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The use of fMRI and computational modeling has advanced understanding of spatial characteristics of population receptive fields
(pRFs) in human visual cortex. However, we know relatively little about the spatiotemporal characteristics of pRFs because neurons'
temporal properties are one to two orders of magnitude faster than fMRI BOLD responses. Here, we developed an image-computable
framework to estimate spatiotemporal pRFs from fMRI data. First, we developed a simulation software that predicts fMRI responses
to a time-varying visual input given a spatiotemporal pRF model and solves the model parameters. The simulator revealed that
ground-truth spatiotemporal parameters can be accurately recovered at the millisecond resolution from synthesized fMRI responses.
Then, using fMRI and a novel stimulus paradigm, wemapped spatiotemporal pRFs in individual voxels across human visual cortex in
10 participants (both females and males). We find that a compressive spatiotemporal (CST) pRF model better explains fMRI
responses than a conventional spatial pRF model across visual areas spanning the dorsal, lateral, and ventral streams. Further,
we find three organizational principles of spatiotemporal pRFs: (1) from early to later areas within a visual stream, spatial and tem-
poral windows of pRFs progressively increase in size and show greater compressive nonlinearities, (2) later visual areas show diverg-
ing spatial and temporal windows across streams, and (3) within early visual areas (V1–V3), both spatial and temporal windows
systematically increase with eccentricity. Together, this computational framework and empirical results open exciting new possibil-
ities for modeling and measuring fine-grained spatiotemporal dynamics of neural responses using fMRI.
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Significance Statement

We developed a computational framework for estimating spatiotemporal receptive fields of neural populations using fMRI.
This framework pushes the boundary of fMRI measurements, enabling quantitative evaluation of neural spatial and temporal
processing windows at the resolution of visual degrees and milliseconds, which was thought to be unattainable with fMRI. We
not only replicate well-established visual field and population receptive field size maps, but also estimate temporal windows
from electrophysiology and electrocorticography. Notably, we find that spatial and temporal windows as well as compressive
nonlinearities progressively increase from early to later visual areas in multiple visual processing streams. Together, this
framework opens exciting new possibilities for modeling and measuring fine-grained spatiotemporal dynamics of neural
responses in the human brain using fMRI.

Introduction
The visual scene changes over space and time. To interpret this
rich visual input, the visual system processes information spa-
tially and temporally through computations by receptive
fields. Prior research has separately characterized spatial recep-
tive fields in primate (Hubel and Wiesel, 1968) and human
visual cortex (Dumoulin and Wandell, 2008; Wandell et al.,
2009; Kay et al., 2013, 2015; Wandell and Winawer, 2015;
Klink et al., 2021) as well as temporal properties of neural
responses in primates (Maunsell and Gibson, 1992; Nowak
and Bullier, 1997) and humans (Horiguchi et al., 2009;
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Stigliani et al., 2017, 2019; Zhou et al., 2018, 2019; Chai et al.,
2019; Harvey et al., 2020; Groen et al., 2022; Hendrikx et al.,
2022). However, how spatiotemporal information is jointly
processed by receptive fields is not well understood beyond
the lateral genicular nucleus (DeSimone and Schneider,
2019), primary visual cortex, V1 (McLean and Palmer, 1989;
DeAngelis et al., 1993; De Valois and Cottaris, 1998; De
Valois et al., 2000; Conway and Livingstone, 2003; Nishimoto
et al., 2011), and motion-selective areas, MT/MST (Simoncelli
and Heeger, 1998; Nishimoto and Gallant, 2011; Mineault et
al., 2012; Pawar et al., 2019). Thus, it is unknown what are
the characteristics of spatiotemporal population receptive
fields (pRFs) across human visual cortex.

There are two main reasons for this gap in knowledge. First,
measurements of pRFs in humans are derived from fMRI,
which typically measures BOLD signals whose timescale is
approximately two orders of magnitude slower than the time-
scale of neural responses (tens to hundreds of milliseconds).
Second, there is no integrated framework for mapping and
quantifying spatiotemporal pRFs.

Here, we filled this gap in knowledge by developing a method
for estimating spatiotemporal pRFs from fMRI. We combined
a pRF mapping approach (Dumoulin and Wandell, 2008;
Kay et al., 2013) with recent neural temporal encoding
approaches (Stigliani et al., 2017, 2019; Zhou et al., 2018,
2019) to estimate spatiotemporal pRFs in each voxel in the visual
system. To achieve the desired temporal estimates, we
leveraged insights from recent fMRI studies that showed
that not only stimulus duration, but also the number of
transients and interstimulus intervals (ISIs) produce strongmod-
ulation of the amplitude of fMRI signals. To measure
spatiotemporal pRFs, we measured each voxel's response to
visual stimuli presented in different locations in the visual field
under varying presentation timings (Fig. 1). Then, we used a
computational framework to estimate spatiotemporal pRF
parameters in visual degrees and milliseconds from the
fMRI response evoked by the stimulus (Fig. 3). We estimated
spatiotemporal pRFs in each voxel of multiple visual areas
across three processing streams. The streams emerge in V1,
continue to V2 and V3, and diverge into later visual areas in
ventral (hV4, VO), lateral (LO, TO), and dorsal (V3AB/IPS)
visual cortex.

We examined how characteristics of spatiotemporal pRF
may vary across visual areas. One possibility is that spatiotem-
poral pRFs vary across the visual processing hierarchy. Many
studies found that the spatial extent of pRFs progressively
increases from early to later visual areas within a processing
stream (Larsson and Heeger, 2006; Dumoulin and Wandell,
2008; Kay et al., 2013; Wandell and Winawer, 2015).
Additionally, several studies suggest that temporal windows
are larger in later than earlier visual areas (Hasson et al.,
2008; Honey et al., 2012; Chaudhuri et al., 2015; Baldassano
et al., 2017). These findings predict that pRFs in later visual
areas will have larger spatial and temporal windows (Zhou et
al., 2018). Another possibility is that spatiotemporal pRFs
vary across streams. Visual areas in the ventral stream that pro-
cess static aspects of the stimulus (e.g., VO), may have pRFs
with large spatial and large temporal windows (Van Essen
and Gallant, 1994). In contrast, areas in the lateral stream
that process motion information (e.g., TO), may have spatio-
temporal pRFs with large spatial but small temporal windows.
These hypotheses are not mutually exclusive, as spatiotemporal

pRFs may vary across both stages of the processing hierarchy
and stream.

Materials and Methods

Participants. The study was approved by the Institutional Review
Board of Stanford University. Prior to the start of the study, all partici-
pants gave written consent. Ten participants (ages 22–52 years, mean
30.6 years and SD 20.8 years; seven females, three males). The demo-
graphics of participants were four East Asian, three White, two multira-
cial, and one Middle Eastern.

Spatiotemporal pRF mapping experiment. Participants performed
nine runs of the spatiotemporal pRF mapping experiment. While pre-
sented with the bar stimuli, participants were instructed to fixate on a
central fixation point and performed a color-change detection task.
Stimuli consisted of high contrast and colorful cartoon images (Finzi
et al., 2021). To elicit a wide range of BOLD response profiles, we sys-
temically varied the location and timing of stimulus presentation.
Spatially (Fig. 1A), each bar was created by dividing a diagram image
(radius of 12° visual angle) into nine distinct apertures. Each bar had a
width of 3° visual angle and there was a spatial overlap of 0.375° between
adjacent bars. The nine bars corresponded to the nine steps in which the
bar swept across the visual field in four different angles (0°, 45°, 90°, and
135°). Temporally (Fig. 1B), the duration of each bar location was 5 s.

Figure 1. Spatiotemporal pRF experiment. In the experiment, participants viewed a flick-
ering bar that swept the visual field while fixating and performing a color-change task at
fixation. A, Spatial design. A bar containing colorful stimuli continuously swept the visual
field in four directions and each direction had nine steps. Stimuli swept across a radius of
12° from fixation. Content of the bar was updated with specific timings determined by
the temporal condition. B, Temporal design. At each spatial location, the bar was presented
for 5 s, in one of nine different temporal conditions shown, in which the bar's content was
updated with different random colorful cartoon snippets according to the temporal design of
that condition. Each temporal condition was shown in each of the stimulus locations. On: on
duration for each stimulus presentation. ISI: interstimulus interval. Example run: https://
github.com/VPNL/stPRF#experiment
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Each 5 s bar location had one of the nine different temporal conditions
that varied in duration, ISI, and number of different stimuli.
Specifically, temporal conditions 1, 2, and 3 had identical stimulus on
durations of 133 ms per image with varying ISIs of 33 ms, 200 ms, and
867 ms, respectively. Temporal conditions 4, 5, and 6 had identical
ISIs of 133 ms with varying stimulus on durations of 33 ms, 200 ms,
and 867 ms, respectively. Conditions 1, 7, and 8 had an identical total sti-
mulus on duration of 4 s (out of the 5 s in that location) while varying in
the number images per bar location: 30, 15, and 5, respectively.
Condition 9 had a single stimulus presented for a duration of 5 s without
an ISI, which served as a prolonged stimulus condition. The temporal
conditions for each location were pseudo-randomly counterbalanced
across runs and participants, making each run unique. Across the nine
runs, each temporal condition occurred once in each bar location. An
example run of the experiment can be viewed on our GitHub repository
(https://github.com/VPNL/stPRF#experiment).

