the flat strategy across varying hierarchy depths. This observed
trend appears to stem from the inherent capability of the hierarchical strategy
to mitigate the complexity of each bag, eliminating the necessity for compu-
tationally intensive MCMC processes, which do not guarantee the optimal
solution. In scenarios where there is a significant difference in computational
time, it is likely that fewer MCMC processes are being executed, which could
lead to errors. However, when the computational time gap is reduced, it can
be assumed that a similar number of MCMC processes are being calculated,
thereby inducing comparable errors, as illustrated in Figure 6.8 for bag sizes
of 2 and 4, and in Figure 6.9 for bag sizes between 14 and 32.

However, it is worth noting that the difference in computing time between
the Flat and Hierarchical strategies becomes more pronounced as the depth
of the hierarchy increases. This is expected because the number of instances
is related to the depth of the hierarchy, leading to more bags and potentially
more MCMC processes in the hierarchical strategy.

Nonetheless, as the bag size increases, this difference in computation time
reduces due to having a smaller number of bags, and the hierarchical strategy
cannot avoid using the MCMC process.

An analysis of WHC-MLC scenarios containing only one type of bag (simi-
lar labels or bags with different labels) reveals that, despite time improvements
in both cases, the most significant time improvement comes from solving bags
with different labels (as shown in Figures 6.10 and 6.11). It is essential to
emphasize that both scenarios collectively contribute to the performance ad-
vantage favoring the hierarchical strategy.
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Fig. 6.10: Performance comparison of the hierarchical and flat strategies on
WHC-MLC scenarios with a depth of 6 and bags with similar labels. The bag
size is shown on the X axes, while the Y axes represent the corresponding
accuracy and computational time.

Fig. 6.11: Performance comparison of the hierarchical and flat strategies on
WHC-MLC scenarios with a depth of 6 and bags with different labels. The
bag size is shown on the X axes, while the Y axes represent the corresponding
accuracy and computational time.

6.5 Conclusions and future work

In this study, we have introduced and examined three distinct WHC scenar-
ios. We have also proposed a general strategy that incorporates hierarchical
knowledge during the training phase to address the classification tasks asso-
ciated with these scenarios. Based on our experimental findings, we conclude
that incorporating hierarchical information into the learning process leads to
enhancements in classifier performance. In summary, our experiments indi-
cate that integrating hierarchical information into the learning process can
enhance the performance of multilabel classification tasks.

Some of the insights from our analysis include the following:
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• The hierarchical strategy consistently showed superior or comparable per-
formance compared to the flat strategy across most scenarios, even when
dealing with large hierarchical structures.

• While our hierarchical strategies demonstrated computational efficiency in
WHC-CL and WHC-MLC scenarios, the impact on WHC-LLP scenarios
was less conclusive, mainly influenced by the bag size.

• Overall, the hierarchical strategy effectively reduced computing time, with
the benefits being particularly pronounced in scenarios featuring extensive
label hierarchies.

Furthermore, while we have introduced hierarchical strategies that en-
hance performance and computing time efficiency, we recognize that further
advancements are possible. It is important to note that our primary focus in
this work was to verify the benefits of considering hierarchical information in
comparison to the flat strategy. As a result, we did not specifically address
scenarios involving labels that are not leaf nodes.

For instance, one could explore scenarios in which WHC-CL includes can-
didate labels that are not necessarily leaf nodes, or WHC-LLP scenarios in
which bags consist of proportions of labels from the same depth of the hierar-
chy but not necessarily the leaf nodes. Similarly, in the context of WHC-MLC,
scenarios could be designed with bags containing similar labels up to a certain
depth, with variations beyond that point.

While introducing flat strategies into such scenarios might create an un-
fair comparison due to the inherent advantages of hierarchical information,
our demonstrated benefits underscore the potential for further exploration.
Future work could involve investigating these variations in other scenarios
and comparing different hierarchy-based strategies to gain deeper insights.
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Multi-Dimensional Hierarchical Classification

7.1 Introduction

7.1.1 Multi-Dimensional Classification

MDC is a supervised learning paradigm in which multiple class variables (di-
mensions) Y = (Y1, . . . , Yd, . . . , YD) need to be jointly predicted [82]. An MDC
classifier h assigns each instance x ∈ ΩX1 × · · · × ΩXM

⊂ RM a vector y of
class values:

h : x → ΩY1
× · · · ×ΩYD

x 7→ h(x)
(7.1)

We assume that Yd is a discrete class variable, for all d ∈ {1, . . . , D} where
ΩYd

denotes its sample space and |ΩYd
| is the cardinality of the sample space

of Yd. Given the expression in Equation 7.1, we can formulate other traditional
classification paradigms as particular cases of MDC:

• D = 1 and |ΩY1
| = 2: Binary classification

• D = 1 and |ΩY1
| > 2 : Multi-class classification

• D > 1 and |ΩYd
| = 2, ∀d: Multi-label classification

7.1.2 Multi-dimensional dependencies

The main feature distinguishing multi-dimensional classification from a regu-
lar classification task is that a number of class variables has to be predicted
simultaneously [103]. Thus, it is obviously important to exploit potential de-
pendencies between class labels to obtain the best performance on classifica-
tion. As mentioned previously, in this work two types of label dependence are
distinguished, namely conditional and unconditional dependence.

We can consider conditional dependence between two binary class variables
Yi and Yj given x when:
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p(Yi, Yj |x) ̸= p(Yi|x)p(Yj |x) (7.2)

which intuitively represents the dependence between two class variables given
some characteristic of the predictive variables. There is unconditional depen-
dence between two binary class variables Yi and Yj when:

p(Yi, Yj) ̸= p(Yi)p(Yj) (7.3)

which intuitively represents the dependence between two classes, irrespective
of the characteristics of the predictive variables.

Unconditional dependence can be easily tested using the labels of a dataset
and Equation 7.3, however, testing conditional dependence can be a complex
task which involves learning from the predictive variables. While conditional
and unconditional dependencies have a strong connection [20] and can be use-
ful to improve the performance of MDC classifiers, ultimately it is conditional
dependence which is more relevant to classification performance, since that is
where the information from the predictive variables is considered [82].

MDC strategies have been proven to outperform Single-task learning
(STL) strategies, especially when there are only a few training examples per
task and the tasks are related [82]. In the literature, multiple approaches take
advantage of these two types of dependencies to improve the performance of
the classifiers trained for a particular MDC problem. One common strategy
is to train a classifier to jointly predict dependent class variables to obtain
better performance. In order to identify which class variables are dependent,
Tenenboim-Chekina et al. [103] present a method that uses the chi-square
(X2) score to measure unconditional dependencies. Tenenboim-Chekina et al.
[103] also propose a method to identify dependent classes based on infor-
mation obtained from conditional dependence using a strategy where, for a
given pair of classes, the performance of training two independent classifiers
is compared to the performance of an MDC classifier. An improvement in the
performance of the MDC classifier gives an indirect measure of the conditional
dependence between the two classes, since the model has taken into account
the characteristics of the features during training.

Hernandez-Leal et al. [38] have also used the concept of unconditional de-
pendence to detect dependencies between classes, but, in this case, the classes
are split into two groups: independent classes, for which a classifier for each
class is trained separately, and dependent classes for which a single classifier
is trained to predict all dependent classes at once. This method however, does
not use conditional dependence information to differentiate the classes.

Other approaches, such as those proposed by Zhang and Zhang [127] and
Read et al. [82], consider an efficient way of measuring pairwise conditional
dependence in MDC data, based on the fact that maximising the likelihood
of the data is equivalent to minimising the mutual information between the
data instances and the error. They consider the binary classification problem
as a special case of the nonlinear regression problem:

y = f(x) + e (7.4)
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where y denotes the target variable, x the set of predictors, e the noise and f
is a smooth function. Given the examples {xi, yi}Ni=1, fitting the above model
with maximum likelihood is equivalent to minimizing the mutual information
between x and the estimate of e. The proof of this proposition can be found
in the Appendix of Zhang and Zhang [127].

A more detailed review of dependence (in the MDC context) and the
strategies used in the literature can be found in Dembczynski et al. [20].

7.1.3 Multi-Dimensional Hierarchical classification

MDHC is a supervised learning paradigm in which multiple class variables
(dimensions) Y = (Y1, . . . , Yd, . . . , YD) need to be jointly predicted. Each
dimension d has a vector of labelsΩYd = (λd

1, . . . , λ
d
i , . . . , λ

d
j , . . . , λ

d
Ld

) forming

a hierarchical structure, where Ld > 0 and each λd
i and λd

j are possible labels
of the class variable Yd. Similarly to HC, the labels of a dimension can be
represented as nodes of a tree structure as illustrated in Figure 5.1. If we
represent the relation is-descendent-from as ≺, the labels of each dimension
should fulfill the following properties:

• Asymmetry: If λd
i ≺ λd

j , then λd
j ⊀ λd

i , ∀λd
i , λ

d
j ∈ ΩYd

• Anti-reflexivity: λd
i ⊀ λd

i ,∀λd
i ∈ ΩYd

• Transitivity: If λd
i ≺ λd

j and λd
j ≺ λd

k, then λd
i ≺ λd

k,∀λd
i , λ

d
j , λ

d
k ∈ ΩYd

A MDHC classifier h assigns each instance x ∈ ΩX1
× · · · × ΩXM

⊂ RM

a vector y = (y1, . . . , yd, . . . yD) of sets of predicted class labels, where Ld ≥
|yd| ≥ 0, being |yd| the cardinality of the predicted label set yd:

h : X → PY1
× · · · × PYD

x 7→ h(x)
(7.5)

where PYd is the set of subsets of ΩYd , and if λd
i ∈ h(x), then ancestors(λd

i ) ∈
h(x), which can be understood as if a particular label λd

i is part of the output
of h(x), then all the ancestors of λd

i are also part of the output of h(x).
An example of a MDHC problem can be found In Montenegro et al. [61],

a dataset with two class variables (“Topic’ and ’“Intent”), where each class
variable contains a hierarchical set of labels, is presented. The unconditional
dependencies between the most important labels is briefly analyzed using the
illustration shown in Figure 4.4 and the goal of this unconditional dependence
analysis is to better understand the dataset without solving the classification
task. However, this unconditional dependence study shows that these depen-
dencies exist, and that they can be exploited, but it was beyond of the scope
of that work to do so.

