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Abstract

Regular polysemes are sets of ambiguous words that all share the same relationship between their
meanings, such as CHICKEN and LOBSTER both referring to an animal or its meat. To probe how
a distributional semantic model, here exemplified by bidirectional encoder representations from trans-
formers (BERT), represents regular polysemy, we analyzed whether its embeddings support answering
sense analogy questions similar to “is the mapping between CHICKEN (as an animal) and CHICKEN
(as a meat) similar to that which maps between LOBSTER (as an animal) to LOBSTER (as a meat)?”
We did so using the LRcos model, which combines a logistic regression classifier of different categories
(e.g., animal vs. meat) with a measure of cosine similarity. We found that (a) the model was sensitive to
the shared structure within a given regular relationship; (b) the shared structure varies across different
regular relationships (e.g., animal/meat vs. location/organization), potentially reflective of a “regular-
ity continuum;” (c) some high-order latent structure is shared across different regular relationships,
suggestive of a similar latent structure across different types of relationships; and (d) there is a lack
of evidence for the aforementioned effects being explained by meaning overlap. Lastly, we found that
both components of the LRcos model made important contributions to accurate responding and that a
variation of this method could yield an accuracy boost of 10% in answering sense analogy questions.
These findings enrich previous theoretical work on regular polysemy with a computationally explicit
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theory and methods, and provide evidence for an important organizational principle for the mental
lexicon and the broader conceptual knowledge system.

Keywords: Regular polysemy; Semantic ambiguity; Word analogy; Word sense analogy; Distributional
semantic model; Lexical semantics; BERT model

1. Introduction

Most words are semantically ambiguous and denote different meanings in different con-
texts (Rodd, Gaskell, & Marslen-Wilson, 2002). As such, understanding how ambiguous
words are represented and processed is an absolutely essential component of any theory of
word or discourse comprehension (Rodd, 2020). Semantic ambiguity is not a monolithic phe-
nomenon, however. One key way in which ambiguous words vary, which has been the subject
of extensive linguistic, computational, and psycholinguistic study, is in terms of the related-
ness between their meanings, and how the relatedness of an ambiguous words meanings are
represented in the mental lexicon. Initially, researchers made a broad delineation between
homonyms, which have unrelated meanings (e.g., BAT refers to an animal or to baseball
equipment), and polysemes, which have related meanings (e.g., POWER can refer to politi-
cal authority or to electrical energy) (Azuma & Van Orden, 1997; Jastrzembski, 1981; Rodd
et al., 2002). As the field has progressed, the field has further differentiated the degree and
nature of the relationship between the meanings of polysemes, which are the most numerous
type of ambiguous word.

Relatedness of meaning can manifest in different ways in the representational structure
within our mental lexicon. This can potentially further distinguish between different types
of polysemes. For example, relatedness can be represented in terms of featural overlap.
Thus, different types of polysemes can differ in terms of the amount of overlap among the
representations of their meanings (Klepousniotou, Titone, & Romero, 2008). For instance,
the meanings of CHICKEN, which refers to an animal or its meat, may be highly related
because they both can denote the same basic body parts (e.g., wing, thigh, leg, etc.), whereas
other polysemes have fewer overlapping features, such as STAR, which refers to a celestial
body or an actor. On another distinct but potentially related front, relatedness of meaning
may be represented not in terms of featural overlap but through multiple words sharing the
same relationship between each sense of a word. For example, CHICKEN, LOBSTER, and
SALMON all denote both an animal and its meat. This is referred to as regular polysemy,
which can be contrasted against irregular polysemy, as exemplified by STAR, which has a
more idiosyncratic relationship between its meanings. How the representations of regular
polysemes are structured to reflect this common relationship between meanings is the subject
of our inquiry. A number of different regular relationships have been attested across different
languages (Srinivasan & Rabagliati, 2015). As such, the cross-word and cross-language
structures among regular polysemes make them an ideal tool for drawing inferences regard-
ing how meanings are organized (Lakoff & Johnson, 1980) and how the conceptual system
categorizes and generalizes similar relationships between different concepts (Lakoff, 1987).
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The relatively recent development of language models that can produce context-sensitive
representations of word meaning offers a valuable way of developing computationally explicit
theories of the representational structure underlying regular polysemy based on the patterns
of word co-occurrences observed in natural language. These computational models will be
unpacked in more detail later, but in a nutshell, they can produce high-dimensional vectors
for individual word senses based on how those word senses are used in different contexts.
That is, they do not produce “static” representations of a word that reflect how that word is
used across all contexts, but rather produce “contextual” word vectors that reflect what a word
means in a specific context. Each dimension of those vectors can be thought of as coding for
a (latent) semantic feature associated with a word, and several studies have established that
such computational vectors can also predict neural representations of meaning (e.g., Ettinger,
Feldman, Resnik, & Phillips, 2016; Søgaard, 2016), with considerable recent research focus-
ing on improving the strength of these predictions (e.g., Chersoni, Santus, Huang, & Lenci,
2021; Sassenhagen & Fiebach, 2020; Schrimpf et al., 2021). Thus, the relationships between
the vectors from the computational models can be analyzed to understand how the meanings
of regular polysemy relate to one another—that is, to understand the representational structure
of regular polysemy—and the results of this work can connect to a range of computational,
behavioral, and neuroimaging research.

In what follows, we first discuss the specific literature that motivates our computational
work on regular polysemy. We then examine the shared representational structure of regular
polysemes as reflected in a distributional semantic model (DSM), here exemplified by the
bidirectional encoder representations from transformers (BERT) model (Devlin, Chang, Lee,
& Toutanova, 2018). This approach is distinct from many previous studies in psycholinguis-
tics (e.g., Frazier & Rayner, 1990; Frisson, 2015; Rabagliati, Pylkkänen, & Marcus, 2013;
Srinivasan & Snedeker, 2011; Zhu, 2021) and from theoretical linguistics work (e.g., Copes-
take & Briscoe, 1995; Nunberg, 1995; Pustejovsky, 2005) on regular polysemy, which has
relied on verbal theorizing instead of developing an explicit computational account of how the
different senses of a regular polyseme are represented and how those representations relate to
one another. Previous research (e.g., Mandera, Keuleers, & Brysbaert, 2017) has shown that
the vectors produced by DSMs can capture key aspects of linguistic cognition. BERT, as a
contextualized distributional semantic model, produces different vectors for the same word in
different contexts (i.e., contextual word vectors). In this study, we utilized the contextual vec-
tors from the BERT model to examine the regular meaning variations of regular polysemes.

More specifically, our methods were inspired by the “reason by analogy” logic developed
to study word analogies using distributional semantic vectors, such as inferring that QUEEN
is the appropriate completion for “_____ is to KING as WOMAN is to MAN.” After first
providing some additional background on regular polysemy and how we implemented “rea-
son by analogy” logic to study sense analogies using BERT, we report the findings of our
analyses based on the vector representations of each sense for five different types of regu-
lar polysemy derived from annotated texts. Our first goal was to confirm our intuitions that
methods previously applied to study word analogies could be extended to study the structure
present in regular polysemy. We then turned our attention to three other goals focused on
aspects of regularity that have been discussed in prior work but have not, to our knowledge,
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been studied in explicit, computational terms. Our goals can be summarized in four questions
(whose answers are foreshadowed in parentheses):

1. Does the representational structure in a DSM reflect the shared structure of a given
type of regular polysemy? (Yes.)

2. Are there variations in the degree of regularity across different regular relationships?
If so, this could indicate that regularity is a graded, continuous construct (i.e., a
“regularity continuum”) and is not a dichotomous construct (i.e., polysemes are either
regular or irregular). (Yes.)

3. Is there any higher order latent structure shared across the different types of regular
polysemy, suggestive of similar underlying pressure in the emergence of each type?
(Yes.)

4. Can the degree of regularity be fully explained by the degree to which the semantic
representations denoting each of the regular meanings overlap? (No.)

2. Prior work within theoretical and experimental linguistics

The fields of theoretical linguistics, experimental psycholinguistics, and computational
modeling have each provided important insights that inform our current understanding of
regular polysemy. To begin, we review relevant prior work from theoretical linguistics and
experimental psycholinguistics.

The notion of regular structures that are shared across sets of polysemes was first proposed
in theoretical linguistics by Apresjan (1974), who also outlined several types of regular pol-
ysemy (e.g., COOK can refer to an action or the agent of the action). This proposal has been
further refined by Pustejovsky (2005), Nunberg (1995), and Copestake and Briscoe (1995)
into a well-defined area of research, including extensive descriptions of various types of reg-
ular polysemy and hypotheses regarding how the meanings from two categories are related to
one another.

The experimental psycholinguistics literature has sought to evaluate whether words that are
regular polysemes exhibit different processing and learning effects relative to other types of
ambiguity. For example, several studies that used online reading, offline rating, or some com-
bination of these methods (Fishbein & Harris, 2014; Frazier & Rayner, 1990; Frisson, 2015;
Frisson & Frazier, 2005; Rabagliati et al., 2013) have reported processing differences between
regular polysemes and irregular polysemes or homonyms. Similarly, developmental studies
using artificial language learning tasks have reported differences in how children learn and
extend the meanings of regular polysemy when this type of ambiguity is compared to other
types of ambiguity such as homonymy (Srinivasan, Al-Mughairy, Foushee, & Barner, 2017;
Srinivasan, Berner, & Rabagliati, 2019; Srinivasan & Snedeker, 2011, 2014; Zhu, 2021).
Collectively, this work indicates that regular polysemy is not only an abstract construct from
theoretical linguistics but also taps into an important aspect of how the human mental lexicon
is learned, represented, and processed.
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Notwithstanding the major value of the aforementioned contributions, this work is limited
by the lack of an explicit computational formalization of regular polysemy. For example,
when studying real words sampled from natural language, researchers manually selected
both the types of regular polysemes to study and the specific examples of these types. This
serves to validate basic intuitions about regular polysemy, but does not shed direct light on
what aspects of the regularity are represented by humans, or can be learned from patterns of
word co-occurrence in natural text. An analogous limitation exists in the context of designing
artificial regular polysemes. This contrasts with the formal quantification of other aspects
of semantic ambiguity such as how much a word’s meaning varies across contexts (e.g.,
Hoffman, Lambon Ralph, & Rogers, 2013), the frequency with which each meaning is used
(e.g., Rice, Beekhuizen, Dubrovsky, Stevenson, & Armstrong, 2019), and the relatedness
among a word’s meanings (e.g., DeLong, Trott, & Kutas, 2022). It also motivates our review
of computational models related to regular polysemy, discussed next.

3. Prior work with distributional semantic models

Given that our current work, as well as much prior work from the field of computational
modeling, draws heavily from DSMs, we first provide a general overview of this approach
to modeling and then review several specific computational investigations related to regular
polysemy.