Standard pRF mapping experiment. In a separate session, a traveling
wave pRF mapping experiment with cartoon stimuli was conducted to
independently define borders of visual regions (Toonotopy; Finzi et al.,
2021). Specifically, we defined regions of interest (ROIs) which included:
V1, V2, V3, hV4, VO (VO1 and VO2), LO (LO1 and LO2), TO (TO1 and
TO2), V3AB, and IPS (IPS0 and IPS1). This pRF mapping experiment
used similar stimuli, the same visual field coverage (radius of 12° visual
angle), number of angles (0°, 45°, 90°, and 135°), and task (color-change
detection task at fixation) as the spatiotemporal pRF mapping experi-
ment. Different from the spatiotemporal pRF experiment: (1) images
within each bar consisted of random cartoon images that changed at a
constant rate of 8 Hz, (2) bars were spatially less overlapping (0.27°),
(3) there were 12 steps in each direction, and (4) each step had a 2-s dura-
tion. All participants completed four runs of the Toonotopy experiment.

fMRI acquisition and preprocessing. During fMRI, stimuli were pre-
sented using an Eiki LC-WUL100L projector (resolution: 1,920 × 1,200;
refresh rate: 60 Hz) using MATLAB (http://www.mathworks.com/)
and Psychophysics Toolbox (Brainard, 1997; http://psychtoolbox.org).
MRI scanning was conducted on a 3T scanner (Signa, GE) with a
Nova 16-channel head coil. Functional data were acquired using a
T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence
(flip angle = 62°, TR= 1,000 ms, TE = 30 ms, field of view = 192 mm,

2.4 mm isotropic voxel size). Slices were prescribed to be perpendicular
to calcarine sulcus to cover occipitotemporal cortex. A T1-weighted inplane
image was collected for each participant, using the same prescription as the
functional data, but higher resolution (0.75 × 0.75×2.4 mm) to aid align-
ment to anatomical scan. A high-resolution anatomical scan (MPRAGE
T1-weighted BRAVO pulse sequence, inversion time=450 ms, flip angle
= 12°, TE= 2.91 ms, 1 mm isotropic voxel size, field of view=240× 240
mm) were collected using a Nova 32-channel head coil. This anatomical
scan was segmented in white and gray brainmatter and used to reconstruct
the cortical surface with FreeSurfer [version 6.0; Fischl, 2012 (http://
freesurfer.net/)].

Functional data were preprocessed using Vistasoft (http://github.
com/vistalab/vistasoft) and SPM12 (https://github.com/spm/spm12).
Functional images were aligned to each participant's native space using
T1-weighted inplane images. Then, the functional data were motion-
corrected, and each voxel's time courses were converted to percent signal
change.

Fitting hemodynamic response functions for individual voxels. It has
been well characterized that stimulus-evoked BOLD responses depend
on both neuronal and hemodynamic properties (Lindquist and Wager,
2007; Polimeni and Lewis, 2021) and further, hemodynamic responses
may vary in response to different types of stimuli, among different
regions of the visual cortex, and across individuals (Handwerker et al.,
2004). All these factors may contribute to temporal parameter estimates
in our model. In other words, if there are systematic variations in hemo-
dynamic response functions (HRFs) across different voxels and brain
regions, using a single HRF for analysis may result in inaccurate esti-
mates of spatiotemporal pRF parameters.

Thus, we performed an iterative linear fitting approach to estimate an
optimized HRF for each voxel. First, we generated a stimulus design matrix
for the spatiotemporal pRF mapping experiment with 36 conditions (one
condition for each of the nine bar locations and four orientations). Then,
using a general linear model (GLM) approach, this design matrix was con-
volved with anHRF to generate predictors for each condition. For each iter-
ation and for each voxel, the HRF parameters were optimized to minimize
the difference between predicted fMRI time course and fMRI data. HRFs
were parameterized as a sum of two-gamma functions (Friston et al.,
1998) where each gamma function had two parameters: peak latency and
full-width at half-maximum (FWHM). The default Vistasoft HRF was

Figure 2. Optimized HRFs for individual voxels. For each voxel, we estimated its HRF using an optimization procedure. A, The average estimated HRF for each visual area. HRFs were averaged
across voxels and participants. Heights of the HRFs are normalized to be 1 for visual comparison. Blues: V1, V2, and V3; Greens: hV4 and VO; Reds: LO and TO; Yellows: V3AB and IPS. Shaded areas:
standard deviation across 10 participants. Dashed line: default HRF from Vistasoft. B, To illustrate the across-participant HRF variability, the mean HRF for V1 (left) and LO (right) is plotted for each
individual participant. Each colored line indicates an individual participant. Shaded gray area: standard deviation across voxels for each participant. C, To visualize within ROI variability of HRFs, we
show the HRFs of all voxels in V1 (left) and LO (right) from an example participant. Each line indicates the estimated HRF for a single voxel. Solid black line: the average HRF across voxels of that
visual area.

Kim et al. • Spatiotemporal population receptive fields J. Neurosci., January 10, 2024 • 44(2):e0803232023 • 3

https://github.com/VPNL/stPRF#experiment
https://github.com/VPNL/stPRF#experiment
http://www.mathworks.com/
http://www.mathworks.com/
http://psychtoolbox.org
http://psychtoolbox.org
http://freesurfer.net/
http://freesurfer.net/
http://freesurfer.net/
http://github.com/vistalab/vistasoft
http://github.com/vistalab/vistasoft
http://github.com/vistalab/vistasoft
https://github.com/spm/spm12
https://github.com/spm/spm12


also generated by using the two-gamma functions with peaks of 5.4 and
10.9, and FWHMs of 5.2, 7.35. Critically, the GLM design matrix coded
the spatial location and orientation of the bar and disregarded the
fine-grained temporal properties of the stimulus. Given that our experi-
mental design included a wide range of temporal variabilities, the estimated
HRFs are not biased to a specific temporal stimulus condition.

On average, the optimized HRFs across different visual areas were
consistent across participants (Fig. 2A,B). The estimated HRFs for all

visual regions showed similar time-to-peak compared with the
Vistasoft HRF (Fig. 2A, dashed line), but some differences were observed
including an earlier onset, wider width, and delayed undershoot. The
across participant variability of estimated average HRFs was small (Fig.
2B). However, when examining individual voxels' HRFs within a visual
area, we found a large degree of variation. As an example, while the aver-
age HRF profile for V1 and LO appeared similar (Fig. 2C, black lines),
there was substantial variability of HRF across voxels spanning these

Figure 3. Modeling framework for spatiotemporal population receptive fields. A, Spatiotemporal pRF framework. To predict the fMRI response in each voxel, the binarized visual stimulus is
fed into a pRF model to predict the neural population response (temporal resolution of sequence and neural output is discretized into units of 10 ms) and then convolved with the hemodynamic
impulse response function (HRF) and resampled to seconds to predict the fMRI response. Unless otherwise stated, the HRF is the voxel-wise optimized HRF (Fig. 2). We implemented and tested
three pRF models: B, Compressive spatiotemporal (CST) pRF model. The CST model consists of three spatiotemporal receptive fields that have an identical spatial receptive field (2D Gaussian) and
three different temporal receptive field types: sustained (left), on-transient (middle), and off-transient (right). In each channel, the output undergoes rectification (ReLU) removing negative
responses and compression by exponentiation. Red: positive signal amplitude (a.u.); Blue: negative signal amplitude (a.u.). For visualization, only the vertical spatial dimension is shown.
C, Delayed normalization spatiotemporal (DN-ST) pRF model. The spatial receptive field is a 2D Gaussian and the temporal receptive field uses a nonlinear impulse response function computed
by rectification, exponentiation, and divisive normalization. D, Spatial pRF model is a 2D Gaussian pRF. Here, both spatial dimensions are shown.
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regions within a single participant (Fig. 2C, colored lines). All results
reported are with a voxel-wise optimized HRF unless otherwise stated.

Spatiotemporal pRF modeling framework
The spatiotemporal pRF model is a stimulus-referred encoding model
that predicts the BOLD response of each voxel while estimating both spa-
tial and temporal neural characteristics of the pRF given a stimulus
sequence. In general, an underlying assumption of the spatiotemporal
pRF is that visual neurons integrate stimulus information over visual space
and time (Adelson and Bergen, 1985; Watson and Ahumada, 1985).

First, we predicted neural activities from the stimulus and specific
spatiotemporal receptive field model (Fig. 3A). Depending on the model,
this procedure involved linear and nonlinear computations. Then the
predicted neural responses were convolved with an HRF and down sam-
pled to 1 s to predict fMRI responses (Fig. 3A). This step is linear and the
same HRF was used across all models. Three pRF models were imple-
mented: compressive spatiotemporal (CST, Fig. 3B), delayed normaliza-
tion spatiotemporal (DN-ST, Fig. 3C), and spatial (Fig. 3D).

This two-step stimulus to neural and neural to BOLD framework is
theoretically and implementationally important. From the theoretical
perspective, we sought to create a linking model that directly character-
izes neuronal responses as well as their spatial and temporal nonlinear-
ities and use it to predict the fMRI response to the stimulus.
Implementationally, DN-ST and CSTmodels apply nonlinear operations
at the neuronal stage while keeping a linear relationship between the pre-
dicted neural activity and BOLD response, as previous studies have
shown that the temporal nonlinearities mostly arise from the neuronal
activity to the stimulus (Miller et al., 2001; Zhou et al., 2018).