Another source of MDHC problems is the result of applying the “Di-
vide and Conquer” strategy to already existing HC problems defined with
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(Ψ=MPL). In Peng et al. [72] the RVC1 [48] and NYTimes [88] HC problems
are divided into 5 and 9 sub-problems respectively, with the objective of re-
ducing the learning complexity for a GC. However, in this work the problem
is not presented as MDHC, and each HC problem is solved independently and
later on combined with some restrictions for the cases where the sub-problems
are nested.

Naik et al. [65] show a peculiar version of MDHC problems which can be
generated combining two different datasets labeled with different hierarchies
on the same topic. In this case we can consider this problem a partially-labeled
MDHC, since the datasets are independent, and combining them we obtain a
dataset where each instance is labeled only on one class variable whilst miss-
ing the other class variable label. However, the problem is not presented as
MDHC, and two different strategies are proposed to solve the problem, one
approach based on Transfer Learning (TL) and the other approach based on
a Single-dimensional approach. However, Naik et al. [65] exploit the depen-
dencies between the two HC problems in order to either combine datasets, or
transfer already learnt information to another training process. The method
used to find those dependencies is based on the proximity of the centroidal
vectors of each label, where a centroidal vector is a combination of the vector
representations of the instances that each label has.

Domains in which it is more common to find HC problems, and therefore
prone to MDHC problems, are text classification ([17], [43] or [59]), protein
function prediction ([6], [86] or [117]) or music genre classification ([15], [49]
or [58]).

However, none of these works have presented and studied the MDHC
paradigm and its characteristics, they have just solved a particular MDHC
problem with a different strategy, or presented a MDHC dataset.

7.2 Dependencies in MDHC

In HC, the inherent properties of hierarchical structures defined in Chapter 5
imply unconditional dependencies from each child node to its respective parent
node, since every instance that belongs to a particular node also belongs
to the ancestor node. In MDHC, these hierarchy dependencies coexist with
dependencies between nodes from different dimensions, and therefore different
hierarchies. The label of a node u in a hierarchy can be interpreted as a
concatenation of labels u = {tu0 , . . . , tuX} where each tux gives information
about a node of the unique direct path that connects the root node with the
node u. For example, taking Figure 7.1 as reference, the label for node A2.1
can be represented as the concatenation of {A,A2,A2.1}.

The degree of the unconditional dependence between two labels in a MDHC
problem, can be measured by analyzing the dataset. This degree of uncondi-
tional dependence can be defined as D(u, v), being u and v two nodes of any
of the hierarchies in the MDHC problem. Multiple methods can be used to
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Fig. 7.1: Example of MDHC label structure. The tree structure on the left
represents the HC label set of one dimension, while the tree structure on the
right belongs to a second dimension. The nodes of each tree represent the
available labels for each dimension.

measure unconditional dependence such as the Chi-square test [103], correla-
tion coefficients [20], centroidal vectors [65] or number of common instances
[61]. In this work we measure the degree of unconditional dependence as the
conditional probability:

D(u, v) = P (v|u) = |P (v ∩ u)|
|P (u)|

which can be represented as a matrix of dependencies as in other MDC clas-
sification problems such as Wang et al. [115], adapted to MDHC.

7.3 MDHC performance measures

We propose the following extension of the performance measures existing in
the MDC domain [8] to the MDHC domain, by incorporating the HC per-
formance measures defined by Kiritchenko et al. [42]. We define the auxil-
iary functions for multi-dimensional hierarchical precision (δhP ) and multi-
dimensional hierarchical recall (δhR):

δhP (d, n) =
|Pdn ∩ Tdn|

|Pdn|

δhR(d, n) =
|Pdn ∩ Tdn|

|Tdn|
These functions evaluate the predicted labels for a specific test example

defined by d (index of the dimension) and n (index of the example). Pdn is
the set consisting of the most specific predicted label or labels (in the case
of Multiple Path of Labels) for test example n in dimension d and all its or
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their ancestor labels, and Tdn is the set consisting of the true most specific
label(s) of test example n in dimension d and all its(their) ancestor labels.
Using these auxiliary functions, we define mean hierarchical precision (HP ),
mean hierarchical recall (HR) and mean hierarchical F measure (HF ) as:

HP =
1

D

D∑
d=1

1

N

N∑
n=1

δhP (d, n)

HR =
1

D

D∑
d=1

1

N

N∑
n=1

δhR(d, n)

HF =
1

D

D∑
d=1

1

N

N∑
n=1

2 ∗ δhP (d, n) ∗ δhR(d, n)

δhP (d, n) + δhR(d, n)

where D is the number of dimensions of the problem, and N is the number
of instances used to evaluate the performance. Following the same strategy,

we define the auxiliary functions for global hierarchical precision (ĥP ) and

global hierarchical recall (ĥR):

ĥP (n) =
|P̂n ∩ T̂n|

|P̂n|

ĥR(n) =
|P̂n ∩ T̂n|

|T̂n|

where:

P̂n =

D⋃
d=1

Pdn

T̂n =

D⋃
d=1

Tdn

Similarly to δhP (d, n) and δhR(d, n), ĥP (n) and ĥR(n) functions evaluate

the predicted labels for a specific test example indexed by n. P̂n is the set
consisting of the most specific labels predicted for test example n in each
dimension and all their ancestor labels, and T̂n is the set consisting of the
true most specific label(s) of test example n in each dimension d and all their
ancestor labels.

We define global mean hierarchical precision (ĤP ) , global mean hierar-

chical Recall (ĤR) and global F measure (ĤF ) as:
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ĤP =
1

N

N∑
n=1

ĥP (n)

ĤR =
1

N

N∑
n=1

ĥR(n)

ĤF =
1

N

N∑
n=1

2 ∗ ĥP (n) ∗ ĥR(n)

ĥP (n) + ĥR(n)

where N is the number of test instances.

7.4 MDHC Strategies

While MDHC problems can be solved by MDC strategies ignoring the hierar-
chical characteristics of the problem, and also by HC strategies ignoring the
MDC aspect of the problem, these strategies do not benefit from the relation-
ships between labels of the same hierarchy, or from different dimensions. This
information has been proven to be beneficial in MDC problems such as the
problems described in Bielza et al. [8] and Hernandez-Leal et al. [38], however
the benefit of these relationships between labels in MDHC problems had yet
to be investigated.

In Section 7.5.1, we will show that it is indeed possible to construct scenar-
ios where dependencies within and across hierarchies arise. In the following,
we focus on the classification strategies needed to address these scenarios.

In order to propose specific MDHC classification strategies, we combine
two MDC strategies with two HC strategies to generate four different propos-
als. The MDC strategies have been chosen to represent the two most frequently
used types of classification strategies in the literature:

• Stacking: replace the original predictions, obtained by learning every la-
bel separately, by correcting them in light of information about the predic-
tions of the other labels [121]. This transformation of the initial prediction
should be interpreted as a regularization procedure: a bias is introduced,
in an attempt to decrease the variance.

• Grouping: Based on a correlation coefficient measured between each pair
of classes, classes are split up into two groups: independent classes, which
are trained using a classifier for each class variable separately, and depen-
dent classes which are trained group-wise by a single classifier [112].

Regarding HC, we also use two of the most common strategies for HC
classification [97], namely LCPN (Local Classifier per Parent Node) and GC
(Global Classifier), with the following characteristics: SPP (Single Path Pre-
diction), MLNP (Mandatory Leaf-Node Prediction) and the taxonomy of the
label structure will be T (Tree). Following the framework mentioned in Chap-
ter 5, and based on the MDHC scenarios that are generated with the method-
ology explained in Section 7.5.1, the two HC strategies can be defined as:
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• LCPN = (∆:SPP, Ξ:MLNP, Ω:T, Θ:LCPN)
• GC = (∆:SPP, Ξ:MLNP, Ω:T, Θ:GC)

As a result, we present four different MDHC strategies described as:

• Stacking + LCPN: This is a straightforward method, where we follow
the Stacking strategy, where in a first phase a LCPN strategy is applied for
each dimension separately and the input vectors are the feature vectors. In
the second phase, we again apply a LCPN strategy to each dimension in-
dependently, however, instead of using the feature vectors as input, we use
the vector of probabilities resulting from concatenating the predictions of
all the classifiers from the first phase. This MDHC strategy is illustrated in
Figure 7.2 as if it were applied to the MDHC problem illustrated in Figure
7.1, where each circle represents a classification task at each parent node.
A variation of this strategy has been previously used on a HC problem in
Hernández et al. [36], where a HC classifier inspired by MDC is proposed,
however, the problem itself is not MDC nor MDHC, but an extension of
the LCPN strategy.

Fig. 7.2: Illustration of the Stacking+LCPN strategy. The feature vector is
used on the 1st phase as input, while the 2nd phase uses the outputs of the
1st phase. At each phase, based on the LCPN strategy, for each dimension a
set of classifiers for each parent node is created.

• Stacking + GC: Similarly to the previous strategy, in the first phase a
GC strategy is applied to each dimension separately using the feature vec-
tors as input, and the second phase again applies a GC for each dimension
separately but with the vector of probabilities resulting from concatenat-
ing the predictions of the classifiers of the first phase as input. This MDHC
strategy is illustrated in Figure 7.3 as if applied to the MDHC problem
illustrated in Figure 7.1, where each circle represents a classifier which
solves the classification problem of the parent nodes listed inside.
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Fig. 7.3: Illustration of the Stacking+GC strategy. The feature vector is used
on the 1st phase as input, while the 2nd phase uses the outputs of the 1st

phase. At each phase, a GC classifier for each dimension is created, and it is
trained to solve all the classification tasks associated with the internal nodes
drawn inside the circle.

internal

• Grouping + LCPN: In this strategy, based on a dependency measure
and the classification tasks resulting from applying the LCPN strategy
to each dimension, related classification tasks are grouped and solved to-
gether. This MDHC strategy is illustrated in Figure 7.4 as if applied to the
MDHC problem illustrated in Figure 7.1, and supposing that the nodes
are related as illustrated in Figure 7.5.