DSMs derive meaning from the statistical relationships between words in large corpora,
formalizing the intuition that a word’s meaning can be defined in terms of the company that it
keeps (Firth, 1957). A key advantage of these types of models is that they can be implemented
in relatively computationally efficient terms, allowing them to be trained on large volumes of
text and thus develop rich, nuanced representations of word meanings. This type of model had
previously been dismissed as unsuitable for capturing the essence of human meaning repre-
sentations, as advocated by referential theories of meaning (Lewis, 1970; Putnam, 1975),
because they lack grounding in the real world (e.g., they lack vision, touch, and the ability
to interact with the environment). However, a growing body of evidence has suggested that
despite a lack of grounding, which would inevitably be part of a complete model of human
meaning representations, DSMs can be used to solve a range of linguistic and cognitive tasks
and thus appear to be tapping into key aspects of human meaning representation (Mandera
et al., 2017). Most critically for our work, these models do appear able to capture one key
aspect of meaning: the conceptual relationship between words as proposed by conceptual role
semantics (Block, 1987; Harman, 1982; Piantadosi & Hill, 2022). Conceptual role semantics
posits that the meaning of a word is encapsulated by its relationship to other words that are
conceptually related to it. For example, the meaning of “cat” is defined by conceptual relation-
ships such as that “being a cat” entails “being an animal,” “being carnivorous,” “valuing its
territory,” and so on. Previous research has demonstrated that DSMs, including both those that
we refer to as “classic” approaches that modeled every word’s meaning as a single static vec-
tor, such as latent semantic analysis (Landauer & Dumais, 1997) and word2vec (Mikolov, Yih,
& Zweig, 2013), as well as more recent approaches that generate context-sensitive representa-
tions of a word’s meaning, such as BERT (Devlin et al., 2018), effectively capture this kind of
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conceptual relationship between words. This is illustrated through the use of these models to
complete word analogy tasks (Mikolov et al., 2013), as well as the use of these models to com-
pare multiple words along a conceptual dimension, for example, comparing different animals
in terms of whether they are large or dangerous (Grand, Blank, Pereira, & Fedorenko, 2022).
With regard to regular polysemy, understanding the different meanings of CHICKEN requires
knowledge that one sense is more conceptually related to food while the other sense is more
related to animals. This aligns with the “conceptual role” aspect of linguistic meaning that
DSMs have proven able to capture in past work in this general vein. On another related front,
a number of computational models (e.g., Chersoni et al., 2021; Ettinger et al., 2016; Sassen-
hagen & Fiebach, 2020; Schrimpf et al., 2021; Søgaard, 2016), including BERT, have been
used to predict significant variation in the neural activity elicited when processing language.
This suggests that these models—while clearly not comprehensive accounts of semantic
cognition—have broad relevance and capture core relationships in diverse behavioral and neu-
roimaging data that are of interest within the cognitive sciences. As such, explorations of such
models can help inform our understanding of research questions such as the key questions that
we previously outlined as motivating our work. Or, expressed pragmatically, although these
models are not perfect (as no model of cognition is perfect), prior research suggests that
they are sufficient approximations of a range of relevant language abilities to help inform our
understanding of how regular polysemy is represented. These models may also help generate
novel predictions that can guide future experimental research and theoretical refinements.

Further honing in on regular polysemy, complementing ongoing work in experimental psy-
cholinguistics, prior modeling work has suggested that regular polysemy can be better under-
stood in explicit computational terms with the help of DSMs. For example, based on Corelex
definitions, Boleda, Padó, and Utt (2012) used distributional vectors of monosemous words
(e.g, robin or pork) to derive sense classes representations for predetermined classes, such as
ANIMAL or MEAT. They then used these abstract sense classes to identify regular polysemes
(e.g., lamb) belonging to both of the sense classes. They found that their computational
approach performed better than two baselines based on either random or frequency-ranked
combinations of lemmas from each of the categories to form artificial regular polyseme con-
trols. This work clearly establishes that there is more to regular polysemy than simply having
two associated interpretations across classes or having highly frequent interpretations.

On another related front, and one that bears some conceptual similarity to our own
approach, Lopukhina and Lopukhin (2016) used a modified version of the word2vec model,
which originally only represented a single distributional vector for a given word regardless
of the number of meanings associated with it, to represent different distributional vectors for
different senses associated with a word. Here, the number of distinct senses that could be
associated with a word was determined via a parameter that varied the grain size of the dif-
ference between senses. The specific senses learned for a given word were, however, learned
in an unsupervised fashion. They then used several examples of a type of regular polysemy
as “anchor” words to define a type of regular relationship by example and evaluated whether
this relationship could be applied to identify other “target” polysemes that share this relation-
ship. This approach performed well above chance (but considerably below perfect accuracy)
in inferring whether a given polyseme belonged to a given regularity type, as outlined in prior
research (Apresjan, 1974). However, only four to seven examples of each type of regular
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polysemy were used in their evaluations, so the robustness of these findings to broader sets of
example words is an open empirical question.

More recently, Floyd, Dalawella, Goldberg, Lew-Williams, and Griffiths (2021) examined
a related issue: why multiple senses are colexified as a single regular polyseme. They tested
two distinct principles of colexification: were the senses related through a regular rule or
were they closely related based on overall similarity. To test these distinctions using a com-
putational model, they first devised a novel task for inferring the likelihood of colexifying
(i.e., using the same word) two concepts in a foreign language (e.g., the concepts of LEG as
a noun and FOOT as a noun). Critically, the specific concept pairs being rated were sampled
from among a set that included the most frequently colexified meanings across languages,
excluding examples that exist in English, the language used in the study. They then used three
different computational models, one in which colexification was entirely rule-based, defined
in terms of 32 different meaning extension rules that the authors expected to be productive and
general across languages (e.g., an Animal-for-Meat rule, a Part-for-Whole rule, and a Cause-
and-Effect rule), one in which colexification was entirely similarity based, as determined by
the similarity of the embeddings for each concept in the word2vec model (Mikolov et al.,
2013) and Sentence-BERT variation of the BERT model (Reimers & Gurevych, 2019), and
one hybrid model in which both rules and similarity codetermined colexification. Although
in isolation the similarity-based model outperformed the rule-based model, it was the hybrid
model that produced the highest overall levels of correct colexifications. These results indi-
cate that there is more to regular polysemy than simply the similarity between the two
related meanings. In a sense, a portion of our work can be viewed as building upon this
work to identify how such rules (or rule-like constructs) could be derived and studied using
DSMs, and how these rule-like constructs might relate to meaning similarity (i.e., featural
overlap).

Collectively, the aforementioned computational investigations of regular polysemy provide
an important initial demonstration that there is shared structure across regular polysemes.
However, it still leaves much unanswered in terms of exactly how regular polysemy manifests
in DSMs, and by proxy, how humans represent regular polysemy, insofar as the link between
DSMs and human language representations observed in studies of several other aspects of
language continues to hold true in this context. For example, in the aforementioned work,
there was no examination of the similarities and differences within and between individual
regularity types (e.g, how similar is the transformation between the Animal and Meat senses
of CHICKEN and SALMON; how similar is the transformation between Animal and Meat
senses overall to that between Part and Whole senses overall). Thus, there are still clearly a
number of major unanswered questions. For example, are all types of regularity the same, or
is there graded variation of the regularity of the relationships exhibited across regularity types
(i.e., is regularity a dichotomous construct such that polysemes are either regular or irregular,
or is there a graded and continuous “regularity continuum” that maps between extreme cases
of regularity and irregularity)? If similarity is not the sole determinant of regular polysemy,
how are rules (or rule-like structures) represented, and is this representation present in DSMs
(as exemplified here by BERT)? Our work is a major extension of this prior work, employing
a novel extension of more robust methods for examining word analogies to answer several
additional theoretical questions, as outlined above.
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4. Theoretical approach

Our approach to probing the relationships between regular polysemes was inspired by
related work on word analogies. This work (e.g., Drozd, Gladkova, & Matsuoka, 2016;
Mikolov et al., 2013; Turney, Littman, Bigham, & Shnayder, 2003) has examined how distri-
butional semantic vectors can be used to complete analogies of the form a is to a* as b is to
b*, denoted as:

a : a∗ :: b : b∗ (1)

For example, prior work has examined how models can fill in a missing word in an analogy
such as:

________ : QUEEN :: MAN:WOMAN (2)

This is equivalent to asking a human to identify “which word is to QUEEN as MAN is
to WOMAN.” Much work has succeeded in answering such analogies by identifying the
relationship between each of the words in the representational space, such as by subtracting
the semantic vector for WOMAN from that of QUEEN, and adding the vector for MAN.

Our work extends the aforementioned approach to sense (as opposed to word) analogies.
We first derive separate representations for each word sense (e.g., CHICKEN as an animal,
hereafter denoted as CHICKENAnimal). We then complete analogies in the form of:

________ : CHICKENMeat :: SALMONAnimal : SALMONMeat (3)

This is equivalent to answering the question “which word sense is to CHICKENMeat as
SALMONMeat is to SALMONAnimal?” In our analyses, we first answer sense analogy questions
that involve exemplars from within a given type of regular polysemy (e.g., Animal/Meat) and
then compare these results with those from control conditions, being comprised of polysemes
or homonyms that do not share the same regularity. We can thus assess whether there is
additional structure shared by regular polysemes within a given regularity type and answer
our four key questions.

There are several requirements for implementing our approach, including the need for
sense-annotated data; a computational model that generates representations of each sense
from these data; and a method for computing the answers to sense analogy questions. The
first requirement can be addressed in a relatively straightforward manner. However, the two
other points warrant some additional discussion, which we present, in turn, below.

4.1. Selecting an appropriate distributional semantic model

In our work, we chose to employ the BERT model. Several considerations motivated our
use of this model. BERT, as a contextual DSM, offers several advantages for the task at hand
relative to other models (e.g., classic “static” models that produce context-invariant repre-
sentations of word meaning). First, this model generates different semantic vectors for the
same word in different contexts and has been extensively used to study semantic phenom-
ena (Rogers, Kovaleva, & Rumshisky, 2021). Second, unlike the GPT-style of transformer
architecture (Brown et al., 2020; Radford et al., 2019), the semantic vectors in BERT are
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created by leveraging information from both the context that precedes and follows a target
word. The subsequent context may be important for activating the correct interpretations of
ambiguous words in at least some circumstances, as examined in the psycholinguistic liter-
ature, because it can enable the appropriate meaning of an ambiguous word to be identified
in cases where the preceding context does not specify the correct interpretaton (Frazier &
Rayner, 1990; Vitello, Warren, Devlin, & Rodd, 2014). Although in many cases, words, and
presumably their meanings, are predictable strictly from prior context, regressions to review
previous text in natural reading suggest that both preceding and subsequent context are at
least sometimes important for the correct interpretation of the ambiguous words. Addition-
ally, some of the prior data by Alonso, Pedersen, and Bel (2013) that we built upon, as well
as additional data we annotated ourselves, consists of sentences that were annotated in isola-
tion from broader (preceding or following) context—to a first approximation, the annotated
data typically consist of a single sentence or a small number of very short sentences. Thus,
using a model that can leverage the full constraints available both before and after a target
word should more closely align with the information available to human annotators. Next,
BERT is one of the largest models that is open-sourced and that can conceivably be trained
by researchers without access to extensive specialized computational equipment, allowing us
to probe into the hidden layers, or retrain the entire model in future work. This is not currently
an option with more recent close-sourced large language models (LLMs) such as GPT3 and
GPT4 (Brown et al., 2020; OpenAI, 2023), and even if these models were open-sourced, most
academic researchers would not have access to the computational resources required to retrain
many LLMs. The BERT model is also the most cited model in the BERT family (which also
includes RoBERTa [Liu et al., 2019], ALBERT [Lan et al., 2020], and DistilBERT [Sanh,
Debut, Chaumond, & Wolf, 2020]). This means that using BERT will be most relevant for
connecting with a wide group of researchers. Finally, a number of studies have established
a significant relationship between the representations of BERT (and DSMs more broadly)
and various neural measures of the representation of meaning (e.g., Chersoni et al., 2021;
Ettinger et al., 2016; Sassenhagen & Fiebach, 2020; Schrimpf et al., 2021; Søgaard, 2016).
Although this statistical relationship is not perfect (i.e., it is far from explaining 100% of the
variance in neural data), the presence of such a relationship indicates that an analysis of regu-
lar polysemy in BERT has the potential to generate predictions that can guide neuroimaging
research related to regular polysemy and connect with the neuroimaging research on semantic
ambiguity more broadly (e.g., Klepousniotou, Pike, Steinhauer, & Gracco, 2012; MacGregor,
Bouwsema, & Klepousniotou, 2015; Rodd, Davis, & Johnsrude, 2005; Vitello et al., 2014;
Yurchenko, Lopukhina, & Dragoy, 2020).