Stimulus. The stimulus information is modeled in two spatial
dimensions (X Y) and one temporal dimension (t) and referred to as
I(X Y t). Each frame of the stimulus sequence was binarized and resized
to 61 × 61 pixels and the temporal resolution of stimuli sequences was 10
ms (centisecond). We implemented centisecond rather than a millisec-
ond resolution to reduce computational time.

Spatiotemporal population receptive field models. A spatiotemporal
pRF is created by taking a pointwise multiplication of the neural spatial
and temporal impulse response functions (Adelson and Bergen, 1985;
Watson and Ahumada, 1985). To illustrate the spatiotemporal pRF
profile in a 2D space, in Figure 3B,Cwe show a cross section of one spatial
dimension (y-axis) with the temporal dimension (x-axis).

We used an identical spatial pRF function for all three models, and
only varied the temporal impulse functions specific to each model. The
spatial pRF was modeled as a 2D isotropic Gaussian (Dumoulin and
Wandell, 2008):

spatial RF(X Y) = e−((X−x)2+(Y−y)2/2s2) (1)

where x and y are the center of the pRF in the visual field, and s is the
spatial extent of the pRF. All units are in degrees of visual angle (°).
Figure 3D shows an example spatial pRF.

Compressive spatiotemporal pRF model. The CST model (Fig. 3B) is
inspired by neural measurements in macaque V1 (De Valois and
Cottaris, 1998; De Valois et al., 2000; Conway and Livingstone, 2003)
and human psychophysics (Watson and Robson, 1981; Thompson,
1983; McKee and Taylor, 1984; Hess and Plant, 1985; Watson, 1986).
The former showed that different neurons in primate V1 have different
temporal receptive fields, which can be characterized by monophasic
(sustained) and biphasic (transient) neural impulse response functions
(De Valois and Cottaris, 1998; De Valois et al., 2000; Conway and
Livingstone, 2003). The latter showed that human temporal sensitivity
to visual stimuli can be characterized with a linear system approach
with two channels a sustained channel (modeled by a gamma function)
and a transient channel (modeled by a difference of gamma functions).
As both the onset and offset of visual stimuli are thought to increase neu-
ral responses (Horiguchi et al., 2009), we separately modeled onset and

offset transient temporal neural impulse response functions. The CST
model thus consists of three spatiotemporal channels, each with an iden-
tical 2DGaussian spatial receptive field (spatial RF), and each channel has a
different neural temporal impulse response function: sustained,
on-transient, and off-transient. The sustained impulse response function
models the ongoing neural responses, while the transient impulse response
functions computes changes in the neural response and highlights visual
transitions. “On” and “Off” responses of the transient impulse response
functions were separately modeled to account for increased neural
responseswith both stimulus onsets and offsets. These three spatiotemporal
channels were designed to capture both prolonged and abrupt changes in
neural responses to stimuli at specific locations and sizes.

The CST model has three spatial parameters (x y s), a temporal
parameter (τ), and a compressive exponent (n), where s is the spatial
window, and τ is the time-to-peak. In some compressive spatial pRF
models (e.g., CSS; Kay et al., 2013), pRF size is reported as s/

��
n

√
; how-

ever, here we report pRF size as σ because the compressive nonlinearity is
applied to spatial and temporal dimensions together.

The CST model is implemented as follows: first, the dot product is
applied between binarized spatiotemporal visual input I(X Y t) and the
spatial RF (Eq. 2) at each time point, effectively computing the weighted
sum of the spatial overlap between stimulus at time (t) and the spatial RF.
Then, to predict spatiotemporal neural activity, we convolved the output
with three different temporal impulse response functions hi(t), with i tak-
ing the values 1, 2, and 3. These temporal impulse response functions
correspond to sustained h1(t), on-transient h2(t), and off-transient,
h3(t) channels. Thus, the predicted spatiotemporal neural activity ri(t)
for each of the channels can be expressed:

ri(t) = hi(t)× [I(X Y t) · spatial RF(X Y)]
where i = 1 2 or 3.

(2)

The sustained neural temporal impulse response was modeled by a
gamma function:

h(t) =
(t/kt)(m−1)e−(t/kt)

kt(m− 1)!
(3)

where t is in milliseconds and t is a fitted time constant. The values of k
and m parameters were same as previous studies (Watson, 1986;
Stigliani et al., 2017, 2019) and were k = 1 and m = 9.

The on-transient impulse response function h2(t) was modeled as a
difference between two-gamma functions, which yielded a biphasic
response. The excitatory component was the same as h1(t) and the inhib-
itory component was a gamma function with parameters: k = 1.33 and
m = 10. As such, the peak of the sustained impulse response function
is always later than the transient impulse response function. The off-
transient impulse response function h3(t) is identical to h2(t) but with
the opposite sign.

After spatiotemporal linear filtering, the CST model implements two
nonlinearities in each channel: (1) a rectified linear unit (ReLU) and (2) a
compressive power-law exponentiation. The purpose of the ReLU is to
rectify the negative component of the transient responses (the sustained
response is always positive). We reasoned that both on- and off-transient
responses will increase neural firing rate and consequently increase
BOLD signals. Nonlinear summation in the visual system tends to be
subadditive across spatial and temporal domains, as empirical data
show that the sum of responses to multiple stimuli over space is lower
than the sum of responses to individual stimuli (Kay et al., 2013), and
the response to prolonged stimulation is less than the response to mul-
tiple individual stimulation with the same overall duration (Zhou et
al., 2018, 2019). The predicted neural activity of each channel after non-
linear computations can be expressed as

pi(t) = [ReLU(ri(t))]n where i = 1 2 or 3; 0.1 ≤ n ≤ 1. (4)

To predict fMRI responses resulting from sustained and transient
neural responses, we convolved the predicted neural time courses
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pi(t) with the HRF and down sampled to 1 s resolution to match
the temporal resolution of fMRI measurements. The predicted
BOLD response is the weighted sum of the sustained and transient
responses:

BOLDCST = bsus(p1(t)∗HRF) + btran([p2(t) + p3(t)]∗HRF). (5)

From fMRI data and using a GLM approach, sustained (bsus) and tran-
sient (btran) scaling factors were estimated in each voxel (see also Model
fitting and parameter optimization). We combined the neural responses
of the on- and off-transient channels into a single channel to model the
overall transient response profile and estimate one scaling parameter to
fit to the BOLD signal. This implementation is specific to the current
experiment, and one may separately estimate contributions from on
(bOnset tran) and off (bOffset tran ) transient channels. It is also possible
to implement a variant of the CST model with a single b coefficient esti-
mating the gain for the summed neural response of the sustained and
transient channels before convolving with the HRF. The CST solver on
synthetic data (300 voxels with noise) is similar to its performance on
a model with two channels (one for the sustained and one for the tran-
sient channels).

Delayed normalization spatiotemporal pRF model. The spatiotem-
poral delayed normalization pRF model (DN-ST) has a 2D Gaussian
spatial receptive field like the other models and a temporal impulse func-
tion that uses divisive normalization as well as an exponential decay
function to model nonlinear neural temporal responses (Zhou et al.,
2018, 2019; Groen et al., 2022; Fig. 3C).

The DN-ST model has three spatial parameters (x y s) and four
temporal parameters (t1, t2, nDN, and sDN). Here we report pRF size
as s.

Predicted neural activity of the DN-ST model is expressed as

p(t) =
|r(t)|nDN

snDN
DN + [|r(t)| × h2(t)]nDN (6)

where sDN is a semisaturation constant and nDN is an exponent. r(t)
is the linear component of the neural response computed as the
convolution between the neural temporal impulse response function
h1(t) and the dot production of the stimulus I(X Y t) with the spatial
pRF (same as Eq. 2).

r(t) = h1(t)∗[I(X Y t) · spatial RF(X Y)]. (7)

Following Zhou et al. (2019), the temporal impulse response function h1(t)
was created using a gamma function with a time constant parameter t1. We
implemented the monophasic version of the gamma function to reduce the
number of free parameters. We also tested another variant of the DN-ST
pRF model with a biphasic neural impulse response function (Zhou et al.,
2019; Groen et al., 2022), but this did not reduce the estimation error during
simulation (data not shown).

h1(t) = te−t/t1 . (8)

Another term in the denominator h2(t) reflects the decay component and is
implemented with a low-pass filter that uses an exponential decay function
with a parameter t2:

h2(t) = e−t/t2 . (9)

Finally, the predicted neural activity p(t) was convolved with the HRF to
predict fMRI signals:

BOLDDN−ST = b(p(t)∗HRF). (10)

The b-weights approximate the magnitude of fMRI responses.

Spatial pRF model. The linear spatial pRF model is the same as
Dumoulin and Wandell (2008) (Fig. 3D). It implements the spatial

pRF described in Equation (1) to predict the neural response by comput-
ing the dot product between the stimulus and the spatial pRF. Then, the
neural response is convolved with the HRF to predict the BOLD
response. The predicted BOLD response is

BOLDspatial = b([I(X Y t) · spatial RF(X Y)]∗HRF). (11)

The Spatial model has three spatial parameters (x y s).