• Grouping + GC: In this case, the GC strategy would create a GC clas-
sifier for each dimension separately, a grouping version of this strategy
groups all dimensions into one GC classifier. Therefore, we train a single
GC classifier that has as output all the labels for both hierarchies, as illus-
trated in Figure 7.6, where each circle represents a classifier which solves
the tasks listed inside.

For a particular instance, these strategies estimate the probability of belonging
to each node of the MDHC problem. In order to decide what labels should
be assigned, the class-prediction top-down approach proposed by Koller and
Sahami [43] is followed for each hierarchy independently, selecting the labels in
a top-down fashion, as follows. For each level of the hierarchy (except the top
level), the decision about which label is assigned at the current level is based
on the label predicted at the previous (parent) level. For example, following
the hierarchies from Figure 7.1, suppose the estimated probability for node
A1 is greater than the probability estimated for A2. At the next level, only



82 7 Multi-Dimensional Hierarchical Classification

Fig. 7.4: Illustration of how a LCPN strategy is transformed into a Group-
ing+LCPN strategy. Instead of using a LCPN strategy for each dimension,
the classification tasks of each LCPN problem are grouped according to a
criteria, and then solved as a single problem.

Fig. 7.5: Illustration of dependencies between labels of the synthetic MDHC
hierarchies. Having all dimensions the same structure, each node has a degree
of dependency with the nodes on the same position of the hierarchy of other
dimensions. This dependency is represented as an arrow connecting the nodes
from different dimensions.
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Fig. 7.6: Illustration of how a GC strategy is transformed into a Grouping+GC
strategy. Instead of using a GC strategy for each dimension, a GC strategy
is applied to all the dimensions simultaneously. A GC strategy is designed
to solve multiple classification tasks simultaneously, in this image each GC is
represented as a circle, and all those tasks are drawn inside.

the children nodes of node A1 are considered. This strategy guarantees that
the predicted labels fulfill the HC properties described in Section 5.1.

7.5 Synthetic scenarios

In order to evaluate and compare MDHC strategies, it is required to develop
an experimentation where the strategies are evaluated on multiple and variate
MDHC scenarios. However, due to the novelty of this paradigm, the datasets
are scarce and we cannot rely exclusively on real datasets. Therefore, in this
section we present a procedure to generate MDHC synthetic scenarios that
will allow us to overcome the scarcity.

Synthetic datasets have been used in multiple Machine Learning areas
of research such as MDC [54], HC classification [95], ML classification [105],
Weak-label classification [85] or Semantic segmentation of images [74] among
others. However, none of these match the requirements for MDHC, therefore
we present a procedure to generate MDHC synthetic datasets.

Serrano-Pérez and Sucar [95] presented a procedure to generate HC
datasets where, for a given hierarchy, a distribution is assigned to each leaf
node and, in order to generate instances for the nodes, values are sampled from
each distribution. This process is followed to generate instances with paths
that finish in a leaf node, however, in order to generate instances with paths
that finish in an internal node, for each internal node a normal distribution is
estimated using samples of all its leaf nodes descendants, and finally instances
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are sampled from that distribution. Although this is an easy to understand
and implement method, the hierarchies generated with this approach could
be understood as the result of applying a “Divide and Conquer” strategy to a
Multi-class (MC) classification problem. The internal nodes generated by this
process are groupings by proximity of the classes of a MC problem, and they
lack a real characteristic that relates them.

Some real hierarchical datasets such as “TieredImageNet Dataset” [83]
show how grouped nodes share characteristics with all sibling nodes on the
hierarchical representation. A simplified representation of the hierarchy of this
dataset can be found in Figure 7.7, where, as an example, musical instruments
are descendant nodes from a parent node named “Instruments”, since they
are all devices created or adapted to make musical sounds. Other intermediate
nodes that could be added to this hierarchy could group instruments depend-
ing on their characteristics based on whether they are string, wind, percussion
or electric instruments for example.

Fig. 7.7: A simplified hierarchical structure of the labels of the TieredImageNet
dataset illustrated in [83]. The image shows some of the nodes that are part
of the hierarchy as an illustrative example of the scope of the dataset.

In order to create synthetic datasets that mimic the characteristics of real
hierarchical datasets, we must create instances that contain not only charac-
teristics of a leaf node, but also characteristics of internal nodes. Therefore,
an instance generated by this process is formed by the concatenation of char-
acteristics from all the nodes that link the root node and the leaf node where
the instance belongs (excluding the root node, since it is common to all leaf
nodes, and therefore useless in terms of classification). This concept is illus-
trated in Figure 7.8, where characteristics are represented as coloured shapes,
and instances are a result of the concatenation of characteristics.

Algorithm 5 shows how, for a given leaf node, we can iterate over the nodes
linking the root node of a hierarchy to the leaf node (genPath(n) returns the
set of nodes that reach leaf node n from the root node), and generate an
instance by concatenating the features sampled from each node (the function
genRandomVariable(node) samples from the distribution assigned to node).
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Algorithm 5 Generation of an HC instance

Require: leafNode: leaf node for the instance to be created, distributions: distri-
butions assigned to each node (internal and leaf nodes)

Ensure: instance
instance ← []
for node in genPath(leafNode) do

instance.concatenate(genRandomVariables(distributions[node]))
end for
return instance

We can extend Algorithm 5 to generate MDHC instances as shown in
Algorithm 6. The input in this case is composed of multiple leaf nodes, one for
each dimension, and the output vector is the equivalent of the concatenation
of the HC instances of each dimension.

Algorithm 6 Generation of a MDHC instance

Require: multipleLeafNodes: list of leaf nodes for each dimension of the instance
to be created, distributions: distributions assigned to each node (internal and leaf
nodes of all dimensions)

Ensure: instance
instance ← []
for leafNode in multipleLeafNodes do

for node in genPath(leafNode) do
instance.concatenate(genRandomVariables(distributions[node]))

end for
end for
return instance

This process is illustrated in Figure 7.8, where we can see the features
(represented with a coloured figure) that belong to each particular instance,
which determines to what nodes the different instances belong to. This method
is done in the same way as in the other dimensions, and in order to generate
MDHC instances with information from every dimension, these features are
concatenated. In order to generate specific degrees of dependency between
nodes, the adequate number of instances with each label combination must
be selected to achieve the desired proportions.

In these experiments we use the scikit-learn auxiliary functionmake classification1

to create the distributions needed for each node of each hierarchy. This func-
tion permits us to sample from clusters of points normally distributed (std=1)
about vertices of an n-informative-dimensional hypercube. The sides of this
hypercube can be reduced in terms of length by modifying the Class separa-
tion parameter, making the classification problem more difficult. Note that

1 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make classification.html
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Fig. 7.8: Illustration of the method followed to generate synthetic scenarios
for a MDHC problem with 2 dimensions. Each coloured symbol represents the
properties that an instance must have to be labeled with a particular label.
Note that, being a hierarchy, instances labeled with a label associated with a
terminal node must have not only properties of the terminal label, but also
all the ancestors.

for each scenario, the Class separation remains constant for all the distribu-
tions assigned to each node for all dimensions. We will therefore use the Class
separation parameter to generate scenarios with more complicated classifica-
tion problems, instead of manually overlapping the distributions as seen in
Serrano-Pérez and Sucar [95].

7.5.1 Synthetic scenarios generated

The datasets for the synthetic scenarios generated in this experimentation are
based on a MDHC problem which is composed of D HC problems described
as (Υ=T, Ψ=SPL and Φ=FD) according to the framework description from
Section 5.1. The selection of these characteristics has been carried out with
the objective of creating intuitive classification problems which do not distract
from the goals of this work, but are also representative of the hierarchical
problems found in the literature. The Υ=T and Ψ=SPL characteristics have
been selected because they are more common than their alternatives according
to Silla and Freitas [97]. However, Φ=FD has been set looking for simplicity
in the experiments performed on synthetic scenarios, although for the other
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experiment on a real dataset presented in Section 7.6.2 it has Φ=PD due to
the nature of that particular MDHC problem.

In order to study how characteristics of MDHC problems can influence
the performance of different MDHC classification strategies, we define a set of
synthetic scenarios with different possible assignments for the characteristics:
children per node, degree of dependency and class separation. For the exper-
imentation, three MDHC scenarios with different values for the children per
parent node characteristic and two levels are created. The dependencies be-
tween nodes will follow the pattern illustrated in Figure 7.5 and the degree of
dependency between labels will take values from {Balanced, 0.3, 0.6, 0.9}.
The Balanced value represents the scenario where there are no strong depen-
dencies between terminal nodes of different dimensions, even so the value is
not zero and depends on the structure of the hierarchies. Particularly, if U=
{terminal nodes of hierarchy A} and V= {terminal nodes of hierarchy B}
then:

∀u∈U,v∈V ⇒ D(u, v) =
1

|V |
(7.6)

Using these degrees of dependency, the dependency matrices for the MDHC
scenarios can be easily calculated. For example, for scenarios with children per
parent node=2, Depth=3 and Dimensions=2, the dependency matrices take
the values shown in Tables 7.1-7.4. Note that these dependency matrices only
contain information about the dependencies between terminal nodes, which
is enough to determine the dependencies between all labels in scenarios de-
scribed as (Υ=T, Φ=FD), and these matrices show how related are labels
from different dimensions. Nevertheless, these scenarios also need to define
dependencies with internal labels, otherwise the rows and columns might not
sum up to 1, as they should. Tables 7.1-7.4 show how as the degree of depen-
dency grows, for a given label the dependency with other label from the other
dimension grows, whilst the dependencies with the rest of the labels decrease.