Although we could envision that some detailed aspects of our findings are shaped by the
particular implementational details of the BERT model, we nevertheless predict that our over-
all insights into regular polysemy should be reasonably robust and generalize to other similar
models, as has been observed in other contexts using distributional vectors. This prediction is
motivated by the qualitatively similar results that have been obtained using different models
when studying other aspects of polysemy (e.g., BERT vs. ELMo in Trott & Bergen, 2023;
word2vec vs. Sentence-BERT in Floyd et al., 2021), as well as the prior success in using a
variety of models to successfully study other aspects of regular polysemy (e.g., Lopukhina &
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10 of 43 J. Li, B. C. Armstrong / Cognitive Science 48 (2024)

Fig. 1. Illustration of two analytical methods in a simplified 2-D semantic space. (A) Analysis of parallelity
involves measuring the angle between each pair of vectors that maps between the two senses of a polyseme.
Low angles denote more parallel, and thus potentially more analogous, mappings. Only the angle between
CHICKEN and LOBSTER is shown. (B) Analysis of sense classes and similarity answers questions of the type
_______ : CHICKENMeat :: SALMONAnimal : SALMONMeat in two steps. First, it involves assessing (a) the likeli-
hood that a vector is a member of the animal class (green area) as opposed to the meat class (the red area) and (b)
how close it is to CHICKENMeat.

Lopukhin, 2016). Of course, this prediction is fundamentally an empirical question which we
leave for future work.

4.2. Answering sense analogy questions with a distributional semantics model

Two main approaches to operationalizing how a model could be used to simulate answering
sense analogy questions were considered for our work, each of which is reviewed in turn.

4.2.0.1. Assessing parallelity: Arguably, the simplest method for answering sense anal-
ogy questions is to analyze the geometric relationship between the senses associated with
two polysemes and their respective interpretations (see Fig. 1A). An analysis of parallelity
assesses the similarity of the directions of the vectors mapping between two senses for a pair
of words, with the notion that more similar (i.e., more parallel) mapping vectors are reflec-
tive of a more regular mapping between senses. For example, Fig. 1A illustrates how there
is a low angle (high parallelity) between the vectors that map between the animal and meat
interpretations of both CHICKEN and LOBSTER. Despite the intuitiveness of this method,
recent work has identified several major drawbacks with analyses based on parallelity (Drozd
et al., 2016). Most critically, idiosyncratic variation among the senses of individual polysemes
may make it more difficult to observe the overall systematicity across all polysemes within
a type. This led us to employ a more sophisticated and robust method, described next. Nev-
ertheless, we replicated most of our key findings using the parallelity method and found that
the overall results correlated strongly with our more sophisticated methods (see Supporting
Information). We take this as evidence that our main findings do not critically depend on a
specific analytical method.
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J. Li, B. C. Armstrong / Cognitive Science 48 (2024) 11 of 43

4.2.0.2. Assessing sense classes and similarity: The second more analytically sophisti-
cated and quantitatively sensitive approach to answering sense analogy questions was inspired
by recent work from Drozd et al. (2016). This approach adapts the sense analogy question in
3: “which word sense is to CHICKENMeat as is SALMONAnimal to SALMONMeat?” into a new
closely related two-part question in (4a, 4b). This question essentially asks “which word sense
belongs to the same sense class as SALMONAnimal and is also similar to CHICKENMeat?” The
first part of this question asks about the sense class of the target word sense (4a), and the sec-
ond part asks about the sense similarity of the target word sense (4b).

________ belongs to the sense class of SALMONAnimal (4a)

________ is ALSO similar to CHICKENMeat (4b)

We operationalized the answer to the sense analogy question using the logistic regression
(LR) times cosine approach (LRcos) illustrated in Fig. 1B, with LR providing the answer to
the first part of the question and cosine similarity providing the answer for the second part.
With this approach, we can generate a score for every sense as a potential answer to the sense
analogy question by multiplying the scores from each of the two parts. A higher score is
given to senses that are both (a) more likely to belong to the same class as SALMONAnimal

(LR probability) and (b) more similar to CHICKENMeat (cosine similarity). The sense with
the highest score is considered to be the answer to the sense analogy question, and can be
scored as either correct (1, e.g., if CHICKENAnimal was selected) or incorrect (0).

Critically for our purposes, if there is no consistent relationship among the senses of the
sense class, it will not be possible to form an accurate classification model using LR. This
should impair the overall accuracy of the method in answering sense analogy questions. Fur-
thermore, if two senses of a word are not similar, senses of other words may be more similar
and be selected incorrectly as the answer to a sense analogy question.

Furthermore, by training the LR model on the polysemes from one regularity type and
applying the model to classify the polysemes of another type (e.g., train the model on the
Container/Content classes and then use this trained model to classify senses from the Ani-
mal/Meat classes), we can examine the existence of higher order latent regularity shared
across different types of regular polysemy. We refer to this as a cross-type analysis. This
analysis is equivalent to asking sense analogy questions such as “which word sense is to
CHICKENMeat as CANADALocation is to CANADAOrganization?”

5. Methods

To implement the theoretical approach described above, we needed datasets of regular
polysemes and control words, methods to derive sense vectors from them, and a computa-
tional implementation of LRcos. We describe each of these components of our methods in
turn. All code and data necessary to replicate our work are available at: https://osf.io/bctp4/
?view_only=b981b9a66b5046459a0201e14f0a5d26
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Table 1
Summary of the datasets used in our study

A2013 B2009 Raw Total Cleaned Total Interrater Reliability

n(w) n(s) n(w) n(s) n(w) n(s) n(w) n(s) Percentage κ

A/M 55 9 10 164 55 38 27 73 0.93 0.86
C/C 17 29 10 94 17 79 12 91 0.80 0.57
L/O 11 45 10 85 11 111 10 119 0.92 0.41
A/I 5 100 10 98 10 135 10 126 0.78 0.52
P/R 13 38 10 87 13 96 13 95 0.75 0.51

Note. A/M = Animal/Meat, C/C = Container/Content, L/O = Location/Organization, A/I = Arti-
fact/Information, P/R = Process/Result. A2013 = Data from Alonso et al. (2013). B2009 = Annotated data derived
from Brysbaert and New (2009). Cleaned total refers to the number of words and sentences used in the analyses
after excluding words that were not part of the BERT base vocabulary and plurals. n(w) is the number of words.
n(s) is the average number of sentences for each word. Percentage is the percentage of agreement between raters.
κ is Cohen’s Kappa.

5.1. Types of regular polysemy

We focused on five major types of regular polysemy adapted from Alonso et al. (2013):

• Animal/Meat: “The CHICKEN flew” versus “the delicious CHICKEN”
• Container/Content: “The red BOX” versus “I loved the whole BOX”
• Location/Organization: “ENGLAND is far” versus “ENGLAND instituted reforms”
• Artifact/Information: “The BOOK fell” versus “the suspenseful BOOK”
• Process/Result: “The BUILDING took months to finish” versus “the BUILDING is

sturdy”

We chose these five types because of their history of wide use in the field (e.g., Copes-
take & Briscoe, 1995; Dölling, 2020; Pustejovsky, 2005; Rabagliati, Marcus, & Pylkkänen,
2011; Srinivasan & Rabagliati, 2015). Furthermore, Alonso et al. (2013) provide an excellent
starting source for sense-annotated data.

5.2. Target polysemes and annotated data

Our initial set of regular polysemes was sourced from the English dataset reported by
Alonso et al. (2013). We thus started with between 5 and 55 polysemes in each regular-
ity type (see Column A2013 in Table 1). For the one type with fewer than 10 polysemes
(Artifact/Information), we manually added additional polysemes so that it also contained 10
items. We focused only on the singular form of each polyseme and avoided a small number of
polysemes in the original set whose singular versus plural forms could introduce additional
ambiguity (e.g., glasses can denote several drinking containers or spectacles).

One important point to note about our target polysemes was that they were all included as
part of the base BERT vocabulary.1 This point is important because BERT uses the Word-
Piece tokenization algorithm (Wu et al., 2016) to decompose words that are not included
in the base vocabulary (i.e., low-frequency words) into subword units, which are often
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J. Li, B. C. Armstrong / Cognitive Science 48 (2024) 13 of 43

morpheme-like (e.g., -ion, -s). For example, the word “representationalism,” which does not
appear in the vocabulary, would be split into three subcomponents that are part of the base
vocabulary: “representation,” “#alis#,” “#m.” However, words that are in the base vocabulary
are not subject to tokenization and are each represented as separate, independent inputs to
the model (e.g., “construct” and “construction” are each represented separately and indepen-
dently because they are in the base vocabulary).

Had all of our stimuli not been included in the base vocabulary, the tokenizer would have
been necessary to process those polysemes and this could have had a direct impact on some
of our results. For instance, many of the words in the Process/Result type end in “-ion,” so if
the words in that category had been subject to tokenization, it could have been the case that
our regularity types were confounded to varying degrees because of how BERT was forming
and integrating the representation of the subword components produced by the tokenizer.
However, we avoided this major complication by using words in the base vocabulary. We
originally made this choice not to avoid the issue of tokenization per se, but because we
wanted to focus on words of a sufficient frequency2 so that BERT would have enough data to
develop representations of each sense usage that could be sensitive to the potentially subtle
effects of regularity, as well as to increase the likelihood of identifying sufficient annotated
examples of their uses in our labeled data (discussed below).

Notwithstanding the fact that we avoided the invocation of the tokenizer for our target pol-
ysemes, it is possible that there has been an indirect effect of tokenization on our results. For
example, consider the hypothetical case that target polyseme “building” was in our vocabu-
lary but “buildings” (or any other variation of the target polsyeme) was not. In this case, our
target polyseme would not invoke the tokenizer but these other variations of that target pol-
yseme would (e.g., decomposition “buildings” into “building” and “#s”). This would, in turn,
lead BERT to adjust the weights related to “building” when training on “buildings” because of
how that item was tokenized. Insofar as such decompositions are correlated with the presence
of distinct but related meanings (e.g., countable nouns from “#s,” use of an object to complete
an action from “#ed”), this could have indirectly impacted our results. However, we consider
it highly unlikely that such indirect effects are substantial drivers of any of the results that
we observed. This is because the BERT base vocabulary includes the most frequent words in
language, so the impact of such indirect effects is necessarily a rare occurrence that should
not lead to major changes in the representations formed by BERT for each word. Confirming
this prediction, however, is necessarily an empirical question that we consider outside the
scope of the present work that focuses on the representation of regular polysemy because of
the substantial theoretical and methodological issues that must be tackled (e.g., should the
base vocabulary be expanded to reduce the need for tokenization, but at the expense of sub-
stantially increased computational costs? Should data related to words that are not in the base
vocabulary be discarded? If yes, should only that word be omitted, or should surrounding
context also be discarded? If surrounding context should be discarded, how much?).