Model fitting and parameter optimization. The pRF parameters of
each model at each voxel are determined by a two-stage coarse-to-fine
approach that minimize differences between the predicted and measured
fMRI time course. The first stage was a grid search procedure where we
approximated the spatial RF parameters (x, y, and σ) for each voxel using
the default Vistasoft HRF as in Dumoulin and Wandell (2008). The grid
search procedure involved enumerating over combinations of potential
spatial RF locations and sizes, where x and y were of a range that covered
twice the size of the stimulus: 0◦ ≤ x y ≤ 24◦, 0.4° steps, and σ was
sampled up to the radius of the stimulus: 0.1◦ ≤ s ≤ 12◦, log-linear sam-
pled, 96 steps. For the CST model, the grid search also included a range of
compressive exponents: n= (0.25, 0.5, 0.75, and 1). Additionally, for the
DN-ST and the CST models, we used a fixed set of default temporal
parameters during the grid search: CST: t = 4.93; DN-ST: t1 = 0.05 t2 =
0.1 nDN = 2 sDN = 0.1 same as previous studies (Stigliani et al., 2019;
Zhou et al., 2019).

In the second stage, a fine search was performed using a Bayesian
adaptive direct search (BADS) algorithm (Acerbi and Ma, 2017).
To avoid local minima, we generated three sets of initial parameters
using the estimated spatial parameters (x y s) from the grid search
while randomly varying the other parameters. Here, we fit all spatiotem-
poral parameters simultaneously. Lower and upper search bound
of spatial parameters (x y s) were set to ±5° from the grid search
estimation. The search range for remaining parameters were: DN-ST
model: t1:[0.01 1] t2:[0.01 1] s:[0.01 0.5] n:[1 6]; CST model:
t:[4 100], n:[0.1 1]. Note that for the CST model, temporal (t) and
compression parameters (n) were identical across sustained and tran-
sient channels. For the fine search, different analyses used the default
or optimized HRFs, and a GPU was utilized to accelerate computation
time.

After performing the BADS optimization for each set, the parameter
set that best explained the fMRI data was selected based on the highest
variance explained (R2).

R2 = 1−
∑N

t=1 (MODEL(t)− DATA(t))2
∑N

t=1 DATA(t)
2 ;

N :number of timepoints.

(12)

Simulation software
We developed a simulation software to evaluate and ensure the compu-
tational validity of spatiotemporal pRF models. The simulation software
was built to be compatible with previous validation software for fMRI
BOLD responses (Lerma-Usabiaga et al., 2020). The simulation software
has two components: (1) Synthesizer: generates synthetic fMRI time
courses based on the stimulus and a specific pRF model. (2) Solver:
Given a fMRI time course, a pRF model, and a stimulus sequence, the
solver uses an optimization procedure to solve the pRFmodel parameters
that best predict this time course.

To test the robustness of each of the spatiotemporal pRF models,
we generated 300 different synthetic fMRI time courses for each model
by randomly sampling a wide range of spatiotemporal pRF parameters.
All three models shared identical ground-truth spatial parameters.
Spatial receptive fields’ spatial parameters of x and y were randomly
sampled from a normal distribution spanning an eccentricity range of
0–10° and s range of 0.2–3° to match the stimulus aperture of our
experiment. Additional parameters for the DN-ST and the CST models
were randomly sampled from a uniform distribution with the same
bounds used in the search algorithm described above. We used the
default Vistasoft HRF for the simulation. After generating simulated
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time courses for each model and parameters, three types of additive noise
(white noise, physiological, and low-frequency drift noise) that are
commonly found in fMRI signal were applied (Erhardt et al., 2012;
Welvaert and Rosseel, 2014; Liu, 2016; Lerma-Usabiaga et al., 2020).
The noise magnitude was systematically adjusted to match the range
of signal-to-noise ratio (SNR) of ≍0.1 dB (Fig. 4B). This range of SNR
resulted in a variance explained (R2) value of approximately 0.3, which
was a typical level of R2 in the empirical spatiotemporal fMRI experiment
(Fig. 5B).

After generating synthetic fMRI time courses with noise, we tested
whether each model can accurately recover its ground-truth spatiotem-
poral pRF parameters from the synthetized time courses. The parameters
were solved using the two-staged coarse-to-fine approach as described
above. The identical Vistasoft HRF that was used to generate the syn-
thetic time courses was also used for solving. The performance of each
spatiotemporal pRFmodel was evaluated by comparing the absolute per-
centage error between the solution and the ground-truth parameters.
The absolute percentage error was calculated by taking the absolute
difference between the ground-truth and estimated parameter value,
and then dividing by the ground-truth value. We also used Pearson's
correlation coefficient (r) to compare parameter estimates of each model
and the ground-truth parameter values.

Estimating spatiotemporal pRFs across voxels of a visual area and across
cortex
As different voxels' pRFs are centered in different locations in the
visual field, to examine the aggregate properties of spatiotemporal
receptive fields across voxels of a visual area, we zero-centered all
pRFs spatial locations to x = 0 and y = 0. This allowed us to examine
the distribution of spatiotemporal pRFs' spatial and temporal
windows in a visual area irrespective of their location in the visual
field. These zero-centered spatiotemporal pRFs were then averaged
across all voxels within each visual area in each participant and then
across participants. For the CST model, this analysis was performed
separately for the transient and sustained channels. Note that both sus-
tained and transient impulse response functions share the same temporal
parameter t. As the on- and off-transient spatiotemporal are identical
except for their sign, for simplicity we only plotted the on-transient
channels.

To assess the relationship between spatial and temporal windows
of spatiotemporal pRFs, we measured each voxel's temporal processing
window size by calculating the FWHM of the sustained neural temporal
impulse function. Then, we generated cortical maps of the pRF size and
temporal window estimates. The map was generated for each participant
and then transformed to FreeSurfer's average cortical surface using
cortex-based alignment (Fischl et al., 1999) and averaged across the 10
participants to generate the group average cortical map.

Statistical testing. To compare model performance, we used a
threefold-cross-validation approach and averaged R2 across folds. In
each fold, two-third of the data (six runs concatenated) was used to
estimate model parameters, and the left-out one-third of the data (three
runs concatenated) was used to estimate the variance explained by
the model. The statistical significance of differences in model perfor-
mance was computed by applying a Fisher's permutation test with
50,000 iterations and correcting the p-values for false discovery rate.
To keep the same number of voxels for each model, if the analysis
required comparison across different models, we did not exclude any
of the fMRI voxels based on the variance explained. When examining
the results of a particular model, we excluded voxels that account for
less than 10% of the variance explained by that model. When reporting
empirical fMRI results of the temporal parameter (t) of the CST
model, voxels with ill-posed estimates that are constrained at the boundary
(τ=100, centisecond) were excluded.

To test if pRF size and temporal window significantly (if p < 0.05)
vary across visual areas, we computed the median pRF size and temporal
window for each visual area, for each subject. Using these median values,
we performed linear mixed model (LMM) analyses with participants as a
random effect and a fixed slope (i.e., the intercept but not the slope can

vary across participants): temporal window� visual area + (1 | participant)
and pRF size� visual area+ (1 | participant).

Analysis of pRF temporal window across eccentricities in early visual
cortex. To quantitatively evaluate the relationship between temporal
window and eccentricity in V1, V2, and V3 (Fig. 10B), we binned
pRFs into eccentricity bins of 2° (visual angle) for each participant. As
a result, different numbers of voxels contribute to each datapoint,
depending on the number of voxels for each participant and eccentricity
bin. Then, we used an LMMwith participant as a random effect: temporal
window� eccentricity + (1 | participant). This LMM fits a single slope
across all participants and allows each participant to have a distinct
intercept. Note that this is different from how we report median pRF
temporal windows in Figure 8B, where we calculated median of pRF win-
dows across all eccentricities on the unbinned data. These differences in
analyses may contribute to quantitative differences in temporal window
estimates between Figures 8B and 10B.

Software accessibility. The analysis code (https://github.com/VPNL/
stPRF) and the pRF simulation software (https://github.com/vistalab/
PRFmodel) are all accessible online.

Data accessibility. The data and additional information are accessi-
ble on the Open science framework (https://osf.io/3gwhz/).

Results
Validating spatiotemporal pRF models through simulation
To evaluate the robustness and validity of the spatiotemporal
pRF modeling framework, we developed a simulation software
with two purposes. First, to simulate experimental paradigms
and test if they can be used to differentiate between predictions
of different pRF models. Second, to validate the accuracy of the
framework by testing if it recovers ground-truth pRF model
parameters from simulated fMRI time courses with noise. By
understanding how well our framework can recover parameters
in simulated scenarios, we can define the scope of model inter-
pretability given our experimental design and number of
measurements.

Synthesizer: different pRF models predict distinctive time
courses to identical visual stimuli
Using the stimulus design in the spatiotemporal pRF mapping
experiment (Fig. 1), 300 noiseless and 300 noise-added synthetic
fMRI time courses were generated for each of the pRF models:
spatiotemporal pRF models (DN-ST and CST) and the conven-
tional spatial pRF model (Dumoulin and Wandell, 2008). To
compare how the temporal parameters affected fMRI time
courses, synthetic fMRI time courses for each model used the
same spatial parameters (x y s) while varying model-specific
parameters for DN-ST and CST.