B1.1 B1.2 B2.1 B2.2

A1.1 0.25 0.25 0.25 0.25
A1.2 0.25 0.25 0.25 0.25
A2.1 0.25 0.25 0.25 0.25
A2.2 0.25 0.25 0.25 0.25

Table 7.1: Dependency matrix for a scenario with children per parent node=2,
Depth=3, Dimensions=2 and degree of dependency=Balanced

7.6 Experimental framework

In this section we present the experimental framework. The goal of the ex-
periments is twofold: 1) To evaluate how dependencies between labels and
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B1.1 B1.2 B2.1 B2.2

A1.1 0.300 0.233 0.233 0.233
A1.2 0.233 0.300 0.233 0.233
A2.1 0.233 0.233 0.300 0.233
A2.2 0.233 0.233 0.233 0.300

Table 7.2: Dependency matrix for a scenario with children per parent node=2,
Depth=3, Dimensions=2 and degree of dependency=0.3

B1.1 B1.2 B2.1 B2.2

A1.1 0.600 0.133 0.133 0.133
A1.2 0.133 0.600 0.133 0.133
A2.1 0.133 0.133 0.600 0.133
A2.2 0.133 0.133 0.133 0.600

Table 7.3: Dependency matrix for a scenario with children per parent node=2,
Depth=3, Dimensions=2 and degree of dependency=0.6

B1.1 B1.2 B2.1 B2.2

A1.1 0.900 0.033 0.033 0.033
A1.2 0.033 0.900 0.033 0.033
A2.1 0.033 0.033 0.900 0.033
A2.2 0.033 0.033 0.033 0.900

Table 7.4: Dependency matrix for a scenario with children per parent node=2,
Depth=3, Dimensions=2 and degree of dependency=0.9

other characteristics of MDHC problems can affect the performance of differ-
ent MDHC classification strategies, 2) To determine if the methods introduced
in this work can outperform strategies that do not take into account the hi-
erarchical or multidimensional characteristics of the problem.

7.6.1 Experimental setup in synthetic scenarios

We conduct this analysis generating a set of synthetic scenarios with different
characteristics. Using the proposed MDHC performance measures, we com-
pare the MDHC strategies described previously with a MDC strategy, and
two HC strategies. The MDC strategy used completely ignores the hierar-
chical characteristics of the problems during training, creating a Multi-label
classifier that predicts, simultaneously for a given instance, the probability of
having all existing terminal labels from every dimension. For each dimension
of the classification problem, the labels assigned to the particular instance are
those connecting the root label with the terminal label whose probability is
the highest. No corrections are performed after the MDC prediction, therefore
some predicted label sets can be incoherent with the hierarchical properties
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(i.e., if a prediction contains a label but not its ancestors), which will be pe-
nalized by the MDHC performance measures. However, the MDC strategies
are provided with all the dependency information available in the form of the
dataset during training, and therefore it is possible to infer the HC charac-
teristics of the MDHC problem, this being fair to compare with the other
strategies. The decision to not include any correction based on the hierarchy,
is to avoid considering this MDC strategy as a HC strategy such as GC, or the
MDHC strategy Grouping+GC. Regarding the HC strategies, each dimension
is evaluated independently using the LCPN and GC strategies, and although
the dependencies between labels from different dimensions are ignored, the
predicted labels are coherent with the hierarchical properties.

Fig. 7.9: Architecture of the base NN classifier used on the experimentation
with synthetic scenarios.

The implementation of these strategies is done using feed forward neural
networks (NN) as the base classifier. This network is formed by one input
layer, one hidden layer, and an output layer, where all three are fully connected
layers built with Keras2 as illustrated in Figure 7.9. The parametrization of
NN is key to its performance, therefore in these experiments the size of the
hidden layer takes a range of values that allows us to avoid underfitting. In
order to avoid overfitting, the training dataset of each scenario is divided
into train and test sets (train:70% - test:30%), additionally, for the Stacking-
based strategies, the train set is split into two halves, one for the training
process of each part of the stack (train 1st stack:35% - train 2nd stack:35% -
test:30%). The 1st part of the stack receives as input the raw features of the
1st subset, whilst the 2nd part of the stack receives as input the distribution
of probabilities of the labels (predicted by the 1st part of the stack) for each
instance in the 2nd subset.

Therefore the different parameters that will be varied to generate the syn-
thetic scenarios are:

• Class separation: {0.01, 0.1, 1 }
• Dimensions: {2, 3, 4}

2 https://www.tensorflow.org/guide/keras



90 7 Multi-Dimensional Hierarchical Classification

• Depth of hierarchies: {2, 3, 4}
• Children per parent node: {2, 3, 4}
• Degree of dependency between classes: {Balanced, 0.3, 0.6, 0.9}

Regarding the implementation of the classifiers, the parameters that will
be varied are:

• Model complexity (hidden layer size): {20, 21, . . . , 210}
• Strategies: {MDC, LCPN, GC, Stacking + LCPN, Stacking + GC,

Grouping + LCPN, Grouping + GC}
We assume that the Grouping + LCPN strategy takes into account all

unconditional dependencies (Figure 7.5), and the related nodes are grouped.
For each terminal node, 1.000 instances are created, consequently, scenar-

ios with more children per parent node have more instances to train, but are
also more complex classification problems, since the cardinality of the label
set is higher.

Due to the random initialization of the parameters in the NN and the
random aspect of the generation of the scenarios, we repeat the whole pro-
cess 10 times where, for each repetition, the scenarios are generated and new
models are created and trained. The final performance is the average of the
performances obtained for all repetitions.

7.6.2 Experimental setup on a real MDHC problem

In order to complement and support our conclusions, a comparison between
the MDHC strategies and HC strategies is made using a real-world dataset [61]
from the Empathic project [108]. The reason for using this dataset is that it is
the only one available that is naturally created as a MDHC problem, whilst the
other datasets mentioned above need transformations or are Weakly-labeled.

Some Machine Learning tasks derived from the development of the Em-
pathic project belong to the Natural Language Understanding module, where
a “Topic” label and an “Intent” label have to be assigned to each utter-
ance coming from a user [61]. This “Topic” and “Intent” classification task
is a MDHC problem, and the dependencies between labels have been briefly
analyzed in Montenegro et al. [61]. However, in the Empathic dataset the hi-
erarchies are not symmetric, there are 55 different labels in the “Topic” class
variable with 5 levels of depth, and 34 different labels in the “Intent” class vari-
able across 4 levels of depth. The Empathic dataset contains 11,383 sentences,
which is a small number of sentences compared to other text-classification
datasets, such as LSHTC [69] (more than 2,400,000 sentences). The combi-
nation of the small size of the dataset with the amount of labels and the
unbalanced distribution of instances per label make this problem difficult to
solve, therefore we have simplified the label hierarchies down to 3 levels of
depth on both hierarchies, as illustrated in Figures 7.10 and 7.11.

This classification problem also allows non-terminal nodes as the final label
to be predicted (NMLNP: Non-Mandatory Leaf-Node Prediction), therefore
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Fig. 7.10: Illustration of the simplified “Topic” tree from the Empathic
dataset. Each box represents a node on the tree, and inside each box, the
name of the associated label.

Fig. 7.11: Illustration of the simplified “Intent” tree from the Empathic
dataset. Each box represents a node on the tree, and inside each box, the
name of the associated label.
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following the framework mentioned in Chapter 5 the MDHC strategies can be
defined as:

• LCPN = (∆:SPP, Ξ:NMLNP, Ω:T, Θ:LCPN)
• GC = (∆:SPP, Ξ:NMLNP, Ω:T, Θ:GC)

In this case, the base classifier is a NN trained using the pretrained em-
beddings from the BERT [22] tokenizer3, followed by an embedding layer and
multiple convolutional layers that generate the feature vector that feeds the
final output layer, as illustrated in Figure 7.12.

Fig. 7.12: Architecture of the base NN classifier used in the experimentation
with the Empathic dataset. Each box represents a node on the tree, and inside
each box the name of the associated label.

We have performed the experiments on the Empathic dataset 10 repeti-
tions and averaged the results obtained. The train-test split (80%-20%) are
stratified due to the unbalanced distribution of the labels. The rest of the
hyperparameters for these experiments can be found in Table 7.5.

3 https://tfhub.dev/tensorflow/bert en uncased L-12 H-768 A-12/1
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Hyperparameter Value

Max epochs 100

Embeding dimension 200

conv1D filters 50

conv1D kernel size 3

Dropout rate 0.2

Dense layer activation functions relu

Dense layer size 128

Table 7.5: Hyperparameters used on the base model used for the Empathic
dataset experiments.

Regarding the Grouping+LCPN strategy, the labels have been grouped
by pairs selected in descending order according to the metric Chi-Square Test
for Labels Dependencies Identification presented by Tenenboim-Chekina et al.
[103], applied to the train data. Every group is formed by a parent node from
each hierarchy, and each node can only belong to one group, which results in
the following groups:

• group1 = “Topic” + “Intent”
• group2 = “Topic nutrition” + “Intent inform”
• group3 = “Topic sportandleisure” + “Intent generic”
• group4 = “Intent question”

7.7 Results and discussion

The experiments performed in this work aim at identifying whether MDHC
strategies can help to improve the classification performance of MDC and
HC strategies on MDHC problems, whose characteristics negatively affect
conventional classifiers.

In this section we first analyze the results obtained from the experiments
on synthetic scenarios, delving into the effect of each parameter separately.
Then, the performances on some specific scenarios is analyzed in order to
confirm the premises deduced from the univariate analysis.

Finally, the results of the experiments on the Empathic project dataset
are analyzed and compared with the results of the synthetic scenarios.