Next, our initial source for annotated data was the set of sense-annotated sentences from
Alonso et al. (2013). Alonso and colleagues sampled 500 sentences for each type from the
American National Corpus (Ide & Macleod, 2001) and annotated them via Amazon Mechani-
cal Turk. To increase the size of this initial sample, we supplemented this set of annotated data
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14 of 43 J. Li, B. C. Armstrong / Cognitive Science 48 (2024)

with our own annotations of lines of dialog taken from the Brysbaert and New (2009) subtitle
database, for the top 10 most frequent words in each regularity type of the Alonso dataset.
Specifically, we aimed to collect at least 100 sense-annotated lines of dialog for the most fre-
quent polysemes (see Column B2009 in Table 1). For some of the polysemes, we exhausted
all available lines in the subtitle database, limiting the total counts slightly below this level.
The senses evoked in each line of dialog were then annotated by one of eight research assis-
tants or by the first author. The annotators were tasked with indicating if the word denoted
either one of the target senses (e.g., for CHICKEN, either an animal or a meat sense) or some
other senses. Note that in both the data taken from Alonso et al. and our own annotated data,
raters only had access to partial contextual information available from a sentence or a line of
dialog, not the full context in which this text occurred (e.g., a full book, paragraph, or movie).

By combining these two sources of data, we were able to obtain a relatively large sample
of polysemes and annotated sentences. Our expectation was the performance would increase
as a function of large sample sizes, mainly because each sense, and by proxy, each class
of senses (e.g., Animals, Meats) would be estimated in a more precise way. However, com-
bining data in this way could also raise concerns about the introduction of other potential
confounds. In supplemental analyses that parallel the main analyses reported in the results
section, we confirmed that we obtained qualitatively similar results by analyzing the anno-
tated data from each source separately and that overall performance increased when these
two sources were merged, indicating that the sources themselves did not critically determine
our results (see Supporting Information). Similarly, to rule out the possibility that our key
results were impacted by the number of polysemes and/or the number of annotated senses
associated with each type, we downsampled our data to match all regularity types on these
measures and again obtained similar results (see Supporting Information). On this basis, our
main results section focuses on analyses relating to the entire cleaned dataset since more data
simply seems to have boosted overall accuracy, as expected.

Raters were also tasked with indicating if they were certain or uncertain about their rating
as basic assay of rating confidence. We discarded all the lines for which the raters could not
confidently identify a single specific annotation prior to conducting our main analysis (28
% of the data), although we retained them temporarily for computing interater reliability,
described next.

5.2.1. Interrater reliability
We had 25% of the lines of subtitles dialog in our own annotated set reannotated by a

different rater to gauge interrater agreement. After excluding ratings for which either rater
was uncertain about which meaning was evoked (29% of the interrater data), and ratings that
either rater indicated interpretations other than the two target senses (18% of the interrater
data), we calculated the interrater reliability for each type. This was computed as the average
of the interrater reliability scores computed across all pairs of different raters that contributed
ratings for that type, weighted by the number of sentences rated by each pair of raters.3 A
summary of the agreement levels is presented in Fig. 2. This figure presents the degree to
which raters were certain (bar labels prefixed with “C”) or one or both were uncertain (bar
labels prefixed with “U”) and whether they indicated that the first sense (a) or the second
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J. Li, B. C. Armstrong / Cognitive Science 48 (2024) 15 of 43

Fig. 2. Distribution of rater agreement and disagreement. CS1A = certain for sense1 agreement (Animal, Con-
tainer, Location, Artifact, Process); CS2A = certain agreement for sense2 (Meat, Content, Organization, Informa-
tion, Result); CD is certain disagreement (e.g., rater 1 indicated sense1, whereas rater 2 indicated sense2); US1A
= uncertain agreement on sense1; US2A = uncertain agreement on sense2; UD is uncertain disagreement.

sense (b) of the polyseme was denoted by context. Here, the first sense was always defined
as the first class listed when we enumerated the types of regular polysemy (e.g., Container
in Container/Content), a decision that we will return to in more detail in our evaluation of
shared cross-type structure. Cases of agreement were coded with the “A” suffix, whereas
cases of disagreement were coded with the “D” suffix in the bar labels. As is clear from this
figure, there was certain agreement for the majority of the lines of rated dialog and cases
of disagreement were somewhat rare (only approximately 10% of the data when looking at
certain disagreement, and approximately 20% of the data when collapsing both certain and
uncertain disagreement). The ratio of agreement to disagreement did vary as expected as a
function of certainty, with relatively more cases of disagreement when one or both of the
raters was uncertain. The data from this figure also suggest that the first sense, as defined
above, is more frequent than the second sense.

We also report two measures of interrater reliability for each category in Table 1: the
percent of ratings in agreement and Cohen’s Kappa (Cohen, 1960). As summarized in the
figure and table, we observed moderate levels of agreement across all types of regular
polysemy, although some types were associated with higher overall levels of agreement than
others. This moderate overall agreement was expected because the two senses of regular
polysemy are very related hence more difficult to separate as compared to homonyms (e.g.,
Rice et al., 2019 obtained interrater reliability scores in excess of 90% for homonyms in
the same Brysbaert & New, 2009 data). These results are also consistent with the levels
of interrater reliability obtained in other earlier studies of sense annotation agreement for
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similar regular polyseme types, and for regular polysemy more broadly (Alonso et al., 2013;
Markert & Nissim, 2002; Navarro, Marcos, & Abad, 2005; Véronis, 1998). Although we
consider these levels of agreement more than sufficient for our present purposes, based on
our experience here, we speculate that future work could improve overall agreement levels.
It is also possible that some lines of dialog are consistent with both senses but different raters
each confidently chose only one of them, which decreased the interrater reliability. We will
return to discuss these points in the discussion section.

We also included two additional annotated datasets as control conditions. The first set
consisted of homonyms and their corresponding annotated sentences in the same subtitles
database reported by Rice et al. (2019). Our second set of control items consisted of samples
of polysemes and their corresponding annotated sentences from Evans and Yuan (2017), who
re-annotated all polysemes in the MASC corpus (Passonneau, Baker, Fellbaum, & Ide, 2012)
and SemCor datasets (Mihalcea, 1998) with the New Oxford American Dictionary. Critically,
this control set of polysemes (a) comprised a mixture of both regular and irregular polysemes,
and (b) although it did include some regular polysemes, they were sampled at random across
the population regularity types in natural language and were not grouped based on specific
types as in our regularity types of primary interest.

5.3. Deriving sense vectors

For each regular polyseme, we derived a sense vector that corresponded to each of the
two target senses of the polyseme. This was done by providing every sense-annotated sen-
tence corresponding with the senses of interest as input to the BERT base model (Devlin
et al., 2018). We computed the average vector from the last four 768-dimensional layers of
the model to produce the contextual representation (i.e., contextual word vector) of this word
for a given sentence (see Jawahar et al., 2019). We then took the average of the vectors asso-
ciated with a given sense to derive the sense vector. The same method was used to derive
representations for the control items.

5.4. Analysis of sense classes and similarity

We used the LRcos method described by Drozd et al. (2016) to compute sense analogies for
each type of regular polysemy and for our various control conditions. We first formulated all
the sense analogy questions that could be asked for every polyseme of a given type in the form
of (4a, 4b) (e.g., “which word sense belongs to the same sense class as SALMONAnimal and
is similar to CHICKENMeat?” for the Animal/Meat type). Formally, for each sense analogy
question _ : a∗ :: b : b∗, we transformed it into the form: _ ∈ cat (b) ∧ _ is similar to a∗. We
then calculated a score for each candidate word sense as an answer for a given sense analogy
question following the steps below.

1. We quantified the probability that this sense S is a member of the sense class of b,
for example, P(S ∈ cat (Sanimal

SALMON )), with a LR model, which was trained on all the
sense vectors not in the sense analogy question (e.g., in the aforementioned case, the
CHICKEN and SALMON senses would have been excluded from the training set).
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2. We computed the similarity between a∗ and this sense vector S using cosine similarity,
for example, cos(S, Smeat

CHICKEN );
3. We multiplied the values obtained from the LR and cosine similarity to yield a score

for this sense, for example, P(S ∈ cat(Sanimal
SALMON)) · cos(S, Smeat

CHICKEN).

Following these steps, a score was obtained for each sense vector as a candidate answer for
a given sense analogy question. The sense vector with the highest score was the answer to the
analogy question given by the model (Eq. 5), and was classified as either correct or incorrect.
We averaged the classification accuracies for all sense analogy questions within each regular-
ity type. Our assumption was that greater underlying regularity would yield higher accuracy.

arg max
S

P(S ∈ cat (Sanimal
SALMON )) · cos(S, Smeat

CHICKEN ) (5)

We also computed equivalent analyses for each of our control conditions (random pol-
ysemes, homonyms, and cross-type polysemes, described below).

5.4.0.1. Random polyseme and homonym controls: The control conditions served to
establish a baseline regarding the capacity to answer sense analogy questions for words that
did not share a specific underlying regularity. For the random polyseme and homonym con-
trols, we randomly selected an equal number of words in the respective datasets, matching the
average count for a regular polysemy type, so that any differences we observed were not due
to the amount of data included in each condition. For each word, we randomly selected two
meanings/senses and randomly mapped them onto two sense classes for the control LRcos
analyses, which were otherwise identical to those described above. This whole procedure was
repeated 5,000 times and the results were averaged to ensure that the results obtained via
random samples were stable.

Homonyms are defined as having unrelated meanings, so we expected that sampling ran-
dom sets of homonyms and arbitrarily assigning each of their meanings to one of two classes
as a control “type” will lead to very poor accuracy using the LRcos method. We also expected
random polysemes to be associated with lower performance as compared to our analyses of
regular types. However, insofar as there is some latent relationships shared across types (as
might be reflected in the LR component of the model) and/or reflected in the relatedness
between senses (as reflected in the cos component of the model), we might expect higher
overall performance in this control condition as compared to the homonym controls.

5.4.0.2. Cross-type analysis: The cross-type analysis was implemented to probe for
higher order regularity shared across different regularity types. In other words, it aimed to
examine how analogous sense mappings in one type might relate to those in another type.
We conducted this analysis because the theoretical linguistics literature suggests, under
various different labels, that there is an abstract relationship that helps shape the emergence
of polysemous senses across all types, such as concrete to abstract sense extension (e.g.,
Copestake & Briscoe, 1995; Nunberg, 1995; Pustejovsky, 2005). If such accounts are correct
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Fig. 3. Simplified depiction of the cross-type analysis using one source type (Location/Organization) as the clas-
sification base for the target type (Article/Information). This allows the model to answer questions of the form
what is to BOOKInformation as CANADALocation is to CANADAOrganization? Panel (A) Target regularity type (Arti-
fact/Information) and the logistic regression model trained on this type separating the two classes (blue vs. yel-
low). (B) Analogous panel for a different type of regularity (Location/Organization) and the classes (green/red)
identified by logistic regression for that type. (C) Using the logistic regression from the source regularity in (B) to
answer sense analogy questions from the target regularity type in (A).

and there is some type of latent regularity between the base and extended senses of a
polyseme that is shared across regularity types, we should be able to train the LR model on
one regularity type (e.g., Location/Organization) and use that model to successfully classify
another regularity type (e.g., Artifact/Information) above the level expected by chance, as
established by our other control conditions. Put concretely, the cross-type condition involved
asking sense analogy questions such as “what is to BOOKInformation as CANADALocation is to
CANADAOrganization?”

To test the cross-type regularity of a given type (e.g., Artifact/Information) (Fig. 3A), we
applied the LRcos method mentioned above with the following modification: For a target type
of regular polysemy (e.g,. Artifact/Information), we first trained separate LR models on each
of the other regularity types (e.g., Animal/Meat, Container/Content, Location/Organization,
Process/Result). We then used these models as the basis for classifying items from the target
type (e.g., Artifact/Information) in four separate LRcos models (one of which is exemplified
in Fig. 3B). The cross-type accuracy for the given type is the average accuracy of all four
LRcos models. In additional analyses, we also provide a more detailed breakdown of how the
classifier trained on each type of regular polysemy contributed to this average accuracy. The
process of training on one classifier and testing on another classifier is illustrated in Fig. 3C.
The intuition tested here is that if the LRcos model can still achieve a reasonable accuracy
above baseline, it suggests that there is some latent structure shared across types.