We found that even with the same stimuli and identical spatial
parameters, distinct synthetic fMRI time courses were generated
for each model. An example run (out of nine runs in total) of
three noiseless synthetic time courses, one for each of the differ-
ent pRF models with the same spatial parameters, is shown in
Figure 4A. All the example time courses had four distinct peaks
at similar times during the experiment, corresponding to the four
times the bar swept across the pRF. However, the different
models generated distinctive fMRI time courses in terms of their
amplitudes, latencies, and widths and these differences were
preserved when typical fMRI noise was applied (Fig. 4B). The
different synthetic time courses confirmed that different types
of pRF models can generate fMRI time courses that can be exper-
imentally differentiated with our stimulus design.
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Figure 4. Simulator: Validating spatiotemporal pRF models. A,B, Synthesizer. A, An example time course of noiseless synthetic fMRI time courses generated with the same spatial parameters
and experimental paradigm of one run for three different pRF model types (blue: Spatial, yellow: DN-ST model, red: CST model). In each run, there are four bar sweeps across the visual field.
B, Simulated time courses from A, with added noise to simulate typical fMRI data. The amount of noise applied to each synthetic time course was matched across three models to yield mean SNR
of 0.1 dB. C,D, Solver results. C, Ground-truth parameter versus estimated model parameters for 300 randomly generated pRFs for each model type. Each dot indicates a parameter estimate for a
pRF estimated from a noised-added synthesized fMRI time course. Different model types have different numbers of parameters. Spatial model: three parameters (x y s). DN-ST model: seven
parameters (x y s t1 t2 sDN nDN), and CST model: five parameters (x y s t n). The spatial parameters are in units of visual angle (°) and the temporal of t t1 t2 are reported in units of
seconds (s). Dashed line: parameter estimate equals ground-truth. D, Violin plots of the accuracy of each of the estimated parameters (absolute percentage error) for 300 simulated pRFs. Black
dots: median value. For each parameter, outliers beyond 90th percentile were excluded. E, A table summarizing the accuracy of the recovered parameters compared with ground-truth param-
eters for each of the 300 pRFs for each model. The median absolute percent errors reflect the black dots in D.
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Solver: testing the accuracy and robustness of the
spatiotemporal pRF framework vis-à-vis ground-truth
Wenext tested whether the solver accurately recovers ground-truth
pRF parameters from synthetic fMRI time courses. Specifically,
using a synthetic fMRI time course with additive noise and a stimu-
lus sequence as model inputs, the solver estimates the specific
model parameters for each pRF. To evaluate the solver's accuracy,
we compared the estimated parameters to the ground-truth param-
eters that generated the synthetic time courses. Both the synthesizer
and the solver used the same pRF model.

For noiseless synthetic fMRI time courses such as the ones in
Figure 4A, the solver successfully recovered the spatiotemporal
pRF parameters of all models with more than 99% accuracy.
This result validates the analysis code and indicates that the
solver can resolve pRF parameters from the planned experimen-
tal sequence for all model types.

When a typical level of empirical fMRI noise was added to the
synthetic fMRI time courses, the models are still able to success-
fully recover the pRF parameters. The solver accurately recovered
the spatial parameters (x y s, Fig. 4C) of all models. Significant
correlations were found between the predicted and ground-truth
spatial parameters (Fig. 4E, all correlations are significant p <
0.0001) for all three models. Estimated pRF center positions
(x y) were highly accurate (Fig. 4C, estimated vs ground-truth
along the dashed equality line). The median absolute percentage
error (MAPE) for pRF centers (x y) was 4.09–7.82% across the
models (Fig. 4D,E). PRF size (s) was also accurately recovered
for all models (Fig. 4C–E), yet with a higher MAPE of 7.48–
12.5%. The higher accuracy of x y than s estimates is consistent
with previous reports of lower accuracy in estimating pRF size
than pRF center positions (Lage-Castellanos et al., 2020;
Lerma-Usabiaga et al., 2020). Additionally, we tested whether
the recovered spatiotemporal parameters interact with each other
and may bias estimates of individual parameters. There were no
significant relationships between estimates of CST model param-
eters (s t n, p > 0.5) suggesting that CST parameter estimates are
unbiased. However, for the DN-ST model, we observed a signifi-
cant negative coupling between sDN and t1 (F(1,298) = 5.57, p <
0.05), and sDN and t2 (F(1,298) = 12.09, p < 0.001). This suggests
that given the current experimental design, the solutions of the
temporal parameters of the DN-ST are not independent from
one another.

Although the solver was overall less accurate for estimating
the temporal parameters than spatial parameters from noisy syn-
thetic data, it successfully recovered the temporal (t) and com-
pression (n) parameters from the CST model, and the temporal
parameters for the DN-ST model (t1 t2 sDN nDN), with better
estimates for the CST than the DN-ST model (Fig. 4C,D; all cor-
relations between estimated and ground-truth parameters are
significant p < 0.0001). Remarkably, the CST model was able to
resolve the temporal receptive field parameter (t) with an
MAPE < 13% (Fig. 4D,E). Despite the sluggish nature of hemody-
namic responses, the stimulated result suggests that for�200 ms
temporal receptive fields, there is only a ±26 ms margin of error.
The compression parameter, n, was also reliably estimated. The
estimates of the DN-ST model temporal parameters were also
significantly correlated with the ground-truth temporal parame-
ters (Fig. 4C,E, p < 0.0001), but the estimates were less accurate
than the CST model, with t2 being the least accurate parameter
(Figs. 4D, 1E). This variability of t2 estimates may be due to an
insufficient number of conditions with prolonged presentation,
as the t2 parameter mainly controls the temporal decay rate of
the response to prolonged stimulus durations.

To assess the impact of the experimental design choice on
parameter estimation, we also tested how well parameters are
recovered from a different pRF mapping experiment that uses
an image presentation rate of 8 Hz (Toonotopy; Finzi et al.,
2021). For the same models and pRFs, we generated simulated
time courses with noise for the Toonotopy experiment (data
not shown). Results from the Toonotopy experiment indicated
that pRF locations were similarly well-estimated for all models
(MAPE for x and y were less than 12%). However, MAPE for
pRF size (s) estimates from the Toonotopy experiment were
48.23% for the DN-ST and 42.52% for the CST. Additionally,
the estimation errors for the remaining parameters exceeded
35% for the DN-ST model and exceeded 30% for the CST model.
This suggests that Spatiotemporal mapping experiment (Fig. 1) is
more suitable for estimating spatiotemporal parameters than the
Toonotopy experiment.

Spatiotemporal pRF models outperforms spatial only
pRF model
We next assessed howwell the three pRFmodels: Spatial, DN-ST,
and CST, predicted the empirical fMRI time courses in the
Spatiotemporal mapping experiment (Fig. 1) in each of our 10
participants. Note that the time courses predicted from the
Spatial model depend only on the location and duration of the
stimulus, whereas the predictions of the DN-ST and CST models
also depend on the spatiotemporal aspects of the stimulus at each
location, resulting in more complex fMRI responses.

The spatiotemporal stimulus design evoked a wide range of
BOLD time courses in voxels of the visual system. Based on
each voxel's fMRI time course, pRF parameters for each of the
three models were estimated. Results show that fMRI responses
at the voxel level were well captured by the DN-ST (example
voxel, Fig. 5A, yellow) and CST (example voxel, Fig. 5A, red)
models. However, the Spatial model failed to predict the fMRI
time courses in multiple ways. For example, as shown in the
example V1 voxel (Fig. 5A, blue), the Spatial pRF model under-
predicted responses for stimulus conditions with fast temporal
rates (temporal conditions 1, 2, and 4), replicating previous
findings by Stigliani et al. (2017), and overpredicted responses
for prolonged stimulus conditions (temporal condition 5). In
contrast, the DN-ST and CST models were able to predict both
the amplitude and width of these peaks that the Spatial model
failed to predict.

We quantified how well the various models predicted the
experimental time courses in each voxel using a threefold-cross-
validation approach. On average, the Spatial, DN-ST, and
CST models accounted for 25, 30, and 33% of the variance,
respectively. Each model's accuracy across multiple retinotopic
visual areas is plotted in Figure 5B. The DN-ST and CST models
outperformed the Spatial model in predicting fMRI responses
in single voxels of all tested visual areas. Indeed, the
threefold-cross-validated variance explained (R2) by the DN-ST
and CST models was significantly higher than the Spatial
model (Fig. 5B; permutation test, V1, V2, V3, hV4, VO, LO,
TO, V3AB, p < 0.01; IPS, p < 0.05). Comparing the spatiotem-
poral pRF models, the CST model outperformed DN-ST model
across all visual regions (permutation test, V3, hV4, VO,
LO, TO, V3AB, p < 0.01; IPS, p < 0.05) except V1 and V2,
where performance did not differ significantly between the two
spatiotemporal models.