7.7.1 Synthetic scenarios results

The performance of the strategies evaluated on a particular synthetic scenario
can be examined as illustrated in Figure 7.13. This figure is composed of two
plots, and each one shows the performances of a set of strategies on a specific
scenario, whose characteristics are listed on the title of each plot. Each plot
shows the performance measured in terms of Global HF (Y axis) in relation
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to the number of neurons in the hidden layer (X axis) of the strategies noted
in the legend. In this work we consider multiple baselines, namely LCPN, GC
and MDC, which represent the most common HC and MDC strategies that
can be used to solve a MDHC problem.

Fig. 7.13: Performance of the MDHC strategies on scenarios with degree of
dependency=Balanced, children per parent node=2 and class separation=0.1.
The plot on the left shows the performance of the LCPN-based and MDC
strategies, and the plot on the right shows the GC-based and MDC strategies.
The Y axes show the measure used for comparison (GlobalHf), and the X axes
show the number of neurons in the hidden layer of the base models of each
strategy. Preferably viewed in color.

In particular, the plot on the left of Figure 7.13 shows the performance of
the LCPN, Stacking+LCPN, Grouping+LCPN and MDC strategies on the
scenario defined by dependency=0, children per parent node=2 and class sep-
aration=0.1. The different lines show how the performances improve as the
models grow in complexity, however, they reach a performance upper limit
around 28 neurons. At this point, despite the fact that increasing the com-
plexity of the models does not result in an improvement in the performance,
the decision for using a MDHC strategy can have a significant impact on
the final performance of the classifier. This particular scenario shows how the
MDC strategy proposed, which ignores all hierarchical information, performs
worse in general terms, although it tends to converge in performance with the
rest of the strategies as the complexity grows. For low complexity classifiers,
HC strategies tend to perform better than any other strategy, however, they
are slightly surpassed by the Stacking+LCPN strategy as soon as they reach
a certain complexity around 22. However, Stacking+LCPN and LCPN show
similar values for the whole range of neurons in the hidden layer. The plot on
the right of Figure 7.13 shows a similar behaviour with the GC -based strate-
gies, and, in fact, this is a common occurrence. This behaviour is due to the
bottleneck that a small number of neurons in the hidden layer creates on the
neural network structure of all the strategies proposed. This bottleneck effect
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has been previously studied in Gupta et al. [31], where the critical bottleneck
dimensionality (below which structural information is lost) of autoencoders
for text representations is studied. For a MDHC problem such as the one in
Figure 7.5, applying a LCPN strategy creates a classifier for each parent node,
where the input vectors contain 4 features as input, and 2 outputs (children
per parent node=2). However, with a Stacking+LCPN strategy, although the
first phase has the same architecture as LCPN (as illustrated in Figure 7.2), in
the second phase the input vector for each classifier is formed by the concate-
nation of the outputs of each classifier of the first phase, that is 12 features as
input and 2 outputs, creating a more severe bottleneck when a small number
of neurons in the hidden layer is used. This downside of the Stacking-based
strategies also occurs on Grouping-based strategies, since classification prob-
lems from different dimensions are combined, and therefore their input vectors
are also concatenated, forcing more information to pass through a bottleneck
than on a more traditional strategy, such as GC or LCPN strategies (Figures
7.4 and 7.6).

Fig. 7.14: Performance of LCPN-based strategies on scenarios with degree
of dependency=Balanced and class separation=0.1 but varying children per
parent node with 2 and 8 values. The plot on the left illustrates the results
on the scenario with children per parent node = 2 and the plot on the right
the scenario with children per parent node = 8. The Y axes show the measure
used for comparison (GlobalHf), and the X axes show the number of neurons
in the hidden layer of the base models of each strategy.Preferably viewed in
color.

In order to measure how each individual characteristic of the scenarios
affects the performance of the different strategies, we perform a two-step uni-
variate analysis. The first step consists of analyzing the average performance
of each strategy on all the scenarios for each given value of the characteris-
tic studied. We use a plot to visualize how the strategies are affected by the
different values that a particular characteristic can take.
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The second step also consists of a univariate analysis of the comparison
between two strategies, analyzing the difference of Global HF between each
MDHC strategy and its HC counterpart. The usage of this performance mea-
sure is due to the variability of performance mainly depending on the number
of children per parent node, as illustrated in Figure 7.14, where the perfor-
mance in two different scenarios is shown, and the only difference between
the scenarios is the number of children per parent node. Averaging the per-
formance in scenarios with different characteristics can show biased results
towards strategies that perform better in scenarios with fewer children per
parent node. Therefore, in order to reduce this bias, in the second step of the
analysis the LCPN-based strategies are compared with the performance of the
LCPN strategy, and GC-based strategies are compared with the performance
of the GC strategy, calculating their difference in performance as:

DiffP (s1, s2) = GlobalHFs1 −GlobalHFs2 (7.7)

7.7.2 Effect of children per parent node

Regarding children per parent node, Figure 7.15 shows how every strategy is
negatively affected as the parameter value grows. The effect on the LCPN-
based strategies is smaller than on the other strategies, meaning that the
performance of these strategies is less affected by scenarios where the children
per parent node is higher than the other strategies. The second step analysis,
Figure 7.16, does not provide any other insight on what strategies are more
suitable than others. From the two-step univariate analysis, we can conclude
that, although the children per parent node severely affects to all strategies
(as seen in Figures 7.14 and 7.15), the LCPN-based strategies can help to
mitigate this effect.

7.7.3 Effect of degree of dependency

In terms of degree of dependency between labels, Figure 7.17 shows how all
strategies perform better as the dependency between labels grows. Although
this statement can seem counter-intuitive in the case of strategies that are not
MDHC, it is an expected behaviour since a scenario with high label depen-
dency means that more features can help to determine the label of an instance.
In fact, a MDHC scenario with degree of dependency=1 can be reduced to a
HC problem when the hierarchies are identical and the dependencies are node
to node, since the hierarchical information contributed by the two hierarchies
is identical.

However, for degree of dependency = Balanced, the performance of every
strategy appears to improve. This effect does not occur for values of children
per parent node = 2, where the performance continues to decrease as the degree
of dependency shrinks. However, for values of children per parent node of 4 and
8, we hypothesize that this effect has to do with the interference of a bias effect
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Fig. 7.15: Evolution of the Global HF with respect to the children per parent
node. The points of each strategy are the result of averaging the performance
on all the scenarios that have the children per parent node parameter equal
to the corresponding value on the X axis. The Y axis shows the measure
used for comparison (GlobalHf), and the X axis shows the children per parent
node.Preferably viewed in color.

caused by the unbalance of the dependencies between labels. This unbalance
makes the classifiers biased towards the most populated dependencies. For the
sake of clarification, a scenario with degree of dependency = 0.3 and children
per parent node = 2 is created with the following dependencies:

• D(A1.1,B1.1)= 0.3
• D(A1.1,B1.2)= 0.7

3
• D(A1.1,B2.1)= 0.7

3
• . . .

While a scenario with degree of dependency = 0.3 and children per parent
node = 4 is created with the following dependencies:

• D(A1.1,B1.1)= 0.3
• D(A1.1,B1.2)= 0.7

15
• D(A1.1,B1.3)= 0.7

15
• . . .

When the degree of dependency = Balanced, the dependencies are balanced
and the classifiers are not biased, achieving better performance. On the other
hand, as the degree of dependency increases, the MDHC problem gradually
transforms to a single HC problem, with double the number of features avail-
able to classify the instances.

Nevertheless, the second step of the analysis (Figure 7.18) shows how, with
the exception of the Stacking+LCPN strategy, all MDHC strategies achieve
minor performance improvements from a degree of dependency increase with
respect to their HC counterpart. However, the benefit is more remarkable in
the Grouping strategies as illustrated in Figure 7.18.
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Fig. 7.16: Evolution of the average Global HF difference between a pair of
strategies as the number of children per parent node grows. Each point is
calculated as the average of the differences of the performance of a pair of
strategies on all the scenarios that have the children per parent node parameter
equal to the corresponding value on the X axis. The Y axes show the measure
used for comparison (GlobalHf), and the X axes show the children per parent
node.

7.7.4 Effect of class separation

The first step analysis of the class separation influence on the MDHC strate-
gies performance from Figure 7.19 shows how a higher degree of class sep-
aration (easier classification problem) makes non-MDHC strategies increase
their performance more significantly the MDHC strategies. What can also
be understood as non-MDHC strategies are more penalized by smaller values
of class separation (more difficult classification problems). The second step
analysis reveals how this effect is true for every MDHC version, although the
difference between GC and GROUPING+GC is lesser compared to the other
MDHC strategies.

7.7.5 Effect of depth

The first step analysis of the depth shows how the LCPN-based strategies are
less affected by the growth of this parameter (Figure 7.21). This was to be
expected since depth growth implies that the hierarchies contain more internal
nodes, and that means more classifiers in LCPN-based strategies, however,
other methods do not grow accordingly and need to increase the complexity
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Fig. 7.17: Evolution of the Global HF with respect to the degree of dependency.
The points of each strategy are the result of averaging the performance on
all the scenarios that have the degree of dependency parameter equal to the
corresponding value on the X axis. The Y axis shows the measure used for com-
parison (GlobalHf), and the X axis shows the degree of dependency.Preferably
viewed in color.

Fig. 7.18: Evolution of the average Global HF difference between the MDHC
strategies and their HC counterpart as the degree of dependency parameter
grows. Each point is calculated as the average of the differences of the per-
formance of a pair of strategies on all the scenarios that have the degree of
dependency parameter equal to the corresponding value on the X axis. The Y
axes show the measure used for comparison (GlobalHf), and the X axes show
the degree of dependency.
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Fig. 7.19: Evolution of the Global HF with respect to the class separation. The
points of each strategy are the result of averaging the performance on all the
scenarios that have the class separation parameter equal to the corresponding
value on the X axis. The Y axis shows the measure used for comparison
(GlobalHf), and the X axis shows the class separation.Preferably viewed in
color.

of the classifiers to be able to solve an increasing number of classification
tasks. Based on the second step analysis, we can only confirm that, based on
the depth of the hierarchies, we can only aspire to choose between LCPN or
GC based strategies, and not between MDHC or HC strategies (Figure 7.22)
since it does not make a significant difference.