In the cross-type analyses, the first class in the classifier was always the first class
noted for each regularity type (e.g., Artifact in Artifact/Information; Location in Loca-
tion/Organization). This approach was taken because it aligns the base sense for a given reg-
ularity type with the base sense from another regularity type, as defined in past theoretical

 15516709, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13416 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [26/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



J. Li, B. C. Armstrong / Cognitive Science 48 (2024) 19 of 43

linguistics work (e.g., Copestake & Briscoe, 1995; Nunberg, 1995; Pustejovsky, 2005). In
a supplemental analysis, we reversed the order of classes in the classifier when mapping to
another regularity type, and observed a decrease in performance, as predicted by this intuition
(see Supporting Information).

6. Results

Before turning to the detailed quantitative results as they relate to our four key questions,
we first present a visualization of the space which we used to probe sense analogy questions.
Fig. 4 displays the sense vectors for each type of regularity after the 768-dimensional rep-
resentational space employed by BERT had been reduced to two dimensions using principal
component analysis (PCA). In this figure, the two senses of each regular polyseme are linked
with a line, with the dotted end of the line corresponding to the base sense, as described
above. Although PCA is designed to identify dimensions that best explain variance in the
distribution of senses in the overall semantic space, which is not identical to identifying the
optimal plane for delineating between two sense classes as in the LR component of the LRcos
model, several broad patterns of structure are clearly present in these data that are worthy of
note. First, the senses from the different regularity types are clearly separated into differ-
ent clusters, with only minimal overlap between the Artifact/Information and Process/Result
types. This indicates that answering sense analogy questions for a given type requires models
that are sensitive to relatively fine-grained distinctions within different parts of the repre-
sentational space so as to distinguish between closely related senses. It also indicates that
our cross-type analyses will involve inferences made across much larger portions of the rep-
resentational space, for instance, when using Location/Organization relationships to make
inferences about Artifact/Information relations. Second, within each regularity type cluster,
the vectors mapping between the base sense and the extended sense generally point in the
same direction. This suggests that there is some shared transformation that relates each base
sense to its extended sense. (We have further investigated the geometric structure between
pairs of senses in our parallelity analysis, presented in Supporting Information, which repeats
our key analyses related to each question of interest using this alternative geometric method
for answering sense analogy questions). Of course, these vectors are not all perfectly parallel,
which is to be expected for several reasons: First, there are obviously idiosyncratic features
associated with each sense of a polyseme that will shape the overall direction of the vector.
Second, as alluded to earlier, the dimensionality reduction produced through PCA here does
not identify the optimal sets of dimensions for each individual cluster, which we would expect
to vary somewhat even if there is some shared latent structure across regularity types. Thus,
the fact that there is some overall structure within each type bodes well for analyses using the
LRcos method, as we would expect that separate LRs conducted for each regularity type will
identify better dimensions for delineating between the classes than are reflected in the PCA
representation. Third, there are typically one or two classes that have broadly similar direc-
tions. This might suggest that our cross-type analyses, which involve using the LR classifiers
from one type to classify the senses of another type, could be shaped by the different patterns
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20 of 43 J. Li, B. C. Armstrong / Cognitive Science 48 (2024)

Fig. 4. Plot of the sense vectors in the BERT representational space after being reduced to the first two principal
components through PCA analysis. Each line represents two senses of a polyseme. The dotted end of the line rep-
resents the base sense (Animal, Container, Location, Artifact, Process) of the polyseme. The other end represents
the extended sense of the polyseme.

of similarity between pairs of regularity types, although this remained to be tested using LR
given the aforementioned potential limitations of the PCA representation.

With these insights in mind regarding the structure that exists among regularity types, we
now turn to our main results and how they relate to each of our key questions. Our key results
are presented in Fig. 5 and are unpacked in more detail in relation to each key question, in
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Fig. 5. Mean accuracy for each regular polysemy type and for the control conditions. Error bars correspond to the
standard error for all bars in the plot. For the random polyseme and homonym controls, the average performance
across 5000 samples is plotted.

turn. For each of the key questions, we controlled for multiple comparisons in our statistical
analyses using the Holm correction (Holm, 1979).

6.1. Question 1: Does the representation in a distributional semantic model reflect the
shared structure of a given type of regular polysemy?

To answer our first question regarding whether the representations in a DSM reflects the
shared structure of a specific type of regular polysemy, we compared the accuracy obtained
using the LRcos method within the five regularity types against the random polyseme and
homonym controls with chi-square tests of goodness-of-fit. Since the LRcos model leverages
the underlying regularity to answer sense analogy questions, a higher accuracy for the regular
type was expected relative to the controls. All of these comparisons were statistically signifi-
cant, as summarized in Table 2 and Fig. 5. This indicates that YES, the representations in the
model are sensitive to the shared regularity structure within each regularity type.

6.2. Question 2: Are there variations in the degree of regularity across different regular
relationships, reflective of a graded “regularity continuum”?

Traditionally, regular polysemy is considered to be a discrete, dichotomous category
within polysemy, such that a polyseme is either regular, or is not. However, an alternative
perspective suggests that regularity might exist on a continuum, allowing for varying degrees
of regularity for a given polyseme rather as opposed to a dichotomous distinction. To answer
this question, we first conducted a chi-square test of homogeneity on the five types. Since the
LRcos model relies on regularity within a given type to answer sense analogy questions, its
accuracy reflects the degree of regularity in a given regularity type. The result was significant
(χ2(4) = 183.58, p < .001), which indicated that these five types were not homogeneous
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Table 2
Summary of the mean accuracies and statistical comparisons from the main analyses and the cross-type analyses

Main Analysis Cross-type Analysis

Accuracy versus RP versus H Accuracy versus RP vs. Main Analysis

χ2(1) p χ2(1) p χ2(1) p χ2(1) p

A/M 0.70 4497 <.001 67,827 <.001 0.21 1288 <.001 407 <.001
C/C 0.69 800 <.001 12,172 <.001 0.28 149 <.001 257 <.001
L/O 1.00 1320 <.001 17,820 <.001 0.21 378 <.001 60 <.001
A/I 0.55 315 <.001 5302 <.001 0.23 72 <.001 75 <.001
P/R 0.44 301 <.001 5803 <.001 0.19 88 <.001 50 <.001
RP 0.12 n/a n/a n/a n/a n/a n/a n/a n/a n/a
H 0.01 n/a n/a n/a n/a n/a n/a n/a n/a n/a

Note. A/M = Animal/Meat, C/C = Container/Content, L/O = Location/Organization, A/I = Artifact/Information, P/R = Process/Result, RP
= random polyseme control, and H = homonym control. Significant p-values after the Holm correction are presented in boldface.

Table 3
Summary of the statistical tests comparing the accuracy for each regularity type against the accuracy for every
other regularity type

group1 group2 χ 2(1) p

A/M C/C 0.199 .656
A/M L/O 71.512 <.001
A/M A/I 16.273 <.001
A/M P/R 76.541 <.001
C/C L/O 67.549 <.001
C/C A/I 7.877 .005
C/C P/R 34.149 <.001
L/O A/I 101.951 <.001
L/O P/R 154.259 <.001
A/I P/R 5.189 .023

Note. Significant p-values after the Holm correction are presented in boldface.

in terms of their overall accuracy levels as determined via the LRcos method. We then
compared the five regular polysemy types against one another. The results of these com-
parisons are reported in Table 3. All of the comparisons except between Animal/Meat and
Container/Content were statistically significant. The large number of significant differences
between the types, as well as their distribution across a broad range of accuracy values,
suggests that YES, regularity varies as a graded, continuous construct, and is not a monolithic
construct wherein all types of regular polysemy are equal.

As an additional control analysis, to test for a potential confound due to the different num-
bers of polysemes included in each regularity type in determining LRcos accuracy, we tested
for the correlation between these two measures. This correlation was low and non-significant,
(r(3) = −0.04, p = .95), which indicated that the number of polysemes per type did not drive
our results.

 15516709, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13416 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [26/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



J. Li, B. C. Armstrong / Cognitive Science 48 (2024) 23 of 43

6.3. Question 3: Is there any higher order latent structure shared across the different types
of regular polysemy?

To answer our third question regarding whether there is any higher order latent regular-
ity shared across different types of regular polysemy, we initially conducted two tests. First,
we compared each cross-type accuracy against the random polyseme control with chi-square
tests of goodness-of-fit to see if there is shared regularity contributing to the regularity of
each different type. The assumption here is that if we can successfully employ the classifier
from one regularity type to support classifications in another regularity type above the levels
established by the random polyseme control, this would indicate that there is shared structure
within a regularity type. We found that all five cross-type accuracies were associated with
significantly higher accuracy than the random polysemy control, as summarized in Table 2
and Fig. 5. This suggests that YES, there is regularity shared across regularity types. Second,
We compared each regularity type with its cross-type analog with chi-square tests of inde-
pendence to see if accuracy was significantly higher when the classifier for a given regularity
type was employed instead of the cross-type classifier. We found that accuracy was higher
when the classifier for a given type was used as opposed to the cross-type classifier, as also
summarized in Table 2 and Fig. 5. Considered together, these two findings suggest that there
is indeed some shared structure across regularity types, but there is also structure unique to
each regularity type.

Having established that there is indeed some shared structure across regularity types, we
delved deeper into the nature of this shared regularity. In the cross-type data analyzed thus
far, we averaged the accuracy of the four separate cross-type LRcos analyses conducted for
a given regularity type, wherein we used each of the other types as the basis for classifying
the target type. However, focusing only on the average cross-type performance could mask a
more nuanced understanding of the nature of the shared relationship between types. One pos-
sibility is that there is a rather homogeneous level of latent structure shared across all types,
which would be reflected in similar levels of accuracy if we examined the performance of
each individual classifier prior to producing the average cross-type accuracy. Another pos-
sibility is that accuracy is higher for only a subset of the classifiers, which could indicate
that there are multiple types of latent structure that are shared across some, but not all types.
Put differently, although our initial analysis established that there is shared structure across
types, these additional analyses aim to determine whether this reflects a single latent struc-
ture or multiple latent structures (for a parallel debate on these types of considerations, see
the discussion of a single general intelligence factor versus seven primary mental abilities as
underlying performance in a range of tasks, as presented by Spearman, 1904 and Thurstone,
1938, respectively).

To probe the aforementioned issue, instead of averaging the cross-type accuracies for the
different source types for the LR model, we examined accuracy for all pairs of source types
for the LR models and target regularity types. For a given pair of types—Animal/Meat and
Location/Organization, for example—we computed the average of two accuracy results: the
results of using Location/Organization as the base for classifying Animal or Meat, and of
using Animal/Meat as the base for classifying Location or Organization. This average reflects
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Fig. 6. Accuracy obtained by using each regularity type as the basis for classifying every other regularity type. A/M
= Animal/Meat, C/C = Container/Content, L/O = Location/Organization, A/I = Artifact/Information, P/R = Pro-
cess/Result. The diagonal corresponds to the within-type classifications. All cells below the diagonal correspond
to the individual cross-type comparisons.

the shared regularity that is being used to infer all relevant sense classes in Animal/Meat and
Location/Organization. The full results are plotted in the heatmap in Fig. 6.