To examine if there were systematic and spatial differences in
how well models fit the data across cortex, we numerically com-
pared the variance explained by the three pRF models in each
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voxel. Then, we visualized on the cortical surface which model
best predicted the response of each voxel (Fig. 5C). We found
that: (1) in all participants, there were almost no voxels for which
the Spatial model was the best model (very small number of blue
voxels in Fig. 5C), (2) for most of the voxels, the CST model was
the best (except for voxels around the occipital pole for which the
DN-ST model was better), and (3) consistent with the quantita-
tive analyses in Figure 5B, the advantage of the CST over DN-ST
model was more pronounced in later visual areas. To further
assess the robustness of the spatiotemporal pRF models, we com-
pared model performance across the same participants using the
Toonotopy fMRI data, which had a shorter temporal duration
(2-s per location) and an image presentation rate of 8 Hz.
Using the Toonotopy fMRI data (data not shown), we found
that both spatiotemporal pRF models significantly outperformed
the Spatial model in all visual areas (permutation test, V1, V2,
V3, hV4, VO, LO, TO, V3AB, p < 0.01; IPS, p < 0.05), and the
CST model had significantly higher accuracy than both the
DN-ST and Spatial models (permutation test, V1, V2, V3, hV4,
VO, LO, TO, V3AB, p < 0.01; IPS, p < 0.05).

Together, these analyses: (1) support our hypothesis that both
spatial and temporal aspects of the stimulus contribute to fMRI
signals at the voxel level, (2) show that both DN-ST and CST spa-
tiotemporal pRF models can capture spatial and temporal

dynamics of neural responses, and (3) suggest that considering
the nonlinear temporal dynamics, both at the stimulus and neu-
ronal level in subsecond resolution into a pRFmodel is crucial for
accurately predicting fMRI timeseries at the voxel level.

Spatial estimates across models
As spatiotemporal pRF models are newly developed, it is impor-
tant to test if the spatial pRF parameters they estimate are topo-
graphically organized and replicate well-established retinotopic
maps in human visual cortex. Thus, we next used the estimated
spatial parameters to generate polar angle, eccentricity, and
pRF size maps for each participant and model (Fig. 6A–C). We
also quantitatively compared the estimated pRF position (polar
angle), eccentricity, and size in degrees of visual angle (°) for
the DN-ST and CST pRF models to those of the Spatial model
(Fig. 6D–F).

We found that all three models produced robust and consis-
tent estimates of each voxel's pRF positions. From pRF center
positions (x y), we generated polar angle and eccentricity
maps, which were indistinguishable across the three pRF models
and had the expected topography of phase reversals and eccen-
tricity (see example participant, Fig. 6A,B). Moreover, all models
generated similar topographies of pRF size estimates with
increasing sizes along a posterior–anterior axis (Fig. 6C).

Figure 5. fMRI data: Comparing spatiotemporal pRF models to fMRI voxel data. A, Black: An fMRI time course from an example V1 voxel for a segment of the experiment containing two
concatenated runs. In each run, there are four bar sweeps across the visual field. The same fMRI data are shown in all rows. Colored lines: model predictions; blue: Spatial, yellow: DN-ST, red: CST.
Shaded area: time points when stimuli were presented. Numbers at the top: temporal conditions. Magenta: temporal conditions that contribute to each peak. B, Model accuracy comparison. Violin
plots of average cross-validated variance explained (R2) across each participant's voxels and area for each of the three models in nine retinotopic visual areas spanning the ventral, lateral, and
dorsal processing streams. Black dots: median value. Asterisk: Significantly different than spatial model, permutation test, *p< 0.05, **p< 0.01. C, Visualization of the best performing model
(R2) for each voxel. Data are shown for each of the 10 participants on their inflated right hemisphere. Blue: best model is Spatial, yellow: best model is DN-ST, red: best model is CST.
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Although in high agreement, pRF size estimates (s) from spatio-
temporal pRF models were smaller than the Spatial pRF size esti-
mates in all tested visual areas (Fig. 6F). In compressive models
with a static nonlinearity compression (n), researchers (Kay et
al., 2013) typically report the adjusted pRF size (s/

��
n

√
).

Comparison of the adjusted pRF size (s/
��
n

√
) from the CST

model to the Spatial model yielded similar estimates (Fig. 6F,
purple). This result suggests that the smaller pRF size estimates
of the spatiotemporal pRF models are mainly due to compressive
nonlinearities within the models.

Overall, the reliable estimate of spatial pRF properties across
models suggests that the incorporation of additional temporal
parameters into the pRF model does not reduce the statistical
power to map spatial pRFs in human visual cortex.

Differences in temporal estimates cannot be explained
by differences in HRFs
We next characterized the temporal parameters of spatiotem-
poral pRFs across voxels of the visual system. Under our

experimental paradigm, the simulations show that temporal
parameters of the CST model were more accurately recovered
than the DN-ST model (Fig. 4C,D) and experimental data
revealed that the cross-validated variance explained of fMRI
responses was higher for the CST than DN-ST model for most
voxels (Fig. 5B). Thus, in the following sections, we report the
temporal and spatiotemporal characteristics estimated from the
CST model.

We assessed the time-to-peak from the temporal parameter t
of the CST model and the temporal processing window from the
FWHM of the sustained neural temporal impulse function. The
neural time-to-peak (t) was estimated in each voxel and visual
area, then the distribution of neural time-to-peak across voxels
of an area averaged across participants for early visual areas
(V1, V2, V3) as well as intermediate and later visual areas in
the ventral (V4, VO), lateral (LO, TO), and dorsal streams
(V3AB, IPS) was plotted. As evident from Figure 7A, neural
time-to-peak increases from earlier to later areas but also varies
within each visual area.

Figure 6. Spatial pRF parameters estimated for the Spatial, DN-ST, and CST models are similar. A, Polar angle, B, eccentricity, and C, pRF size maps on the medial view of the right inflated
cortical surface of an example participant for each of the three models. D–F, Scatter plots comparing pRFs from spatiotemporal pRF models in yellow: DN-ST and red: CST (y-axis) to estimates
from the spatial pRF model (x-axis) for each of nine visual areas. Each dot indicates the parameter estimate for one voxel. Colored lines: linear regression fits. For visualization, we randomly
sampled 50 voxels from each participant for each visual area. Dotted black line: reference line of identical estimates. D, Polar angle. E, Eccentricity. F, pRF size (s) and adjusted pRF size (s/

��
n

√
)

for the CST model (purple).
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As we estimated for each voxel its optimized HRF (Fig. 2), it
is possible that this variability in the time-to-peak is of hemo-
dynamic rather than neural origin. To examine this possibility,
we conducted two additional analyses. First, we analyzed the
distribution of time-to-peak of the hemodynamic functions
within and across areas. We reasoned that if the temporal var-
iability is of hemodynamic origin, then the distributions of
optimized HRF time-to-peak will mirror the distributions of
the estimated neural time-to-peak. However, this was not the
case. The distribution of hemodynamic time-to-peak ranged
from 3 to 6 s and was similar across all tested visual areas
(Fig. 7B). Critically, this distribution (Fig. 7B) did not show
the between-area differences in neural time-to-peak estimated
by the CST model (Fig. 7A,C). Second, we repeated the calcu-
lations of the CST neural time-to-peak (t) using a fixed HRF
for all voxels (Vistasoft default HRF). We hypothesized that
if the estimated neural time-to-peak interacts with the esti-
mated HRF parameters for each voxel, then using a fixed
HRF will qualitatively change the estimates of neural
time-to-peak within and across areas. However, we found
that using a fixed HRF for all voxels produces quantitative
but not qualitative changes in estimates of neural time-to-peak
(Fig. 7C). Specifically, using a fixed HRF increased the
within-area variability of neural time-to-peak estimates (e.g.,
compare V3 in Fig. 7C to 7A), but did not change the observa-
tion that the time-to-peak progressively increases across visual
the hierarchy. These analyses give us confidence that our
approach enables estimating neural temporal properties. In
the next sections, we will examine in detail the temporal and
spatiotemporal parameters from the CSTmodel with the voxel-
wise optimized HRF.

Hierarchical temporal latency delay across visual streams
An open question is how the time-to-peak and processing tem-
poral window changes across the visual hierarchy and processing
streams. A feedforward model of the visual system predicts that
the time-to-peak will progressively increase across the visual
hierarchy (Nowak and Bullier, 1997). Additionally, the ventral
stream which is associated with perception of invariant proper-
ties of people or objects (such as their identity or category)
may be slower and have longer times-to-peak than other streams,
like the lateral stream, which is thought to process motion and
dynamical aspects of the visual scene (Van Essen and Gallant,
1994; Weiner and Grill-Spector, 2013; Pitcher and Ungerleider,
2021; Wurm and Caramazza, 2022).