7.7.6 Effect of dimensions

Finally, the first step analysis of the dimensions parameter leads us conclude
that HC strategies are negatively affected as the number of dimensions grows
in MDHC problems (Figure 7.23). However, MDHC strategies not only do
not become negatively affected, but their overall performance is improved as
the dimensions grow. This is an expected conclusion since MDHC strategies
exploit the dependencies between dimensions, where more dimensions means
more possible dependencies which work as hints when classifying an instance.
The second step analysis (Figure 7.24) corroborates this effect, every MDHC
strategy improves with respect to their HC counterpart, however, it is clearer
on the first step analysis.
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Fig. 7.20: Evolution of the average Global HF difference between the MDHC
strategies and their HC counterpart as the class separation parameter grows.
Each point is calculated as the average of the differences of the performance
of a pair of strategies on all the scenarios that have the class separation pa-
rameter equal to the corresponding value on the X axis. The Y axes show
the measure used for comparison (GlobalHf), and the X axes show the class
separation.

Fig. 7.24: Evolution of the average Global HF difference between the MDHC
strategies and their HC counterpart as the dimensions parameter grows. Each
point is calculated as the average of the differences of the performance of a
pair of strategies on all the scenarios that have the dimensions parameter
equal to the corresponding value on the X axis. The Y axes show the measure
used for comparison (GlobalHf), and the X axes show the dimensions.
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Fig. 7.21: Evolution of the Global HF with respect to the depth. The points of
each strategy are the result of averaging the performance on all the scenarios
that have the depth parameter equal to the corresponding value on the X axis.
The Y axis shows the measure used for comparison (GlobalHf), and the X
axis shows the depth. Preferably viewed in color.

The second step of the analysis from Figure 7.20 also shows that the smaller
the class separation is, the more convenient it is to use MDHC strategies. As
seen in Section 7.5, this parameter influences how complicated each classifica-
tion task is, therefore, the more complicated the classification tasks are, the
better it is for MDHC strategies in comparison. However, the improvement of
performance as the class separation parameter grows takes place mainly be-
tween the values 0 and 0.1. This indicates that the relation of this parameter
with the overall performance of the classifiers used is not linear.

7.7.7 Confirmation of the two-step univariate analysis

The conclusions derived from the two-step univariate analysis are supported
by analyzing some specific scenarios illustrated in Figure 7.25. The perfor-
mances on the easiest MDHC scenarios (in terms of the scenarios with the
parameters where all the strategies perform best: class separation=1, children
per parent node=2, number of dimensions=2 and depth=2) are illustrated in
Figure 7.25a, where we can observe how, for small values of neurons in the
hidden layer = 20, LCPN obtains the best results, since the bottleneck gener-
ated severely penalizes the MDHC strategies. However, increasing the number
of neurons in the hidden layer allows the MDHC strategies to converge to the
same level of performance.

Figure 7.25b shows the performances on the most complex scenario with
class separation=0.01, children per parent node=8, number of dimensions=4
and depth=4. This scenario shows more differences in performance between
the strategies, and more interesting behaviours. For small values of neurons in
the hidden layer, all the strategies perform poorly, however, once the classifiers
gain a certain complexity, the performance of the Stacking+LCPN strategy
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Fig. 7.22: Evolution of the average Global HF difference between the MDHC
strategies and their HC counterpart as the depth parameter grows. Each point
is calculated as the average of the differences of the performance of a pair of
strategies on all the scenarios that have the depth parameter equal to the
corresponding value on the X axis. The Y axes show the measure used for
comparison (GlobalHf), and the X axes show the depth.

outperforms the other strategies until neurons in the hidden layer = 26 where
it is surpassed by Grouping+LCPN.

Having concluded that MDHC strategies perform better on complex
MDHC problems in terms of children per parent node, degree of dependency,
depth, number of dimensions and class separation, comparing the MDHC
strategies we find out that the LCPN-based strategies perform best overall.
However, the downside of using LCPN-based strategies is that they require
longer training times, since they need to train more independent models than
their GC versions.

7.7.8 Complexity and Training time

Each strategy is composed of a number of classifiers which work as an ensem-
ble, being able to be considered as a single classifier in terms of evaluating
their performance. However, in terms of training time, each independent clas-
sifier must be trained on a particular task in order to make the whole set
work correctly. The total number of classifiers that need to be trained for
each strategy (according to the scenarios and definitions of this work) can be
calculated as described in Table 7.6:
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Fig. 7.23: Evolution of the Global HF with respect to the dimensions. The
points of each strategy are the result of averaging the performance on all
the scenarios that have the dimensions parameter equal to the corresponding
value on the X axis. The Y axis shows the measure used for comparison
(GlobalHf), and the X axis shows the dimensions. Preferably viewed in color.

LCPN: #classifiers = dimensions ∗ (1 + childrendepth−1)
GC: #classifiers = dimensions

Stacking+LCPN: #classifiers = 2 ∗ dimensions ∗ (1 + childrendepth−1)
Stacking+GC: #classifiers = 2 ∗ dimensions

Grouping+LCPN: #classifiers = 1 + childrendepth−1

Grouping+GC: #classifiers = 1
MDC: #classifiers = 1

Table 7.6: Equations used to calculate the total number of classifiers
(#classifiers) that each strategy must train, according to the scenarios and
definitions of this work. Where dimensions is the number of dimensions of
the MDHC problem, children is the number of children per parent node of
the MDHC problem, and depth is the depth of the hierarchies of the MDHC
problem.

In Figure 7.26 we can observe how the difference in training time between
LCPN-based and GC-based strategies grows for bigger depth parameter val-
ues. This effect also occurs to a lesser extent with the children per node param-
eter, since both parameters affect the total number of internal nodes, which
means more models to be trained.
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(a)

(b)

Fig. 7.25: Performance in extreme (in terms of parameter values) scenarios
of LCPN-based strategies. The plots in the upper row show the performance
of the strategies (LCPN-based on the left, GC-based on the right) on the
scenarios with the characteristics listed in the title shared between them,
which are considered as ”easy” MDHC scenarios. The plots in the bottom
row are similar to the previous ones, but on a different scenario considered as
”hard” MDHC scenarios. Preferably viewed in color.

Fig. 7.26: Overall training time of the different strategies on scenarios with
different depth values. The plots in the upper row show the execution time of
the strategies (LCPN-based on the left, GC-based on the right) on the scenar-
ios with the parameter depth = 2. The plots in the bottom row on scenarios
with the parameter depth = 4. The Y axes represent the total execution time
in seconds of all the classifiers that are part of each strategy, while the X axes
show the neurons in the hidden layer parameter. Preferably viewed in color.
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Figure 7.26 shows how LCPN-based MDHC strategies require more com-
putation time as the hierarchy size grows. This can be a limiting factor on
scenarios with big hierarchies, since the number of internal nodes determines
how many models must be trained.

Grouping based methods, on the other hand, do not suffer a priori from
this computation time limitation, since there are fewer models to be trained
on this strategy, however, they require more complex but fewer models to be
trained in order to reach competitive results. This can be a limiting factor
when the problem is so complicated that the models inside a Grouping-based
strategy need to be too big to be trained on a particular computer.

Taking the training time into account, the selection of the most suit-
able strategy for a given problem becomes a complex task. Although Stack-
ing+LCPN and Grouping+LCPN present the best results overall, Stack-
ing+LCPN is the strategy that requires the most training time of all, whilst
Grouping+LCPN requires a previous study on label dependencies in order to
decide what labels must be grouped. Therefore, choosing among these strate-
gies depends on the characteristics of the problem and the characteristics of
the training environment.

7.7.9 Empathic datasets results

Regarding the results of the experiments on the Empathic dataset, Table 7.7
shows the average results of a 10-iteration training of the different strategies.
The results for the HC strategies are found in the two first columns, high-
lighted with a white background, while the results for the MDHC strategies
are shown in the following four columns, highlighted with a green background.

The results show how every MDHC strategy improves or equals the per-
formance of HC strategies, and that this improvement is achieved for each
MDHC performance measure considered. Regarding MDHC strategies, Stack-
ing strategies show a better performance than the Grouping strategies, sim-
ilarly to the results of the experiments on some synthetic scenarios. We
could have expected Grouping+LCPN to perform even better than Stack-
ing+LCPN, as seen on many synthetic scenarios, however, the decision making
on what labels to group could be decisive in order to get the best performance.

This proves that MDHC strategies exploit the dependencies of MDHC
problems, and provide an indirect measure of the conditional dependencies of
the classification problem [103]. However, the dominance of the MDHC strate-
gies on the Empathic dataset was not expected based on the experiments on
synthetic scenarios, where in some cases HC strategies are superior in terms
of performance than some MDHC strategies, such as GC and Grouping+GC
strategies. A possible explanation for the unexpected MDHC dominance is
that the dependencies between hierarchies of a Text-MDHC can be more in-
fluential than the simulated dependencies of the synthetic scenarios.

In the case of the Empathic MDHC problem, one aspect that can be con-
tributing to this MDHC dominance is that being the dataset obtained from
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LCPN GC
Stacking
LCPN

Grouping
LCPN

Stacking
GC

Grouping
GC

HP 0.60 0.55 0.63 0.62 0.62 0.59

HR 0.61 0.58 0.65 0.63 0.64 0.60

HF 0.57 0.50 0.63 0.61 0.62 0.58

ĤP 0.53 0.50 0.60 0.57 0.59 0.53

ĤR 0.59 0.58 0.64 0.61 0.63 0.60

ĤF 0.56 0.50 0.61 0.59 0.60 0.57

Table 7.7: Comparison of MDHC strategies in the Empathic “Topic” and
“Intent” MDHC problem. Where HP , HR and HF are Mean Hierarchical
Precision, Recall and F measures, and ĤP , ĤR and ĤF are Global Hierar-
chical Precision, Recall and F measures introduced in Section 7.3

coaching sessions, centered on some specific topics (Nutrition, Sport and Fam-
ily), it is expected to have strong dependencies. For example, we expect sen-
tences to have informative intention when speaking about nutrition or habits,
whilst if sentences denote greetings, they are probably not of those topics.
Moreover, each dimension requires a different classifier specialization, that is,
for “Topic” classification, the detection of specific words or combination of
words is enough to determine the label, whilst “Intent” classification requires
a Syntactic Analysis of the sentences [79]. This difference in the specialization
of the tasks could prevent a model from partially learning both specializations,
resulting in an advantage for the MDHC strategies, which have multiple mod-
els with different specializations sharing information between them.