From the results, we can see that the accuracy obtained using different individual types
as the basis for the cross-type controls was non-identical across the cells, ranging from 0.14
to 0.35. To better understand the nature of these differences, we conducted several follow-
up tests. First, we compared each specific cross-type accuracy against that of the random
polyseme control with chi-square tests of goodness-of-fit to see if there is shared regularity
above the random polyseme control. The results indicated that all specific cross-type compar-
isons were significantly above the random polyseme control except when using Animal/Meat
to classify Process/Result and vice versa, and using Artifact/Information to classify Pro-
cess/Result, and vice versa. (See Table A1 in the Appendix.) This indicated that there is some
latent structure shared across all of the types. Second, we ran a chi-square test of homogeneity
on the 10 cross-type conditions to determine if the accuracy levels obtained in some cross-
types were significantly different from those in other cross-types. The result was significant
(χ2(9) = 179.1, p < .001). We therefore followed up this test by comparing each cross-type
against the others. The detailed results of these comparisons are presented in Table A2 in
the Appendix. The results revealed that although many of the comparisons produced similar
levels of accuracy, there were also many significant differences across types. These results
indicate that although there may be some higher order latent structure shared across all types,
as reflected by the non-significant differences between many cross-type accuracy compar-
isons, there may also be more nuanced substructures shared across some but not all regularity
types. For example, overall accuracy was non-significantly different for the following pairs of
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cross-type comparisons: Container/Content versus Artifact/Info (0.34), Artifact/Info versus
Location/Organization (0.30), and Process/Result versus Location/Organization (0.35). The
accuracy levels of these three comparisons were also significantly higher than those in many
of the other cells.

Taken together, these results are consistent with some general latent structure shared across
types, for instance, the transformation from the base sense to the extended sense posited
by Nunberg (1995), Copestake and Briscoe (1995), and Pustejovsky (2005), as well as some
substructure common to some but not all types, for instance, the Concrete/Abstract distinction
posited by Lakoff and Johnson (1980).

6.4. Question 4: Can the degree of regularity be fully explained by the degree to which the
semantic representations denoting each of the regular meanings overlap?

Finally, we probed whether variations in regularity could be explained in terms of the mean-
ing overlap among a word’s senses. For instance, is it possible that higher degrees of regu-
larity are observed when the distance between the two sense classes is small? To answer this
question, we first computed the average meaning overlap between the two classes in each reg-
ularity type by averaging the cosine similarity between the two senses of each word. We then
correlated these results with the accuracy data from the LRcos analysis for the five regular-
ity types. There was no significant correlation between these two measures (r(3) = −0.292,
p = 0.63), which indicates that there is no evidence that semantic overlap explains a signifi-
cant amount of the degree of regularity in our data, as reflected in the accuracy data from the
LRcos model. However, we acknowledge that the lack of a significant effect in this instance
may be shaped by two distinct but potentially related aspects of our experimental methods.
First, it could be the case that our regularity types all have relatively high levels of overall
regularity, in which case the restricted range of regularity values near ceiling could impede
the detection of a significant effect. Second, analyzing only five regularity types may have
reduced the power of this inference —a correlation of −0.29 in a larger dataset could indicate
that some (but not all) of our results could be explained by meaning overlap.4 Based on the
results at hand then, we take our data as indicative that our regularity effects cannot simply
be reduced to effects of meaning overlap, but we do not rule out the possibility that there is
some relationship between these constructs. We are hopeful that the work reported here will
serve as a basis for expanded analyses on this front in the future.

6.5. Investigating how the LRcos method works

As described above, our LRcos model performed well in detecting structure among regular
polysemes, although it did not achieve perfect accuracy. This good-but-not-perfect perfor-
mance motivated us to further investigate the operation of the LRcos model. The goal here
was to understand how the LR and cos components contribute to determining overall accu-
racy, as well as to explore whether a variation of this approach can be created that would yield
even higher performance.

First, to better understand the operation of the LRcos model, particularly with respect to
errors, we examined the incorrect answers it produced to our sense analogy questions. In so
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doing, we inferred that the model could produce an error in two different ways. For the first
type of error, the model misidentified the target word entirely. For instance, given the sense
analogy question, “What is to TROUTAnimal as CHICKENAnimal is to CHICKENMeat?,” the
LRcos model suggested SALMONMeat—a completely incorrect word, although from within
the correct class. This type of error suggests that it is difficult in some circumstances to make
fine-grained distinctions between the highly similar representations of words within a sense
class (e.g., the MEAT senses of different fish), but the model is able to identify the cor-
rect sense class. Put differently, these results suggest that the LR classifier was supporting
correct classification, but the model could not use word sense similarity information from
the cos term to identify the correct word. For the second type of error, the model answered
with an incorrect sense of the correct target word. For instance, for the analogy question
“what is to IMITATIONResult as DAMAGEProcess is to DAMAGEProcess,” the model answered
IMITATIONResult, an incorrect sense, and a repetition of one of the probe words in the ques-
tion. This second type of error highlights a subtle but important implementational aspect of
the LRcos model: when searching for answers to a sense analogy question: _ : a∗ :: b : b∗, the
question terms a∗, b, and b∗ were not excluded when scoring candidate answers. This made
the task more challenging than if we had simply eliminated the items presented in question as
viable responses. However, not eliminating these items would allow the LRcos method to rely
strongly on the similarity between a and a∗ to give the correct answer (Linzen, 2016; Rogers,
Drozd, & Li, 2017). Excluding a∗, b, and b∗ as candidate answers prevented the model from
giving the wrong answer a∗, despite this wrong answer being the “best” answer otherwise.
Given our aim here was to measure regularity, as reflected in a consistent change in the relative
location of the two senses of a regular polyseme within the semantic space of a distributional
model, we allowed the items presented in the question to be included in the question as a
more stringent and accurate test of the model’s performance. This ensures that regularity, not
simply similarity, supports answering sense analogy questions for regular polysemes. In sum,
when considering how the model made such an error in light of this important implementa-
tional detail, it is apparent that the LR component failed to identify the correct sense class.
However, it is not so simple as to attribute this error solely to the LR component because it is
also possible that the similarity between the first and second senses of the word (as reflected
by the cos term) was low in the case of these types of errors, so even correct classifica-
tion of the class could still have yielded an error, similar to the first type of error described
above.

Building upon the basic insights produced from our error analyses, given that the LRcos
model involves combining two distinct components—the probability derived from LR and the
similarity derived from the cosine measure (cos)—we investigated how each of these compo-
nents was able to contribute to correctly answering sense analogy questions. As an initial step
on this front, we examined whether each of these components captured different aspects of
regularity. To do so, we correlated the probability from the LR term and the similarity from
the cos term, and observed only a very low correlation (r(97, 463) = −.08, p < .001). This
low correlation indicated that these two components captured distinct aspects of the sense
analogy question.
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Next, we conducted a grid search for the weightings of LR, cos, and the multiplicative term
LR · cos. Our goal was to investigate how varying the weightings of these terms will influence
accuracy, including the effect of ablating each term. In this way, we aimed to ascertain not
only the relative contribution of each component of LRcos in accurately answering sense
analogy questions, but also to determine the potential accuracy improvement with different
weightings of the LRcos components if we included both the additive effects of LR and cos, in
addition to their interaction. In addition to shedding basic light onto the relative contributions
of each of these terms, we were also motivated to conduct this analysis by the original work
on LRcos reported by Drozd et al. (2016), who noted that their formulation, while effective at
answering analogy questions, was not necessarily formally optimal. Thus, a variation on their
approach could yield additional performance improvements that could facilitate the study of
(sense) analogy questions. In the grid search, we incorporated both the sum and product of LR
and cos in scoring each candidate: α · LR + β · cos + γ · LR · cos, with α, β, and γ being the
adjustable parameters. The range of parameters was α, β, γ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The
full results of the grid search are presented in Fig. 7.

First, we found that models that only included the LR term or the cos term performed very
poorly, with accuracy levels of 0.07 and 0.00, respectively. This indicates that both compo-
nents are necessary to obtain acceptable levels of performance. Next, we found that using
only LR · cos with the weights for the two additive terms set to zero, which was what was
used in the analyses conducted to answer our four key questions above, produced essentially
identical performance to a model with equally weighted LR and cos components LR + cos
(0.68 vs. 0.67, respectively). However, selecting the optimal weightings of the LR and cos
terms in the LR + cos model improved performance for this additive model to 0.79 (with
0.4 · LR + 1 · cos). Thus, an additive as opposed to a multiplicative combination of these
terms could be used to further improve the performance if optimal weightings of each term
are used. Furthermore, if we included the optimal weightings of all three terms, performance
further increased to 0.81 (with 0 · LR + 0.6 · cos + 0.4 · LR · cos, or, effectively a model that
includes both an additive contribution from cos as well as the interaction between LR and
cos). If we take a step back from the optimal weightings of the model, it is clear that even
if the exact optimal parameters are not used, there exists a large range of weightings that
produce quite strong overall results, suggesting that there is robust value in considering the
contributions from each of these three terms in optimizing the model used to answer sense
analogy questions.

Of course, given our grid search represents only a single case of post-hoc analyses, we
remain cautious in making strong overall recommendations for future work because these
performance improvements might hinge on the specific data or question that we studied. For
instance, we could imagine a scenario where the items being compared are distributed dif-
ferently and lead to different sets of optimal parameters and relative differences in the per-
formance across models with additive and/or interactive terms. Thus, we used the established
LRcos model to answer our four key questions. However, we are excited by the possibility
that substantial performance improvements of 10% or more could be obtained by optimiz-
ing the model that is used to answer sense analogy questions, as well as by how probing the
model’s errors and optimal parameter weightings could shed additional insight into how the
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Fig. 7. Overall accuracy in answering sense analogy questions for different weighting combinations of the LR,
cos, and LRcos components of a model based on LR + cos + LR · cos.
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model actually answers such questions. We expect that our initial analyses on this front will
provide some a priori predictions for future work in this vein.

7. Discussion

Most words are polysemous and have related but distinct senses. Many polysemes can fur-
ther be classified as regular polysemes because they share the same overall representational
structure of their senses (e.g., Animal/Meat). In our work, we aimed to further our collective
interdisciplinary understanding of regular polysemy with the help of a DSM, here exemplified
by BERT, which can provide us with quantitative measures of the regularity of a given type of
regular polysemy and the intricate relationships between different types of regular polysemy,
complementing and refining prior researcher intuitions and verbal theorizing. More specif-
ically, we examined the representational structure of regular polysemy in BERT via sense
analogy questions, a method that we adapted from the word analogy research in the field
computational linguistics.

We answered four main research questions with respect to the representational structure of
regular polysemy. First, is there significant shared structure across regular polysemes sharing
the same regularity type? Our analyses indicated that this is clearly the case. The existence
of this shared representational structure is important because it indicates that the structure of
the mental lexicon could, in principle, serve as the basis for learning a new regular meaning
for an existing word (Brochhagen, Boleda, Gualdoni, & Xu, 2023; Rabagliati et al., 2011;
Srinivasan & Rabagliati, 2015; Srinivasan & Snedeker, 2011). For example, upon learning
that a novel word denotes a container, an individual could infer that this word could also be
used to denote its contents.

Second, we investigated whether the degree of regularity varied across different types of
regular polysemy. We observed substantial variability across regularity types, suggestive of a
“regularity continuum.” More generally, this finding suggests that classifying polysemes as
either regular or irregular is a false dichotomy. Rather, our results are more consistent with
a graded transition from polysemes adhering closely to a particular underlying regularity to
those with more idiosyncratic mappings between their senses. This parallels the older seman-
tic ambiguity literature, which originally focused on a (false) dichotomy between ambigu-
ous and unambiguous words, treating ambiguity as a monolithic category and collapsing
homonyms and polysemes together (see Rodd et al., 2002, for discussion). Just as that false
dichotomy was revised along a relatedness continuum that delineates between homonyms and
polysemes (e.g., Armstrong & Plaut, 2016; Klepousniotou et al., 2008; Rodd et al., 2002), we
argue for an additional decomposition of polysemy across a regularity continuum.