We found differences in time-to-peak both across the hierar-
chy and across streams, thus finding evidence supporting
both hypotheses. Across the hierarchy, time-to-peak increased
from earlier (V1, V2, V3) to later visual areas in each processing
stream generating a cascade of neuronal signal propagation.
We found that voxels in V1 had the earliest time-to-peak
latencies (t � 50–110 ms Fig. 7A), and that time-to-peak was
less than 100 ms for more than 50% of V1 voxels (Fig. 7D). V2
followed V1 (t � 50–120 ms), and V3 followed V2
(t � 50–130 ms). In the ventral visual stream, later time-to-peak
was observed in voxels of intermediate visual area hV4
(t � 70–170 ms Fig. 7A,D, green) which were followed by
responses in a late visual area, VO (t � 80–200 ms, Fig. 7A,D,
dark green). Similar trends were observed in the lateral (LO to
TO, pink and red in Fig. 7D) and the dorsal streams (V3AB to
IPS, yellow and brown in Fig. 7D). Timing of the intermediate
areas did not vary across streams with hV4 (ventral), LO (lateral),
and V3AB (dorsal) having similar time-to-peaks. However, we

Figure 7. Temporal pRF estimates from the CST model. A–C, Each row shows a voxel-wise time-to-peak distribution for each visual area. The distributions were averaged across participants
within each visual area. A, Time-to-peak (t) distribution estimated from the CST model, using an optimized HRF for each voxel. B, The distribution of optimized HRF time-to-peak. Note that
unlike the CST model, the temporal resolution for the hemodynamic model is in seconds. C, Time-to-peak estimated from the CST model using a single default Vistasoft HRF for all voxels. D, The
cumulative time-to-peak distribution across visual areas from the CST model with optimized voxel-wise HRF for each of the nine visual areas. The datapoints from all participants were included
for each visual area.
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found differences across later areas of the different streams. TO
(lateral) had a later times-to-peak than VO (ventral), and IPS
had the latest time-to-peak (t � 160–230 ms) compared with
other tested visual regions (Fig. 7A,D, brown).

Spatiotemporal processing across visual streams
Crucially, the CST model allows us to examine the spatiotem-
poral properties of pRFs across visual streams. Prior research
has suggested that both spatial receptive field sizes (for review,
see Wandell and Winawer, 2015) and temporal windows
(Hasson et al., 2008; Honey et al., 2012; Murray et al., 2014;
Baldassano et al., 2017) progressively increase across the visual
hierarchy. However, before the current framework, it was not
possible to estimate spatial and temporal pRF sizes in degrees
and milliseconds directly at the voxel level.

Figure 8A shows the average sustained and transient spatio-
temporal pRF across voxels of a visual area (see Materials and
Methods, estimating spatiotemporal pRFs across voxels of a
region and across cortex). Earlier visual areas had smaller pRF
sizes and shorter temporal windows compared to later visual
areas for both sustained and transient channels. For example,
ascending the ventral stream (V1→V2→V3→ hV4→VO),
spatiotemporal pRF windows progressively increased both spa-
tially and temporally (Fig. 8B). Differences between visual areas

were statistically significant both for pRF size (F(1,84) = 57.15, p
< 0.001) and temporal window (F(1,84) = 33.69, p < 0.001). In the
sustained channel, V1 pRFs integrate visual information spatially
across 0.41° ± 0.05° (median ± SEM) and temporally across 58.77
± 10.71 ms, hV4 across 1.63° ± 0.13° and 88.27 ± 9.93 ms, and VO
across 2.39° ± 0.18° and 98.19 ± 9.66 ms (Fig. 8A,B). Likewise, in
the lateral stream, TO spatiotemporal pRFs were larger in space
and time compared to LO, and in the dorsal stream, IPS spatio-
temporal pRFs were larger in space and time than V3AB. In the
transient channel, we find a similar progression (Fig. 8A, right).

To quantitatively compare the spatiotemporal pRF size and
temporal window estimates, we computed the average pRF size
and average temporal window of each visual area (Fig 8B). The
comparison showed a positive relationship, revealing a general
trend of progressively increasing spatial and temporal windows
along the visual hierarchy. Specifically, spatiotemporal pRF size
and temporal window progressively increased from V1 to V2
to V3 (Fig. 8B, blues). Intermediate areas of all three visual
streams (hV4, LO, and V3AB) had similar spatial and temporal
pRF sizes which were larger spatially, and longer temporally
than V1–V3. The spatiotemporal properties of later visual areas
(VO, TO, and IPS) differed across streams. Notably, spatiotem-
poral pRFs in VO, a ventral area, were smaller spatially and
shorter temporally (Fig. 8B, dark green) than pRFs in TO, a

Figure 8. Spatiotemporal pRF characteristics for nine visual areas spanning three visual streams. A, Spatiotemporal pRFs for sustained and on-transient pRFs averaged across voxels and then
across participants for each visual area. The spatial location of all pRFs was zero-centered to (0,0) before averaging. The x-axis represents time (ms), and the y-axis represents a cross section of
visual space (°). The red–white–blue colormap is the average of spatiotemporal pRFs, where red and blue represent the positive and negative amplitudes, respectively. B, PRF temporal window
(FWHM of the sustained temporal impulse response function) versus pRF size (s deg). Colored dots: median values for each visual area. Marker size is related to median values of the spa-
tiotemporal compressive exponent (marker size� 1/n). That is, larger markers indicate larger compression. Error bars: ±1 SEM across 10 participants in each dimension.
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lateral area (Fig. 8B, red), whereas IPS had pRFs that were smaller
spatially, but longest temporally (Fig. 8B, brown). In addition, the
amount of spatiotemporal compression increased along the visual
hierarchy (Fig. 8B, marker size� 1/n). The compressive exponent
(n) in V1: 0.28 ± 0.03, V2: 0.25 ± 0.06, V3: 0.24 ± 0.06, hV4: 0.22
± 0.04, VO: 0.21± 0.03, LO: 0.19 ± 0.02, TO: 0.18 ± 0.02, V3AB:
0.21 ± 0.02, IPS 0.14 ± 0.02, which is comparable to the increase
in spatial compression levels from early to late visual areas (Kay
et al., 2013). These results illustrate an interesting coupling
between spatial and temporal receptive field windows that pro-
gressively increase within each of the three processing streams
and diverge across streams in the later visual areas.

When comparing the contributions of the sustained and
transient channels across the visual hierarchy, we found stronger
transient responses than sustained responses in all visual areas
except for V1 (Fig. 9), which is similar to the findings of
Stigliani et al. (2017). We further examined contributions of
sustained and transient channels across eccentricities in early
visual cortex (data not shown). Consistent with previous findings
(Horiguchi et al., 2009; Stigliani et al., 2017), we observed
balanced sustained and transient contributions between 3° and
12° of eccentricity in V1, but we found higher transient responses
in the central 5° than Horiguchi et al. (2009).

Finally, we investigated the spatial topography of spatiotem-
poral receptive fields across visual cortex. Confirming our quanti-
tative results in Figure 8B, qualitative examination of the maps of
temporal window and pRF size reveals a topographic coupling of
spatial and temporal pRF windows (Fig. 10).

To gain deeper insights, we examined this topography in early
visual areas (Fig. 10A, left), where we observed that pRF temporal
windows (Fig. 10A, top-left) increase along a posterior to anterior
gradient and pRF sizes (Fig. 10A, bottom-left) also increase along
the same axis. Quantitative analyses using an LMM with a fixed
slope and random intercept per participant revealed a significant
relationship between temporal window and eccentricity in V1,
V2, V3 (Fig. 10B). Temporal windows were progressively larger
in more peripheral eccentricities [V1: t(58) = 8.16, p < 0.001; V2:
t(58) = 6.67, p < 0.001; V3: t(58) = 4.19, p < 0.001 with correspond-
ing beta coefficients of 4.39, 3.78, and 2.83 and across areas
(intercept of 77.35, 83.90, and 85.30, respectively)]. As eccentric-
ity also increases from posterior to anterior in early visual areas,
this suggests that in V1–V3, more eccentric pRFs have larger

spatial and temporal windows than foveal pRFs. Figure 10C
visualizes the average spatiotemporal pRFs at two eccentricity
bands: 0–4° and 4–12°. Indeed, in V1–V3, both pRF size and tem-
poral window were larger in eccentricities exceeding 4° than the
central 4°. The proportional increase in both spatial and temporal
dimensions with eccentricity suggests that there are computa-
tional similarities in how the visual system encodes spatial and
temporal information at the center and periphery.

A similar topography showing a coupling between pRF size
and temporal window is also seen in the lateral surface, which
contains intermediate and higher-level regions: more posterior
regions have smaller spatial and shorter temporal windows
than anterior regions (Fig. 10A, right). Within later visual areas,
the eccentricity-dependent relation between pRF size and

Figure 9. Contributions of sustained and transient responses across the visual hierarchy.
Average sustained (y-axis) and transient (x-axis) response amplitudes (β weights) for each
visual area estimated by the CST model. Marker size in each dimension indicates Median
±1 SEM across 10 participants. Dashed line: equal sustained and transient contributions.

Figure 10. Spatiotemporal pRF properties across eccentricities in early visual cortex.
A, Average pRF temporal window and spatial window visualized on the FreeSurfer average
cortical surface. Both hemispheres and two different viewpoints are shown (left: medial view,
right: posterior view). Top: FWHM of average sustained temporal window estimates; Bottom:
average pRF size. B, The relationship between eccentricity and temporal window in V1, V2,
and V3. The eccentricities were binned into 2° of visual angle. Colored dots: individual par-
ticipant. Solid line: fitted LMM regression line. C, Mean sustained spatiotemporal pRF in two
different eccentricity bands (0–4° and 4–12°). Contour lines indicate 10th, 50th, and 90th
percentiles.
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temporal windows was significant in LO (t(58) = 2.37, p < 0.05),
while the opposite effect was observed in VO (t(58) =−4.87, p <
0.001). No significant eccentricity-dependent effects were found
in V4 (t(58) =−0.64, p= 0.53), TO (t(58) =−0.88, p= 0.38), V3AB
(t(58) = 1.87, p= 0.07), and IPS (t(58) = 0.01, p= 0.99).