7.8 Conclusions and future work

In this work we have presented and studied the MDHC problem formally. Also,
based on previous studies on MDC and HC, we have proposed MDHC per-
formance measures and classification strategies that exploit the dependencies.
As a last contribution, in order to evaluate the performance of the strategies
presented, we have designed a procedure for creating synthetic MDHC prob-
lems with the desired dependencies between labels. Some of the insights from
our analysis are the following:

1. MDHC strategies perform better than HC strategies as the complexity
of the MDHC classification problem grows in terms of the difficulty of
each partial classification task, cardinality of the set of labels of each class
variable or dependency between labels.

2. When the model used for the MDHC classification tasks is simple in terms
of complexity, HC strategies tend to perform better than MDHC, although
in this case making more complex models leads to a better performance
regardless of the strategy used.
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3. The MDHC LCPN-based strategies outperform the rest of the strategies
although they require more training time.

An experiment on a real MDHC problem reinforces the conclusions obtained
from the experiments on synthetic scenarios regarding the performance of the
different strategies. However, the performance of the MDHC strategies has
exceeded our expectations based on the results of the experiments on synthetic
datasets, where the improvements where smaller. Although we have made a
big effort in defining a clear process with multiple parameters to generate
synthetic scenarios with different characteristics, more realistic features could
be added in future studies. For example, the features from different dimensions
are separable from each other, while in real datasets it is common to have
information from different dimensions mixed in the same set of features. This
could be achieved by combining features with different operations, but we
considered that the study of how these combinations affect the performance
is beyond the scope of this work. Also, more complex patterns of dependencies
could be developed and studied.

Furthermore, despite having MDHC strategies that perform better on
MDHC problems versus traditional HC in many scenarios, we consider that
there is room for improvement. A combination of both MDHC strategies could
be tested, creating a stacking strategy where the first level of the stack is
formed by a Grouping+LCPN strategy, while the second level could be formed
by a Stacking+LCPN strategy.
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General Conclusions and Future Work

This chapter summarizes the main contributions of this dissertation and out-
lines potential directions for further research in the fields of NLP and HC.

8.1 Conclusions

The field of NLP has gained widespread recognition owing to the capabilities
of language models in addressing various everyday tasks, such as information
retrieval and text generation, through written natural language queries. How-
ever, several other NLP applications are still in the process of advancing to
achieve similar levels of popularity and success.

Virtual assistants have limited presence in our society, primarily restricted
to systems that address only a specific range of tasks upon particular requests.
The European H2020 EMPATHIC project aimed to research, innovate, ex-
plore, and validate new interaction paradigms and platforms for future gen-
erations of personalized virtual coaches designed to assist the elderly and
their caregivers in achieving active aging goals within the comfort of their
homes. This necessitated a system with the capacity not only to comprehend
specific queries but also to actively influence user behavior while monitoring
and measuring mental health-related parameters and tracking progress toward
coaching goals.

In this thesis, we have made significant contributions to various fields re-
lated to the EMPATHIC project. Below, we provide a more detailed overview
of the specific contributions arising from this dissertation.

In Chapter 3, we introduce an ASR-M simulator capable of simulating
transcriptions and errors. This simulator represents a pioneering effort to in-
vestigate the impact of various errors generated by ASR-M on the challenging
task of End-Of-Turn Detection (EOTD-M). By offering a means to explore
and train with simulated errors, this simulator proves instrumental in advanc-
ing the field and played a pivotal role in the EOTD task of the Virtual Coach
developed as part of the EMPATHIC project.
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In Chapter 4, in order to enhance virtual assistants employing coaching
strategies, we propose a comprehensive dialog act taxonomy tailored to facil-
itate communication guided by a coaching strategy. This taxonomy is partic-
ularly crucial within the EMPATHIC framework, as it addresses the essential
need for implementing a proactive agent that offers assistance and counseling
to elderly users, steering dialogs with the objective of achieving coaching goals.
This approach distinguishes it from other methods, such as task-oriented di-
alog systems and chit-chat implementations.

Another notable aspect of the proposed taxonomy is its multimodal na-
ture, with tags organized hierarchically. This characteristic has resulted in con-
tributions to subfields stemming from Hierarchical Classification, specifically
Weakly Supervised Hierarchical Classification (WHC) and Multi-Dimensional
Hierarchical Classification (MDHC).

In Chapter 6, on our exploration of WHC, we introduce a weakly super-
vised strategy that incorporates hierarchical information during the training
phase. Comparing this strategy to a simpler version without hierarchical in-
formation, we find that the inclusion of hierarchical information consistently
improves or matches performance across various scenarios. These introduced
hierarchical strategies not only enhance classification accuracy but also lead
to substantial reductions in computational time, especially in scenarios with
extensive label hierarchies.

Finally, in Chapter 7, we formally present and analyze the MDHC prob-
lem. Building upon prior research in Multi-Dimensional Classification (MDC)
and Hierarchical Classification (HC), we introduce MDHC performance met-
rics and classification strategies that leverage label dependencies. Our find-
ings underscore the superiority of MDHC strategies in addressing complex
MDHC problems marked by challenging extensive label sets, or label depen-
dencies. Notably, MDHC strategies based on Local-Classifier per Parent Node
(LCPNs) outperform alternative strategies, albeit with the trade-off of longer
training times. Additionally, we introduce a novel procedure for assessing
strategy performance by generating synthetic MDHC problems tailored to
specific label dependencies, contributing to further advancements in the field.

8.2 Future work

The contributions of this dissertation have led multiple open paths for future
research. In the following paragraphs, we present a relation of topics.

Despite the successful utility of the ASR-SIM during the development of
the EOTD task, we believe that there are still some aspects that deserve
further research and usage:

• Customized Noise Profiles: Currently, the ASR-SIM applies noise uni-
formly across the dataset, assuming a consistent source of noise originating
from the shared environment. However, recognizing that individual speak-
ers and recording sessions may introduce variations in noise levels, future
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versions of the ASR-SIM should account for these distinct characteristics
by tailoring noise profiles to different speech profiles within the dataset.

• Word Characteristic-Based Errors: Enhancing the ASR-SIM to gen-
erate errors based on specific word characteristics that render certain words
more error-prone than others could significantly improve the realism of
simulations. Investigating which word characteristics have the most sub-
stantial impact on transcription errors can aid in creating more accurate
and contextually relevant scenarios.

• Expansion of Simulation Variables: Expanding the capabilities of the
ASR-SIM beyond simulating pause and word duration variations to include
other variables such as tone and audio-derived factors will increase its
utility across various algorithms and scenarios. This broader scope will
enable researchers to explore a wider range of ASR-related challenges and
innovations.

• Additional Functionalities: Beyond improving EOTD modules, the
ASR-SIM can be leveraged to develop other functionalities within the ASR
domain. For example, it can be utilized to address ”Confused words”, as
proposed by Tam et al. [102], who drew inspiration from our ASR-SIM.
This highlights the potential for the simulator to catalyze advancements
in multiple areas of Automatic Speech Recognition.

Building upon the proposed dialog-act taxonomy, the annotated corpora
represents invaluable resources distinguished by their unique characteristics
and their origin from an elderly population. The adaptability of our taxon-
omy extends its relevance beyond coaching-oriented virtual agents, and can
be useful for a wide range of conversational scenarios, both general and spe-
cialized. The multi-dimensional hierarchical structure of the taxonomy allows
for flexible extensions, incorporating additional dimensions to address broader
conversations or increased depth to tackle more specific ones. This structural
versatility positions it as an ideal foundation for future research endeavors.

Furthermore, our taxonomy proves versatile and applicable to various sys-
tems and domains, such as:

• Computer-Based Job Interview Training [2]: The taxonomy can be
employed in computer-based job interview training systems to enhance
dialogue interactions, providing valuable coaching and guidance to job
seekers, and monitor interviewed speech.

• Quality Analysis of Remote Working Experience [77]: Analyzing
interviews with remote workers for the assessment of the quality of their
working experience can benefit from the taxonomy’s structured approach
to dialogue classification, automating the process of evaluating remote
work-related conversations.

By extending the reach of the taxonomy to these diverse applications, we
unlock its potential to enhance dialogue interactions and automated assess-
ments in various domains, thereby contributing to more effective and efficient
communication and analysis.
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As task-oriented systems continue to adopt or extend our dialog-act tax-
onomy, more datasets will be labeled, potentially giving rise to additional
weakly-supervised hierarchical classification (WSC) scenarios. The inherent
cost and complexity of manually labeling text data often necessitate weakly-
supervised approaches. In this evolving landscape, it is likely that our pro-
posed WSC strategy will find adaptation or that new strategies will emerge
to address these scenarios. Exploring and comparing different WSC strategies
will not only expand the toolkit available for handling hierarchical informa-
tion but will also enable evaluations in scenarios involving labels that are not
leaf nodes in the hierarchy.

In the field of Multi-Dimensional Hierarchical Classification (MDHC), nu-
merous avenues for further research beckon:

• Feature Integration Across Dimensions: One promising trajectory
involves amalgamating features from different dimensions that are inher-
ently intertwined. This entails incorporating information from diverse di-
mensions into the same set of features, mirroring the intricate complexities
commonly encountered in real-world data.