Third, we asked whether there is any higher order latent structure shared across different
types of regular polysemy. In what is arguably our most surprising finding, we found that this
was the case overall. Furthermore, we observed that there may be additional subtypes of even
more related structure that are common to only a subset of regularity types. This suggests that
although there may be some latent structure shared across different types when mapping from
a base sense to an additional sense, there may also be multiple additional structures that are
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shared to varying degrees across different regularity types. Exactly what this latent structure
might be will require additional investigation. Speculatively, based on the cases we exam-
ined, one type of structure that could underlie some of our effects is the Concrete/Abstract
structure proposed by Lakoff and Johnson (1980). Essentially, this structure maps concrete
concepts onto more abstract constructs, such as an artifact (e.g., a heavy BOOK) onto infor-
mation (e.g., an interesting BOOK). This same structure has also been found to underlie at
least some types of diachronic meaning extension for ambiguous words (Xu, Malt, & Srini-
vasan, 2017). However, this structure does not appear to fit with all of the categories that we
examined, such as the Animal/Meat type, for which both senses appear to be highly concrete.
Conceivably, the more abstract structure shared between this category and the other categories
could be attributable to a distinction between a base sense (Animal) and an extended sense
(Meat), although such an explanation currently suffers from the fact that it is not clear how to
determine, a priori, which sense is the base sense (e.g., is it the class with the greatest number
of exemplars? The first class learned? Some other possibility?).

Fourth, we tested whether the systematic differences between regularity types could be
explained by meaning overlap. On this point, our analyses did not provide evidence that
meaning overlap recapitulates the regularity effects we obtained through our LRcos analy-
ses at the level of different types. This is in contrast with the meaning overlap at the item
level, where for each sense analogy question the meaning overlap, as reflected by the cos
term on the LRcos model, did contribute to the performance of LRcos model, which is in line
with the conclusion in Floyd et al. (2021) that similarity (in terms of meaning overlap) is the
major determiner of colexification of two senses. Nevertheless, more data are clearly needed
to probe this issue in a more comprehensive way. For theoretical reasons, however, we expect
that although these factors may ultimately be found to be at least partially related to one
another, each will continue to make unique contributions to the structure of the representa-
tional space and one will not ultimately be reduced to the other. For instance, a polyseme could
have two very closely related meanings that are related in a very idiosyncratic way, making
the relationship between regularity and relatedness imperfect at best. This result, along with
the other results summarized above and the previously noted history of using models such
as BERT as approximations of the human mental lexicon, suggests that the organization of
the mental lexicon and the broader conceptual system is driven not only by semantic overlap.
Rather, there are additional pressures such as the consistency with which many words share
similar relationships among their meanings.

Lastly, we examined how the LRcos model works to better understand what contributed to
the model’s capacity to detect regularity in regular polysemy. According to previous research,
the LRcos model performs better in detecting word analogies than traditional parallelity meth-
ods (Drozd et al., 2016). The primary advantage of LRcos is that it evaluates the entire set
of analogous items instead of just comparing individual items. This feature aligns perfectly
with our objective of quantifying the regularity of each type overall. We used grid search
to determine that although neither LR nor cos on their own produce accuracies above floor,
their additive combination produces similar accuracy to the multiplicative LRcos model that
we employed in our work. This suggests that the abstract intuition of combining a similarity
measure with a classification measure is what is critical to answering sense analogy questions,
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not the specific LRcos implementation (for additional discussion, see Drozd et al., 2016). Fur-
thermore, we observed post hoc that an optimal weighting of the LR, cos, and LRcos terms
could yield a further 10% increase in accuracy. If this post-hoc finding stands up to additional
scrutiny, it could offer an important methodological advance for testing analogy questions,
including sense analogy questions, particularly if tapping the lower end of the regularity con-
tinuum where performance would be expected to decrease.

Of course, the empirical basis for the inferences we have drawn, as outlined above, hinges
to some degree on the five regularity types that we analyzed. These types were selected
because they were the subjects of extensive prior study and in this respect are arguably
the most informative for developing an integrated understanding of regular polysemy from
various theoretical and experimental angles (e.g., Copestake & Briscoe, 1995; Dölling, 2020;
Pustejovsky, 2005; Rabagliati et al., 2011; Srinivasan & Rabagliati, 2015). However, a poten-
tial concern from this selection is that prior research has focused on a non-random sample
of regular polysemes and regular types. For instance, this work may have focused on types
that have the most consistent underlying regularity structure, and/or which might be driven
most strongly by an abstract/concrete relationship between sense classes. Understanding this
potential limitation further is, of course, an empirical question, and one that traditionally has
been challenging because of the resource intensiveness of annotating data and the reliance
upon intuitions regarding what regularity types exist and what words are associated with
these types. This latter point may be particularly challenging to probe for what might be
called “somewhat regular” regularity types that fall part way down the regularity continuum.
However, in our view, an extension of our methods may offer a way forward on this front by
allowing for the unsupervised detection of regular polysemy types that can be the subject of
subsequent targeted analyses. This would involve first clustering annotated senses together
into sense classes, and then examining for pairs of sense classes that have relatively consistent
mappings between many words that have a sense associated with each of these classes. Recent
work by Yu and Xu (2023) employed a similar approach. In that work, the authors inferred the
extensibility of a new sense from the old senses of a given word by employing the chaining
algorithms previously outlined by Lakoff (1987) as a likelihood function. With this function,
they calculated the posterior probability of a new sense being an extension of the older senses
of a word. Analogously, our methods could utilize learned regularity structures as a likelihood
function to calculate how extensible a new sense is from old senses of a word, essentially
instantiating another aspect of Lakoff’s chaining theory in an explicit computational model,
which can then be the subject of experimental validation. In so doing, we could move toward
a more complete computational analysis and mechanistic theory of the relationships between
polysemes in language overall, assuming that the representations from models like BERT are
sufficient approximations of representations in the human mental lexicon so as to generate
informative insights. For reasons outlined earlier, we view the current literature as supporting
this assumption, notwithstanding the imperfect match between the models and human data,
and we expect that newer computational models with further improve on this front (as
discussed below). However, even if this assumption ultimately proves to be false, there is still
much value to be gained from this type of work: For example, it provides an additional novel
approach for evaluating the cognitive plausibility of the models, and mismatches between

 15516709, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13416 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [26/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



32 of 43 J. Li, B. C. Armstrong / Cognitive Science 48 (2024)

human and model performance can feed back to give clues regarding how to further improve
the models. Furthermore, if the model can accurately discover new regular polysemes and
types of regular polysemy, even if the mechanism used to do so is cognitively implausible,
this would nevertheless be very valuable as a methodological tool. For instance, it would
allow researchers to develop improved samples of regular polysemes rather than rely upon
small sets of manually selected regular polysemes that may be recycled across studies. Such
recycling of items has previously been found to inflate the magnitude of experimental effects
and hinder accurate inferences regarding the magnitude and significance of a number of
linguistic effects (Forster, 2000).

Having highlighted the empirical contributions of our work in answering our key research
questions and its implication for broader field including conceptual system and computational
methodology, it is also worth discussing several issues that we encountered in conducting
this work that are particularly salient in the study of sense analogies questions and regular
polysemy. We elaborate these issues below and discuss how these issues could be ameliorated
in future work.

7.1. Computational methodologies

Our results indicate that BERT can capture the conceptual relationships between the senses
of regular polysemes, even within subtitle datasets that inherently emphasize visual elements.
This finding suggests that this model, and, we assume, the class of models that it exemplifies,
succeeds to some degree at least in capturing the conceptual role aspect of meaning even if it
lacks other important aspects of meaning representation, such as referential grounding (i.e.,
embodiment).

Despite the well above chance performance of the LRcos model, most types of regular
polysemy still only achieved below ceiling accuracy scores even after our parameterization
of an improved variation of the technique using grid search. Apart from the intrinsic differ-
ence in regularity among each type, there are a couple of potential reasons why LRcos might
struggle to detect sufficient regularity within a certain type. First, the boundary between two
senses of ambiguous words could be nonlinear so that the LR in the model might not be
fully suited to making these types of delineations. Second, there is a potential void in the
BERT semantic space between some classes of senses of a word wherein this part of the
space does not correspond to any intelligible sense, as investigated by Karidi, Zhou, Schnei-
der, Abend, and Srikumar (2021). This might also decrease the performance of the LR in
LRcos. Lastly, a single polyseme token could sometimes take on two senses simultaneously,
a phenomenon referred to as “copredication.” For example, in the sentence “Judy’s disserta-
tion is still thought-provoking although yellowed with age” (Cruse, 1986), the regular pol-
yseme “dissertation,” an Artifact/Information type, is used in both artifact and information
senses. We did not include instructions to explicitly label such cases in our annotation pro-
cedure. A partial inspection of our annotated subtitles database indicated that such sentences
were rare, but we expect that flagging copredication in the future may yield further perfor-
mance increases.
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7.2. Distributional semantic models, regular polysemy, and human cognition

Of course, for the work that we have conducted to be maximally relevant to the cogni-
tive sciences, the computational model that we employed, as well as the general class of
such DSMs, must have a history of being relevant to human cognition. To briefly reiterate
some of the points raised in the introduction: we chose BERT for our examination of the
representational structure of regular polysemy due to its large size and proven track record in
simulating a range of aspects of human cognition (Rogers et al., 2021), as well as its capa-
bility to produce contextual word vectors by attending to both the preceding and subsequent
contexts of a given target word. However, choosing BERT does not preclude the generaliz-
ability of our results to other DSMs, as previous research has reached similar conclusions
using a variety of DSMs (Floyd et al., 2021; Lopukhina & Lopukhin, 2016; Trott & Bergen,
2023). More importantly, probing DSMs is a well-established method for examining human
language cognition, not only in terms of linguistic behavior, such as response times in lex-
ical decision or naming tasks (Mandera et al., 2017), and eye-tracking-based reading times
(Heilbron, van Haren, Hagoort, & de Lange, 2023; Pimentel, Meister, Wilcox, Levy, & Cot-
terell, 2023), but also in internal cognitive/neural representations aligned with EEG (Ettinger,
Feldman, Resnik, & Philips, 2016) and fMRI data (e.g., Schrimpf et al., 2021). We there-
fore interpret our work as shedding light on the internal cognitive representations of regular
polysemy, engaging with work in theoretical linguistics, and as being suitable for potential
extension to help understand the human neural representation of regular polysemy.

This latter avenue is also a compelling direction for future research, given that existing
studies involving neural representations have primarily examined the relatedness between
different meanings of polysemes in terms of meaning overlap (Klepousniotou et al., 2012;
MacGregor et al., 2015; Yurchenko et al., 2020). These studies often conflate various types of
regular polysemy into a single category (e.g., metonymic or metaphorical polysemy), while
overlooking the nuances in the direction of meaning extension across different types, among
many other facets of meaning representation that our computational work has highlighted.
Linking our computational findings with a coordinated neuroimaging research program could
therefore serve as an excellent platform for evaluating the novel predictions arising from our
work, and for guiding that experimental research agenda. As but a few examples of what may
be possible on this front: Could the featural (voxel) overlap from fMRI measures of the two
senses of regular polysemes from different types (dis)confirm our computational finding that
degree of regularity is not reducible to amount of featural overlap? Could the voxel patterns of
different types of regular polysemy indicate some high-order latent structures shared across
these different types, confirming our finding based on computational methodologies?