Together these analyses reveal three organizational principles.
First, both spatial and temporal windows progressive increase
across the visual hierarchy. Second, within early visual cortex,
both spatial and temporal windows increase with eccentricity.
Third, transient responses are dominant across all three visual
processing in our experiment.

Discussion
Here, we developed a new mapping and computational frame-
work to estimate spatiotemporal pRFs in each voxel using
fMRI. This framework expands on previous studies that either
estimated spatial pRFs with experiments that varied stimulus
location but not timing (Dumoulin and Wandell, 2008; Kay et
al., 2013; Benson et al., 2018; Aqil et al., 2021; Finzi et al.,
2021) or estimated temporal characteristics with experiments
that varied timing but not spatial aspects of the stimulus
(Horiguchi et al., 2009; Stigliani et al., 2017, 2019; Zhou et al.,
2018, 2019; Chai et al., 2019; Himmelberg and Wade, 2019;
Groen et al., 2022). We find that spatiotemporal pRFs with a
Gaussian spatial profile, sustained and transient temporal chan-
nels, and a compressive nonlinearity better explain fMRI
responses than conventional Gaussian pRFs for spatially and
temporally varying stimuli. Spatial parameters of spatiotemporal
pRFs and their cortical topography replicate findings from
conventional pRF methods (Wandell and Winawer, 2015).
Temporal estimates and compressive nonlinearities progressively
increase from earlier to later areas of visual streams. Interestingly,
we find spatiotemporal coupling whereby pRFs in intermediate
and later visual areas have both larger spatial and temporal
windows than pRFs in earlier visual areas. Together, this spatio-
temporal pRF framework pushes the temporal limits of fMRI to
understand how spatiotemporal information is encoded in visual
degrees and milliseconds across neural populations in human
visual cortex.

Spatiotemporal pRF framework
The spatiotemporal framework we developed serves as a testbed
for systematically comparing pRF models. As all the models
are tested and compared using matched HRF, optimization algo-
rithm, and SNR of synthetic time courses, this ensures model
reproducibility and validity. Moreover, each step of the data anal-
ysis pipeline is modularized to facilitate the evaluation of individ-
ual components.

Through simulation, we can identify not only the scope of
model parameter interpretability given a unique visual input,
number of measurements, and expected level of fMRI noise,
but also evaluate different experimental paradigms. Critically,
the framework enables validating that solved model parameters
accurately recover the underlying spatiotemporal pRF from the
stimulus and synthesized fMRI response. Applying the spatio-
temporal pRF approach to synthesized fMRI data revealed that:
(1) spatial parameter estimates were similar across the three
pRF models tested (Spatial, DN-ST, and CST), (2) temporal
parameter estimates of the CST model were more accurate
than DN-ST, across experiments (Spatiotemporal/Toonotopy),
and (3) temporal parameter estimates for both CST and DN-ST
were more accurately estimated from the Spatiotemporal than
the Toonotopy experiment.

Future research can leverage the simulator to develop optimal
mapping sequences for different spatiotemporal pRF models,
which would provide opportunities for better estimating model
parameters (e.g., temporal parameters of DN-ST) and comparing
between models. Additionally, the spatiotemporal pRF frame-
work is flexible, enabling researchers to test other spatiotemporal
models, such as ones with other spatial bases (e.g., Aqil et al.,
2021), with different weightings of on- and off-transients, or
with different compressive nonlinearities.

Differences in HRF temporal parameters cannot explain
neural temporal dynamics across visual areas
A key aspect of the spatiotemporal pRF approach is that it first
predicts neuronal responses in milliseconds and then convolves
predicted neural responses with the HRF to predict BOLD sig-
nals. This implementation allowed us to separately evaluate the
effect of neural and hemodynamic responses on the resulting
BOLD signal. Our data revealed that neural temporal parameters
varied systematically across visual areas. In contrast, optimized
HRF parameters varied more across voxels within an area than
across areas (Fig. 7B). Critically, this variability in HRF parame-
ters did not explain neural estimates as neural temporal param-
eters across areas were similar across models solved with
optimized HRFs and constant HRF functions (Fig. 7A,C).
Nonetheless, the benefit of optimizing the HRF is reducing
between-voxel variability as indicated by Prince et al. (2022).
Notably, this spatiotemporal pRF approach is not only necessary
for predicting the observed BOLD responses—especially to brief
stimuli that are separate by short interstimulus intervals—but
also is more parsimonious than an approach using different
HRFs for fast and slow stimuli (Lewis et al., 2016; Polimeni
and Lewis, 2021).

Comparing human temporal pRFs and neuronal temporal
receptive fields
We found substantial variability in temporal parameters
within an area as well as overlap in temporal parameters across
areas (Fig. 7A). In particular, V1, V2, and V3 contain pRFs
with a large range of temporal windows that also vary with
eccentricity (Fig. 10). The temporal overlap between areas (1)
may indicate some level of parallel temporal processing across
visual areas and (2) could be related to the underlying neural
architecture as anatomical connections in the visual system are
not strictly feedforward from one area to the next due to feedback
and recurrent connections (Felleman and Van Essen, 1991;
Nowak and Bullier, 1997; Lamme and Roelfsema, 2000).

Given this variability and that we estimate temporal parameters
from fMRI responses, it is interesting to compare time-to-peak
latencies derived from the CSTmodel to those frommeasurements
that afford high temporal resolution [electrocorticography
(ECoG) in humans; single and multiunit electrophysiology in
nonhuman primates]. While latency estimates from fMRI were
more variable than either ECoG or electrophysiology, we find
strikingly comparable time-to-peak latencies across measure-
ment modalities (Fig. 11). This similarity is despite substantial
methodological differences in experimental procedures, number
of measurements, stimuli, species, and usage of anesthetics.
Although more validations are needed, the larger variability in
the fMRI estimates is somewhat expected, as fMRI enables
broader coverage of each visual area, effectively sampling from
a larger neural population than other modalities. There are three
main similarities across our data, ECoG data, and electrophysiol-
ogy measurements (Fig. 11). First, earlier visual areas display
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shorter response latencies than later visual areas. Second, within
each area, there is variability in temporal latencies of neurons and
voxels, reflecting heterogeneous response properties (Saul and
Humphrey, 1990; Henry et al., 2020). Third, across areas, there
is a significant degree of overlap of response latencies, suggesting
some level of parallel processing in visual cortex (Nowak and
Bullier, 1997; Schmolesky et al., 1998).

Quantitatively, our estimates of time-to-peak latencies in V1–V3
(40–120ms) are within the range of ECoG: 60–80 ms (Martin et al.,
2019) to 100–120ms (Zhou et al., 2019; Groen et al., 2022; Fig. 11B).
Likewise, our estimates of time-to-peak latencies in intermediate
(V3AB, LO) and higher-level areas (TO, IPS), ranged from 70 to
200 ms, consistent with ECoG data that ranged from 80–150 ms
(Martin et al., 2019) to 170–200 ms (Groen et al., 2022).
However, we note that mean estimates of temporal latencies in
humans are consistently slower than in macaques by at least 18
ms (Fig. 11C), which may reflect a species difference in temporal
processing.

Hierarchical and parallel processing in visual cortex
Our data reveal that spatiotemporal pRF properties vary across
the processing hierarchy as well as between later visual areas in
different streams. Consistent with the first hypothesis (Zhou et
al., 2018), we found progressive increases in pRF spatial and tem-
poral windows as well as in compressive nonlinearities from ear-
lier to later visual areas. This hierarchical structure of
spatiotemporal processing of visual inputs may be achieved via
accumulated spatiotemporal pooling across a feedforward neural
architecture (Felleman and Van Essen, 1991; Lennie, 1998;
Yamins et al., 2014). It is interesting that spatiotemporal charac-
teristics of intermediate visual areas (V3AB, LO, hV4) were sim-
ilar across streams, but those of later visual regions (IPS, TO, VO)
diverged across streams, with IPS having the longest temporal
window and TO having the largest spatial window. These
findings raise the intriguing hypothesis that the subsequent
regions in each of these processing streams would show even
more divergence. For example, IPS2-4 located in the dorsal
stream may have even more divergent spatiotemporal properties

than pFus-faces and mFus-faces located in the ventral stream.
Future experiments can investigate if and how spatiotemporal
pRFs differ across streams in other spatial and temporal aspects
including eccentricity-dependent processing of speed (Carrasco
et al., 2003), motion more broadly (Traschütz et al., 2012), tempo-
ral contrast sensitivity (Himmelberg and Wade, 2019), temporal
color sensitivity (Seidemann et al., 1999; Conway and
Livingstone, 2006; Gentile et al., 2023), and visual capacity
(Kupers et al., 2023).

Conclusions
In summary, the spatiotemporal pRF framework offers new
avenues to evaluate spatiotemporal processing at the resolution
of visual degrees and milliseconds, which was not thought to
be possible with fMRI due to the slow nature of hemodynamic
responses. This opens exciting new possibilities for modeling
and measuring spatiotemporal processing across other brain
systems such as the auditory system (deCharms et al., 1998;
Theunissen et al., 2001; Stephens et al., 2013), somatosensory
system (Sripati et al., 2006; Reed et al., 2010), as well as examining
the sequence and time dependence of cognitive processing
broadly including working memory (Zylberberg and Strowbridge,
2017) and decision making (Gold and Shadlen, 2007; Louie et al.,
2013).
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