• Exploration of Complex Label Dependencies: Researchers can em-
bark on an exploration of more intricate and nuanced patterns of label
dependencies. This entails delving deeper into the interplay of labels and
their multifaceted relationships, pushing the boundaries of our understand-
ing in this field.

• Stacked MDHC Strategies: Experimentation with a combination of
the two MDHC strategies proposed could yield valuable insights into en-
hanced classification methodologies. Formulating a stacking strategy that
integrates a first-level Grouping+LCPN strategy with a second-level Stack-
ing+LCPN strategy has the potential to optimize classification perfor-
mance and broaden the applicability of MDHC in diverse scenarios.

In order to conclude this section, we propose a more general research line
for future work. An exciting avenue for research involves the fusion of Weakly
Supervised Classification (WSC) with Multi-Dimensional Hierarchical Classi-
fication (MDHC). This fusion has the potential to give rise to entirely novel
weakly supervised classification scenarios, characterized by a unique combi-
nation of hierarchical structures, weak supervision, and label dependencies.
Such an integration promises to introduce fresh challenges and opportunities,
paving the way for innovative approaches to address complex classification
tasks that bridge multiple dimensions of information and supervision.

8.3 Publications

The research work carried out during this thesis has produced the following
publications and submissions:
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8.3.1 Referred journals

• Montenegro, C., López Zorrilla, A., Mikel Olaso, J., Santana, R., Justo,
R., Lozano, J. A., Torres, M. I. (2019). A dialogue-act taxonomy for a vir-
tual coach designed to improve the life of elderly. Multimodal Technologies
and Interaction, 3(3), 52.

• Montenegro, C., Santana, R., Lozano, J. A. (2021). Analysis of the sen-
sitivity of the End-Of-Turn Detection task to errors generated by the Au-
tomatic Speech Recognition process. Engineering Applications of Artificial
Intelligence, 100, 104189.

• Montenegro, C., Santana, R., Lozano, J. A. (2023). Introducing multi-
dimensional hierarchical classification: Characterization, solving strategies
and performance measures. Neurocomputing, 533, 141-160.

• Montenegro, C., Santana, R., Lozano, J. A. (2023). Top-down Learn-
ing Approach for Weakly Supervised Hierarchical Classification Problems.
Submited

8.3.2 Conference communications

• Montenegro, C., Santana, R., Lozano, J. A. (2020, July). Transfer learn-
ing in hierarchical dialogue topic classification with neural networks. In
2020 International Joint Conference on Neural Networks (IJCNN) (pp.
1-8). IEEE.

• Montenegro, C., Santana, R., Lozano, J. A. (2019, June). Data gen-
eration approaches for topic classification in multilingual spoken dialog
systems. In Proceedings of the 12th ACM International Conference on
PErvasive Technologies Related to Assistive Environments (pp. 211-217).

8.3.3 Collaborations

• Torres, M. I., Olaso, J. M., Montenegro, C., Santana, R., Vázquez, A.,
Justo, R., ... Gonzalez-Pinto, A. (2019, June). The empathic project: mid-
term achievements. In Proceedings of the 12th ACM International Con-
ference on Pervasive Technologies Related to Assistive Environments (pp.
629-638).

• Gonzalez-Fraile, E., Gonzalez-Pinto, A., Tenorio-Laranga, J., Fernandez-
Ruanova, B., Olaso, J. M., Montenegro, C., Gordeeva, O. (2020). Em-
pathic, expressive, advanced virtual coach to improve independent healthy-
life-years of the elderly (the empathic project: mid-term achievements).
European Psychiatry, 63.

• Olaso, J. M., Vázquez, A., Ben Letaifa, L., De Velasco, M., Mtibaa, A.,
Hmani, M. A., Petrovska-Delacrétaz, D., Chollet, G., Montenegro, C.,
Schlögl, S. (2021, October). The empathic virtual coach: A demo. In Pro-
ceedings of the 2021 International Conference on Multimodal Interaction
(pp. 848-851).
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Fig. .1: Topic label tree.
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Fig. .2: Intent label tree.
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[112] Vogrinčič, S. and Bosnić, Z. (2011). Ontology-based multi-label classi-
fication of economic articles. Computer Science and Information Systems,
8(1):101–119.

[113] Voleti, R., Liss, J. M., and Berisha, V. (2019). Investigating the ef-
fects of word substitution errors on sentence embeddings. In International
Conference on Acoustics, Speech and Signal Processing, pages 7315–7319.
IEEE.

[114] Vukotic, V., Pintea, S., Raymond, C., Gravier, G., and van Gemert,
J. C. (2017). One-step time-dependent future video frame prediction with
a convolutional encoder-decoder neural network. CoRR, abs/1702.04125.

[115] Wang, S., Wang, J., Wang, Z., and Ji, Q. (2014). Enhancing multi-label
classification by modeling dependencies among labels. Pattern Recognition,
47(10):3405–3413.

[116] Wang, Y. and Acero, A. (2006). Discriminative models for spoken lan-
guage understanding. In INTERSPEECH 2006 - ICSLP, Ninth Interna-
tional Conference on Spoken Language Processing, Pittsburgh, PA, USA,
September 17-21, 2006. ISCA.

[117] Webb, E. C. et al. (1992). Enzyme nomenclature 1992. Recommenda-
tions of the Nomenclature Committee of the International Union of Bio-
chemistry and Molecular Biology on the Nomenclature and Classification
of Enzymes. Number Ed. 6. Academic Press.



128 References

[118] Weilhammer, K. and Rabold, S. (2003). Durational aspects in turn
taking. In Proceedings of the International Conference of Phonetic Sciences,
pages 2145–2148.

[119] Whitemore, J. (2009). Coaching for performance : growing human po-
tential and purpose : the principles and practice of coaching and leadership.
Nicholas Brealey Publishing, London.

[120] Willcox, D. C., Scapagnini, G., and Willcox, B. J. (2014). Healthy
aging diets other than the mediterranean: a focus on the okinawan diet.
Mechanisms of Ageing and Development, 136:148–162.

[121] Wolpert, D. H. (1992). Stacked generalization. Neural Networks,
5(2):241–259.

[122] Wong, M. L. and Guo, Y. Y. (2008). Learning bayesian networks from
incomplete databases using a novel evolutionary algorithm. Decision Sup-
port Systems, 45(2):368–383.

[123] Xiao, H., Liu, X., and Song, Y. (2019). Efficient path prediction for
semi-supervised and weakly supervised hierarchical text classification. In
The World Wide Web Conference, pages 3370–3376.

[124] Yaman, S., Deng, L., Yu, D., Wang, Y., and Acero, A. (2008). An
integrative and discriminative technique for spoken utterance classification.
IEEE Trans. Audio, Speech & Language Processing, 16(6):1207–1214.

[125] Yu, D. and Deng, L. (2016). Automatic Speech Recognition. Springer
Publishing Company, Incorporated.

[126] Zechner, K. and Waibel, A. (2000). Minimizing word error rate in tex-
tual summaries of spoken language. In 1st Meeting of the North American
Chapter of the Association for Computational Linguistics, Seatle, pages
186–193.

[127] Zhang, M.-L. and Zhang, K. (2010). Multi-label learning by exploiting
label dependency. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 999–1008.

[128] Zhang, R., Li, W., Gao, D., and Ouyang, Y. (2013). Automatic twitter
topic summarization with speech acts. IEEE transactions on audio, speech,
and language processing, 21(3):649–658.

[129] Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., and Weston, J.
(2018). Personalizing dialogue agents: I have a dog, do you have pets too?
CoRR, abs/1801.07243.


	Preliminaries
	Context
	Overview of the dissertation

	Part I  Contributions on Natural Language Processing
	Background
	Natural Language Processing

	End-of-Turn detection task
	Introduction
	Sources of errors in ASR-M
	Speech profiles

	ASR Simulator
	WER probabilities
	Speech profile parametrization
	Word duration
	Duration of pauses
	ASR Simulator pseudocode

	Experiments
	EOTD-M classification and sets of features
	Characteristics of the classifier
	Metrics
	Dialog data corpora
	Word Error probabilities

	Results
	Effects of the ASR-SIM errors on the featurization techniques
	Effects of the ASR-SIM errors on EOTD-M

	Conclusions and future work

	The EMPATHIC dialogue-act taxonomy
	Introduction
	Wizard of Oz Method for data gathering
	Related Work
	Dialog Acts for an Empathetic Agent
	GROW Model Implemented through the Dialog Manager

	Proposed Dialog Act Taxonomy
	Using the Taxonomy to Get a Labelled Corpus 
	Annotation Procedure

	Analysis and Discussion
	Conclusions


	Part II  Contributions on Hierarchical Classification
	Background
	Hierarchical classification

	Weakly Supervised Hierarchical Classification
	Weakly Supervised Hierarchical Classification
	Candidate labels
	Label proportions
	Mutual label constraints

	Training with a Top-down learning approach
	Update weak information in WHC-CL
	Update weak information in WHC-LLP
	Update weak information in WHC-MLC

	Experimental framework
	Synthetic scenarios

	Results and discussion
	Results for WHC-CL
	Results for WHC-LLP
	Results for WHC-MLC

	Conclusions and future work

	Multi-Dimensional Hierarchical Classification
	Introduction
	Multi-Dimensional Classification
	Multi-dimensional dependencies
	Multi-Dimensional Hierarchical classification

	Dependencies in MDHC
	MDHC performance measures
	MDHC Strategies
	Synthetic scenarios
	Synthetic scenarios generated

	Experimental framework
	Experimental setup in synthetic scenarios
	Experimental setup on a real MDHC problem

	Results and discussion
	Synthetic scenarios results
	Effect of children per parent node
	Effect of degree of dependency
	Effect of class separation
	Effect of depth
	Effect of dimensions
	Confirmation of the two-step univariate analysis
	Complexity and Training time
	Empathic datasets results

	Conclusions and future work

	General Conclusions and Future Work
	Conclusions
	Future work
	Publications
	Referred journals
	Conference communications
	Collaborations


	Appendixes
	References