There are also other potential avenues for future improvements that build upon the work we
have reported here and connect this work with other important advances within the compu-
tational modeling literature. First, multimodal models trained on both text and images might
provide richer and more comprehensive semantic representations (e.g., Betker et al., 2023;
Ramesh et al., 2021; Xu et al., 2015), particularly for capturing concrete features that relate
to vision, which forms a key part of our semantic knowledge (Cree & McRae, 2003). Sec-
ond, recent advancements in LLMs (OpenAI, 2023; Touvron et al., 2023), trained on trillions
of tokens, have significantly improved performance across diverse benchmarks. Future work
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incorporating open-sourced LLMs (e.g., Touvron et al., 2023) could enable a more sensitive
assay of the effects of regular polysemy and of more nuanced differences between types than
is possible with the BERT model. Indeed, it may be the case that replicating our analyses
using the representations derived from one of these larger models would substantially boost
accuracy, and this, in turn, could modulate other aspects of our results. For example, although
we do not expect that degree of regularity could be fully distilled down to amount of featural
overlap between senses across types, a larger model, perhaps coupled with an analysis of a
larger set of regularity types, might reveal a statistically significant (although far from perfect)
relationship between featural overlap and degree of regularity. However, for reasons outlined
earlier in our paper, the challenges associated with training these models at scale pose impor-
tant limitations on how these models can be probed to understand exactly how they operate,
even setting aside other issues such as the implausibly extensive experience with text that the
models experience during training. Thus, work on this front will have to deal with additional
considerations that are less of an issue with our work. Third, as described in the methods sec-
tion, although we consider it unlikely that the use of a word tokenizer to process words not in
the BERT base vocabulary has substantially shaped our results, an explicit investigation of the
role of tokenization in shaping the representation of polysemy would be useful in confirming
this prediction. It may also reveal ways in which tokenization of unfamiliar words could offer
complementary insight into how new or rarely encountered word meanings can be inferred
based on the representation of the meaning of their constituent subwords, and how this type of
inference may relate to regular polysemy (e.g., in terms of how new regularity types emerge,
or how a new word may have its senses extended).

Taken together, despite the imperfect alignment between BERT (including other language
models based at least in part on co-occurrence patterns in natural text) and human cognition,
we still view this work as tapping into important aspects of the human representation of
polysemy. These models are clearly developing sensitivity to facets of meaning representation
based on word co-occurrence statistics much as humans appear to do, even if the detailed
processes used to do so by the models and by humans are non-identical. Going forward, we
expect that these models can be useful in guiding thinking and in developing targeted, testable
predictions for empirical evaluation, which is a key reason to develop computational models,
even if they are “wrong” in some respects.

7.3. Splitting senses

A splitting theory of polysemy (Katz & Fodor, 1963; Pustejovsky, 1998) suggests that the
meanings of a polyseme can be split into separate sense categories. According to this theory,
a key task for the language system is therefore to uncover these categories and outline their
relationships. Our work also leverages this splitting assumption based on how it leverages
the LR component of the LRcos model to answer sense analogy questions. However, this
theory may not be accurate due to the challenges in separating senses, the possibility of a
word carrying multiple senses simultaneously, and recent computational and psycholinguistic
evidence (Li & Joanisse, 2021; Trott & Bergen, 2023) supporting the graded and continuous
representation of specific polysemous senses. For these reasons, we expect that the more
nuanced views advocated by this recent work will underlie a full account of regular polysemy.
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Why then did we develop our work based on sense splitting? In our view, this was simply a
pragmatic methodological decision, and not one intended to reflect a strong theoretical claim
about the organization of senses. What was critical, in our view, was the notion that there
is a consistent transformation between the two senses of polysemes from a given type. This
transformation can, in principle, be estimated using either discrete splits or graded distribu-
tions of senses. Employing a method based on discretization greatly simplifies the approach,
much as it does in other areas of semantic ambiguity research (e.g., delineating relatedness
of meaning into the categories of unrelated homonyms and related polysemes, despite the
fact that some polysemes may have more related meanings than others, as reflected by a
relatedness continuum; Armstrong & Plaut, 2016). Having validated the basic premises of the
approach, we expect that more complex and sophisticated methods may be leveraged to better
capture the nuances between a polysemes meanings, as reflected in the aforementioned work.

7.4. Interrater reliability

In our study, we supplemented a prior source of sense annotated sentences with additional
examples of usages of regular polysemes in lines of dialog extracted from movies and
television subtitles. Generally speaking, these lines of dialog typically correspond to either
one or a small number of short sentences. That is, they typically provide more context than
just one or two adjacent words around the target word, but provide far less context than would
be available in a full paragraph or more of text. In our annotations, the mean percentage
of interrater agreement was 85% and mean Cohen’s kappa value was 0.70. These results
clearly indicate agreement levels well above chance, but also far from perfect agreement. To
confirm that this was not an anomalous finding related to our specific norming methods or
set of raters, we examined the interrater agreement levels reported in prior work on regular
polysemy and found the levels of agreement to be quite consistent across studies (Alonso
et al., 2013; Markert & Nissim, 2002; Navarro et al., 2005; Véronis, 1998). Adding another
relevant comparison point, Rice et al. (2019) computed an interrater reliability measure
for annotating homonyms, as opposed to polysemes using the exact same subtitles dataset
used in our study. They observed slightly higher levels of overall agreement (92%). Taken
together, these results indicate that raters have greater difficulty in agreeing on an annotation
for the more closely related senses of polysemes than they do for homonyms for the amount
of context we included in our norms.

This is perhaps not unsurprising for the following reasons. First, previous work has sug-
gested that the different senses of a polyseme are closely related within a neural network’s
internal representational space, with somewhat fuzzy boundaries between some senses (Li &
Joanisse, 2021). Given the long history of using similar neural networks to make inferences
about human cognition, this work suggests that humans should also be challenged in provid-
ing appropriate annotations for polysemes in many contexts. Second, copredication, even if
it happens infrequently, could further erode model performance, although our relatively high
overall levels of accuracy and our informal inspection of our annotated data suggest that the
effects of this factor are likely small. Finally, and perhaps most importantly, our experience in
annotating data might suggest that the context we provided (on average, about 13 words) was
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insufficient to make confident annotations between the related senses of a polyseme in many
cases. Increasing the context window in future annotations may therefore be worthwhile even
if it does increase the resource intensiveness of the task.

8. Conclusion

Taken together, our findings advance the understanding of the representational structure of
regular polysemy by shedding light on how the relationships between senses are represented,
how regularity is likely a continuous factor, how similar latent pressures may drive the forma-
tion of several types of regular polysemy, whether semantic overlap fully explains regularity,
and how the LRcos methodology detects the regularity in sense analogies. Doing so in com-
putationally explicit terms has offered a platform for future extensions of this work, such as
the unsupervised discovery of other types of regular polysemy, and has also offered targeted
directions for future research, such as the expanded study of the regularity continuum using
a broader range of regularity types and interdisciplinary methods. Given that most words in
languages are polysemous, we expect these findings to help drive forward our understanding
of an important facet of word and discourse comprehension, which can also inform how we
categorize and generalize knowledge more broadly.
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1 We thank the helpful comment of an anonymous reviewer for highlighting the importance
of discussing the BERT tokenizer in our work.

2 For example, the Animal/Meat polysemes that were excluded included low-frequency
words such as yak, prawn, and quail. These items also had very few—if any—examples
of one of their two senses in our corpora.

3 For practical reasons, it was not possible to have every rater to provide equal numbers of
annotations for each polyseme/polyseme type, hence the weighted average approach.

4 To rule out the possibility that any single one of our types was an outlier and a signifi-
cant relationship was not observed as a result, we conducted an additional sanity check.
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We first left out the data from one of our types and reran the main analysis on the four
remaining types. We then imputed the expected accuracy for the withheld type and reran
the regression including the four “real” data points and the imputed datapoint. By def-
inition, such imputation must produce either the same or a higher correlation to that
observed with the four real data points. However, when we ran this analysis, we always
failed to observe a significant correlation. For example, we failed to detect a significant
correlation when we withheld the real data from the Process/Result type and imputed
the data for that type and obtained a correlation of r(3) = −.289, p = .64. This category
shared a large number of words with the same morphological structure (words ending
in “-ion;” although as described in the methods section, our polysemes are not subject
to tokenization into subwords), and was also associated with the lowest overall accu-
racy. This supplemental analysis confirms that in this aspect, the Process/Result type (or
indeed, any idiosyncratic property associated with any one type) is not responsible for
the non-significant relationship between sense overlap and meaning regularity.
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Appendix: Cross-type specific analysis tables

Table A1
Summary of the mean accuracies and statistical comparisons from the pairwise cross-type comparisons

versus RP

Accuracy χ 2 p

A/M C/C 0.22 152.40 <.001
A/M L/O 0.20 107.22 <.001
A/M A/I 0.22 137.98 <.001
A/M P/R 0.14 7.18 .01
C/C L/O 0.25 68.62 <.001
C/C A/I 0.34 207.86 <.001
C/C P/R 0.21 44.25 <.001
L/O A/I 0.30 110.45 <.001
L/O P/R 0.35 236.98 <.001
A/I P/R 0.15 4.90 .03

Note. A/M = Animal/Meat, C/C = Container/Content, L/O = Location/Organization, A/I = Arti-
fact/Information, P/R = Process/Result. Significant p-values after the Holm correction are presented in boldface.

Table A2
Summary of the statistical tests comparing the accuracy for each cross-type comparison against the accuracy for
every other cross-type comparison

group1 group2 χ 2(1) p

A/M C/C A/M L/O 0.83 .36
A/M C/C A/M A/I 0.01 .91
A/M C/C A/M P/R 33.77 <.001
A/M C/C C/C L/O 1.59 .21
A/M C/C C/C A/I 28.59 <.001
A/M C/C C/C P/R 0.12 .72
A/M C/C L/O A/I 10.63 <.001
A/M C/C L/O P/R 32.40 <.001
A/M C/C A/I P/R 9.75 <.001
A/M L/O A/M A/I 0.55 .46
A/M L/O A/M P/R 22.94 <.001
A/M L/O C/C L/O 3.60 .06
A/M L/O C/C A/I 35.90 <.001
A/M L/O C/C P/R 0.05 .82
A/M L/O L/O A/I 14.92 <.001
A/M L/O L/O P/R 40.37 <.001
A/M L/O A/I P/R 6.23 .01

(Continued)
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Table A2
(Continued)

group1 group2 χ 2(1) p

A/M A/I A/M P/R 31.20 <.001
A/M A/I C/C L/O 1.85 .17
A/M A/I C/C A/I 29.40 <.001
A/M A/I C/C P/R 0.05 .82
A/M A/I L/O A/I 11.19 <.001
A/M A/I L/O P/R 33.25 <.001
A/M A/I A/I P/R 9.03 <.001
A/M P/R C/C L/O 28.68 <.001
A/M P/R C/C A/I 94.51 <.001
A/M P/R C/C P/R 14.91 <.001
A/M P/R L/O A/I 52.52 <.001
A/M P/R L/O P/R 104.02 <.001
A/M P/R A/I P/R 0.32 .57
C/C L/O C/C A/I 9.10 <.001
C/C L/O C/C P/R 1.82 .18
C/C L/O L/O A/I 2.49 .12
C/C L/O L/O P/R 10.18 <.001
C/C L/O A/I P/R 12.77 <.001
C/C A/I C/C P/R 21.71 <.001
C/C A/I L/O A/I 1.44 .23
C/C A/I L/O P/R 0.00 .97
C/C A/I A/I P/R 44.79 <.001
C/C P/R L/O A/I 9.21 <.001
C/C P/R L/O P/R 23.88 <.001
C/C P/R A/I P/R 5.50 .02
L/O A/I L/O P/R 1.76 .18
L/O A/I A/I P/R 25.97 <.001
L/O P/R A/I P/R 48.02 <.001

Note. Significant p-values after the Holm correction are presented in boldface.
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